日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Performance analysis of tabletop single-pulse terahertz detection at rates up to 1.1 MHz

MPS-Authors
/persons/resource/persons265219

Lippl,  Markus
Joly Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

/persons/resource/persons201100

Joly,  Nicolas
Joly Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;
Friedrich-Alexander-Universität Erlangen-Nürnberg, External Organizations;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Couture, N., Lippl, M., Cui, W., Gamouras, A., Joly, N., & Ménard, J.-M. (2024). Performance analysis of tabletop single-pulse terahertz detection at rates up to 1.1 MHz. Physical Review Applied, 21(5):. doi:10.1103/PhysRevApplied.21.054020.


引用: https://hdl.handle.net/21.11116/0000-000F-5837-1
要旨
Standard terahertz time-domain spectroscopy uses a relatively slow multidata acquisition process that has hindered the technique’s ability to resolve “fast” dynamics occurring on the microsecond timescale. This timescale, inaccessible to most ultrafast pump-probe techniques, hosts a range of phenomena that has been left unexplored due to a lack of proper real-time monitoring techniques. In this work, chirped-pulse spectral encoding, a photonic time-stretch technique, and high-speed electronics are used to demonstrate time-resolved terahertz detection at a rate up to 1.1 MHz. This configuration relies on a tabletop optical source and a setup able to resolve every terahertz transient generated by the same source. We investigate the performance of this single-pulse terahertz detection system at different acquisition rates in terms of experimental noise, dynamic range, and signal-to-noise ratio. Our results pave the way towards single-pulse terahertz time-domain spectroscopy at arbitrarily fast rates to monitor complex dynamics in real time.