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Deep neural networks have demonstrated remarkable efficacy in extracting meaningful represen-
tations from complex datasets. This has propelled representation learning as a compelling area
of research across diverse fields. One interesting open question is how beneficial representation
learning can be for quantum many-body physics, with its notouriosly high-dimensional state space.
In this work, we showcase the capacity of a neural network that was trained on a subset of physical
observables of a many-body system to partially acquire an implicit representation of the wave
function. We illustrate this by demonstrating the effectiveness of reusing the representation learned
by the neural network to enhance the learning process of another quantity derived from the quantum
state. In particular, we focus on how the pre-trained neural network can enhance the learning of
entanglement entropy. This is of particular interest as directly measuring the entanglement in a
many-body system is very challenging, while a subset of physical observables can be easily measured
in experiments. We show the pre-trained neural network learns the dynamics of entropy with fewer
resources and higher precision in comparison with direct training on the entanglement entropy.

I. INTRODUCTION

Representation learning has emerged as a captivating
avenue within machine learning research [1]. It has cre-
ated significant advancements in various fields such as
language modeling [2, 3] and computer vision [4, 5], rev-
olutionizing the way data is understood and processed.
Investigating the learned representation by a machine
learning model provides insights into which features of
the model are most relevant. This offers a fresh perspec-
tive on the model’s understanding, potentially revealing
nuances beyond human perception. In physics, especially
in quantum many-body systems, representation learning
provides valuable insight into the essential properties of
complex quantum systems. For example, this technique
has successfully been used to create compressed represen-
tations of quantum states [6–8].
In this work, which is geared towards applying repre-

sentation learning in quantum many-body physics, we
investigate the capability of a neural network pre-trained
on the prediction of physical observables to build up (par-
tially) an implicit representation of the complex many-
body wave function. To demonstrate this potential, we
explore how the pre-trained neural network enhances the
learning process of other tasks that depend on the quan-
tum state.

As an example of a task depending on a suitable repre-
sentation of the quantum state, we focus on the prediction
of entanglement between parts of the many-body system.
Entanglement is a fundamental concept in quantum me-
chanics with wide-ranging implications for fundamental
physics [9] and practical applications in quantum com-
puting and quantum communication [10–12]. Efficiently
detecting and quantifying the entanglement of a quan-
tum many-body system is a very challenging task. The
conventional methods for entanglement detection neces-
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FIG. 1. Schematic illustration of the transfer learning task
considered in this study. The information learned by a neural
network trained on the dynamics of a subset of physical ob-
servables of a many-body system is reused to learn efficiently
the dynamics of entanglement entropy.

sitate demanding full quantum state tomography [13].
Nevertheless, alternative approaches have emerged that
alleviate this requirement. For example, there exist meth-
ods based on partial state tomography [14] or reduced
density matrices [15], which only require measurements of
a subset of the degrees of freedom. Meanwhile, machine
learning techniques have enhanced entanglement detec-
tion schemes [16–20]. The key approach in all these works
is to apply classifiers to detect entanglement based on
certain features, without requiring full information about
the wave function [17–19].

Motivated by the interest in learning entanglement, we
inspect whether our data-driven neural network that has
been trained on predicting the dynamics of a subset of
physical observables of a quantum many-body system
can be reused to learn the dynamics of entanglement
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FIG. 2. Schematic illustration of the models employed in this
study. B(t), ⟨O(t)⟩, and S(t) represent the magnetic field,
a subset of physical observables, and von Neumann entropy,
respectively. (a) Source model; the neural network is fed by
the magnetic field at each time step and it outputs a subset of
physical observables for the corresponding time step. (b) The
target model with transfer learning (TL) which is built of two
parts. The first component comprises layers that have been
pre-trained on the dynamics of physical observables within the
source model. These pre-trained layers remain fixed during the
training process of the target model. They are then stacked
with extra layers which are trainable. (c) Direct training
(DT) of the target model; all the layers are trainable and no
prior information is passed to this architecture. (d) In the
front-end model, the neural network receives as input the time
evolution of a subset of physical observables and outputs the
time evolution of entropy. Note that in the source model and
the target models, the initial values of ⟨σα

i ⟩ are also fed as
input to the neural networks.

with fewer resources compared to the direct training on
entanglement entropy. Such a technique where a model
implemented for a particular task (called source model)
can be reused as the starting point for modeling a second
task (called target model) is a prevailing tool in deep
learning and is known as transfer learning (TL) [21, 22].
We examine the efficiency of a pre-trained neural net-

work on physical observables in learning the dynamics
of entanglement entropy for both integrable and non-
integrable models. Notably, we demonstrate that in in-
tegrable models, where the network exhibits superior
capability in learning the physical observables [23, 24],
the accuracy of transfer-learning-based predictions for the
target model is also higher.

II. PHYSICAL MODEL

We conduct our experiments on two typical spin models.
An Ising ring driven with a time-dependent transverse
magnetic field in the presence or absence of an extra
(integrability-breaking) longitudinal field is described by
the following Hamiltonian:

H = B(t)

n∑
i=1

σx
i + J

n∑
i=1

σz
i σ

z
i+1 + g

n∑
i=1

σz
i (1)

Our choice is motivated by the fact that while the case
of g = 0 is instantaneously (at any fixed time) quantum
integrable, in the presence of the extra longitudinal field
the model is non-integrable. The time-dependent random
trajectories for the magnetic field are generated using a
random Gaussian process [25]; see Supplemental Material
in Ref. [23] for technical details. Note that we consider
closed boundary conditions so that σα

n+1 := σα
1 . We use

qutip [26] to calculate the von Neumann entropy of the
reduced density matrix ρr of a subsystem, defined as
S = −Tr(ρr ln ρr), for the different realizations of our
time-dependent random magnetic field.

III. METHODOLOGY

a. Neural network architecture We aim to inves-
tigate the efficiency of a pre-trained neural network on
physical observables, in learning the dynamics of entan-
glement entropy. To explore our objective, we train four
distinct models: A source model, a transfer learning of
the target model, a direct training of the target model as
well as a front-end model. The source model refers to the
neural network that is fed with the value of the magnetic
field at each time step as well as the initial values of ⟨σα

i ⟩
and outputs the desired physical observables for that time
step (Fig. 2 (a)). The target model is the neural network
architecture that receives as input the magnetic field at
each time step as well as the initial values of ⟨σα

i ⟩ and
outputs the von Neumann entropy for the corresponding
time step. For the direct training (DT) of the target
model, all the layers are trainable and no prior informa-
tion is passed to this architecture Fig. 2 (c). In contrast,
the target model with transfer learning (TL) is made of
two parts: The first part is represented by layers that are
pre-trained on the dynamics of physical observables in
the source model and are frozen during the training of
the target model. These pre-trained layers are stacked
with extra layers that are trainable (Fig. 2 (b)), which
constitute the second part.
As we explain later in detail, to gain further insights

into the significance of trainable layers and the utility of
information derived from pre-trained layers in transfer
learning of the target model we also train another model
referred to as the front-end model. In this model, the
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network receives as input the dynamics of physical observ-
ables and it outputs the dynamics of entropy as shown in
Fig. 2 (d).

Our selection of layer structures for each model is based
on the following considerations. For the task of training
the source model on a subset of physical observables,
consistent with our previous studies [23, 24, 27], our ob-
servations suggest that Long Short-Term Memory (LSTM)
layers offer improved performance. The same observa-
tion holds for the direct training of the target model.
Therefore, we choose LSTM layers for both the source
model and direct training of the target model. Regard-
ing transfer learning of the target model, the process of
transferring information from a source model to a target
model requires smart fine-tuning. To transfer layers from
a source model to a target model successfully, it’s cru-
cial to choose layers of the source model that retain the
most important information. Our experiments indicate
that transferring all hidden layers of the source model
is beneficial ( see Appendix Sec. B and Fig. 5 (c) for a
detailed discussion). We observed that selecting a dense
layer as the output layer of the source model leads to
slightly better performance in the source model itself (see
Appendix Sec. B and Fig. 5 (a)) as well as a slightly more
efficient transfer of information to the target model (see
Appendix Sec. B and Fig. 5 (a)). However, it is worth
noting that the observed differences are not substantial
in magnitude.

In the target model with transfer learning, the trainable
layers should be selected in a manner that enables them to
effectively extract the information from the frozen layers.
It is also important to compare the power of the extra
trainable layers with the architecture chosen for direct
training. Our observations (see Fig. 5 (b)) in general
indicate that LSTM layers are more resource-efficient in
comparison with dense layers in extracting information
from pre-trained LSTM layers. However, it is possible
that the better performance in comparison to direct train-
ing could be solely attributed to the trainable part. To
validate that the information from the pre-trained layers
also plays a role, we consider the scenario where the train-
able layers are dense and therefore less powerful. This
allows us to further confirm the contribution of the pre-
trained layers to the performance of the target model.
All the results of the paper are produced with the dense
trainable layers, i.e. the less powerful layout.

For the front-end model, LSTM layers would typically
be more suitable. However, we have chosen to use dense
layers instead. This choice allows us to maintain a compa-
rable level of power between this model and the trainable
layers of the target model during transfer learning. By
doing so, we ensure a fair and meaningful comparison
between the models. See Appendix Sec. A for more detail
on the layout of each model.

b. Training: Training and test data for both source
and target model are generated by solving the Schrodinger
equation for the Hamiltonian (1) using qutip [26], a library
implemented in python. We prepare our spins initially in

an arbitrary translationally-invariant uncorrelated state⊗
i(
√
p|0⟩+

√
1− p|1⟩) with p chosen at random from the

interval [0, 1]. Here, |0⟩ and |1⟩ denote, respectively, the
±1 eigenstates of σz.
To train our source model we feed to the network as

input the time-dependent magnetic field trajectory and
the initial values of ⟨σα⟩ with α ∈ {x, y, z}. The output of
the neural network is the dynamics of a subset of ⟨σα

i ⟩ and
⟨σα

i σ
β
i+ℓ⟩ with α, β ∈ {x, y, z}. We inspect later how the

number of chosen observables to train the source model
affects the performance of the target model in learning
the entropy. The cost function that we use to train our
source model is defined as

MSE = |⟨O(t)⟩NN − ⟨O(t)⟩true|2 (2)

where the average is performed over all samples and time
steps. The ⟨O(t)⟩ shows the expectation values of all
observables where “NN” stands for the predictions of the
neural network and “True” stands for the ground-truth
values calculated by solving the Schrödinger equation.

To train our target model we feed to the neural network
as input the magnetic field and the initial values of ⟨σα⟩.
The network’s output represents the entropy dynamics
calculated for the density matrix of one half of the spin
ring. The cost function for the target model is also defined
as

MSE = |S(t)NN − S(t)true|2 (3)

where S(t) represents the evolution of entropy and the
average is taken over all samples and time steps. For the
front-end model we use the same cost function as for the
target model, defined in equation (3).

IV. RESULTS

In this section, we primarily aim to investigate the
correlation between the accuracy of the transfer learning
model in predicting the dynamics of entropy and the
accuracy of the source model in learning the physical
observables dynamics. Furthermore, we explore how the
selection of a subset of observables used to train the source
model influences the performance of the target model in
the task of transfer learning. To comprehensively assess
these aspects, we compare the effectiveness of transfer
learning in capturing the evolution of the von Neumann
entropy against direct training. Additionally, we compare
its effectiveness with the performance of a front-end model
that directly maps the dynamics of physical observables
to entropy dynamics.

In our previous work [23], we observed that the neural
network learns the dynamics of physical observables with
higher accuracy for integrable models in comparison with
non-integrable models. Therefore, here we explore the
performance of the transfer learning of the target model
separately for non-integrable and integrable models.
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FIG. 3. Correlation between the accuracy of the source model and the accuracy of the TL. Results are shown for (a) the
integrable model and (b) the non-integrable model for a spin ring with size N = 8. We consider three scenarios where three
different sets of observables are used to train the source model (see Table I). For each set of observables, the source model is
trained for two different training set sizes of 5K and 50K. The TL model is trained on 5K samples. The horizontal dashed
black line shows the performance for direct training of the target model where 50K samples are used for training. The dotted
lines show the MSE for the front-end model where 5K samples are used for training for different sets of physical observables
distinguished by color. The colored areas show the variance of the MSE. MSE is always computed over 1000 test samples. The
scenarios positioned below the black dashed line denote regions where TL outperforms the direct training of the target model.

Note that we examined the neural network’s ability to
learn the evolution of bi-partite von Neumann entropy
for varying subset sizes of our spin ring and found that
the neural network generally performs better for smaller
subset sizes (See Appendix Sec. B and Fig. 5 (d). Our
analysis in the main text is therefore focused only on the
most difficult scenario, namely the von Neumann entropy
across two halves of a spin ring.

In Fig. 3 (a), for the case of g = 0, where the model is
integrable, we show the MSE in the target model defined
in Eq. (3) versus MSE in the source model defined in
Eq. (2). The presented results pertain to scenarios where
distinct sets of observables are employed to train the
source model; see Appendix Sec. A, Table. I for details on
observables labels. For each set of observables, the source
model is trained separately for two different training set
sizes of 5K (5,000) and 50K. For both cases the number
of samples used to train the TL model is 5K.
The correlation between the precision of the source

model and the performance of the TL is clearly evident -
a higher precision in the source model results in improved
TL performance. Additionally, it seems that two-point
correlators have a more pronounced impact (compared to
the first order moments of spin operators) on the success

of the TL. Once a sufficiently high level of accuracy is
attained in the source model for each observable set, TL
has the potential to outperform its corresponding target
model based on direct training and the front-end model
significantly.
We also show the accuracy of the direct training of

the target model (dashed line) and the front-end model
(which is trained for the different sets of observables) in
predicting the dynamics of entropy. As is evident, for
cases where the source model learns observables with a
higher accuracy, the TL has a better performance. Note
that a direct comparison of TL with the front-end model
may not be entirely reasonable, as they serve different pur-
poses. The former maps magnetic fields to the evolution
of entropy, while the latter maps the evolution of physical
observables to the evolution of entropy. However, despite
this distinction, we still draw a comparison as TL employs
frozen pre-trained layers from the source model, which
map magnetic fields to physical observables. Note that
the trainable part of the target model with transferred
learning has the same power in terms of neural network
architecture and number of trainable layers as the front
end model.
In Fig. 3 (b), we show the same plot for the non-
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integrable case where g = 0.5. The difference between
direct training and TL is much smaller in comparison with
the integrable case. Training the source model on two-
point correlators results in a slightly better performance
of TL in comparison with direct training, which is however
not significant. The lower accuracy of TL for the non-
integrable model can be attributed to the lower accuracy
of the source model. Additionally only TL based on pre-
training first order observables significantly outperforms
its corresponding front-end model. It is important to
highlight that even in the scenarios where transfer learning
(TL) does not offer a noticeable advantage in terms of
prediction accuracy, TL still remains a more resource-
efficient approach. This is because TL only uses 5K
samples, whereas direct training uses 50K samples for
entropy. This implies that, despite potentially comparable
prediction accuracy, TL significantly reduces the data
requirements to directly train on entropy. We remark
that reducing the number of samples to learn entropy
comes at the expense of providing sufficient data for
physical observables. These, however, can be measured
in experiments directly and easily. We recall that all the
results are for system size N = 8 and the von Neumann
entropy is computed between the two halves of the spin
ring.
In Fig. 4, we demonstrate further the utility of the

source model in scenarios where the target model lacks
sufficient data. We compare the accuracy of predicting
the dynamics of entropy applying the TL of the target
model with the direct training of the target model as
well as with the front-end model. Here the training set
size on the source model, direct training and transfer
learning of the target model as well as the front-end
model are, 50k, 50k, 5k and 5k, respectively. The left
column (right) shows the results for the integrable model
(non-integrable). Out of 1000 test samples, the first row
represents the true and predicted entropy evolution for a
single instance where direct training performs worst and
the second panel presents the case where TL performs
worst.

In the lower panels of Fig. 4, we show the MSE averaged
over 1000 test samples. It is evident that for the integrable
model, transfer learning can achieve better precision with
a lot smaller training set size in comparison with the
direct training. This difference is less evident in the non-
integrable case. This is again attributed to the lower
accuracy of the source model for non-integrable models.
It is worth nothing that for the non-integrable case still
the accuracy of the predictions for both TL and direct
training is reasonable.

In Fig. 4, we also show the performance of the front-end
model. As we pointed out previously for the front-end
model, LSTM layers would be more suitable and may
lead to a better performance but we use dense layers
here to provide a fair comparison with the trainable part
of the TL model. We recall that in the TL model we
choose dense layers for the trainable part. To make the
comparison even more fair we also used the same number

of samples for training. For the integrable model, it is
evident that the TL model predicts entropy with higher
accuracy in comparison with both direct training and the
front-end model. This is another signature that confirms
the usefulness of a pre-trained network. This difference is
smaller for the non-integrable model. But, as we already
pointed out, this is due to the low accuracy of the source
model.
We would like to highlight that, in general, it is an

interesting observation on its own that while the accuracy
of the source model in predicting the evolution of entropy
depends on whether the model is integrable or not, this
seems not to be the case for the task addressed by the
front-end model. The front-end model predicts the en-
tropy for both integrable and non-integrable models with
reasonable and similar precision. We view this observa-
tion as an encouraging indication that the performance
bottleneck for transfer learning in the non-integrable case
is the accuracy of the source model.
Note that as demonstrated in [23], our trained neural

network on random Gaussian fields can extrapolate its
predictions to other classes of magnetic fields, such as
quench and periodic fields. Dynamics, driven by quench
and periodic fields, are generally interested in quantum
dynamics [28–30].

Predicting the entanglement entropy is already a fairly
complex task, which, as this paper has shown, clearly can
benefit from transfer learning. However, our numerical ex-
periments have shown us that this benefit of transfer learn-
ing is not a completely generic phenomenon: indeed, we
carried out preliminary investigations where we observed
that even the prediction of second-order observables based
on a model pre-trained on first-order observables did not
yield any discernible benefits of transfer learning.

Our last remark concerns the feasibility of providing
data for training the transfer learning model for large
system sizes where calculating entropy numerically or
measuring it experimentally is challenging. Through our
numerical experiments, we have discovered the number
of samples required for transfer learning on entropy is
relatively small. However, it is important to acknowledge
that even with this advantage, a modest amount of sam-
ples is still necessary for effective training. To overcome
this challenge, one possible approach is to calculate the
entropy numerically for smaller system sizes, where it re-
mains feasible, and then leverage a pre-trained network to
extrapolate the results for larger system sizes, where data
might not be readily accessible. The feasibility of such
extrapolations in system size has already been supported
by our previous works, where we applied a combination
of LSTM and convolutional neural networks [24, 27].

V. CONCLUSION AND OUTLOOK

Our findings validate that a neural network trained on
the dynamics of physical observables learns useful infor-
mation about the wave function. We showcase this by
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FIG. 4. Demonstration of the advantage of TL over direct training on predicting the dynamics of entropy for an integrable
model (g=0, left column) versus a non-integrable model (g=0.5, right column) for system size N = 8. The first row shows the
time evolution of MSE (defined in Eq. (3)) averaged over 1000 test samples. For the integrable model, it is evident that the
TL model predicts entropy with higher accuracy in comparison with both direct training and the front-end model. For the
non-integrable model, such difference is not evident which is due to the low accuracy of the source model. The second and third
rows show the cases for which direct training and transfer learning performed worst out of 1000 test samples, respectively.

illustrating that the implicit representation learned by
the neural network can be reused to enhance the learning
of entanglement entropy. More precisely, we demonstrate
that the pre-trained neural network enables more precise
and resource-efficient learning of the evolution of entangle-
ment entropy compared to direct learning. Additionally,
we show that in integrable models, where the neural net-
work exhibits superior capability in learning the physical
observables, the accuracy of predictions for the evolution
of entropy is also higher. More generally, our work rep-
resents a promising demonstration in the road towards
exploiting representation learning and transfer learning
in the context of quantum many-body dynamics.

Appendix A: Technical Details

In this section, we provide a concise explanation of the
neural network architectures utilized in the main text, as
well as the specific subsets of observables employed to
train each model.

Table I illustrates the labels of the observables that are
used to train the source model depicted in Fig. 3 and

Fig. 4. Additionally, we present the architecture of the
source model, including the number of hidden layers and
the size of the output layer.

Regarding the target model with TL, we apply two fully
connected trainable layers of sizes 100 and 1 respectively.
For the target model with direct training, two LSTM
layers of size 100 with a dense output layer of size 1 is
used. Note that in all cases the output layer has linear
activation whereas during TL the trainable dense layers
have sigmoid activation. For the Font-end we use the same
architecture as the trainable part of TL model namely
two layers with size 100 and 1.

label set net size
⟨σ⟩ {⟨σα⟩}α∈{x,y,z} 2x100+3

⟨σσ⟩ {⟨σα
i σ

β
i+l⟩}

α,β∈{x,y,z}
0<l<4 2x500+27

⟨σ⟩⟨σσ⟩ {⟨σα⟩, ⟨σα
i σ

β
i+l⟩}

α,β∈{x,y,z}
0<l<4 4x500+30

TABLE I. Explanation of labels used for observable sets to
train the source model and the layout of the source model.
Teal numbers describe the LSTM layer sizes, orange, the dense
output layer.
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FIG. 5. (a) LSTM vs Dense output layer in the source model.
Shown results are for the case that the source model is trained
on the ⟨σ⟩observable set. The MSE is normalized to the MSE
of the integrable model where a dense output layer is used. (b)
Training history in TL for LSTM vs Dense trainable layers. In
this case, the source model is trained on the ⟨σ⟩⟨σσ⟩observables
with a training set size of 5K. (c) Leveraging information
from the source model to the transfer Learning. Shown is TL
performance based on discarding different numbers of LSTM
hidden layers in the source model starting from the very last
layer. The source model is trained on the ⟨σ⟩⟨σσ⟩observable
set. The black line is the results for the target model for the
sake of comparison. (d) Performance dependence of the direct
trained model to the subsystem size considered to calculate
entropy. The shown results are for system size N = 10. Orange
color shows the performance of the direct trained model for the
case that the neural network is trained separately on entropy
calculated for different subsystem sizes. Green color shows the
neural network performance when it is trained simultaneously
on a vector of entropy with its elements representing entropies
calculated for different subsystem sizes.

Appendix B: Additional considerations

Here we discuss some additional considerations in sup-
port of the claims made in the main text.

a. LSTM vs Dense output layer in the source model
Fig. 5 (a) shows the impact of using an LSTM output

layer vs a dense layer in the source model. Here, the
source model is trained on ⟨s⟩ with training set size 5K.
Note that we normalized the MSE of the source model (TL
model) to the value of the MSE of the source model (TL
model) for the case that a dense output layer is employed
in the source model for the case of g = 0. It is evident
that an LSTM output layer leads to a minor improvement
in both the source model and TL performance.
b. LSTM vs Dense trainable layers in the TL model
Fig. 5 (b) shows the impact of using LSTM trainable

layers instead of dense ones during TL. In this case source
model is trained on the ⟨σ⟩⟨σσ⟩observables with training
set size of 5K. Shown is the evolution of the validation
loss during TL for both the integrable and non-integrable
case. The LSTM seems to be beneficial just in a faster
convergence with only a slight advantage in final perfor-
mance.

c. Leveraging information from the source model to
TL Fig. 5 (c) shows TL performance for the case that
the source model is trained on ⟨σ⟩⟨σσ⟩. We show the
MSE for cases where different number of LSTM layers are
transferred before the trainable dense layers. For the sake
of comparison, the direct training results are included as
well. Clearly, TL advantage can be maintained only if
just the first LSTM layer is removed, but already at the
cost of lower performance.

d. Network performance in predicting entropy across
varied subsystem sizes In Fig. 5 for system size N = 10
we show the MSE in learning entropy for direct training.
We explore two scenarios: (1) the network outputs a
vector with elements representing entropies calculated by
tracing over different subsystem sizes, and (2) the network
is separately trained to predict entropy for each subsystem
size. We observe minimal differences between these two
cases; however, it is evident that it becomes progressively
more challenging to predict entropy accurately as the
subset size increases. This observation prompted us to
adopt the maximal subset size as the choice for all the
results presented in the main text.
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Pasquale Calabrese, “Real-time confinement following
a quantum quench to a non-integrable model,” Nature
Physics 13, 246–249 (2017).

[30] Carlos Navarrete-Benlloch, Rafael Garcés, Naeimeh
Mohseni, and German J de Valcárcel, “Floquet theory
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