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KUZNETSOV’S FANO THREEFOLD CONJECTURE VIA

HOCHSCHILD-SERRE ALGEBRA

XUN LIN AND SHIZHUO ZHANG

Abstract. Let Y be a smooth quartic double solid regarded as a degree 4 hypersurface of

the weighted projective space P(1, 1, 1, 1, 2). We study the multiplication of Hochschild-Serre

algebra of its Kuznetsov component Ku(Y ), via matrix factorization. As an application, we

give a new disproof of Kuznetsov’s Fano threefold conjecture. In appendix, we show kernel of

differential of period map for special Gushel-Mukai threefold is of two dimensional by categorical

methods, which completes a result in [DIM08, Theorem 7.8].

1. Introduction

Let X be Fano variety whose semi-orthgonal decomposition for bounded derived category is

given by

Db(X) = 〈Ku(X), E1, . . . , En〉,

where E1, . . . , En is an exceptional collection of vector bundles over X and Ku(X) is the right

orthogonal complement of the collection, called Kuznetsov component. It has been widely

believed that the Kuznetsov component encodes the essential birational geometric information

of the Fano varieties. Thus extracting geometric information from Kuznetsov components is an

important step to understand geometry of Fano varieties. There are numerous way to extract

information from Kuznetsov components, which we briefly recall as follows.

1.1. Stability conditions in Kuznetsov components and moduli space theoretical

approach. One of the most interesting class of Fano varieties are smooth Fano threefolds of

Picard rank one of index one and two, whose deformation classes are completely classified

in [VI99]. In the paper [BLMS17], the authors construct a stability condition σ in Ku(X)

for any such Fano variety X. Denote by N (Ku(X)) the numerical Grothendieck group and fix

a numerical class v ∈ N (Ku(X)) and consider the Bridgeland moduli space Mσ(Ku(X),v) of

(semi)stable object with respect to σ in Ku(X) of numerical class v. The numerical character

v is appropriately chosen such that the corresponding moduli space reconstructs Fano variety

of rational curves on X, which is used to reconstruct (birational) isomorphism class of Fano

varieties(cf. [BMMS12], [PY22], [GLZ22]).
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2 XUN LIN AND SHIZHUO ZHANG

1.2. Topological K-theory of admissible subcategory and Hodge theoretical ap-

proach. Let A ⊂ Db(X) be an admissible subcategory of bounded derived category of a smooth

projective variety X. The topological K-theory [Bla16] of dg categories over C is an additive

invariant

Ktop
1 : dg− cat → Z−mod.

with Chern character map

chtop : Ktop
1 (Adg) → HP1(Adg).

Furthermore Ktop
1 (Dperf

dg (X)) ⊗ C ∼= Hodd(X,C), and chtop is the usual Chern character. In

particular, the natural splitting from that of X gives a weight one Hodge structure for topological

K-group Ktop
1 (A)tf . Namely, the topological Chern character induces,

Ktop
1 (A)tf ⊗C ∼=chtop

HP1(A) ∼= HN−1(A)⊕HN−1(A).

Thus, we have a complex torus associated to this weight one Hodge structure. More explicitly,

J(A) =
HP1(A)

HN−1(A) + ImchKtop
1 (A)

.

In the case of X being a smooth Fano threefold with A being the Kuznetsov component Ku(X)

as the orthogonal complement of an exceptional collection of vector bundles, by [JLLZ21, Lemma

3.9] J(Ku(X)) ∼= J(X) as polarised abelian varieties. which was proved in [Per22, Section 5].

Similar construction is generalized for any smooth and proper dg category and even to arbitrary

dg category in [CMHL+23] and [LXZ24]. On the other hand, in the similar spirit, topological

K-theory and noncommutative Hodge theory(cf. [Bla16] and [Per22]) is applied to admissible

subcategory of Fano fourfolds in [BP23] and surfaces in [DJR23] to recover Mukai lattice for

K3 category and primitive cohomology for surfaces respectively. As application, (birational)

categorical Torelli theorem are proved for various varieties.

1.3. Hochschild-Serre algebra and algebraic approach. Let A be a smooth and proper

dg category, one can naturally attach a bi-graded algebra

AS =
⊕

m,n∈Z

Hom(Id, Sm[n])

with multiplication map

Hom(Id, Sm1 [n1])×Hom(Id, Sm2 [n2])
× // Hom(Id, Sm1+m2 [n1 + n2])

given by the composition

Id
b // Id ◦ Sm2 [n2]

a◦Id // Sm1 [n1] ◦ S
m2 [n2] = Sm1+m2 [n1 + n2] ,

for (a, b) ∈ Hom(Id, Sm1 [n1])×Hom(Id, Sm2 [n2]). It was studied in [Orl03] and [Căl05], [Cal03]

independently when A is bounded derived category Db(X) of coherent sheaves on a smooth

projective variety X, where they prove basic property of this algebra. Moreover, in [BO01], the

author uses a sub-algebra of Db(X)S , which is isomorphic to anti-canonical ring of a smooth
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Fano variety X to reconstruct the variety itself. Recently this algebra is revisited in [BFK23]

and [LZ23] under the name Hochschild-Serre algebra for admissible subcategory of Db(X). In

particular, the authors of [LZ23] establish a sub-algebra of Ku(X)S in the case of smooth

(weighted) hypersurface of (weighted) projective spaces, which recovers the Jacobian ring of X.

Thus a categorical Torelli theorem is proved for those (weighted) hypersurfaces.

1.4. Kuznetsov’s Fano threefold conjecture. Denote by MF i
d the moduli space of smooth

Fano threefold of index i and degree d. In [Kuz09, Conjecture 3.7], the author proposed a

surprising conjecture relating the non-trivial admissible subcategories of two families of smooth

Fano threefolds.

Conjecture 1.1. There is a correspondence Zd ⊂ MF2
d × MF i

4d+2, such that for any pair

(Yd,X4d+2) ∈ Zd, there is an equivalence of categories

Ku(Yd) ≃ Ku(X4d+2).

The conjecture is proved for d = 3, 4 and 5 in [Kuz09]. For remaining cases, there were

numerous evidences suggesting that the conjecture might be false. Thus instead of proving this

conjecture, people are trying to disprove it. To do this, the natural idea would be looking at the

information(moduli spaces, Hodge theory, algebra etc.)extracting from Ku(Yd) and Ku(X4d+2)

respectively and then show that they are different. Indeed, in [Zha20], the author adopts the

moduli theoretical approach described in Section 1.1 to study particular Bridgeland moduli

spaces canonically constructed from Ku(Y2) and Ku(X10) respectively and shows that they

are not isomorphic to each other. Independently, in [BP23], the authors apply the Hodge

theoretical approach in Section 1.2. They look at the Mukai-Hodge lattice of two K3 categories

constructed from equivariant categories of Ku(Y2) and Ku(X10) respectively and show that the

Hodge isometry does not exist. In the current paper, we adopt another perspective described in

1.3. Namely, we look at Hochschild-Serre algebra of dg-enhancement of Kuznetsov component

of quartic double solid and Gushel-Mukai threefold. It turns out that they are not isomorphic

to each other and the proof is very simple.

1.5. Main Results. Let Y be a smooth quartic double solid and X be a smooth Gushel-

Mukai threefold. Denote by Ku(Y )S ,Ku(X)S the Hochschild-Serre algebra of dg-enhancement

of Ku(Y ) and Ku(X) respectively. Consider the multiplication

Hom(Id, S2
Ku(Y )[−2])×Hom(Id, SKu(Y )[−1]) → Hom(Id, S3

Ku(Y )[−3]) ∼= HH1(Ku(Y )),(1)

and associated map

γY : HH2(Ku(Y )) → Hom(HH−1(Ku(Y )),HH1(Ku(Y ))).

Then we show

Theorem 1.2. The kernel of the map γY is one dimensional.
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On the other hand, from [JLLZ22, Theorem 4.6], we know the map

γX : HH2(Ku(X)) → Hom(HH−1(Ku(X)),HH1(Ku(X)))

is injective for all ordinary Gushel-Mukai threefold X. Assuming Ku(Y ) ≃ Ku(X) and the

equivalence is induced by a Fourier-Mukai functor. Then by [JLLZ22, Theorem 4.8], Ker(γY ) ∼=

Ker(γX) = 0, which is a contradiction. As an immediate corollary, we have

Corollary 1.3. For any Gushel Mukai threefold X and quartic double solid Y , the categories

Ku(X) and Ku(Y ) are never equivalent. In particular, the Conjecture 1.1 for d = 2 fails.

Remark 1.4. By [KP18, Lemma 3.8] and [KP19, Theorem 1.6], for any special Gushel-Mukai

threefold X ′, there exists an ordinary oneX such that Ku(X) ≃ Ku(X ′), thus the Conjecture 1.1

for d = 2 is reduced to the case of ordinary Gushel-Mukai threefold.

1.6. Organization of the paper. In Section 2, we recall the terminology of category of graded

matrix factorization Injcoh(A
n+1,C∗,O(d), ω) with C

∗-action on A
n+1 of weight (a0, . . . , an).

Then we describe the multiplications of Hochschild-Serre algebra for the matrix factorization.

In Section 3, we describe the multiplication of Hochschild-Serre algebra for Kuznetsov component

of a smooth quartic double solid and prove Theorem 1.2, as a corollary, we disproof Kuznetsov’s

Fano threefold conjecture. In Appendix 4, we extend a classical result [DIM08, Theorem 7.8] to

special Gushel-Mukai threefold.

1.7. Acknowledgement. We would like to thank Marcello Bernardara, Pieter Belmans, Will

Donovan, Junwu Tu for useful conversation on related topics. SZ is supported by ANR project

FanoHK, grant ANR-20-CE40-0023, Deutsche Forschungsgemeinschaft under Germany’s Excel-

lence Strategy-EXC-2047/1-390685813. Part of the work was finished when XL and SZ are

visiting Max-Planck institute for mathematics and Hausdorff institute for mathematics. They

are grateful for excellent working condition and hospitality.

2. dg category of graded matrix factorizations

In this section, we recall the terminology of dg-category of matrix factorization. We follow

the context in [BFK14]. We refer the reader to [Kel06] for the basic of dg categories. Denote

by Hqe(dg-cat) the localized dg-cat with respect to the quasi-equivalences of dg categories. Let

(X,G,L, ω) be a quadruple where X is a quasi-projective variety with G action, where G is a

reductive algebraic group, L is a G-equivariant line bundle and ω is a G-invariant section of L.

Our main example is (An+1,C∗,O(d), ω). The C∗ action on A
n+1 is given by λ·(x0, x1, · · · , xn) =

(λa0 ·x0, λ
a1 ·x1, · · · , λ

an ·xn), a0, a1, · · · , an are integers such that gcd(a0, a1, · · · , an) = 1. O(d)

is the trivial line bundle twisted with the character Xd : C∗ → C
∗, λ 7→ λd. ω is a C

∗-invariant

section of O(d). Namely ω is a degree d polynomial, the weight of variable xi is ai.

We have dg category Fact(X,G,L, ω), whose objects are a quadruple (E−1, E0,Φ−1,Φ0), where

E−1 and E0 are G-equivariant quasi-coherent sheaves, Φ−1 : E0 → E−1 ⊗ L and Φ0 : E−1 → E0
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are morphism of G-equivariant sheaves such that

Φ−1 ◦ Φ0 = ω.

(Φ0 ⊗ L) ◦Φ−1 = ω.

The space of morphisms in Fact(X,G,L, ω) are the internal Hom of G-equivariant sheaves

while extending the pairs of morphisms to certain Z-graded complexes. We point out the

reference [BFK14] for interested reader. There is a category Acycli(Fact(X,G,L, ω)) which

imitates acyclic complexes in category of complexes of sheaves. The absolute derived cat-

egory Dabs[Fact(X,G,L, ω)] is the homotopy category of dg quotient Fact(X,G,L,ω)
Acyclic(Fact(X,G,L,ω)) ∈

Hqe(dg-cat). Let Inj(X,G,L, ω) ⊂ Fact(X,G,L, ω) be the dg sub-category whose components

are G-equivariant injective quasi-coherent sheaves. We write [A] as the homotopic categoy of

any dg category A.

Lemma 2.1. The composition Inj(X,G,L, ω) → Fact(X,G,L, ω) → Fact(X,G,L,ω)
Acyclic(Fact(X,G,L,ω)) in-

duces an equivalence of homotopic categories

[Inj(X,G,L, ω)] ∼= [
Fact(X,G,L, ω)

Acyclic(Fact(X,G,L, ω))
] := Dabs[Fact(X,G,L, ω)]

Let Injcoh(X,G,L, ω) ⊂ Inj(X,G,L, ω) be a dg sub-category whose objects are quasi-

isomorphic to objects with coherent components in category Fact(X,G,L, ω).

Define shifting functor

[1] : (E−1, E0,Φ−1,Φ0) 7→ (E0, E−1 ⊗ L,−Φ0,−Φ−1 ⊗ L).

With cone construction, the homotopic category [Injcoh(X,G,L, ω)] is a triangulated category

which is equivalent to category of graded matrix factorization in [Orl09] for (An+1,C∗,O(d), ω).

Denote by

{1} = −⊗OAn+1(1) : Injcoh(A
n+1,C∗,O(d), ω) → Injcoh(A

n+1,C∗,O(d), ω)

the twisting functor which maps

E−1
Φ0 // E0

Φ−1// E−1(d)

to

E−1(1)
Φ0(1) // E0(1)

Φ−1(1)// E−1(d+ 1)

Clearly, we have equality of functors {d} := {1}d = [2].

Let X ⊂ P(a1, a2, · · · , an) be a smooth hypersurface of degree d ≤ n defined by ω. Let

Ku(X) :=
〈

OX ,OX(1), · · · ,OX(

n
∑

j=0

aj − 1− d)
〉⊥

.

Roughly speaking, Ku(X) is identified with the essential subcategory of B-branes of X

in Physics. If X a is Calabi-Yau variety, Ku(X) = Db(X). On LG side, the category

[Injcoh(A
n+1,C∗,O(d), ω)] is identified with the category of B-branes of Landau-Ginzburg model.
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Physically B-branes of X and LG model are naturally equivalent, which was proved by Orlov

[Orl09] mathematically. Namely, we have equivalence

Ku(X) ∼= [Injcoh(X,G,L, ω)].

Consider the natural enhancement Injcoh(X), and let Kudg(X) be a dg subcategory that enhance

Ku(X). Orlov’ σ /LG correspondence can be lifted to be equivalence of dg categories.

Theorem 2.2. [BFK14, Theorem 6.13] There is an equivalence in Hqe(dg-cat),

Φ : Injcoh(A
n+1,C∗, ω) ∼= Kudg(X).

According to [BFK14], the natural functors can be reinterpreted as kernels of Fourier-Mukai

transforms, and the natural transformations between these functors are morphism of kernels.

We write ∆(m) as the kernel of functor −⊗OAn+1(m).

Lemma 2.3. [FK18, Theorem 1.2] The Serre functor of [Injcoh(A
n+1,C∗, ω)] is − ⊗

OAn+1(
∑n

j=0−aj)[n+ 1] .

Proof. Since Injcoh(A
n+1,C∗,O(d), ω) ∼= Kudg(X), the category Injcoh(A

n+1,C∗,O(d), ω) is

smooth and proper, or by [FK18, lemma 2.11, 2.14]. Then there is a smooth proper dg al-

gebra A such that [Injcoh(A
n+1,C∗,O(d), ω)] ∼= Dperf (A), the arguments in [FK18, Theorem

2.18] show the Serre functor is

−⊗ ωAn+1 [n+ 1− dimC
∗ + 1] = −⊗OAn+1(

n
∑

j=0

−aj)[n+ 1].

�

Next we recall a key theorem in [BFK14, Theorem 1.2]. For g ∈ C
∗, we write Wg as the

conormal sheaf of fixed locus (An+1)g and kg the character of det(Wg). We write H•(dωg)

as the Koszul cohomology of the Jacobian ideal of ωg := ω|(An+1)g . Let γ = e
2πi
d , and µd =

〈1, γ, γ2, · · · , γd−1〉.

Proposition 2.4. [BFK14, Theorem 5.9] Assume ω has only isolated singularty at 0, then

Hom(∆,∆(m)[t]) ∼=(
⊕

g∈µd, t−rkWg is even

Jac(ωg)(m− kg + d(
t− rkWg

2
)))C

∗

We refer the reader to [BFK14] for details of computation. We describe the multiplication

under the isomorphism of Theorem 2.4. To make this self contain, we introduce some notions

used in the proof.

Let Z be a quasi-projective variety with G action, G is an algebraic group. Let H be a

subgroup of G. We have an action of H on G× Z defined by

τ : H ×G× Z → G× Z, (h, g, z) 7→ (g · h−1, h · z).
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The fppf quotient of G ×X of H is a seperated algebraic space, whcih is denoted as G ×H Z,

see [BFK14, Lemma 2.12]. Consider morphisms

l : Z → G×H Z, x 7→ (e, x).

α : G×H Z → Z, (g, x) 7→ gx.

First, the pull back functor l∗ define an equivalence of equivariant quasi-coherent sheaves.

Namely

l∗ : QcohG G×H Z → QcohH Z.

is an equivalence [Tho87, Lemma 1.3]. We write α∗ : QcohG G ×H Z → QcohH Z as the push

forward functor of α, and α∗ : QcohH Z → QcohGG×H Z as the pull pack functor of α.

Definition 2.5.

IndGH := α∗ ◦ (l
∗)−1 : QcohH Z → QcohG Z.

ResGH := l∗ ◦ α∗ : QcohG Z → QcohH Z.

We still write IndGH and ResGH as derived functors of derived categories of equivariant sheaves.

IndGH is right adjoint functor of ResGH . In our case, Z = A
n+1 × A

n+1, G = C
∗ ×C∗ C

∗ =

{(g1, g2) ∈ C
∗ × C

∗|gd1 = gd2}, and H = C
∗ ⊂ G via diagonal embedding. The G action on Z is

given by

(g1, g2) · (x1, · · · , xn+1, y1, · · · , yn+1) = (ga11 x1, · · · , g
an+1

1 xn+1, g
a1
2 y1, · · · , g

an+1

2 yn+1)

By definition,

Hom(∆,∆(m)[t]) ∼= Hom(Ind
C∗×C∗C

∗

C∗ ∆∗OAn+1 , Ind
C∗×C∗C

∗

C∗ ∆∗OAn+1(m)[t]).

The multiplication

Φ : Hom(∆,∆(m1)[t1])×Hom(∆,∆(m2)[t2]) → Hom(∆,∆(m1 +m2)[t1 + t2])

maps (a, b) to ab is the composition

(2)

Ind
C∗×C∗C

∗

C∗ ∆∗OAn+1

b // Ind
C∗×C∗C

∗

C∗ ∆∗OAn+1(m2)[t2]
a// Ind

C∗×C∗C
∗

C∗ ∆∗OAn+1(m1 +m2)[t1 + t2] .

Without loss of generality, we assume m1 = m2 = t1 = t2 = 0. The sequence (1) is equivalent

to

L∆∗Res
C∗×C∗C

∗

C∗ Ind
C∗×C∗C

∗

C∗ ∆∗OAn+1

b // L∆∗Res
C∗×C∗C

∗

C∗ Ind
C∗×C∗C

∗

C∗ ∆∗OAn+1

a // OAn+1

Here a, b are regarded as C
∗ equivariant morphism via diagonal embedding C

∗ →֒ C
∗ ×C∗

C
∗. The morphism b here is L∆∗Res

C∗×C∗C
∗

C∗ ∆∗(b) : L∆∗Res
C∗×C∗C

∗

C∗ Ind
C∗×C∗C

∗

C∗ OAn+1 →

L∆∗Res
C∗×C∗C

∗

C∗ Ind
C∗×C∗C

∗

C∗ ∆∗OAn+1 .

Next, IndC
∗×C∗C

∗

C∗ ∆∗OAn+1
∼=

⊕

g∈µd
OΓg [BFK14, Lemma 5.31], where Γg is the graph x 7→

(g · x, x). The C
∗ ×C∗ C

∗ action on
⊕

g∈µd
OΓg is defined by (g1, g2) · (gx, ·x1) = (g1g · x, g2 · x).
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Let a = (f1, fγ , · · · , fγj , · · · fγd−1) ∈ Hom(∆,∆(m1)[t1]) ∼=
⊕d−1

j=0 Jac(ωγj)
m1−k

γj
+d

t1−rkW
γj

2

,

and b = (g1, gγ , · · · , gγj , · · · , gγd−1) ∈ Hom(∆,∆(m2)[t2]) ∼=
⊕d−1

j=0 Jac(ωγj )
m2−k

γj
+d

t2−rkW
γj

2

.

Theorem 2.6. The multiplication map

Φ : Hom(∆,∆(m1)[t1])×Hom(∆,∆(m2)[t2]) → Hom(∆,∆(m1 +m2)[t1 + t2]), (a, b) 7→ ab.

is given by the composition of the following diagram

L∆∗OΓ1

g1 //

++❱❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱

''◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

◆◆
◆◆

##●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●●
●●

●
L∆∗OΓ1

(m2)[t2]
f1 // OΓ1

(m1 +m2)[t1 + t2]

L∆∗OΓ
γ1

g
γ1

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤
//

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

❲❲❲

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

L∆∗OΓ
γ1
(m2)[t2]

f
γ1

33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

· · · · · ·

66♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠♠

L∆∗OΓ
γd−1

g
γd−1

;;①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①①
// L∆∗OΓ

γd−1
(m2)[t2]

f
γd−1

::tttttttttttttttttttttttttttttttttttttttt

The left box representing element b is determined by morphism (g1, gγ2 , · · · , gγd−1). In particular

g1 ◦ f1 ∈ Jac(ω) is multiplication of functions.

Proof. This is essentially the duality of functors Res
C∗×C∗C

∗

C∗ and Ind
C∗×C∗C

∗

C∗ . The element

(γk, 1) ∈ C
∗ ×C∗ C

∗ defines an isomorphism

Hom(OΓ
γi
,OΓ

γj
) ∼= Hom(OΓ

γi+k
,OΓ

γj+k
).

Since b is a C
∗×C∗ C

∗ invariant morphism, other morphisms except (g1, gγ , · · · , gγd−1) in the left

box are uniquely determined by the C
∗ invariant morphisms gγ• via diagonal embedding. After

identifying Hom(L∆∗∆∗OAn+1 ,OAn+1) with certain homogeneous degree of Jac(ω), g1 ◦f1 is the

composition of functions, hence multiplication of polynomials. �

Remark 2.7. It is easy to observe that the Hochschild-Serre algebra of the graded matrix fac-

torization is not commutative in general.

3. Kuznetsov’s Fano threefold conjecture for quartic double solids and

Gushel-Mukai threefolds

Theorem 3.1. Let Y be a smooth quartic double solid, whose semi-orthogonal decomposition is

given by

Db(Y ) = 〈Ku(Y ),OY ,OY (1)〉,

where Ku(Y ) is the Kuznetsov component of the quartic double solid Y . The canonical map γY

induced by multiplication map (1) of Hochschild-Serre algebra

γY : HH2(Ku(Y )) −→ Hom(HH−1(Ku(Y )),HH1(Ku(Y ))).
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has one dimensional kernel.

Proof. We regard Y as a degree 4 smooth hypersurface in weighted projective space

P(1, 1, 1, 1, 2). According to Theorem 2.2, Kudg(Y ) ∼= Injcoh(A
5,C∗,O(d), ω), where ω is the

polynomial defining Y , and the C
∗-action on (x0, x1, x2, x3, x4) is of weight (1, 1, 1, 1, 2). Then

by Proposition 2.4, we have

Hom(∆,∆(m)[t]) ∼= (
⊕

g∈µ4, t−rkWg is even

Jac(ωg)(m− kg + d(
t− rkWg

2
)))C

∗

,

where µ4 = {1, i,−1,−i}.

• If g = 1, then (A5)g = A
5, rkWg = 0, kg = 0.

• If g = i, then (A5)g = (0, 0, 0, 0, 0), rkWg = 5, kg = −6.

• If g = −1, then (A5)g = (0, 0, 0, 0, x5), rkWg = 4, kg = −4.

• If g = −i, then (A5)g = (0.0, 0, 0, 0), rkWg = 5, kg = −6.

Note that the Serre functor of the matrix factorization category is −⊗OA5(−6)[5] by Lemma 2.3,

We write ω = x25 + f(x1, x2, x3, x4), then

HH−1(Ku(Y )) ∼=Hom(∆,∆(−6)[4]) ∼= Jac(ω)2 ⊕ 0⊕ Jac(ω−1)−2 ⊕ 0 = Jac(ω)2

HH1(Ku(Y )) ∼=Hom(∆,∆(−6)[6]) ∼= Jac(ω)6 ⊕ 0⊕ Jac(ω−1)2 ⊕ 0 = Jac(ω)6

HH2(Ku(Y )) ∼=Hom(∆,∆[2]) ∼= Jac(ω)4 ⊕ 0⊕ Jac(ω−1)0 ⊕ 0 = Jac(ω)4 ⊕ k.

�

According to Theorem 2.6, the composition

HH2(Ku(Y ))×HH−1(Ku(Y )) // HH1(Ku(Y )) .

is represented by

1 •
g1 //

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

%%❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑

  ❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆❆

❆ •
f1 // •

i • //

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

❑❑
❑❑

gi

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐ •

fi

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

−1 • //

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

g−1

99sssssssssssssssssssssssssss
•

f−1

99sssssssssssssssssssssssssss

−i • //

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐

99sssssssssssssssssssssssssss

g−i

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥
•

f−i

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥

.

Other morphisms except (g1, gi, g−1, g−i) in the first box are unqiuely determined by

(g1, gi, g−1, g−i) ∈ Jac(ω)⊕ Jac(ωi)⊕ Jac(ω−1)⊕ Jac(ω−i). Consider element a = (0, 0, f−1, 0) ∈

HH2(Ku(Y )) ∼= Jac(ω)4⊕0⊕Jac(ω−1)0⊕0 = Jac(ω)4⊕k and b = (g1, 0, 0, 0) ∈ HH−1(Ku(Y )) ∼=

Jac(ω)2 ⊕ 0⊕ 0⊕ 0. Then,

(0, 0, f−1, 0) · (g1, 0, 0, 0) = (g1 ◦ 0 + 0 ◦ f−1, 0, g1 ◦ f−1, 0) = 0 ∈ HH1(Ku(Y )) ∼= Jac(ω)6.
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Simple computation shows Jac(ω)4 = Jac(f)4, Jac(ω)2 = Jac(f)2, and Jac(ω)6 = Jac(f)6. The

map

Jac(ω)4 → Hom(Jac(ω)2, Jac(ω)6).

is injective since it is induced by the non degenerate multiplication [Don83, Theorem 2.6],

Jac(f)4 × Jac(f)2 → Jac(f)6.

Hence the canonical map

γY : HH2(Ku(Y )) → Hom(HH−1(Ku(Y )),HH1(Ku(Y ))).

has one dimensional kernel.

Lemma 3.2. [JLLZ22, Theorem 4.6] Let X be an ordinary GM threefold. Then the natural map

γX : HH2(Ku(X)) → Hom(HH−1(Ku(X)),HH1(Ku(X))).

is injective.

Proof. The map γ in [JLLZ22, Theorem 4.6] is related to γX as

HH2(Ku(X))
γX //

γ

++❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳

Hom(HH−1(KuX ),HH1(X))

≃

��

Hom(H2,1(X),H1,2(X))

.

Since γ is injective, γX is injective. �

Corollary 3.3. For any Gushel-Mukai threefold X and quartic double solid Y , there is no

Fourier-Mukai type equivalence between the category Ku(X) and Ku(Y ).

Proof. Assume there is a Fourier-Mukai type equivalence Φ : Ku(Y ) ≃ Ku(X) for any quartic

double solid Y and ordinary Gushel-Mukai threefold X. Then [JLLZ22, Theorem 4.8] tells us

the morphism γX is injective if and only if γY is injective. By Remark 1.4, we can assume X

is an ordinary Gushel-Mukai threefold, then γX is injective by Lemma 3.2. Thus γY is also

injective, which contradicts Theorem 3.1. �

Remark 3.4. In this paper, we work with dg-enhanced Kuznetsov categories, so any equivalence

between them amounts to a Fourier-Mukai type equivalence. But in the cases of interest in

this paper, all the equivalences between triangulated categories Ku(X) and Ku(Y ) are proved

to be of Fourier-Mukai type in [LPZ22], so there is no harm to work with enhanced Kuznetsov

components.
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4. Appendix: Infinitesimal Torelli theorem for Gushel-Mukai threefolds

In [DIM08, Theorem 7.1], the authors show the differential dP of the period map X → A10

of ordinary Gushel-Mukai threefold X has two-dimensional kernel.

Proposition 4.1. The kernel of dP : H1(X,TX) → Hom(H2,1(X),H1,2(X)) is two dimen-

sional.

In this section, we prove Proposition 4.1 for special Gushel-Mukai threefold using categorical

methods.

Lemma 4.2. Let X be a special Gushel-Mukai threefold, then the morphism

γX : HH2(Ku(X)) → Hom(HH−1(Ku(X)),HH1(Ku(X)))

is injective.

Proof. By Remark 1.4, there is an ordinary Gushel-Mukai threefold X ′ such that Φ: Ku(X ′) ≃

Ku(X) is a Fourier-Mukai type equivalence. Then by [JLLZ22, Theorem 4.8], injectivity of γX

is equivalent to injectivity of γX′ . By Lemma 3.2, γX′ is injective. Thus γX is injective. �

By [JLLZ22, Corollary 3.16], there is a commutative diagram:

HH2(Ku(X))
γ′

// Hom(H2,1(X),H1,2(X)

H1(X,TX )

dP
33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

η

OO
.

Injectivity of γ′ is equivalent to injectivity of γX by the proof of Lemma 3.2. By Lemma 4.2,

γX is injective, hence γ′ is injective. Note that dP = γ′ ◦ η, then Ker(dP) = Kerη.

Recall the semi-orthogonal decomposition for (ordinary)Gushel-Mukai threefold X ′ is given

by

Db(X ′) = 〈Ku(X ′),OX′ ,U∨
X′〉.

Then by [Kuz15, Theorem 3.3], there is a long exact sequence

. . . → HH1(Ku(X ′)) → NHH2(〈OX′ ,U∨
X′〉,X ′) → HH2(X ′) → HH2(Ku(X ′)) → . . .

where NHH2(〈OX′ ,U∨
X′〉,X ′) is the normal Hochschild cohomology of 〈OX′ ,U∨

X′〉

in Db(X ′) defined in [Kuz15, Definition 3.2]. Note that HH2(X ′) ∼=

H2(X ′,OX′)
⊕

H1(X ′, TX′)
⊕

H0(X ′,
∧2 TX′) = H1(X ′, TX′). On the other hand, by [KP18,

Proposition 2.12], HH1(Ku(X ′)) = 0. Then the long exact sequence above becomes

. . . 0 → NHH2(〈OX′ ,U∨
X′〉,X ′)

i
−→ H1(X ′, TX′)

η′

−→ HH2(Ku(X ′)) → . . . .

Thus Ker(η′) = Im(i) ∼= NHH2(〈OX′ ,U∨
X′〉,X ′). Then by [JLLZ22, Remark 4.7],

NHH2(〈OX′ ,U∨
X′〉,X ′) ∼= Ker(η′) = k2. From the computation in [Kuz15, Section 3.3] and in par-

ticular [Kuz15, Proposition 3.7], the normal Hochschild cohomology NHH2(〈OX′ ,U∨
X′〉,X ′) ∼= k2

by replacing X ′ by a special Gushel-Mukai threefold X. Thus Kerη ∼= k2. Then Ker(dP) ∼= k2.
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Remark 4.3. The key to computation of normal Hochschild cohomology NHH2(〈OX ,U∨
X〉,X) for

either ordinary Gushel-Mukai threefold or special Gushel-Mukai threefold X is surjectivity of the

map Hom(OX ,U∨
X)⊗2 p

−→ Hom(OX ,U∨
X ⊗U∨

X) and the spectral sequence (30) in [Kuz15, Section

3.3]. We leave the details to interested reader.
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