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Integral invariants for framed 3-manifolds associated to trivalent

graphs possibly with self-loops

Hisatoshi Kodani and Bingxiao Liu

Abstract

Bott–Cattaneo’s theory defines the integral invariants of framed rational homology 3-spheres with
acyclic orthogonal local systems associated to graph cocycles without self-loops. The 2-loop term
of their invariants is associated with the Theta graph. Their invariants can be defined when a
cohomological condition holds. Cattaneo–Shimizu gave a refinement of the 2-loop term of Bott–
Cattaneo invariants by removing this cohomological condition, their 2-loop term is associated with a
linear combination of the Theta graph and the dumbbell graph that is the only 2-loop trivalent graph
with self-loops. In this article, when an acyclic local system is given by the adjoint representation
of a semi-simple Lie group composed with a representation of the fundamental group of a closed 3-
manifold, we show that the associated integral of dumbbell graph can be vanished by a cohomological
reason. Based on this idea, we construct a theory of graph complexes and cocycles, so that higher-
loop invariants can be defined using both the graph cocycles without self-loop, as by Bott–Cattaneo,
and with self-loops, as by Cattaneo–Shimizu. As a consequence, we prove that the generating series
from Chern–Simons perturbation theory gives rise to topological invariants for framed 3-manifolds in
our setting, which admits a formula in terms of only trivalent graphs without self-loop.
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1 Introduction

The mathematical foundation of Chern–Simons perturbation theory was developed by Axelrod–Singer
[AS92, AS94] and Kontsevich [Kon94] around 1990s, after the breakthrough of Witten’s work [Wit89]
on the Jones polynomials via Chern-Simons theory. Their theories provide a family of topological
invariants, parametrized by a linear combination of trivalent graphs. These invariants pertain to
closed, oriented, connected smooth 3-manifolds, denoted as M , and are associated to a homotopy
class of smooth framings of M (namely, smooth trivializations of tangent bundle TM) and an acyclic

local system Eρ over M . The concerned local system Eρ := π1(M)\
(
M̃ ×ρ g

)
is defined by a

representation ρ : π1(M) → G
Ad
→ Aut(g), where M̃ denotes universal cover of M , G is a (connected)

semisimple Lie group with Lie algebra g, and Ad is the adjoint representation of G. Their invariants
are defined as the configuration space integrals of the propagators, and the way of defining integrands
is encoded by the trivalent graphs. We will always refer to such invariants as the integral invariants
for M and Eρ.

Inspired by their work, Bott and Cattaneo [BC98, BC99] introduced topological invariants of
framed rational homology 3-spheres with acyclic orthogonal local systems. Their definition is based on
the implicit assumption of the vanishing of a cohomology group (denoted by H2

−(∆;π−1
1 Eρ⊗π−1

2 Eρ)
in their article [BC99] and H2

−(∆;Eρ ⊗Eρ) in [CS21] and in the present article, ∆ ≃M denotes the
diagonal of M ×M). Their invariants (of arbitrary orders) are defined in terms of integral invariants
associated to an appropriate graph complex without self-loops (self-loops here are called simple loops
in [Kon94]).

In 2021, Cattaneo and Shimizu [CS21] pointed out that there is a gap in the arguments of [BC99,
Lemma 1.2] about the vanishing of the cohomology group H2

−(∆;Eρ ⊗ Eρ), and then gave a re-
finement of the 2-loop term of Bott–Cattaneo invariants removing the assumption of the vanishing
of H2

−(∆;Eρ ⊗ Eρ). The presence of this cohomology group implies that the boundary value of a
propagator can have a factor of non-trivial anti-symmetric form ξ, analog to the regular part of the
propagator constructed in [AS92, AS94] via the Green kernels. This regular form ξ leads to configura-
tion space integrals associated with trivalent graphs with self-loops, and such graphs are not needed
in [BC98, BC99] under the assumption H2

−(∆;Eρ ⊗ Eρ) = 0. The refined 2-loop term defined in
[CS21] is given by a linear combination of ZΘ and ZO−O, configuration space integrals corresponding
to Theta graph and dumbbell graph respectively, where the form ξ will be associated to the self-loops
of the dumbbell graph.

Note that, Shimizu [Shi23] also showed that, when G = SU(2), the cohomology group H2
−(∆;Eρ⊗

Eρ) always vanishes and ZΘ itself becomes an invariant of closed 3-manifolds with orthogonal local
systems. Also note that a class of regular form ξ has recently been studied by Kitano and Shimizu
(see [Shi21], [KS23]), motivated by its relation to Reidemeister torsion expected from the viewpoint
of quantum Chern–Simons theory.

Therefore, it is important to ask for the existence of examples of a pair of a closed 3-manifold and
an acyclic local system via adjoint representation as above that have non-vanishing H2

−(∆;Eρ ⊗Eρ).
Such a result assures that the refinement by Cattaneo–Shimizu in [CS21] is meaningful.

In Proposition 3.5.5, we first report a class of examples fulfilling this purpose, which also lies in
the framework of Chern–Simons perturbation theory. Following this direction, we investigate further
the integral invariants of Cattaneo–Shimizu/Bott–Cattaneo defined from trivalent graphs for a closed
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3-manifold and an acyclic local system. In particular, we aim to understand the role of graphs with
self-loops.

Our first result follows from the reexamination of the 2-loop invariant introduced in [CS21], we
found that, even when H2

−(∆;Eρ ⊗ Eρ) 6= 0, there is a special choice of propagator by which the
integration associated with dumbbell graph vanish, so that, roughly speaking, the essential part of
this 2-loop invariant is the term of Theta graph, as in [BC98, BC99].

First, let’s introduce the propagators. Let C2(M) denote the compactified 2-point configuration
space of M , we can think of it as the real blow-up of M2 along the diagonal ∆ ≃ M . The manifold
C2(M) is a smooth manifold with boundary, and the boundary ∂C2(M) can be identified with the
sphere tangent bundle S(TM) of M . We will denote i∂ : ∂C2(M) → C2(M) the inclusion.

Let q : C2(M) → M × M denote this blow-up map, and let q∂ : ∂C2(M) → M denote its
restriction to the boundary, which is a smooth fibration with fibre S2. We always fix an orientation
o(M) for M , and we also fix a smooth framing f of M , i.e., a smooth identification of vector bundles
TM ≃M × R3 over M . This way, we identify ∂C2(M) ≃M × S2.

We always fix a connected semi-simple Lie group G with Lie algebra g. Note that G could be

noncompact. As we mentioned, we consider a representation ρ : π1(M) → G
Ad
→ Aut(g) and the

associated local system Eρ over M . Correspondingly, we have the induced tensor bundle Eρ ⊠Eρ on
M ×M , hence after taking its pullback bundle by the blow-up map q, we get a flat vector bundle
Fρ := q∗(Eρ ⊠ Eρ) on C2(M). The restriction of Fρ on ∂C2(M) ≃ M × S2 is just the pullback of
vector bundle Eρ ⊗ Eρ → M . Meanwhile, we also define an involution T acting on M ×M and on
Eρ ⊠ Eρ by swapping two factors in the product or tensor product, this action lifts to Fρ → C2(M)
and therefore on the sections and cohomology groups.

Assume Eρ to be acyclic, i.e., the corresponding (de Rham) cohomology group H•(M ;Eρ) = 0.
In this case, a propagator is a closed differential form ω ∈ Ω2(C2(M);Fρ) such that

• it is anti-symmetric, i.e., T ∗ω = −ω or we say ω ∈ Ω2
−(C2(M);Fρ), where the subscript −

corresponds to (−1)-eigenvalue of the action of T ;

• there is a normalized volume form η on S2 (i.e., with volume 1) and a closed smooth form
ξ ∈ Ω2

−(M ;Eρ ⊗ Eρ) such that
i
∗
∂(ω) = η ⊗ 1+ q∗∂(ξ), (1.0.1)

where η is viewed as a fibrewise vertical volume along the fibration q∂ : ∂C2(M) → M (hence
depending on the framing f), and 1 is a flat section, called Casimir section(see Lemma 3.4.1),
of Eρ ⊗ Eρ over M .

In (1.0.1), the closed form ξ defines a cohomological class [ξ] ∈ H2
−(M ;Eρ ⊗ Eρ), and generally can

not be eliminated when H2
−(M ;Eρ ⊗Eρ) 6= 0. This term in the boundary condition for a propagator

was missing in [BC99, Lemma 1.2] and then studied by [CS21] to define the 2-loop integral invariant
ZO−O(ω, ξ) associated to the dumbbell graph.

Since Eρ is assumed to be acyclic, the existence and certain uniqueness of propagators are already
given in [BC99] and [CS21]. In fact, in Proposition 4.3.1, we prove the existence of the propagators
for the adjoint local system Eρ which is not necessary to be acyclic. The non-vanishing of H•(M ;Eρ)
requires more constraints and the propagators are no longer closed forms.

In the introduction and in the most part of this article, we will restrict ourselves to the acyclic case.
Now we summarize the results for acyclic case proved in Propositions 4.3.1 & 4.3.4 and Corollary
4.3.2.

Theorem A (Existence and cohomological uniqueness of propagators, cf. [BC99, Lemma 1.2],
[CS21, Proposition 2.1]). Given a orientable closed 3-manifold M with a fixed orientation o(M), and
a homotopy class [f ] of smooth framings of M . Let Eρ be an acyclic local system on M associated
to a representation as above. Then there always exists a propagator ω, and the cohomological class
[ω] ∈ H2

−(C2(M);Fρ) is uniquely determined by (M,o(M), [f ]) and Eρ; moreover, the cohomological
class [ξ] ∈ H2

−(M ;Eρ ⊗ Eρ) is also unique, where ξ is the regular part of the boundary value (or
simply, regular form) of ω.

In this article, we notice that the Lie algebra structure of g, i.e., the Lie bracket L : g ⊗ g → g,
lifts naturally to a morphism of vector bundles L : Eρ ⊗Eρ → Eρ, and this extra structure leads to a
special kind of propagators for Eρ which will help to understand the role of the trivalent graphs with
self-loops. Such terms with self-loops are the necessary corrections for the integral invariants due to
the (nontrivial) Jacobi identity on Eρ, where the term given by the Lie bracket acting the boundary
value of a propagator is needed to complete the whole Jacobi identity to get the invariance of the
integral. For the setting of the trivial local system Eρ = R on M , e.g. in [BC98], the Jacobi identity
is reduced to be trivial so that such consideration was not touched.
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In Definition 4.4.1, we give the following definition: for the acyclic Eρ, a propagator ω♯ is called
adapted (to Eρ) if the regular part ξ♯ in its boundary value satisfies the condition

L(ξ♯) = 0. (1.0.2)

Here we usually put the superscript ♯ to emphasize the propagator being adapted. In Theorem 4.4.2,
we prove the existence of adapted propagators for acyclic local systems. Moreover, we can take ξ♯ ≡ 0
when H2

−(M ;Eρ ⊗ Eρ) = 0, which gives the framework in [BC99].
After revisiting the 2-loop invariants introduced in [CS21], we refine their result as follows.

Theorem B (see Theorem 5.2.1). Let M be a closed, connected, orientable smooth 3-manifold. Fix
a homotopy class [f ] of smooth framings of M and an orientation o(M). Let Eρ be an acyclic local

system over M associated with a representation ρ : π1(M) → G
Ad
−→ Aut(g). Then, for any adapted

propagator ω♯ with the regular form ξ♯, we have ZO−O(ω
♯, ξ♯) = 0. In other words, the Theta invariant

ZΘ(ω
♯) gives a 2-loop invariant for a framed closed 3-manifold M and ρ.

From this theorem, we can shed some light on trivalent graphs with self-loops. These graphs give
the necessary corrections in the configuration space integrals of propagators, since it’s possible to
connect two different vertices with several edges, leading to the appearance of the ξ-term when com-
puting variations of the integral invariants with respect to different choices of propagators. However,
we can eliminate these correction terms by taking adapted propagators.

Based on this observation, we generalize the result in Theorem B to higher-loop invariants associ-
ated with trivalent graphs with or without self-loops, formulated in terms of certain graph complexes.
One consequence is that the Chern–Simons perturbative series fits into this framework so that we
prove this series indeed defines integral invariants for framed (M,o(M)) and acyclic Eρ.

In Section 6, a graph complex (over Q) of decorated graphs (see Definition 6.3.1) possibly with
self-loops, denoted by (GCac,g, δ), is defined, which is dedicated to acyclic local systems and only
depends on the semi-simple Lie algebra g. The differential operator δ is given by contraction on each
non-self-loop edge of the decorated graphs. In our convention, each vertex of the graph has at least
3 incident half-edges, so that the degree-0 subspace of GCac,g is exactly spanned by the decorated
trivalent graphs, which is isomorphic to the linear space spanned by topological trivalent graphs (see
Subsection 6.6). The order of a trivalent graph is defined as half of its total number of vertices.

Then we get two associated graph complexes: one is the subcomplex (GC′
ac,g, δ) of the above one

which consists of decorated graphs with at least one self-loop, and the second complex (Gac,g, δ
♯) is

the quotient complex GCac,g/GC
′
ac,g, which consists of linear combinations of the decorated graphs

without self-loops.
The construction of such graph complexes is already sketched in [Kon94, Section 2], [BC99, §4

Discussion], and similar (but not the same) constructions can also be found in [Igu04, Section 1]
(without the gauge group G) and [CV03, §2]. Note that, different from the aforementioned construc-
tions, we do not exclude the graphs with self-loops in our graph complex (GCac,g, δ). The ideas on the
decorated graphs and weight systems are also exploited to define the associated configuration space
integrals in [AS92, AS94], [BN95], and [Les04, Les20], etc. In Section 6, a graphic way is employed
to explain clearly the construction.

An element in Ker δ ⊂ GCac,g or in Ker δ♯ ⊂ Gac,g is called a graph cocycle in the respective graph
complexes. Then we are mainly concerned with the cocycles of degree 0 and order n ≥ 1 (hence with
(n + 1) loops): H0(GC•

ac,g:n, δ), H
0(G•

ac,g:n, δ
♯). In particular, the 2-loop cocycles H0(GC•

ac,g:1, δ) is
1-dimensional and spanned by a certain linear combination of the Theta graph and dumbbell graph,
which is implicitly used in [CS21].

Theorem C (For precise statement, see Theorem 7.1.5 & Theorem 7.1.8). Fix a homotopy class [f ] of
smooth framings ofM and an orientation o(M). Let Eρ be an acyclic local system onM corresponding

to ρ : π1(M) → G
Ad
−→ Aut(g) as above. Fix an order n ≥ 1. Any cocycle H0(GC•

ac,g:n, δ) (i.e.,
δΓ = 0), taking the associated configuration space integrals of any propagator for Eρ, gives rise to
an integral invariant Z(M,ρ, [f ])(Γ) ∈ R, which is independent of the choice of the propagator that
is used to define it. Similarly, a cocycle Γ′ ∈ H0(G•

ac,g:n, δ
♯) consisting of connected trivalent graph

without self-loops, by using the adapted propagator to define the associated configuration space integral,
gives rise to an integral invariant Z♯(M,ρ, [f ])(Γ′) ∈ R.

Moreover, regarding Z(M, ρ, [f ]), Z♯(M,ρ, [f ]) as linear functionals on the cocycles, the following
diagram commutes:

H0(GC•
ac,g:n, δ) R

H0(G•
ac,g:n, δ

♯) R

Z(M,ρ,[f ])

=

Z♯(M,ρ,[f ])

(1.0.3)

4



where the leftmost vertical map is given by sending graphs with self-loops to zero.

These results imply that the computation of integral invariants associated with trivalent graphs
possibly with self-loops can be reduced to those associated with trivalent graphs without self-loops.
Note that the reason for the non-necessity of self-loop in the graphs for invariant Z♯(M,ρ, [f ]) is
different from trivial local system case, for instance, described in [Kon94, §The graph complex].

Now we explain how Chern–Simons perturbation theory fits into our results. The general idea
from Chern–Simons perturbation theory is to define the topological invariants for an oriented 3-
manifold together with a local system via the configuration space integrals associated to a generating
series in terms of the linear combinations of trivalent graphs with given orders (see [Kon94, Section
2], [AS92, AS94], also [Saw06, §3] for an introduction on the finite-dimensional model). For given
order n ≥ 1, the corresponding term in the generating series is given as

∑

connected trivalent G
ord(G)=n

1

|Aut(G)|
± Γ(G) ∈ GC0

ac,g:n, (1.0.4)

where the sum runs over all the connected topological trivalent graph G of order n, and Γ(G) denotes
an arbitrary decorated graph with the underlying topological graph G with the sign ± determined
by it.

In Proposition 6.6.6, we prove that the element (1.0.4) is a cocycle in GC0
ac,g:n; if we remove all

the terms with self-loops from (1.0.4), we get a cocycle in G0
ac,g:n. Combining with Theorem C, we

get the following results.

Corollary D (See Corollary 7.1.9). Let M be a closed, connected, orientable smooth 3-manifold.
Fix a homotopy class [f ] of smooth framings of M and an orientation o(M). Let Eρ be an acyclic

local system over M associated with a representation ρ : π1(M) → G
Ad
−→ Aut(g). Then the following

formal series

ZCS(M,ρ, [f ]) :=
∑

connected trivalent G

~ord(G)

|Aut(G)|
Z(M,ρ, [f ])(±Γ(G)) ∈ R[[~]] (1.0.5)

is a topological invariants for (M,o(M), [f ]) and ρ. This series ZCS(M,ρ, [f ]) can also be written in
terms of Z♯(M,ρ, [f ]) and the connected trivalent topological graphs without self-loop, i.e.,

ZCS(M,ρ, [f ]) =
∑

connected trivalent G
without self-loop

~ord(G)

|Aut(G)|
Z♯(M,ρ, [f ])(±Γ(G)) ∈ R[[~]]. (1.0.6)

Even in most parts of the article we are dealing with the acyclic local system Eρ, we are still
trying to share some ideas on the case of nonacyclic local system Eρ: in Subsection 5.3, a preliminary
computation on the Theta invariant is given under the only assumption H1(M ;Eρ) = 0. Moreover,
following the framework as in Sections 6 & 7, we will formulate a quantum master equation associated
to the nonacyclic local system Eρ in a future article from the point of view of the graph complex
introduced as in Subsections 6.3 & 6.4 (cf. Costello [Cos07, Cos11], Iacovino [Iac10], Cattaneo-Mnëv
[CM10], Campos-Willwacher [CW23]).

Finally, we give a remark that our construction is applicable to both real and complex semisimple
Lie groups. Thus, for simplicity of arguments, this article mainly focuses on the case of real semisimple
Lie groups unless otherwise stated.

The organization of this article is as follows. In Section 2, for the convenience of readers, we
recall the basis for the compactified configuration spaces via the point-view of smooth manifolds with
corners.

In Section 3, we investigate the de Rham cohomology groups of a local system Eρ associated to

a representation ρ : π1(M) → G
Ad
−→ Aut(g), especially, consequences of the Lie structure on Eρ.

In Section 4, we prove the existence of the propagators by explicit construction, and we introduce
the notion of adapted propagators for acyclic local system Eρ.

In Section 5, we revisit the result of Cattaneo-Shimizu [CS21] for their 2-loop integral invariant,
then explain how the use of an adapted propagator kills the dumbbell term.

In Section 6, we introduce our version of graph complexes (which only involve the Lie algebra g)
which is used in our theory of integral invariants. In particular, the generating series from Chern–
Simons perturbation theory is a cocycle.

In Section 7, we prove that for Eρ being acyclic, each cocycle in our complexes defines an integral
invariant for the framed 3-manifold M and the representation ρ. The use of adapted propagators
reduces the cocycles to the ones without any self-loops.
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Notation

Let N (resp. N0) denote the set of natural numbers without zero (resp. with zero). We denote the
cardinality of a set S by |S|. For a non-negative integer r ≥ 1, let Sr−1 denote the unit sphere with
the induced metric from the r-dimensional Euclidean space Rr.

For a graded vector space V =
⊕

i∈Z
V i, the degree of a homogeneous element v ∈ V i is denoted

by deg(v) = i. For two graded algebras A and B over a field, let A⊗̂B stand for the graded tensor
product of A and B over the field, i.e., its underlying vector space is the tensor product A ⊗B and
product structure is given by the linear extension of (a ⊗ b) · (a′ ⊗ b′) = (−1)deg(b)·deg(a

′)(aa′ ⊗ bb′)
for homogeneous elements a, a′ ∈ A and b, b′ ∈ B. Depending on the context, A• denotes a graded
vector space A• =

⊕
i∈Z

Ai, a cochain complex (
⊕

i∈Z
Ai, ∂), or arbitrary homogeneous component

of a graded vector space
⊕

i∈Z
Ai, where • plays a role of the placeholder of homogeneous degree.

For an oriented smooth manifold (with corners) X and a local system E of a real or complex vector
space on X, we denote by Ω•(X) (resp. Ω•(X;E)) the differential graded commutative algebra of
(resp. E-valued) smooth differential forms on X. For a commutative ring R with a unit and an
R-module V , the constant local system (trivial local system) on X with fiber V is denoted by V X or
simply V .

In this article, we often identify a flat vector bundle and its corresponding local system.

2 Preliminary on the geometry of configuration spaces

The compactification of configuration spaces is the ground for the definition of the integral invariants
for a 3-manifold. Here, we will follow the constructions given by Axelrod-Singer [AS94], where the
compactified configuration spaces are regarded as smooth manifolds with corners.

2.1 Manifolds with corners

To describe the geometry of the compactified configuration spaces, we will use the framework of
smooth manifolds with corners. For a detailed introduction to the manifold with corners, we refer to
[Joy12], a partial note of Melrose [Mel], and the references therein. Set R+ = [0,∞[ .

The model spaces to build a manifold with corners of dimension m are

R
m
k := R

k
+ × R

m−k, 0 ≤ k ≤ m.

A topological manifold with corners is identical to a topological manifold with boundary, but the
smooth structure is built via the above model spaces. Let X be a second-countable Hausdorff topo-
logical space. An m-dimensional chart with corners in X is a triplet (U,φ, φ(U) ⊂ Rm

k ) for some
0 ≤ k ≤ m such that U is an open subset of M and φ(U) is open in Rm

k , and the map φ : U → φ(U)
is a homeomorphism. If (U ′, φ′, φ′(U ′) ⊂ Rm

k′) is another such chart in M (k′ might be different from
k), then we say it to be compatible with the above (U, φ, φ(U)) if U ∩ U ′ = ∅ or when U ∩ U ′ 6= ∅,
the map φ ◦ φ′−1 : φ′(U ∩U ′) → φ(U ∩U ′) is a (smooth) diffeomorphism from an open subset of Rm

k′

onto an open subset of Rm
k . Now we give the typical definition of a smooth manifold with corners.

Definition 2.1.1 (manifold with corners). A topological manifold X together with a smooth structure
defined by a (maximal) atlas consisting of compatible openm-dimensional charts with corners is called
a (smooth) manifold with corners of dimension m. As usual, the smooth maps between manifolds
with corners are in the sense of smooth maps between the local charts with corners.

Note that by the Seeley Extension Theorem, the smooth functions on any open subset in Rm
k

always extend to its neighbourhood in Rm. Then the diffeomorphism φ′ ◦ φ−1 : φ′(U ∩ U ′) →
φ(U ∩ U ′) extends to a diffeomorphism between their open neighbourhoods in Rm. For a point
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x = (x1, · · · , xk, xk+1, · · · , xm) ∈ Rm
k , set depth(x) ∈ N to be the number of vanishing coordinates

xj , j = 0, 1, · · · , k. For an open subset U ⊂ Rm
k and j = 0, 1, · · · , k, set

Sj(U) := {x ∈ U | depthU (x) = j}. (2.1.1)

In particular, S0(U) is the interior of U in Rm. We also set depth(U) = max{j | Sj(U) 6= ∅}.
If ϕ : Rm

k ⊃ U → U ′ ⊂ Rm
k′ is a diffeomorphism of open sets, then depth(U) = depth(U ′), and

for j = 0, 1, · · · ,depth(U), f identifies Sj(U) with Sj(U ′). As a consequence, if X is a (smooth)
manifold with corners, then we can define a canonical function depthX : X → N0 which associates a
point x ∈ X with its depth depthX(x) by taking a compatible chart as above. The depth j-stratum
of X is the subset

Sj(X) := {x ∈ X | depthX(x) = j}. (2.1.2)

We have the following properties:

• X =
∐m

j=0 S
j(X), and Sk(X) = ∪m

j=kS
j(X). In particular, S0(X) is open and dense in X,

which is called the interior of X.

• Each Sj(X) has an induced smooth structure as an (m − j)-dimensional manifold without
boundary.

• X is a manifold without boundary if Sj(X) = ∅ for all j ≥ 1, so that S0(X) = X.

• A smooth function on X restricting to any Sk(X) is smooth and extends continously to Sk(X).

We use ∂X denote the topological boundary of X, then as subset of X we have

∂X = S1(X) = ∪j≥1S
j(X).

In general, ∂X, with induced charts from X, is not a smooth manifold with corners as defined above,
so that it is good to introduce a ’regularized’ boundary ∂∗X of X which has an induced structure of
manifold with corners.

For x ∈ X, a local boundary component β of X at x is a local choice of the connected component of
S1(X) in a small open neighbourhood of x in X. For instance, if depthX(x) = k, let (U, φ, φ(U) ⊂ Rm

k )
be a small (contractible) local chart near x such that φ(x) = (0, 0, · · · , 0) ∈ Rm

k , then the choices of
a local boundary component β are given by following k-faces

{z = (z1, . . . , zk, . . . , zm) ∈ φ(U) | zj = 0}, j = 1, . . . , k.

In particular, the number of local boundary components at x is exactly depthX(x).
Set

∂∗X = {(x, β) | x ∈ ∂X, β a local boundary component at x}.

The following facts are clear by our construction.

• The m-dimensional charts with corners of X give canonically the (m − 1)-dimensional charts
with corners on ∂∗X so that ∂∗X is a smooth manifold with corners of dimension m− 1.

• We have S0(∂∗X) = S1(X).

• We have a continuous projection ∂∗X → ∂X which send (x, β) to x. In particular, if X is a
smooth manifold with boundary (in the usual sense), ∂∗X = ∂X is a smooth manifold without
boundary.

• Composing the above projection with the inclusion i∂ : ∂X →֒ X, we get a map

i∂ : ∂∗X → X.

This map i∂ is a smooth map between manifolds with corners, it is not necessary to be injective,
for x ∈ X, we have

|i−1
∂ (x)| = depthX(x).

We can define the tangent bundle TX of X as well as the cotangent bundle T ∗X as in the manifold
case via the local charts. For the points in corners, one may also introduce the notions of inward
or outward tangent vectors. Then the smooth vector fields and the differential forms on X are well-
defined. In particular, we can talk about the orientable manifold with corners. The usual partition of
unity still holds on a manifold with corners, so that if α is a smooth m-form on the oriented X with
compact support, the integration

∫
X
α is well-defined by considering the integration on local charts.

Note that we always have ∫

X

α =

∫

S0(X)

α.
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Now let X be a compact oriented (smooth) manifold with corners, and let o(X) denote the
orientation of X. Let n denote the outward normal vector field of ∂∗X as boundary of X, which is
defined as the extension of the outward normal vector field of S1(X) in X. We orient ∂∗X by an
orientation oind(∂

∗X) such that at all points of S1(X), we have

o(X)|∂∗X = n ∧ oind(∂
∗X). (2.1.3)

With the above orientation conventions, if α ∈ Ω•(X), then i∗∂α is a smooth form on ∂∗X, and we
have the Stokes’ formula as follows

∫

X

dα =

∫

S1(X)

i
∗
∂α =

∫

∂∗X

i
∗
∂α. (2.1.4)

When there is no confusion, we can simply write the right-hand side of (2.1.4) as
∫
∂X

α.

2.2 Submersion and fibrewise boundary

If f : X → B is a smooth map between two smooth manifolds with corners, for x ∈ X, the tangent
map dfx : TxX → Tf(x)B is defined via the local charts. Moreover, if α ∈ Ω•(B), we have the
pull-back f∗(α) ∈ Ω•(X).

Definition 2.2.1. A smooth map f : X → B is called a submersion if for all x ∈ X with x ∈ Sk(X),
f(x) ∈ Sℓ(B), the tangent maps dfx : TxX → Tf(x)B and dfx : TxS

k(X) → Tf(x)S
ℓ(B) are surjective.

Analogous to the usual Ehresmann’s theorem (also cf. [Joy12, Section 5]), a proper submersion
f : X → B for manifolds with corners is a locally-trivial fibration on S0(B) where the fibres are
compact manifolds with corners. Note that, in general, the locally-trivial fibration could not extend
to the corners of B, a simple counterexample is as follows: consider the submersion f : R+ × R+ ∋
(x, y) 7→ 1√

2
(x+ y) ∈ R+, which is not locally-trivial fibration, since f−1(0) = {(0, 0)}, but f−1(1) is

a nontrivial segment of line.
Fix a surjective submersion p : X → B of compact orientable manifolds with corners. We suppose

that X and B are oriented with orientation o(X) and o(B) respectively. Then there is a unique
orientation ofibre(p) on the fibres of p, i.e., orientations on p−1(b), b ∈ S0(B) such that locally

o(X) = o(B) ∧ ofibre(p). (2.2.1)

Proposition 2.2.2. Let p : X → B be a surjective submersion of compact orientable manifolds
with corners. Then for any α ∈ Ω•(X), there exists a unique smooth form α̂ ∈ Ω•(B) such that for
γ ∈ Ω•(B), we have ∫

(X,o(X))

p∗(γ) ∧ α =

∫

(B,o(B))

γ ∧ α̂. (2.2.2)

Proof. Set X0 = p−1(S0(B)), it is an open and dense subset of X. Then we have the locally-trivial
fibration p : X0 → S0(B). For α ∈ Ω•(X), α̂′ ∈ Ω•(S0(B)) exists uniquely which satisfies the formula
(2.2.2). Now we only need to explain α̂′ extends to a smooth form α̂ ∈ Ω•(B). In fact, fix b ∈ ∂B
and a small open neighbourhood of b given by a local chart U in Rm

k . The fibration structure given
by p at any point in S0(B) ∩ U implies that the first derivatives of α̂′ on S0(B) ∩ U are uniformly
bounded, so that α̂′ extends continuously from S0(B) ∩ U to U . Then the same arguments for the
higher derivatives of α̂′ infer exactly the smooth extension α̂ as we need.

Definition 2.2.3. The linear map p∗ : Ω•(X) ∋ α 7→ p∗(α) := α̂ ∈ Ω•(B) is called the fibre integration
of the submersion p : X → B.

Now we describe Stokes’ theorem for the submersion case. We still consider a surjective submersion
p : X → B of compact oriented manifolds with corners. It defines a surjective submersion p0 : X0 :=
p−1(S0(B)) → S0(B) on smooth manifold S0(B). Here X0 is an oriented manifold with corners, for
any small open set V ⊂ S0(B), there exists a compact manifold with corners Z ≃ p−1

0 (b) for some
b ∈ V such that we have the diffeomorphism of manifolds with corners p−1

0 (V ) ≃ V × Z. Let X∂
0 be

the manifold with corners by gluing together V × ∂∗Z. An equivalent definition is X∂
0 = ∂∗X0. We

get a canonical surjective submersion of compact manifolds with corners

p∂ : X∂
0 → S0(B).

Note that the orientation o(X) induces an orientation oind(X
∂
0 ), hence induces a fibration orientation

ofibre(p
∂) for p∂ .

The analogous arguments in the proof of Proposition 2.2.2 give the following result.
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Lemma 2.2.4. For α ∈ Ω•(X), let i∗∂α denote the corresponding smooth form on X∂
0 , the fibre

integration p∂∗(i
∗
∂α) ∈ Ω•(S0(B)) always extends smoothly to B, which we denote it by the same

notation.

With the above notation, we have the following fibrewise Stokes’ formula.

Proposition 2.2.5. For p ∈ N and α ∈ Ωp(X), we have the following identity of smooth forms on
B,

dp∗(α) = p∗(dα) + (−1)p+dimXp∂∗(i
∗
∂α) ∈ Ω1+p+dimB−dimX(B). (2.2.3)

Proof. We only need to prove this identity on S0(B) by our constructions of fibre integrations p∗, p
∂
∗ .

Then after taking the locally-trivial fibrations, the proof reduces to the Stokes’ formula for fibres as
in (2.1.4).

2.3 Compactification of configuration spaces

In this subsection, we recall the Fulton-MacPherson-Axelrod-Singer compactification (FMAS com-
pactification in short). For more details see [FM94] and [AS94] (see also [Sin04]). Let M be a closed
oriented 3-manifold with a given orientation o(M).

Let F →M be a real vector bundle over M with rank r ≥ 2. The sphere bundle of F , denote by
SF → M , is defined as the smooth quotient bundle R∗

+\(F − {0}) → M , where the fibres are given
by Sr−1. If gF is a Euclidean metric on F , then we can identify canonically SF with the unit sphere
bundle SgF F →M of (F, gF ).

Let S be a finite set, and put

MS = Maps(S,M) = Πi∈SMi, (2.3.1)

where Mi = M is just a copy of M . If S = n := {1, 2 . . . , n}, n ≥ 2, we simply denote Mn =MS to
be compatible with the usual notation.

Put ∆S ≃ M be the subset of MS consisting of constant maps, which is called the principal
diagonal of MS. Since M is closed, so is MS , and ∆S is a closed (embedding) submanifold of MS .
Let Bℓ(MS,∆S) be the geometric blow-up ofMS along ∆S . It can be regarded as replacing ∆S by its
sphere normal bundle Sν∆S inMS . If US is an open small tubular neighbourhood of ∆S in MS , then
Bℓ(MS,∆S) is diffeomorphic to MS\US as manifolds with boundary where ∂Bℓ(MS,∆S) ≃ Sν∆S .
Moreover, we have a canonical smooth projection, the blow-down map, Bℓ(MS,∆S) → MS , which,
when restricting to the boundary, is given by the projection Sν∆S → ∆S .

For a positive integer n, we denote by Confn(M) the n-point configuration space of M , i.e.,

Confn(M) := {(x1, . . . , xn) ∈Mn|xi 6= xj(i 6= j)}. (2.3.2)

Equivalently, Confn(M) is the open subset of Mn consisting of the injective maps from n into M .
We have the following injective smooth map:

Φn : Confn(M) → B := Mn ×
∏

S⊂n,|S|≥2

Bℓ(MS,∆S). (2.3.3)

Note that the target space of Φn is a compact manifold with corners as described in Subsection 2.1.
The FMAS compactification Cn(M) of Confn(M) is defined as the closure of the image of

Confn(M) via Φn equipped with the induced smooth structure, i.e.,

Cn(M) := Φn(Confn(M)) ⊂ B =Mn ×
∏

S⊂n,|S|≥2

Bℓ(MS,∆S). (2.3.4)

By [AS94, Section 5], Axelrod-Singer explained that Cn(M), as an embedded submanifold of B, is
a compact manifold with corners of dimension 3n. In particular, the interior of Cn(M) is exactly
Confn(M). In the next subsection, we will recall in detail the stratification of Cn(M) as a manifold
with corners described in [AS94, Section 5].

Now we focus on the case of n = 2, then C2(M) is a compact manifold with boundary. Let
∆ ⊂M ×M denotes the diagonal. An elementary argument shows that

C2(M) = (M ×M \∆) ∪ Sν∆ = Bℓ(M2,∆). (2.3.5)

The blow-down map q : C2(M) →M2 satisfies q(Sν∆) = ∆ and q = Id otherwise.
Note that the sphere normal bundle Sν∆ is given by the equivalent classes of the elements

((x, x), (v,−v)), x ∈ M,v ∈ TxM . Then it can be identified with the sphere tangent bundle S(TM)
by

Sν∆
∼
→ S(TM), ((x, x), (v,−v)) 7→ (x, v). (2.3.6)

We will always use the identifications ∂C2(M) ≃ Sν∆ ≃ S(TM).
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Remark 2.3.1. Note that in many other articles, for example, in [Sin04, CW23], etc, the FMAS
compactification of Conf2(M) is defined via en embedding of M into some RN and taking the closure
in M2 × SN−1. This way, we will get the same C2(M) up to diffeomorphism.

2.4 Strata of compactified configuration spaces

In this subsection, we recall the main results of [AS94, Section 5], in particular, we will describe the
local charts for Cn(M) as manifolds with corners.

To understand the structure of Cn(M) as a manifold with corners, we need to introduce the
following notation. For S ⊂ n with |S| > 1, for x = (z, · · · , z) ∈ ∆S with z ∈ M , the normal
bundle ν∆S ,x of ∆S in MS at x can be identified with the quotient space (TzM)S/TzM . For uS =
(ui)i∈S ∈ (TzM)S, if all components ui are identical, then [uS ] = 0 ∈ (TzM)S/TzM . For each
element [uS ] ∈ (TzM)S/TzM , there exists a unique representative uS = (ui)i∈S ∈ (TzM)S such that∑

i∈S ui = 0 in TzM . We can also regard such vector uS ∈ (TzM)n by setting uj = 0 for j 6∈ S.

Note that R∗
+ = ]0,+∞] acts on (TzM)S/TzM by the diagonal rescalling on all the components.

So that we have the identification Sν∆S ≃ R∗
+\
(
(TzM)S/TzM − {0}

)
. Then naturally, any nonzero

[uS ] ∈ (TzM)S/TzM corresponds to an element in Sν∆S , which is still denoted by [uS ] if there is no
confusion.

Let q : Bℓ(MS,∆S) →MS denote the obvious projection. We always use xB,S to denote a point
in Bℓ(MS ,∆S), such that if xS = q(xB,S) 6∈ ∆S, then xB,S = xS; otherwise, xB,S = (xS, [uS ]) where
xS = (z, · · · , z) ∈ ∆S , 0 6= [uS ] ∈ (TzM)S/TzM .

As a point set, we have a characterization of Cn(M) as a subset of B: Cn(M) are consisting of all
points (x, {xB,S , |S| ≥ 2}) in B which satisfy the following two conditions:

• xS = q(xB,S) = x|S, for S ⊂ n, |S| > 1, where x|S = (xi)i∈S ∈MS with x = (x1, · · · , xn) ∈Mn.

• For any subset S (|S| ≥ 3) with xS ∈ ∆S , write xB,S = (xS, [uS ]), then for each subset S′ ⊂ S
with |S′| ≥ 2, if S′-components of uS are not all equal, we have xB,S′ = (xS′ , [uS |S′ ]).

Set Sn = {S ⊂ n | |S| ≥ 2}.

Definition 2.4.1. A subset S ⊂ Sn is called nested if any two elements S1, S2 ∈ S are either disjoint
or else one contains the other.

For a nested subset S ⊂ Sn, the open strata M(S)◦ of Cn(M) is defined as follows, it consists of
the points (x, {xB,S , |S| ≥ 2}) ∈ Cn(M) such that

• x|S ∈ ∆S if and only if S ⊂ S′ for some S′ ∈ S .

• For S′ (|S′| > 1) with a minimal element S ∈ S such that S′ ⊂ S, then [uS′ ] = [uS |S′ ] in xB,S′ .

• For S1, S2 ∈ S such that S1 ( S2, then all S1-components of uS2 are all equal.

In [AS94, Subsection 5.3 and 5.4], Axelrod and Singer showed the following facts:

• M(S)◦ is a smooth (noncompact) manifold of dimension 3n − |S|, in particular, M(∅)◦ =
Confn(M).

• The closed strata M(S), defined as the closure of M(S)◦ in Cn(M), is given as follows

M(S) = ∪T ⊃SM(T )◦

where T runs over all nested subsets of Sn containing S .

• We have
Cn(M) = ∪S nestedM(S)◦. (2.4.1)

• For the strata of Cn(M) as manifold with corners, we have for k = 0, 1, · · · , 3n,

SkCn(M) = ∪S, |S|=kM(S)◦. (2.4.2)

This way, we see that the interior of ∂∗Cn(M) is given by all the single sets S of n with |S| ≥ 2.

The following proposition allows us to define properly the fibre-wise integration for the projections
between compactified configuration spaces.

Proposition 2.4.2. For n ≥ 2, for 1 ≤ i 6= j ≤ n, the projection

pij : Confn(M) ∋ (x1, . . . , xn) 7→ (xi, xj) ∈ Conf2(M) (2.4.3)

induces a surjective submersion of manifolds with corners

Cn(M) → C2(M) (2.4.4)

which is still denoted by pij .
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Proof. Without loss of generality, we may assume (i, j) = (1, 2). It is clear that the points in
M(S)◦ ⊂ Cn(M) with S containing no {1, 2} map to the points in Conf2(M). For such a point,
we can verify directly the condition that pij is submersion. The points in M(S)◦ ⊂ Cn(M) with
S containing {1, 2} map to the points in ∂C2(M), then the computation for the tangent maps is
to consider the projection between the unit spheres of different dimensions, and shows the same
conclusion for it being the submersion. This way, we finish the proof.

2.5 Framing of closed orientable 3-manifolds

Now we consider a closed orientable 3-manifold M . Then the tangent bundle TM of M is always
parallelizable, i.e., there always exists a global smooth trivialization (isomorphism of vector bundles)
f : TM →M × R3 of TM (cf. [Sti35] and [BZ23]). We call such trivialization f a framing of M .

Now we fix a smooth framing f of M , then we always identify TM with M × R3 and the sphere
bundle S(TM) withM×S2. Set T V (TM), T V (S(TM)) the vertical tangent bundles for the fibrations
TM →M , S(TM) → M respectively. Then the above identifications induce the splittings

T (TM) = f∗TM ⊕ f∗TR3 =: TH
f (TM)⊕ T V (TM),

T (S(TM)) = f∗TM ⊕ f∗TS2 =: TH
f (S(TM))⊕ T V (S(TM)).

(2.5.1)

A differential form α on TM or S(TM) is said to be f -vertical (or simply, vertical, when the framing
f is fixed) if for all U ∈ TH

f (TM) or TH
f (S(TM)), we have

ιUα = 0, (2.5.2)

where ιU denotes the contraction of U .
Given an orientation o(M), via f , we also obtain an orientation o(R3) of R3. The standard unit

2-sphere S2 is boundary of the standard 3-ball, then let oind(S
2) be the induced orientation. At the

same time, the complementary part of open 3-ball in R3 can be identified with the real blow up
Bℓ(R3, 0) of the origin point 0 of R3. Then ∂Bℓ(R3, 0) = S2. We orient Bℓ(R3, 0) as for R3. Then

oind(∂Bℓ(R
3, 0)) = −oind(S

2). (2.5.3)

If N1, N2 are two oriented manifolds with orientations o(N1), o(N2) respectively. Then we denote
by o(N1 × N2) the orientation of N1 × N2 given by o(N1) ∧ o(N2). This way, we orient product
manifolds Mn and also Confn(M), Ck(M). In particular, let o(Bℓ(M2,∆)) = o(C2(M)) be the
induced orientation.

Since f also identifies S(TM) with M × S2. This way, let o(S(TM)) denote the orientation
o(M) ∧ oind(S

2).

Lemma 2.5.1. Under the identification ∂C2(M) ≃ Sν∆ ≃ S(TM) as explained in (2.3.6), we have

oind(∂C2(M)) = o(S(TM)). (2.5.4)

In the sequel where we compute the integrals on C2(M), we always fix the orientation o(C2(M))
induced from o(M ×M), and we fix the induced orientation oind(∂C2(M)) for ∂C2(M).

3 Adjoint local system and diagonal classes

This section recalls several basic facts on local systems Eρ given via adjoint representations of semi-
simple Lie groups, for example, de Rham cohomology groups of such a local system, the diagonal
class, the Killing form and its associated cubic trace form, and Lie structure on Eρ. At last, we give an
important result in Proposition 3.5.5 on the nonvanishing of the cohomology group H2

−(M ;Eρ⊗Eρ),
this cohomology group plays an important role in our construction of (adapted) propagators in the
next sections.

Now we fix a connected semi-simple Lie group G with Lie algebra g, and let B : g× g → R denote
the corresponding Killing form. Let ρ : π1(M) → G be a morphism of groups, composing with the
adjoint action Ad : G→ Aut(g), we get a representation of π1(M) with representation space g, which
is still denoted by ρ. The representation (ρ, g) defines canonically a flat vector bundle (Eρ,∇

Eρ)

(equivalently, a local system) on M : more precisely, let M̃ be the universal cover of M on which
π1(M) acts smoothly and freely, then

Eρ = π1(M)\
(
M̃ ×ρ g

)
,
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and the flat connection ∇Eρ is induced from the usual differential on M̃ . In the sequel of this section,
we use the terminology flat vector bundle for Eρ in order to explain the associated de Rham–Hodge
theory, and in the most part of other sections, we will call Eρ the local system (associated to a
representation ρ as above).

3.1 de Rham cohomology and Poincaré duality

The flat connection ∇Eρ defines canonically a twisted differential d acting on Ω•(M ;Eρ), the dif-
ferential forms on M valued in Eρ. This way, we get the de Rham complex (Ω•(M ;Eρ), d). Let
H•(M ;Eρ) denote the corresponding de Rham cohomology groups.

At the same time, viewing Eρ as a local system, the singular homology groups H•(X;Eρ) and
singular cohomology groups H•

sing(M,Eρ) are well-defined, which is also defined via considering the
triangulations of M . Of course, we have the caonical isomorphism H•

sing(M ;Eρ) ≃ H•(M ;Eρ).
Note that we always fix an orientation o(M) on M . For the flat vector bundle Eρ, we consider

its dual bundle E∨
ρ := Hom(Eρ,R) on M , and let ∇E∨

ρ denote the induced flat connection from
(Eρ,∇

Eρ).
The classical Poincaré pairing (cf. [MS74, Appendix A], [Spa95, Section 6.2]) is given as the first

part of the following isomorphisms for k = 0, 1, 2, 3,

Hk(M ;Eρ) ≃ H3−k
sing (M ;Eρ) ≃ H3−k(M ;Eρ). (3.1.1)

The analogous Poincaré pairing in terms of de Rham cohomology groups is given by the following
nondegenerate bilinear form (also cf. [MW11, Section 1.4])

Hk(M ;E∨
ρ )×H3−k(M ;Eρ) → R, (α, β) 7→

∫

M

〈α ∧ β〉. (3.1.2)

where 〈 〉 denotes the fibrewise paring between E∨
ρ and Eρ.

Let (ρ∗, g∗) be the representation of π1(M) adjoint to (ρ, g). Then actually, we have the identifi-
cation of flat vector bundles

E∨
ρ ≃ π1(M)\(M̃ ×ρ∗ g

∗).

Since B is non-degenerate, it defines an isomorphism

F : g → g
∗

such that if a ∈ g, the element F (a) ∈ g∗ is defined as follows, if b ∈ g,

〈F (a), b〉 = B(b, a).

By the fact that B is Ad(G)-invariant, we get that F is actually the isomorphism between the π1(M)-
representations (ρ, g) and (ρ∗, g∗). Hence it induces an identification of flat vector bundle (Eρ,∇

Eρ)
to its dual bundle E∨

ρ on M .
As a consequence of the above consideration, we can reformulate the pairing in (3.1.2) as the

following nondegenerate bilinear form

〈·, ·〉Poinc : H•(M ;Eρ)×H3−•(M ;Eρ) → R, (α, β) 7→

∫

M

B(α ∧ β), (3.1.3)

where the notation B(α∧β) means taking wedge product on differential forms and contracting sections
of Eρ via B. Since B is symmetric, we also conclude that the pairing 〈·, ·〉Poinc is symmetric.

Now we give more details on the Poincaré pairing 〈·, ·〉Poinc for H0(M ;Eρ) × H3(M ;Eρ), which
is useful in Subsection 5.3. Note that π1(M) acts on g via the representation ρ, set

g
π1(M) := {a ∈ g | ρ(γ)a = a, for all γ ∈ π1(M)}. (3.1.4)

Then we have the natural identification

H0(M ;Eρ) = g
π1(M), (3.1.5)

where each vector a ∈ gπ1(M) is a constant section of Eρ on M .
Note that gπ1(M) is a Lie subalgebra of g. We also have the following result.

Lemma 3.1.1. The following two statements are equivalent:
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• For any smooth 3-form β on M such that
∫
M
β 6= 0, the linear map

H0(M ;Eρ) = g
π1(M) ∋ a 7→ [β ⊗ a] ∈ H3(M ;Eρ)

is an isomorphism, where [β ⊗ a] denotes the de Rham cohomology class of β ⊗ a;

• the symmetric blinear form B : gπ1(M) × gπ1(M) ∋ (a, b) 7→ B(a, b) ∈ R is nondegenerate.

Remark 3.1.2. When the Lie group G is compact (which is always assumed to be semi-simple) or
more generally, (ρ,Eρ) is a unitary representation of π1(M), B can induce an ρ(π1(M))-invariant
inner product on g so that the two statements in the above lemma always hold.

3.2 The diagonal class

For i ∈ {1, 2}, we denote by pi :M ×M →M the i-th projection map, i.e., pi(x1, x2) = xi.
Let H•(M) denote the de Rham cohomology of M (valued in R). Then

H•(M ×M) = H•(M)⊗̂H•(M). (3.2.1)

More precisely, if α, β ∈ H•(M), then α⊗ β = p∗1(α) ∧ p
∗
2(β) ∈ H•(M ×M).

Let i : ∆ →֒ M × M denote the inclusion of the diagonal. Then the pull-back map gives the
morphism

i
∗ : H•(M ×M) → H•(∆) ≃ H•(M), (3.2.2)

so that if α, β ∈ H•(M), then
i
∗(p∗1(α)⊗ p∗2(β)) = α ∧ β. (3.2.3)

Now we consider the Poincaré dual of ∆ in H3(M ×M), which we still denote by ∆, i.e., for all
β ∈ H•(M ×M), we have ∫

M×M

∆ ∧ β =

∫

M

i
∗(β). (3.2.4)

If {γi} is a homogenous basis of H•(M), and if {γ∗
i } is the corresponding dual basis of H•(M) with

respect to the Poincaré pairing, i.e., ∫

M

γi ∧ γ
∗
j = δij , (3.2.5)

then we have
∆ =

∑

i

(−1)deg(γ
∗

i )p∗1(γi) ∧ p
∗
2(γ

∗
i ) ∈ H3(M ×M). (3.2.6)

Moreover, we have the following result.
∫

M

i
∗(∆) = χ(M) = 0, (3.2.7)

where χ(M) denotes the Euler characteristic number of M , which is 0 since M is odd dimensional.
Now we go back to the case with the flat vector bundle Eρ on M . Set

Eρ ⊠Eρ := p∗1Eρ ⊗ p∗2Eρ →M ×M. (3.2.8)

Since Eρ is flat, so is Eρ⊠Eρ and let ∇Eρ⊠Eρ denote the corresponding induced flat connection. The
vector bundle Eρ ⊠ Eρ on the diagonal ∆ ⊂ M ×M becomes the tensor bundle Eρ ⊗ Eρ, which is
equipped with respect to the induced flat connection ∇Eρ⊗Eρ .

Note that we always fix an orientation forM . We explain how to define a diagonal class associated
with Eρ as in (3.2.6). Recall that the Poincaré pairing 〈·, ·〉Poinc given in (3.1.3) between H•(M ;Eρ)×
H3−•(M ;Eρ) is nondegenerate. Let {αi} be a homogeneous basis of H•(M ;Eρ), {α

∗
i } is the dual

basis of {αi} with respect to the pairing 〈·, ·〉Poinc.

The diagonal class ∆̃ is defined as

∆̃ =
∑

i

(−1)deg(α
∗

i )αi ⊗ α∗
i ∈ H•(M ;Eρ)⊗̂H

•(M ;Eρ). (3.2.9)

It is clear that the definition of ∆̃ does not depend on the choice of the homogeneous basis {αi}.
By choosing (homogeneous) representatives of a basis of H•(M ;Eρ), we get the corresponding

embedding
ι : H•(M ;Eρ) → Ω•(M ;Eρ), (3.2.10)
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which means that for α ∈ Hj(M ;Eρ), j = 0, · · · , 3, we have ι(α) ∈ Ωj(M ;Eρ) is a closed form and
α = [ι(α)] ∈ Hj(M ;Eρ). It extends naturally to

ι : H•(M ×M ;Eρ ⊠Eρ) → Ω•(M ×M ;Eρ ⊠ Eρ). (3.2.11)

In the sequel, we fix ι once and for all.
Let T denote an involution on M ×M such that T (x1, x2) = (x2, x1). Then it lifts to the vector

bundle Eρ ⊠Eρ via exchanging the two factors of tensors, which we still denote by T . By restricting
to ∆, the involution T becomes a vector bundle automorphism of Eρ ⊗ Eρ. In particular, the flat
connections ∇Eρ⊠Eρ , ∇Eρ⊗Eρ are equivariant under these T -actions.

Let a, b, c, d be sections of Eρ over M , and let a⊠ b, c⊠ d be two sections of Eρ⊠Eρ over M ×M ,
set

B1,2(a⊠ b, c⊠ d) = p∗1(B(a, c))p∗2(B(b, d)). (3.2.12)

It extends to the differential forms valued in Eρ ⊠Eρ as in the integrand of (3.1.3).
Set

∆̃12 := ι(∆̃) =
∑

i

(−1)deg(α
∗

i )p∗1ι(αi) ∧ p
∗
2ι(α

∗
i ), (3.2.13)

then ∆̃12 is a smooth 3-form on M ×M valued in Eρ ⊠Eρ.

Lemma 3.2.1. The closed 3-form ∆̃12 ∈ Ω3(M ×M ;Eρ ⊠Eρ) satisfies the following properties:

• the cohomology class [∆̃12] = ∆̃ ∈ H3(M ×M ;Eρ ⊠Eρ);

• T ∗∆̃12 = −∆̃12;

• if β ∈ H•(M ×M ;Eρ ⊠Eρ), then

∫

M×M

B1,2(∆̃12 ∧ ι(β)) =

∫

M

i
∗B(ι(β)). (3.2.14)

Lemma 3.2.2. We have ∫

∆

B(i∗(∆̃12)) = 0. (3.2.15)

Proof. By (3.1.3), (3.2.3) and (3.2.13), we get

∫

∆

B(i∗(∆̃12)) = χ(M,Eρ), (3.2.16)

where
χ(M,Eρ) =

∑

j

(−1)j dimHj(M,Eρ), (3.2.17)

is the Euler characteristic number ofM associated with the local system Eρ. By the Poincaré duality,
we have

χ(M,Eρ) = −χ(M,Eρ) = 0. (3.2.18)

This completes the proof of our lemma.

Remark 3.2.3. As in [BC98, p101, Digression], after introducing the Riemannian metric on M , the

diagonal class ∆̃ can be regarded as the integral kernel of the harmonic projection πh : Ω•(M ;Eρ) →
H•(M ;Eρ), that is,

πh(β) = p1∗(B2(∆̃12 ∧ p
∗
2ι(β)))

=

∫

2

B2(∆̃12 ∧ p
∗
2ι(β))

(3.2.19)

3.3 Character variety of π1(M) and H1(M ;Eρ)

This subsection recalls some basic facts on the G-character variety of the fundamental group π1(M)
of a closed 3-manifold M and its relation with the first cohomology group H1(M ;Eρ). Fore more
details, see [Wei64], [LM85], and [Sav12].

Since M is closed, its fundamental group π1(M) admits a finite presentation given as π1(M) =
〈x1, . . . , xk | r1, . . . , rm〉. Then, theG-representation space R(M,G) of π1(M) is defined as R(M,G) =
Hom(π1(M), G). Note that there is an embedding R(M,G) →֒ Gk given by sending each represen-
tation ϕ to the k-tuple (ϕ(x1), . . . , ϕ(xk)) ∈ Gk. Thus, R(M,G) can be viewed as a real algebraic
set (or algebraic variety if G is complex) and it is independent of chosen presentations. Since G acts
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on R(M,G) = Hom(π1(M), G) by diagonal conjugation, the G-character variety XG(M) of π1(M) is
defined as categorical quotient of R(M,G) by the G-conjugate action.

By considering the Zariski tangent space to R(M,G) = Hom(π1(M), G) at ϕ ∈ R(M,G), it turns
out that there is a canonical identification

TϕR(M,G) = Z1
ϕ(π1(M), g) (3.3.1)

where Z1
ϕ(π1(M), g) is the space of 1-cocycles, i.e., maps z : π1(M) → g satisfying the 1-cocycle

condition z(γ1γ2) = z(γ1) + γ1 · z(γ2) for any γ1, γ2 ∈ π1(M). Here, π1(M) action on g is given by
γ · v := ((Ad ◦ϕ)(γ))(v) = Ad(ϕ(γ))(v) for any γ ∈ π1(M) and v ∈ g. Moreover, it gives rise to an
isomorphism between the tangent space of the character variety XG(M) and the first cohomology
group of π1(M) with coefficient in the π1(M)-module g via Ad ◦ϕ : π1(M) → g

T[ϕ]XG(M) = H1
ϕ(π1(M), g) = H1(M ;Eρ) (3.3.2)

for ρ = Ad ◦ϕ : π1(M) → Aut(g). For the last isomorphism, see for example [Ste43, §20].
Therefore, for ρ = Ad ◦ϕ, if the class [ϕ] is isolated point in the G-character variety XG(M) of

π1(M), then H1(M,Eρ) = 0 (but its converse does not always hold).
An element ϕ ∈ R(M,G) is called irreducible when its centralizer coincides with the center of G (cf.

[Sav02, §3.2.1]). Recall that, when G is connected, the kernel of the adjoint action Ad : G → Aut(g)
coincides with the center of G. Therefore, one has H0(M ;Eρ) = gπ1(M) = 0 if G is connected and ϕ
is irreducible.

We end this subsection by giving an important class of examples that satisfy acyclic condition
H•(M ;Eρ) = 0 for the convenience of the readers.

Example 3.3.1. (Fintushel–Stern ([FS92], see also [Sav12, Lecture 15])) Let n ≥ 3 be a fixed integer
and a1, . . . , an be pairwise relatively prime integers with ai ≥ 2. Let Σ = Σ(a1, . . . , an) be the
Seifert homology sphere determined by (a1, . . . , an) (cf. [Sav12, §6.3]), which is the closed orientable
3-manifold to be considered, and let ϕ : π1(Σ) → SU(2) be an irreducible representation. Recall that
π1(Σ) admits a finite presentation as

π1(Σ) = 〈x1, . . . , xn, h | [h, xi] = 1, xai
i h

bi = 1, x1 · · ·xn = 1〉 (3.3.3)

where b1, . . . , bn are integers satisfying the equation

a1 · · · an ·
n∑

i=1

bi
ai

= 1. (3.3.4)

Suppose that, for an integerm ≥ 3, ϕ(xk) 6= ±1 for k = 1, . . . ,m and ϕ(xk) = ±1 for k = m+1, . . . , n.
Then, it turns out that H1

ϕ(π1(Σ), su(2)) = H1(Σ;Eρ) = R2m−6 with ρ = Ad ◦ϕ. In particular, when
m = 3, one obtains H1(Σ;Eρ) = 0. Since ϕ is irreducible, we have H0(Σ;Eρ) = 0. Therefore, using
Poincaré duality (3.1.3), we conclude H•(Σ;Eρ) = 0 and ρ with m = 3 gives an acyclic local system
on Σ.

3.4 Killing form, cubic trace form

Recall that the Killing form B ∈ g∗⊗g∗ is a non-degenerate bilinear form, we have the corresponding
Casimir element 1 ∈ g ⊗ g. Let e1, . . . , edim g be a basis of g, and let e∗1, . . . , e

∗
dim g ∈ g be dual basis

of {ei} with respect to B, i.e., B(ei, e
∗
j ) = δij . Then 1 can be explicitly written as

1 =

dim g∑

i=1

ei ⊗ e∗i . (3.4.1)

Since B is invariant under the adjoint action of π1(M), it induces a fiberwise non-degenerate
bilinear form on the vector bundle Eρ → M . By abuse of notation, we use the same B to denote it,
i.e., we have

B : Eρ ⊗ Eρ → R, (3.4.2)

where R stands for the trivial local system on M .
Moreover, the element 1 is fixed by the diagonal action of π1(M) on g⊗ g. This way, we can view

1 as a smooth section of Eρ ⊗ Eρ on M . Moreover, we get a well-defined map

I : R → Eρ ⊗ Eρ, 1 7→ 1. (3.4.3)

The following result is clear by definition.
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Lemma 3.4.1. The section 1 is a flat section.

Now we introduce the cubic trace form. If a, b, c ∈ g, set

Tr[a⊗ b⊗ c] = B([a, b], c). (3.4.4)

Then Tr ∈ Λ3(g∗), which is Ad(G)-invariant. Then it extends to Λ3(E∗
ρ), which is flat with respect

to ∇Eρ .

3.5 Lie bracket on Eρ

We set L := [·, ·] : g ⊗ g → g, a ⊗ b 7→ [a, b]. Let h ⊂ g ⊗ g be the kernel space of L. Since g is
semisimple, then L is surjective. Then

dimR h = (dimR g)2 − dimR g. (3.5.1)

In particular, the symmetric tensor space S2g is a subspace of h.
Recall that π1(M) acts on g ⊗ g by the diagonal action via ρ. The Lie bracket operator L is

equivariant with respect to the actions of π1(M). Then π1(M)-action preserves the subspace h. Set
the vector bundle

Hρ = π1(M)\(M̃ ×ρ h). (3.5.2)

It is equipped with the canonically induced flat connection ∇Hρ and is a subbundle of Eρ ⊗ Eρ.
Moreover, the Lie bracket operator L defines canonically a morphism of vector bundles on M ,

L : Eρ ⊗Eρ → Eρ. (3.5.3)

By construction, it preserves the flat connections, i.e., when acting on smooth sections, ∇Eρ ◦ L =
L ◦ ∇Eρ⊗Eρ . We have the following properties:

• If si, i = 1, 2, 3 are smooth sections of Eρ on M , then

L(s1 ⊗ s2) = −L(s2 ⊗ s1),

L(L(s1 ⊗ s2)⊗ s3) + L(L(s2 ⊗ s3)⊗ s1) + L(L(s3 ⊗ s1)⊗ s2) = 0.
(3.5.4)

• We also have
Tr[s1 ⊗ s2 ⊗ s3] = B(L(s1 ⊗ s2)⊗ s3) ∈ C∞(M). (3.5.5)

We get the following identification of vector bundles

Hρ = ker(L : Eρ ⊗ Eρ → Eρ), (3.5.6)

where ∇Hρ is exactly the one inherited from the flat connection ∇Eρ⊗Eρ .
We also extend it on Ω•(M,Eρ) such that if α, β ∈ Ω•(M), s1, s2 ∈ C∞(M,Eρ),

L(αs1 ⊗ βs2) = α ∧ βL(s1 ⊗ s2). (3.5.7)

Then L induces the morphism of de Rham cohomology groups,

L : H•(M ;Eρ ⊗ Eρ) → H•(M ;Eρ). (3.5.8)

By our construction, we have the short exact sequence of flat vector bundles:

0 → Hρ →֒ Eρ ⊗Eρ → Eρ → 0.

Then we obtain the following long exact sequence of cohomology groups,

· · · → H0(M ;Eρ) → H1(M ;Hρ) → H1(M ;Eρ ⊗Eρ)
L

−→ H1(M ;Eρ)

→ H2(M ;Hρ) → H2(M ;Eρ ⊗ Eρ)
L

−→ H2(M ;Eρ) → · · ·
(3.5.9)

Note that T acts on M as identity but exchanges the factors of the tensor Eρ ⊗ Eρ. It in-
duces the involutions T ∗ acting on the de Rham complexes, and hence on the cohomology groups
H•(M ;Hρ), H

•(M ;Eρ ⊗ Eρ). Let Ω•
±(M ;Hρ), Ω

•
±(M ;Eρ ⊗ Eρ), H

•
±(M ;Hρ), H

•
±(M ;Eρ ⊗ Eρ) de-

note the eigenspaces of T ∗ corresponding to the eigenvalues ±1. One can verify directly that for each
class [α] ∈ H•

±(M ; · · · ), it always admits a representative α ∈ Ω•
±(M ; · · · ). In particular, we have the

splitting of the de Rham complexes

(Ω•(M ; · · · ), d) = (Ω•
+(M ; · · · ), d)⊕ (Ω•

−(M ; · · · ), d) , (3.5.10)

which also corresponds to the splitting of the associated cohomology groups

H•(M ; · · · ) = H•
+(M ; · · · )⊕H•

−(M ; · · · ). (3.5.11)
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Example 3.5.1. We consider the flat section 1 of Eρ ⊗ Eρ over M defined in previous subsection,
i.e., 1 ∈ H0(M ;Eρ ⊗ Eρ). A straightforward computation shows that L(1) = 0, hence we have
1 ∈ H0(M ;Hρ). SinceB is a symmetric bilinear form, we also conclude T ∗1 = 1, i.e., 1 ∈ H0

+(M,Hρ).

Proposition 3.5.2. We have the following isomorphism

H•
+(M ;Hρ) ≃ H•

+(M ;Eρ ⊗ Eρ). (3.5.12)

We also have the long exact sequence as follows

· · · → H0(M ;Eρ) → H1
−(M ;Hρ) → H1

−(M ;Eρ ⊗ Eρ)
L

−→ H1(M ;Eρ)

→ H2
−(M ;Hρ) → H2

−(M ;Eρ ⊗ Eρ)
L

−→ H2(M ;Eρ) → · · ·
(3.5.13)

Proof. We split g⊗ g as the anti-symmetric part and symmetric part, then we get

g⊗ g = Λ2
g⊕ S2

g. (3.5.14)

This splitting corresponds to the eigenspace decomposition of the involution T on g⊗ g. Then we get
an exact sequence of vector spaces

0 → Λ2
g ∩ h → Λ2

g
L

−→ g → 0. (3.5.15)

This exact sequence is compatible with the action π1(M), which lifts to the short exact sequence of
associated local systems. Hence we can get the long exact sequence (3.5.13). Then combining it with
(3.5.9), we get (3.5.12).

If Eρ is acyclic, then by the above long exact sequence, we get a canonical isomorphism

H•
±(M ;Hρ) ≃ H•

±(M ;Eρ ⊗Eρ). (3.5.16)

As a consequence, for each cohomological class [ξ] ∈ H•
±(M ;Eρ ⊗ Eρ), there exists a closed form

ξ0 ∈ Ω•
±(M ;Hρ), such that [ξ0] = [ξ] and

L(ξ0) = 0. (3.5.17)

Remark 3.5.3. By Example 3.5.1, we see that 1 ∈ H0
+(M ;Eρ ⊗ Eρ), which means that Eρ ⊗ Eρ can

never be acyclic.

The following proposition can be viewed as an extension of [Shi23, Lemma 4.6].

Proposition 3.5.4. If G is a real 3-dimensional simple Lie group, then we have

H•
−(M ;Hρ) = 0, H•

−(M ;Eρ ⊗ Eρ) ≃ H•(M ;Eρ). (3.5.18)

In particular, if in addition Eρ is acyclic, then

H•
−(M ;Eρ ⊗ Eρ) = 0.

We need to point out that if G is semisimple and real 3-dimensional, then it has to be a simple
Lie group. In fact, for such linear Lie group G, if G is compact, then G = SU(2) or SO(3); if G is
noncompact, then G = SL2(R) or SO(2, 1).

Proof of Proposition 3.5.4. When g is simple with dimR g = 3, we conclude directly h = S2g. Then
T ∗ acts on H•(M ;Hρ) as identity, we get

H•
+(M ;Hρ) = H•(M ;Hρ), H•

−(M ;Hρ) = 0. (3.5.19)

Then this proposition follows from Proposition 3.5.2.

At last, we give an example of a pair (M,ρ) such that H•(M ;Eρ) = 0, but H1
−(M ;Eρ ⊗ Eρ) =

H2
−(M ;Eρ ⊗Eρ) 6= 0 when G = SL(2,C)× SL(2,C).

Proposition 3.5.5. LetM be an oriented closed hyperbolic 3-manifold that contains a totally geodesic
surface. Let

ρ : π1(M)
h̃ol

−−−→ SL(2,C)
Id× Id

−−−−−→ SL(2,C)× SL(2,C)
Ad
−→ Aut(sl2(C)⊕ sl2(C))

where π1(M)
h̃ol
−→ SL(2,C) is a lift of the holonomy representation hol : π1(M) → PSL(2,C) corre-

sponding to the complete hyperbolic structure of M and Id : SL(2,C) → SL(2,C) denotes the complex
conjugation of matrix. Then, we have

H•(M ;Eρ) = 0, H1
−(M ;Hρ) ≃ H1(M ; Λ2Eρ) 6= 0. (3.5.20)
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Proof. To prove the statement we use several facts about hyperbolic 3-manifolds, for example, sum-
marized in Porti’s article [Por13]. Let V2,0 denote the space of two variable degree 2 homogeneous
polynomials with coefficients in C. Then, SL(2,C) acts on V2,0 by (A,P ) 7→ P ◦ At for A ∈ SL(2,C)
and P ∈ V2,0, where A

t denotes the transposition of A. We set V0,2 := V2,0 the complex conju-
gate representation to V2,0. Then, as is well known V2,0, V0,2 and V2,2 := V2,0 ⊗ V0,2 are irreducible
representations of SL(2,C).

Let sl2(C)Ad and sl2(C)Ad denote the sl2(C) as SL(2,C)-modules via adjoint representation Ad :
SL(2,C) → Aut(sl2(C)) and its complex conjugate Ad respectively. Then, as SL(2,C)-modules we
have sl2(C)Ad ≃ V2,0 and sl2(C)Ad ≃ V0,2. Hence, H•(M ;Eρ) = H•(M ;V2,0) ⊕ H•(M ;V0,2) = 0
by Raghunathan vanishing theorem ([Por13, Theorem 5.1], [Rag65]), irreducibility of representations
V2,0 and V0,2, and Poincaré duality. Here, by abuse of notation, we denote the local systems associated

with π1(M)
h̃ol
→ SL(2,C) → GL(V ) for V = V2,0, V0,2 by the same symbols V2,0 and V0,2 respectively.

We have isomorphisms as SL(2,C)-modules

Λ2(sl2(C)Ad ⊕ sl2(C)Ad)

≃ Λ2(V2,0 ⊕ V0,2)

≃ Λ2(V2,0)⊕ (V2,0 ⊗ V0,2)⊕ Λ2(V0,2)

≃ V2,0 ⊕ V2,2 ⊕ V0,2,

(3.5.21)

where we refer, for example, [FH91, Excercise 11.35] for the last isomorphism. Again by Raghunathan
vanishing theorem, we get

H1(M ; Λ2Eρ) ≃ H1(M ;V2,2). (3.5.22)

Then, by Millson’s theorem ([Por13, Proposition 5.4], [Mil85]), we conclude H1(M ; V2,2) 6= 0. The
assertion is proved.

Remark 3.5.6. It is known that there are infinitely many hyperbolic rational homology spheres con-
taining closed embedded totally geodesic surfaces [DeB06, Theorem 2]. Therefore, by combining this
fact with Proposition 3.5.5, one sees that there are infinitely many examples of a pair (M,ρ) which
satisfies the condition H•(M ;Eρ) = 0 and H1

−(M ;Eρ ⊗Eρ) = H2
−(M ;Eρ ⊗Eρ) 6= 0.

4 Construction of the propagator on C2(M)

This section describes a general recipe to construct propagators, from which one can define configu-
ration space integrals, for non-acyclic local systems inspired by [CS21], [CM10], and [CW23]. Then,
we introduce a class of propagators, called adapted propagators, for acyclic local systems. They have
a distinguished feature that is crucial for our results in subsequent sections.

Recall that we denote by pi : M ×M → M the i-th projection map, i.e., pi(x1, x2) = xi. In
the sequel, we also denote the i-th projection map by the same notation pi : C2(M) → M , so that
the blow-down map q : C2(M) → M ×M can be written as q = (p1, p2). Moreover, for n ≥ 2, the
projection (i 6= j)

pij : Confn(M) ∋ (x1, . . . , xn) 7→ (xi, xj) ∈ Conf2(M) (4.0.1)

induces a smooth map of manifolds with corners

Cn(M) → C2(M) (4.0.2)

which is still denoted by pij . By Proposition 2.4.2, pij is a submersion for manifolds with corners.
We define the pull-back vector bundle Fρ := q∗(Eρ ⊠Eρ) → C2(M). Note that Fρ|∂C2(M) is just

the pull-back of Eρ ⊗ Eρ → M by the projection q∂ : ∂C2(M) → ∆ ≃ M , which we still denote by
Eρ ⊗Eρ. Moreover, we have the corresponding induced flat connection ∇Fρ on Fρ.

4.1 Regular forms

We recall the notion of regular forms on compactified configuration space, introduced in [CM10,
Appendix B]. In some sense, regular forms encode the non-singular part of a form on Mn which may
diverge along the diagonals but has a smooth extension to Cn(M).

Let q : Cn(M) → Mn be the blow-down map. Then, a form in Ω•(Cn(M); q∗(E⊠n
ρ )) is called reg-

ular if it is the pullback q∗(ξ) of a form ξ ∈ Ω•(Mn;E⊠n
ρ ) via q. We denote by Ω•

reg(Cn(M); q∗(E⊠n
ρ ))

the space of q∗(E⊠n
ρ )-valued regular forms on Cn(M).
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For two differential forms α, β ∈ Ω•(C2(M);Fρ) one of which is regular, their convolution is
defined by α ∗ β := p13,∗(B2(p

∗
12α ∧ p∗23β)). Then, the convolution ∗ defines bilinear maps as [CM10,

Lemma 5],

∗ : Ω•(C2(M);Fρ)× Ω•
reg(C2(M);Fρ) → Ω•

reg(C2(M);Fρ)

∗ : Ω•
reg(C2(M);Fρ)× Ω•(C2(M);Fρ) → Ω•

reg(C2(M);Fρ).
(4.1.1)

For example, for α = q∗α′ ∈ Ω•
reg(C2(M);Fρ) and β ∈ Ω•(C2(M);Fρ), their convolution is given

by α ∗ β = q∗γ where γ = (pr1 × p2)∗B2((pr1 × p1)
∗α′ ∧ pr∗2β), pr1 : M × C2(M) → M and

pr2 : M × C2(M) → C2(M). Note that here we essentially use the fibration structure of pr1 × p2 :
M ×C2(M) → M ×M to define this convolution ∗, where the condition of regular forms guarantees
the well-definedness.

4.2 An element in H2
−

(∂C2(M);Eρ ⊗ Eρ)

The involution T ofM×M → M×M given by (x1, x2) 7→ (x2, x1) extends to an involution on C2(M),
which preserves the boundary ∂C2(M). It also lifts to the bundle Fρ by exchanging the factors of
the tensor product. Let Ω•

±(C2(M);Fρ) (resp. Ω•
±(∂C2(M);Eρ ⊗ Eρ)) denote the (±1)-eigenspaces

of the action of T ∗, and we also use similar convention for the cohomology groups.
We consider the oriented unit sphere S2 in R3. Let TS2 be the involution on S2 given by TS2(v) =

−v, v ∈ S2. Let η denote a smooth normalized volume form on the unit sphere S2 such that T ∗
S2
η = −η.

If η′ is another such volume form, then there exists a 1-form γ on S2 with T ∗
S2
γ = −γ such that

η − η′ = dγ.

Consider the obvious projection π :M × S2 → S2, then π∗η is a closed 2-form on M × S2.
Note that the sphere normal bundle Sν∆ is identified with the sphere tangent bundle S(TM) by

Sν∆
≃
→ S(TM), ((x, x), (v,−v)) 7→ (x, v). (4.2.1)

The involution T on C2(M) restricting to the boundary corresponds to the involution on S(TM):
(x, v) 7→ (x,−v). We always use T to denote all these involution operators.

The given framing f of M induces a canonical identification M × S2 ≃ S(TM) ≃ ∂C2(M). This
way, we view π∗η as a closed 2-form on ∂C2(M). In particular, we have T ∗(π∗η) = π∗(T ∗

S2
η) = −π∗η.

With the above consideration, we have the following natural identification of vector spaces

H2
−(∂C2(M);Eρ ⊗ Eρ) ≃ H2

−(M ;Eρ ⊗ Eρ)⊕
(
H2(S2;R)⊗H0

+(M ;Eρ ⊗ Eρ)
)
, (4.2.2)

where H2(S2;R) = R[η] is 1-dimensional, and the direct sum depends on the given framing f .
Recall that the element 1 is defined in (3.4.1), it is also regarded as a flat section of Eρ ⊗Eρ over

M or S(TM), hence on ∂C2(M). We define a 2-form on Ω2(∂C2(M);Eρ ⊗Eρ) by

I(η) = π∗η ⊗ 1, (4.2.3)

where the notation I(·) is compatible with the definition given in (3.4.3), and the form π∗η should
be viewed as the 2-form on ∂C2(M) given via the pull-back of f , sometimes we also denote it by f∗η
to emphasize the role of the framing f .

The following lemma is an analog of [BC98, Proposition 3.1].

Lemma 4.2.1. The 2-form I(η) ∈ Ω2(∂C2(M);Eρ ⊗ Eρ) satisfies the following properties:

(i) I(η) is a closed form,

(ii) I(η) is a fiberwise tensor product of volume form and 1, i.e., its (Eρ⊗Eρ-valued) fiber integration
is 1,

(iii) I(η) is antisymmetric under the action of T ∗, i.e., T ∗(I(η)) = −I(η).

Proof. The first property follows from the closeness of η and Lemma 3.4.1. The second and third
properties follow from the properties of η and the fact that T ∗ acts trivially on 1.

The following result was already implied in [CS21, §5.2 Proof of Theorem 5.1]

Lemma 4.2.2. If f ′ is another smooth framing of M which induces the same orientation as f does,
then by taking an oriented normalized volume form η′ on S2, the corresponding closed 2-form I(η′)
lies in the same de Rham cohomology class [I(η)] as of I(η) in H2

−(∂C2(M);Eρ ⊗ Eρ).
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Proof. Note that H2
−(∂C2(M);R) ≃ H2

−(M × S2;R) ≃ H2(S2;R) is 1-dimensional vector space
spanned by [η]. Hence [f∗η] = [(f ′)∗η′] ∈ H2

−(∂C2(M);R). Then there exists β′ ∈ Ω1
−(∂C2(M);R)

such that
f∗η − (f ′)∗η′ = dβ′. (4.2.4)

As a consequence, we conclude the identity in Ω2
−(∂C2(M);Eρ ⊗ Eρ),

I(η)− I(η′) = (dβ′)⊗ 1 = d(β′ ⊗ 1). (4.2.5)

This way, we conclude this lemma.

In the above lemma, the framing f ′ is not necessary to be homotopic to f . When f ′ is homotopic
to f , the form β′ in (4.2.4) can be constructed more explicitly as follows.

Lemma 4.2.3. Fix an oriented normalized volume form η on S2. If f ′ is another smooth framing
of M which is homotopic to f , let I ′(η) be the closed 2-form in Ω2

−(∂C2(M);Eρ ⊗Eρ) defined by f ′.
Then there is a f-vertical 1-form β′ ∈ Ω1

−(∂C2(M);R) such that

I ′(η)− I(η) = d(β′ ⊗ 1). (4.2.6)

Proof. Note that in this case, f ′ ◦ f−1 is connected to the identity section by a smooth path in
C

∞(M,Diff(S2)). Let ψ· : [0, 1] ∋ t 7→ ψt ∈ C
∞(M,Diff(S2)) denote such a path with ψ0(x) = IdS2

and ψ1(x) = (f ′ ◦ f−1)x. In particular, we view ψt as a diffeomorphism of M × S2. Let Γ(S2) denote
the space of smooth vector fields on S2. Set Xt =

∂
∂t
ψt ∈ C

∞(M,Γ(S2)). Fix an oriented normalized
volume form η on S2, viewed as a constant form on M × S2, then

∂

∂t
ψ∗

t η = dιXtψ
∗
t η, (4.2.7)

where ιXt denotes the contraction of vector fields Xt. A direct computation shows that

ψ∗
1η − η = d

∫ 1

0

ιXtψ
∗
t ηdt =: dβ. (4.2.8)

Then
(f ′)∗η − f∗η = d

(
f∗β

)
. (4.2.9)

Note that β is a vertical 1-form on M ×S2, hence β′ := f∗β is f -vertical as desired. This way, we
complete the proof.

Now we need to introduce a commutative diagram to understand better all the different cohomol-
ogy groups H•

−(· · · ; · · · ) that we have seen. Recall that i∂ : ∂C2(M) →֒ C2(M) denotes the inclusion
of the boundary of C2(M), and i : ∆ →֒ M ×M denotes the inclusion of the diagonal.

Note that we have the following short exact sequence associated to the relative de Rham complex

0 → (Ω•(C2(M), ∂C2(M);Fρ), d)
incl
−→ (Ω•(C2(M);Fρ), d)

i∗∂−→ (Ω•(∂C2(M);Eρ ⊗ Eρ), d) → 0.

Together with the excision theorem for the pairs (C2(M), ∂C2(M)) and (M × M,∆), we get the
following commutative diagram where the horizontal lines are exact sequences

H2
−(C2(M);Fρ) H2

−(∂C2(M);Fρ) H3
−(C2(M), ∂C2(M);Fρ) H3

−(C2(M);Fρ)

H2
−(M ×M ;Fρ) H2

−(∆;Fρ) H3
−(M ×M,∆;Fρ) H3

−(M ×M ;Fρ)

i∗∂
δ∗C2(M) incl

i∗

q∗ q∗∂

δ∗
M2 incl

q∗ ≃ q∗

(4.2.10)
where the bundle Fρ represents Fρ on C2(M), Eρ ⊗ Eρ on ∆ or ∂C2(M), Eρ ⊠ Eρ on M × M
respectively.

The map δ∗C2(M) is given by the zig-zag lemma. More precisely, if α ∈ Ω2
−(∂C2(M);Eρ ⊗Eρ) is a

closed form, then we have a form α̃ ∈ Ω2
−(C2(M);Fρ) such that i∗∂α̃ = α. Then dα̃ is an exact form in

Ω3
−(C2(M);Fρ) with i∗∂dα̃ = dα = 0, this way dα̃ is a closed form in Ω3

−(C2(M), ∂C2(M);Fρ) which
is not necessary to be exact in this relative de Rham complex. By definition, we have δ∗C2(M)[α] =

[dα̃] ∈ H3
−(C2(M), ∂C2(M);Fρ). The map δ∗M2 is defined in a similar way. In particular, when Eρ is

acyclic, δ∗M2 is an isomorphism.
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4.3 Construction of the propagator with a local system

We always fix a map ι : H•(M ;Eρ) → Ω•(M ;Eρ) as in (3.2.10). In this subsection, we prove the
following main result, which shows the existence of a propagator.

Proposition 4.3.1. There exists a smooth 2-form

ω ∈ Ω2(C2(M);Fρ) (4.3.1)

satisfying the following four properties:

(i) dω = ∆̃12 :=
∑

i(−1)deg(α
∗

i )p∗1(ι(αi)) ∧ p
∗
2(ι(α

∗
i )) ∈ Ω3(C2(M);Fρ)

(ii) the restriction of ω on the boundary ω|∂C2(M) is a fiberwise tensor product of volume form with
1, i.e., its (Eρ ⊗ Eρ-valued) fiber integration is 1,

(iii) the form ω on C2(M) is antisymmetric under the action of T ∗, i.e., T ∗(ω) = −ω,

(iv) for any α ∈ H•(M ;Eρ), we have

∫

2

B2(ω12 ∧ p
∗
2(ι(α)) = 0. (4.3.2)

Here, the integration
∫
2
means the fiber integration along the fiber of p1 : C2(M) → M and the

subscript of B2 means that contraction occurs on the second component of Fρ = q∗(Eρ ⊠Eρ).

Proof. The proof is similar to the case of a closed manifold with trivial local systems as in [BC98],
[CM10], [CW23]: starting from I(η) ∈ Ω2(∂C2(M);Eρ ⊗ Eρ), then we extend it to the 2-form
in Ω2(C2(M);Fρ), after modifying it by certain 2-forms, we finally get a 2-form ω′ satisfying the
conditions (i), (ii) and (iii). Finally, adding another correction term λ ∈ Ω2(C2(M);Fρ) to ω′, we
obtain a 2-form ω which satisfies (i), (ii), (iii), and (iv).

Let N ⊃ ∂C2(M) be a tubular neighbourhood of ∂C2(M) with a projection p : N → ∂C2(M).
By pulling back I(η) by p∗, we get the 2-form

p∗(I(η)) ∈ Ω2(N ; p∗(Fρ|∆)). (4.3.3)

Note that, by definition, we have

p∗(Fρ|∆)(x,y) = (Fρ|∆)p(x,y)

= (Fρ|∆)(x0,x0) (here, we set p(x, y) = (x0, x0))

= Eρ,x0 ⊗ Eρ,x0 .

(4.3.4)

Since Eρ is a vector bundle with flat connection ∇Eρ , we have a linear isomorphism

τ(x,y) : (Fρ|N )(x,y)
∼
→ Eρ,x0 ⊗ Eρ,x0 = p∗(Fρ|∆)(x,y) (4.3.5)

given by parallel transport along the projection p with respect to ∇Eρ . This way, we get an isomor-
phism of (flat) vector bundles on N ,

τ : Fρ|N
∼
→ p∗(Fρ|∆). (4.3.6)

We get a 2-form
τ−1p∗(I(η)) ∈ Ω2(N,Fρ|N ). (4.3.7)

Let us consider a smooth cutoff function χ : C2(M) → R such that

• χ|C2(M)\N ≡ 0,

• χ|U ≡ 1,

where U is an open set such that ∂C2(M) ⊂ U ( Inner(N) ⊂ C2(M).
Now, we can define a 2-form on C2(M) as follows,

χ · τ−1p∗(I(η)) ∈ Ω2(C2(M);Fρ). (4.3.8)

Moreover, if we compute its differential, then

d(χ · τ−1p∗(I(η))) = dχ ∧ τ−1p∗(I(η)) + χ · d(τ−1p∗(I(η)))

= dχ ∧ τ−1p∗(I(η)) + χ · τ−1p∗(dI(η)))

= dχ ∧ τ−1p∗(I(η)).

(4.3.9)
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By the definition of χ, the form dχ ∧ τ−1p∗(I(η)) vanishes near ∂C2(M). Then the 3-form
d(χ · τ−1p∗(I(η))) can be view as a 3-form on Ω3(M ×M ;Eρ ⊠ Eρ). Note that dχ ∧ τ−1p∗(I(η)) is
an exact form on C2(M). When we regard it as a differential form on M ×M , in general, it is no
longer exact, but it is still a closed form.

Hence, for any β ∈ H•(M ×M ;Eρ ⊠Eρ), we have
∫

M×M

B1,2(d(χ · τ−1p∗(I(η))) ∧ ι(β))

=

∫

C2(M)

B1,2(d(χ · τ−1p∗(I(η))) ∧ ι(β))

=

∫

∂C2(M)

B1,2(χ · τ−1p∗(I(η)) ∧ ι(β))

=

∫

∂C2(M)

B1,2(I(η) ∧ ι(β))

=

∫

M

i
∗B1,2(1⊗ ι(β))

=

∫

M

i
∗B(ι(β))

=

∫

M×M

B1,2(∆̃12 ∧ ι(β)).

(4.3.10)

Note that the last equality in (4.3.10) follows from (3.2.14).

By (4.3.10), we see that the cohomology class of d(χ·τ−1p∗(I(η))) and ∆̃12 in H•(M×M,Eρ⊠Eρ)
are coincide. Then there exists a 2-form ψ ∈ Ω2(M ×M ;Eρ ⊠Eρ) such that

∆̃12 − d(χ · τ−1p∗(I(η))) = dψ. (4.3.11)

This equation also holds if we take its pull-back to C2(M) from M ×M .
Now, we set

ω0 = χ · τ−1p∗(I(η)) + q∗ψ ∈ Ω2(C2(M);Fρ). (4.3.12)

Then ω0 satisfies the condition (i) in our proposition. A direct computation shows its (Eρ⊗Eρ-valued)
fiber integration along ∂C2(M) → ∆ is 1.

For the condition (iii), we need to add more restrictive structures in the above construction of ω0.
We can always take the tubular neighbourhood N and the open set U to be invariant by T . We also
need to take a T -invariant cutoff function χ.

Note that on M ×M ,
T ∗(∆̃12) = −∆̃12. (4.3.13)

Moreover, T ∗ commutes with the differential d on Ω2(C2(M);Fρ). Therefore, we get a 2-from ω0 as
in (4.3.12) such that both ω0 and −T ∗ω0 satisfy the condition (i). Set

ω′ =
1

2
(ω0 − T ∗ω0) (4.3.14)

Then ω′ is a 2-form satisfying the conditions (i) and (iii). Moreover, its (Eρ ⊗ Eρ-valued) fiber
integration along ∂C2(M) → ∆ is also 1.

Now, we verify that ω′ satisfies the condition (ii). By (4.3.12), we get

i
∗
∂ω

′ = I(η) +
1

2
(i∗∂q

∗ψ − i
∗
∂T

∗q∗ψ). (4.3.15)

Note that the fibre integration along ∂C2(M) → ∆ of the second term in the right-hand side of
(4.3.15) vanishes. Then ω also satisfies the condition (ii).

For condition (iv), we use a standard trick for normalizing homotopies as in [CM10] and [CW23]
by adding a term λ ∈ Ω2(C2(M);Fρ) defined as

λ :=

∫

3

B3(ω
′
13∆̃23)−

∫

3

B3(ω
′
23∆̃13)−

∫

3,4

B3,4(ω
′
34∆̃13∆̃24). (4.3.16)

Here, integral
∫
3
(resp.

∫
3,4

) means the fiber integration along the fiber of p12 : C3(M) → C2(M)

(resp. p12 : C4(M) → C2(M) and B3 (resp. B3,4) means that we contract on the third (resp. third

and fourth) component of sections of the flat bundle. Note that all the factors ∆̃ in (4.3.16) are
regular forms by definition so that λ is well-defined as explained in Subsection 4.1.
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At first, we shows that T ∗λ = −λ. In fact, we have

T ∗λ :=

∫

3

B3(ω
′
23∆̃13)−

∫

3

B3(ω
′
13∆̃23)−

∫

3,4

B3,4(ω
′
34∆̃23∆̃14). (4.3.17)

Note that in the last term, after exchanging the factors 3 and 4 via the involution T34 (the orientation
changes sign), and using T ∗

34ω
′
34 = −ω′

34, we get

∫

3,4

B3,4(ω
′
34∆̃23∆̃14) = −

∫

3,4

T ∗
34

(
B3,4(ω

′
34∆̃23∆̃14)

)
= −

∫

3,4

B3,4(ω
′
34∆̃13∆̃24). (4.3.18)

This way, we conclude T ∗λ = −λ.
By our construction of ∆̃, we also have

∫

2

B2(∆̃12 ∧ ∆̃23) = ∆̃13 (4.3.19)

The Stokes’ Theorem for the fibration p12 : C3(M) → C2(M) has the following form,

d

∫

3

B3(ω
′
13∆̃23) =

∫

3

B3(∆̃13∆̃23) +

∫

∂3

B3(ω
′
13∆̃23)|∂ . (4.3.20)

The second fibre integration on right-hand side of (4.3.20) is the integration along the fibrewise
boundary of p12. One can understand this as follows, when we fix a point (x1, x2) in C2(M), we

integrate B3(ω
′
13∆̃23)|∂ with the third point x3 approaches infinitesimally to x1 or x2 and with a

proper induced orientation on the boundary, for instance, we will have

∫

∂3

B3(ω
′
13∆̃23)|∂ = −∆̃21. (4.3.21)

Then, by Stokes’ Theorem and using (4.3.19) - (4.3.21) and the conditions (ii) (iii), we have

dλ =

∫

3

B3(∆̃13∆̃23)− ∆̃21

−

∫

3

B3(∆̃23∆̃13) + ∆̃12

−

∫

3,4

B3,4(∆̃34∆̃13∆̃24)−

∫

3

B3(∆̃13∆̃23)

=

∫

3

B3(∆̃23∆̃31)− ∆̃21

−

∫

3

B3(∆̃13∆̃32) + ∆̃12

−

∫

3,4

B3,4(∆̃13∆̃34∆̃42) +

∫

3

B3(∆̃13∆̃32)

=∆̃21 − ∆̃21

− ∆̃12 + ∆̃12

− ∆̃12 + ∆̃12

=0.

(4.3.22)

We set
ω := ω′ + λ ∈ Ω2(C2(M);Fρ). (4.3.23)

Then by (4.3.22), ω satisfies the condition (i). Since T ∗(λ) = −λ, ω still satisfies the condition (iii).
Observe that the 2-form λ is horizontal on C2(M) with respect to the projection q : C2(M) →

M ×M . Using T ∗ω′ = −ω′ or directly by (4.3.18), then

i
∗
∂

∫

3,4

B3,4(ω
′
34∆̃13∆̃24) = 0. (4.3.24)

Hence i∗∂λ = 0. Then ω also satisfies the condition (ii).
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For the condition (iv), we proceed as follows,

∫

2

B2(λ ∧ p∗2(ι(β))) = −

∫

3

B3(ω
′
13β3)−

∫

2,3

B2,3(ω
′
23∆̃13β2) +

∫

3,4

B3,4(ω
′
34∆̃13β4)

= −

∫

2

B2(ω
′
12β2)−

∫

2,3

B2,3(ω
′
23∆̃13β2) +

∫

2,3

B2,3(ω
′
23∆̃12β3)

= −

∫

2

B2(ω
′
12β2)−

∫

2,3

B2,3(ω
′
23∆̃13β2) +

∫

3,2

B3,2(ω
′
32∆̃13β2)

= −

∫

2

B2(ω
′
12β2)−

∫

2,3

B2,3(ω
′
23∆̃13β2) +

∫

2,3

B2,3(ω
′
23∆̃13β2)

= −

∫

2

B2(ω
′
12β2).

(4.3.25)

Here, we denote p∗i (ι(β)) by βi for simplicity. Therefore, we have

∫

2

B2(ω12 ∧ p
∗
2(ι(β)) = 0. (4.3.26)

Then ω is a 2-form with all the desired properties. This completes the proof of our proposition.

Corollary 4.3.2. We can refine the Condition (ii) in Proposition 4.3.1 as follows: there exits ξ ∈
Ω2(∆;Eρ ⊗ Eρ), such that T ∗(ξ) = −ξ, and

i
∗
∂(ω) = I(η) + q∗∂(ξ). (4.3.27)

Moreover, if Eρ is acyclic, then ξ is closed and the class [ξ] ∈ H2
−(∆;Eρ ⊗Eρ) is independent of the

choice of the oriented framing f or ξ (which is compatible with the given o(M)).

Proof. The first part follows directly from our proof of Proposition 4.3.1. For the second part, we
use an easy modification of the proof to [CS21, Proposition 2.1].

If Eρ is acyclic, then ω is closed with (4.3.27). By the definition δ∗C2(M) in (4.2.10), we have

δ∗C2(M)[I(η) + q∗∂(ξ)] = 0. (4.3.28)

In this case, δ∗M2 is an isomorphism, set

Φ := (δ∗M2)
−1 ◦ (q∗)−1 ◦ δ∗C2(M) : H

2
−(∂C2(M);Eρ ⊗Eρ) → H2

−(∆;Eρ ⊗ Eρ).

Then we have Φ ◦ q∗∂ = IdH2
−
(∆;Eρ⊗Eρ)

, and

[ξ] = −Φ[I(η)] ∈ H2
−(∆;Eρ ⊗Eρ). (4.3.29)

By Lemma 4.2.2, [I(η)] is independent of the choice of oriented framing f , we complete our proof.

Definition 4.3.3 (Propagator). For the local system Eρ, for given orientation o(M), smooth framing
f of M and fix a map ι : H•(M ;Eρ) → Ω•(M ;Eρ) as in (3.2.10), a propagator is a smooth 2-form
ω ∈ Ω2(C2(M);Fρ) which satisfies all four conditions in Proposition 4.3.1 and condition (4.3.27) in
Corollary 4.3.2.

Note that, in order to emphasize the boundary condition (4.3.27), we use the pair (ω, ξ) or the
triplet (ω, η, ξ) to denote our propagator. In the case of emphasizing the role of the framing f , we
sometimes also use (ω, f, η, ξ) to denote a propagator.

Note that the propagators are generally not unique, but when Eρ is acyclic, the cohomological
class of propagators is unique. More precisely, we have the following result.

Proposition 4.3.4 (Uniqueness of propagators for acyclic Eρ). Fix a homotopy class of the smooth
framings [f ] of M and an orientation o(M). Assume Eρ to be acyclic, let ω ∈ Ω2

−(C2(M);Fρ) be
a propagator satisfying (4.3.27). Then the de Rham class [ω] ∈ H2

−(C2(M);Fρ) is unique (which is
independent of the choice of a framing f ∈ [f ] but depends on the homotopy class [f ]).

Proof. We consider the diagram (4.2.10) but for the cohomology groups of degrees 1 and 2. Then
from the acyclicness of Eρ, we get the map δ∗M2 : H1

−(∆;Eρ ⊗ Eρ) → H2
−(M ×M,∆;Eρ ⊠Eρ) is an

isomorphism.
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Meanwhile, we have the isomorphism: q∗ : H2
−(M ×M,∆;Eρ ⊠Eρ) → H2

−(C2(M), ∂C2(M);Fρ).
As a consequence, we infer that δ∗C2(M) : H1

−(∂C2(M);Eρ ⊗ Eρ) → H2
−(C2(M), ∂C2(M);Fρ) is

surjective. Therefore, we conclude that the restriction map

i
∗
∂ : H2

−(C2(M);Fρ) → H2
−(∂C2(M);Eρ ⊗Eρ) (4.3.30)

is injective.
Note that H2(I × S2;R) ≃ H0(I ;R) ⊗ H2(S2;R) ≃ H2(S2;R), then by Corollary 4.3.2, for any

propagator ω defined with a framing f ∈ [f ], the cohomological class i∗∂ [ω] is uniquely determined by
(M,o(M), [f ], ρ). Finally, the uniquenees of [ω] ∈ H2

−(C2(M);Fρ) follows from the injectivity of i∗∂
in (4.3.30).

Remark 4.3.5. (1) Our construction is a non-acyclic generalization of so-called framed propagator
studied in [CM10, Section 4.4], [CS21] and sketched in [Kon94].

(2) The Proposition 4.3.1 can be generalized to the case of a closed oriented manifold of dimension
n ≥ 2 as in [CW23], by replacing η with its unframed version as in [BC98] if the manifold is not
parallelizable.

(3) (With an appropriate modification as above) as a corollary, we can recover the previous re-
sults given in [CW23], [CS21]. More concretely, (i) if Eρ is a trivial local system, Proposition
4.3.1 recovers [CW23, Proposition 8] and [CM10, Lemma 2, Lemma 3]; (ii) If Eρ is acyclic
(H•(M ;Eρ) = 0) and we choose a trivialization of TM and equip M with the Riemannian
metric compatible with the trivialization. Then, Proposition 4.3.1 and Corollary 4.3.2 recover
[CS21, Proposition 2.1].

4.4 Adapted propagators for acyclic local systems

Based on our consideration in (3.5.16), Proposition 4.3.1 and Corollary 4.3.2, for an acyclic local
system Eρ, we can define a propagator ω which has an extra property with respect to the Lie bracket
operator L, which we call an adapted propagator.

One motivation for definition is to construct the integral invariants for the triplet (M,f, ρ) asso-
ciated to trivalent graphs without self-loops. Note that this definition is cohomologically canonical
and in the spirit of Bott–Cattaneo [BC99].

Definition 4.4.1. For an acyclic local system Eρ associated with a representation ρ : π1(M) → G
Ad
→

Aut(g), an adapted propagator is a 2-form

ω ∈ Ω2(C2(M);Fρ) (4.4.1)

satisfying the following four properties:

(i) dω = 0;

(ii) the restriction of ω on the boundary ω|∂C2(M) has the form

i
∗
∂(ω) = I(η) + q∗∂(ξ) (4.4.2)

where η is a normalized (oriented) volume 2-form on S2, and ξ ∈ Ω2(∆, Eρ ⊗ Eρ);

(iii) the form ω on C2(M) is antisymmetric under the action of T ∗, i.e., T ∗(ω) = −ω;

(iv) L(ξ) = 0, or equivalently, ξ ∈ Ω2
−(∆;Hρ). It is also equivalent to L(i∗∂(ω)) = 0.

It is clear that an adapted propagator is always a propagator as in Proposition 4.3.1, indeed, an
adapted propagator is just a propagator (ω, ξ) for the acyclic local system Eρ with an extra condition
L(ξ) = 0.

Our main results for this subsection are as follows.

Theorem 4.4.2. Given a framing f , an oriented normalized volume form η on S2 and an acyclic local

system Eρ via a representation ρ : π1(M) → G
Ad
→ Aut(g), the adapted propagator ω ∈ Ω2(C2(M);Fρ)

always exists with the boundary condition (4.4.2).

Proof. Let ω′ be a propagator constructed as in Proposition 4.3.1 which also satisfies (4.3.27) with a
closed 2-form ξ′ ∈ Ω2

−(∆;Eρ ⊗ Eρ), i.e.,

i
∗
∂(ω

′) = I(η) + q∗∂(ξ
′).
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Since Eρ is acylic, by Corollary (4.3.2), we have [ξ′] ∈ H2
−(∆;Eρ ⊗ Eρ). In the same time, by

(3.5.16), there eixists ξ0 ∈ Ω2
−(∆;Hρ) (i.e., L(ξ0) = 0) such that

ξ′ − ξ0 = dψ, (4.4.3)

where ψ ∈ Ω1
−(∆;Eρ ⊗ Eρ).

Now we take a T -invariant cut-off function χ in a small T -invariant tubular neighborhood of
∆ in M ×M as in the proof of Proposition 4.3.1 such that we extend ψ to a smooth 1-from ψ̃ ∈
Ω1

−(M ×M,Fρ) which is supported near ∆ and satisfies

i
∗(ψ̃) = ψ. (4.4.4)

Set ω = ω′ − dq∗ψ̃ ∈ Ω2
−(C2(M);Eρ ⊗ Eρ). Then

i
∗
∂ω = i

∗
∂ω

′ − q∗∂dψ = I(η) + q∗∂(ξ
′ − dψ) = I(η) + q∗∂(ξ0). (4.4.5)

This closed 2-form ω is an adapted propagator as we defined.

A modification of the above proof gives the following statement, which corresponds to the main
framework in [BC98, BC99].

Proposition 4.4.3. Given a framing f and an oriented normalized volume form η on S2. Assume
that Eρ is acyclic and

H1
−(M ;Eρ ⊗ Eρ) = 0, (4.4.6)

then there is an adapted propagator ω ∈ Ω2
−(C2(M);Fρ) such that dω = 0 and

i
∗
∂(ω) = I(η). (4.4.7)

Together with Proposition 3.5.4, if G is a real 3-dimensional simple Lie group and Eρ is acyclic,
then the conditions in the above proposition are always satisfied. In particular, the above results
apply to the case G = SU(2) or SL2(R). In general, we cannot always have H1

−(M ;Eρ ⊗Eρ) = 0. As
we saw in Proposition 3.5.5, there are examples of triples of (M,G, ρ) with H1

−(M ;Eρ ⊗ Eρ) 6= 0.

5 Two-loop invariant of framed closed 3-manifolds with

acyclic local systems

In this section, 2-loop invariants of framed closed 3-manifolds equipped with acyclic local systems
are revisited. After recalling its definition and independence of the choice of propagators following
[CS21], we observe that a particular choice of propagators, i.e., adapted propagators, gives vanishing
of integration associated with the dumbbell graph.

We will continue using the notation introduced at the beginning of Section 4.

5.1 Cattaneo–Shimizu’s result on 2-loop invariant of framed closed

3-manifolds

Recall that T acts on M2 (resp. C2(M) or ∂C2(M)), which lifts to Eρ ⊠Eρ (resp. Fρ or Fρ|∂C2(M)).
On C2(M), we have the canonical identification of flat vector bundles

F⊗3
ρ = q∗(E⊗3

ρ ⊠E⊗3
ρ ) = q∗

(
(E⊗2

ρ ⊠ R)⊗ (R⊠E⊗2
ρ )
)
⊗ Fρ. (5.1.1)

Then we have the linear form Tr⊠2 : F⊗3
ρ → R.

As in [BC98, BC99] and in [CS21], we now consider the integral invariants, which are known
as 2-loops terms in Chern-Simons perturbation theory. Theta graph and dumbbell graph are the
only two connected topological trivalent graphs with 2-loop, the precise figures are given in Fig. 4.
For each graph, we can define a configuration space integral as our potential invariant. Besides the
Theta-invariant and dumbbell invariant via integrations on C2(M), we also introduce an integral
invariant Z1(· · · ) following the work of Cattaneo-Shimizu in [CS21]. We always fix a framing f and
an orientation o(M) of M .
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Definition 5.1.1. Provided a propagator ω as in Definition 4.3.3: it satisfies all four conditions in
Proposition 4.3.1 and there exits ξ ∈ Ω2

−(∆, Eρ ⊗ Eρ), such that

i
∗
∂(ω) = I(η) + q∗∂(ξ). (5.1.2)

We define the following integrals,

ZΘ(ω) =

∫

C2(M)

Tr⊠2[ω3], ZO−O(ω, ξ) =

∫

C2(M)

Tr⊠2[(p∗1ξ)(p
∗
2ξ)ω], (5.1.3)

and set

Z1(ρ;ω, ξ) = ZΘ(ω)−
3

2
ZO−O(ω, ξ). (5.1.4)

For acyclic local systems, we recall one of the main results of Cattaneo–Shimizu [CS21]. Note
that the framing f and o(M) are given.

Theorem 5.1.2 ([CS21, Theorem 2.3]). If Eρ is acyclic, then Z1(ρ;ω, ξ) is independent of the choice
of the triplet (ω, η, ξ) satisfying the conditions in Proposition 4.3.1 and in Corollary 4.3.2, so that
it is an invariant for (M,Eρ), which we denote simply by Z1(M,ρ). In particular, Z1(M,ρ) is an
invariant depending only on M , ρ and the homotopy class of framing f .

Note that if we take generally a propagator ω given as in Proposition 4.3.1, the Theta-term ZΘ(ω)
will depend on the choice of ω. Cattaneo-Shimizu [CS21] introduced the correction by the dumbbell
term ZO−O(ω, ξ) to finally obtain a two-loop integral invariant Z1(M,ρ).

Remark 5.1.3. Note that we put the coefficient 3
2

instead of 3 (the coefficient originally given in
[CS21]) in front of the dumbbell term, this difference follows from our convention of the computations
(comparing (6.4.8) with [CS21, §4.2. Proof of Proposition 4.2]), more details are referred to Examples
6.5.4 & 6.6.7.

5.2 Vanishing of the dumbbell graph with an adapted propagator

Using our construction of an adapted propagator, we can refine Cattaneo-Shimizu’s result (Theorem
5.1.2) as follows.

Theorem 5.2.1. Assume Eρ to be acyclic. Let ω♯ ∈ Ω2
−(C2(M);Fρ) be an adapted propagator with

i∗∂(ω
♯) = I(η) + q∗∂(ξ

♯) as in (4.4.2), then

ZO−O(ω
♯, ξ♯) = 0, Z1(M,ρ) = ZΘ(ω

♯). (5.2.1)

Equivalently, ZΘ(ω
♯) itself defined via an adapted propagator gives the 2-loop invariant for (M,ρ, [f ]).

Proof. We only need to prove that
ZO−O(ω

♯, ξ♯) = 0. (5.2.2)

Note that for an adapted propagator, we have L(ξ♯) = 0.
By (3.5.5), (5.1.1), we have

Tr⊠2[(p∗1ξ
♯)(p∗2ξ

♯)ω♯]

= B1,2(L(ξ
♯)⊠ L(ξ♯), ω♯)

= 0.

(5.2.3)

This implies exactly (5.2.2). Then the proof of our proposition is completed.

The result of Proposition 5.2.1 shows that, for an acyclic local system Eρ, the use of an adapted
propagator defined in Definition 4.4.1 can reduce the computation of Z1(M,ρ) to compute only the
Theta-invariant, hence Z1(M,ρ) is essentially the Theta-invariant. Note that the dumbbell invariant
corresponds to the dumbbell graph, which is a two-loop trivalent graph with self-loops, the proof of
the above proposition indicates that the extra condition L(ξ♯) = 0 in Definition 4.4.1 is the key point
to vanish the self-loops. Such an idea will be exploited further for the integral invariants associated
to higher loop terms in subsequent sections.
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5.3 A preliminary result for certain nonacyclic local systems

In this subsection, we show a preliminary result on the 2-loop integral invariants for a local system Eρ

with the condition H1(M ;Eρ) = 0, which is an attempt to extend [CS21, Theorem 2.3](cf. Theorem
5.1.2). The results presented in this subsection are related to Subsection 4.3, but independent from
the rest of this article.

In this subsection, we do not assume Eρ to be acyclic anymore, but we assume thatH1(M ;Eρ) = 0.
By the Porincaré duality with respect to B, we have H2(M ;Eρ) = 0. By the interpretation given
in Subsection 3.3, this assumption holds true when ρ is an isolated point in the character variety
XG(M) of π1(M). On H0, H3-parts, we do not make any assumption. We always fix a map
ι : H•(M ;Eρ) → Ω•(M ;Eρ) as in (3.2.10).

We have the following observation

H1(M ×M ;Eρ ⊠Eρ) = H2(M ×M ;Eρ ⊠ Eρ) = 0. (5.3.1)

Moreover, by the long exact sequence (3.5.13), we also have

H2
−(M ;Hρ) ≃ H2

−(M ;Eρ ⊗Eρ). (5.3.2)

The following result is an analog of [CS21, Lemma 4.3], and it partially extends [CS21, Proposition
4.1] and Theorem 5.2.1 for nonacyclic case.

Proposition 5.3.1. Assume that H1(M ;Eρ) = 0. Let ω, ω′ be two propagators as in Definition 4.3.3
with the same framing f , the same η and the same ξ. Then there exists a 1-form ψ ∈ Ω1

−(M×M ;Fρ)
such that L(i∗(ψ)) = 0, and

ω − ω′ = d(q∗ψ). (5.3.3)

As a consequence, we have
ZΘ(ω) = ZΘ(ω

′). (5.3.4)

Proof. By the assumption, we have

d(ω − ω′) = 0, i∗∂(ω − ω′) = 0. (5.3.5)

By the excision Theorem, we have the following canonical isomorphism

q∗ : H2(M ×M,∆;Eρ ⊠Eρ) ∼−→ H2(C2(M), ∂C2(M);Fρ). (5.3.6)

Since H2(M ×M ;Eρ ⊠Eρ) = 0, by (5.3.5), there exists ψ′ ∈ Ω1
−(M ×M ;Eρ ⊠ Eρ) such that

(q∗)−1(ω − ω′) = dψ′. (5.3.7)

Combining together (5.3.5) and (5.3.7), we also have

d(i∗(ψ′)) = 0. (5.3.8)

Thus i∗(ψ′) represents a cohomology class in H1
−(M ;Eρ ⊗ Eρ). Note that since H1(M ;Eρ) = 0,

then H1(M ;Hρ) → H1(M,Eρ ⊗ Eρ) is surjective. As a consequence, there exists a closed form
ψ1 ∈ Ω1

−(M ;Hρ) and a section Φ1 ∈ Ω0
−(M ;Eρ ⊗Eρ) such that

ψ1 − i
∗(ψ′) = dΦ1. (5.3.9)

As explained in the proof to Proposition 5.2.1, we can extend Φ1 to a section Φ̃1 of Eρ ⊠ Eρ on
M ×M , which is also a (−1)-eigensection of T ∗. Now we set

ψ = ψ′ + dΦ̃1 ∈ Ω1(M ×M ;Eρ ⊠Eρ). (5.3.10)

By (5.3.7) and (5.3.10), we get
ω − ω′ = d(q∗ψ). (5.3.11)

By (5.3.9) and the definition of Hρ, we have

L(i∗(ψ)) = 0. (5.3.12)

This proves the first part of our proposition. Now we prove (5.3.4).
By (5.1.3) and (5.3.3) and using Stokes’ Theorem, we have

ZΘ(ω)− ZΘ(ω
′) = 6

∫

∆

Tr⊠2[i∗(ψ)ξ1] + 3

∫

C2(M)

Tr⊠2[q∗(ψ)∆̃12(ω + ω′)]. (5.3.13)
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An elementary computation shows that

Tr⊠2[i∗(ψ)ξ1] =
1

2
B(L(i∗(ψ)),L(ξ)). (5.3.14)

By (5.3.12), the function in (5.3.14) vanishes identically.
Since H1(M ;Eρ) = H2(M ;Eρ) = 0, we can write

∆̃12 = ∆′ +∆′′, (5.3.15)

where ∆′ is a (0, 3)-form, and ∆′′ is a (3, 0)-form, with respect to the two factors ofM×M . Similarly,
we write

ψ′ = ψ(0,1), ψ′′ = ψ(1,0), κ′ = (ω + ω′)(0,2), κ′′ = (ω + ω′)(2,0). (5.3.16)

Then
∫

C2(M)

Tr⊠2[q∗(ψ)∆̃12(ω + ω′)]

=

∫

C2(M)

Tr⊠2[q∗(ψ′′)κ′′∆′] +

∫

C2(M)

Tr⊠2[∆′′q∗(ψ′)κ′]

(5.3.17)

Using essentially that T ∗ acts on ψ, ∆̃12, ω, ω
′ as −1 and its action on M ×M exchanges the two

factors. We get that ∫

C2(M)

Tr⊠2[q∗(ψ)∆̃12(ω + ω′)] = 0. (5.3.18)

By (5.3.14) and (5.3.18), we get

ZΘ(ω)− ZΘ(ω
′) = 0. (5.3.19)

This way, we complete the proof to this proposition.

Note that Proposition 5.3.1 is still far from being an extension of [CS21, Theorem 2.3](see Theorem
5.1.2), since we have to fix the boundary conditions such as η and ξ for the propagator ω.

Using the same arguments in the proof of Proposition 4.3.4, we get the following result.

Lemma 5.3.2. Assume H1(M ;Eρ) = 0. Let f and f ′ be two homotopic framings of M . Let
(ω, f, η, ξ), (ω′, f ′, η′, ξ′) be two set of propagators as in Definition 4.3.3 such that ξ − ξ′ is exact in
Ω2

−(M ;Eρ ⊗Eρ). Then ω − ω′ is an exact form in Ω2
−(C2(M);Fρ).

6 Graph complex associated to acyclic adjoint local sys-

tems

This section introduces a graph complex associated with an acyclic local system which corresponds

to ρ : π1(M) → G
Ad
→ Aut(g). The construction is an analogous version of the one defined by Bott–

Cattaneo [BC99] specialized so that ρ is given as above, equivariant homomorphisms associated with
(internal) vertices are defined from Tr, and the Killing form B. Different from Bott–Cattaneo [BC99],
we include the graphs with self-loops in our graph complex.

In this section, only g is involved, information from M or ρ is not needed.

6.1 Preliminary on graphs

Here we always consider the finite graph (i.e., with finite number of vertices and edges).

Definition 6.1.1. (1) A self-loop of a graph is an edge that connects the same vertex.

(2) If two distinct vertices of a graph are connected by exactly one edge, then this edge is said to
be regular. A graph is said to be connected if it is path connected (every two vertices can be
connected by a path of edges).

(3) Let Γ be a graph whose edges are directed. Let v(Γ) and e(Γ) denote the sets of vertices and
edges of Γ respectively. For an directed edge e of Γ connecting the vertex i to j, we define a
map s : e(Γ) → v(Γ) and t : e(Γ) → v(Γ) by s(e) = i and t(e) = j. Then, a half edge of a graph
Γ is defined as an element of the form

(s(e), e,+1) or (t(e), e,−1) ∈ v(Γ)× e(Γ)× {±1}

for e ∈ e(Γ). We call the number of half-edges at a vertex i valency of the vertex i. Usually, we
use h(Γ) to denote the set of all half-edges of Γ.
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(4) A graph Γ is said to be trivalent (resp. uni-trivalent) if the valencies for vertices all are 3 (resp.
1 or 3).

(5) A univalent vertex of a graph Γ is called external vertex and a vertex with valency ≥ 2 of Γ
is called internal vertex. Similarly, an edge of Γ which connects two internal vertices is called
internal edge and called external edge otherwise.

•
...

Fig. 1: A self-loop of a graph, vertex with valency 4 as displayed

In the sequel, a connected graph always means a connected graph whose internal vertices have
valency ≥ 3. Next, we define several orientations of a connected graph.

Definition 6.1.2. Let Γ be a connected uni-trivalent graph. A vertex-wise orientation of Γ is cyclic
orders at internal vertices of Γ, i.e., collection of a cyclic order of half-edges connecting to an internal
vertex.

Remark 6.1.3. A topological trivalent graph together with the information of cyclic orders on the
half-edges incident to each vertex is known as a ribbon graph or fat graph (cf. [Igu04, Section 1]).
Here we will not emphasize this terminology.

Definition 6.1.4 (vertex orientation and edge orientation of half-edges). Let Γ be a connected (uni-
)trivalent graph Γ. Let hint(Γ) be the set of internal half-edges (i.e., half-edges attached to internal
vertices). An orientation of hint(Γ) is a numbering on hint(Γ) up to even permutations, i.e., a bijection
hint(Γ) ≃ {1, 2, . . . , |hint(Γ)|} where two such bijections are identified if they are related by even
permutations. We introduce the following two orientations for hint(Γ):

(1) Suppose that Γ is vertex-wise oriented and the set vint(Γ) is ordered. Then, a vertex orientation
of hint(Γ) is defined as follows: according to the order of vint(Γ), take an internal vertex v and
order the set of half-edges at v.

(2) Suppose that all of edges of Γ are directed and the set e(Γ) is ordered. Then, an edge orientation
of hint(Γ) is defined as the induced orientation from that of e(Γ) and directions of edges. Here,
for an oriented self-loop e connecting the vertex v, the order of two half-edges (v, e,+1) and
(v, e,−1) is defined so that (v, e,+1) is putted just before (v, e,−1).

6.2 Weight systems associated with uni-trivalent trees

Now let G be a connected semi-simple Lie group with Lie algebra g and the Killing form B as
considered in Section 3. Here, we describe a way to obtain Ad(G)-invariant multi-linear map g⊗n → R

obtained from the Killing form B and the corresponding Casimir element 1 and uni-trivalent trees,
as in [BN95].

Let T be a vertex-wise oriented uni-trivalent tree diagram with n external vertices (hence it has
no loops). Suppose that the set of n external vertices are ordered. Then, associated with T , the
weight system

WT : g⊗n → R (6.2.1)

is defined as follows. For each external vertex, we associate it with n inputs of elements of g according
to the order on the set of external vertices. For each trivalent vertex, we assign the cubic trace form
Tr, defined in Subsection 3.1, according to the cyclic order of half-edges at the vertex, and for
each internal edges, we assign the Casimir element 1. Then, taking contraction with respect to B
associated with internal edges, we obtain the desired multilinear form WT . By construction, the WT

is Ad(G)-invariant and independent of the order of contractions.
The cubic trace form Tr is considered as the weight system WY associated with the uni-trivalent

tree Y with exactly one trivalent vertex as in Fig. 2. Then, by definition, we have the identity we
call anti-symmetric identity

WY +WY = 0. (6.2.2)

More generally, for uni-trivalent trees T1, T2 which are the same except for some small regions where
Y , Y diagrams are inserted respectively. Then, we have

WT1 +WT2 = 0. (6.2.3)
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· 0.

Fig. 2: Anti-symmetric identity for weight systems. The graphs are denoted
by Y and Y respectively. In this figure, the blue curved arrows indicate the
cyclic ordering for each trivalent vertex (i.e., vertex-wise orientation), and the
number labels 1, 2, 3 exhibit an ordering for external edges or possibly for the
half-edges.
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·
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34
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34
· ·
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Fig. 3: Jacobi identity for weight systems. The graphs are denoted by I,H,X

respectively.

Lemma 6.2.1. (Jacobi identity)

(1) For uni-trivalent trees I,H,X given as in Fig. 3, we have the following identity on the associated
weight systems

WI +WH +WX = 0. (6.2.4)

(2) More generally, for uni-trivalent trees T1, T2, T3 which are the same except for some region where
I, H and X diagrams are inserted respectively. Then, their associated weight systems satisfy
the identity

WT1 +WT2 +WT3 = 0. (6.2.5)

Proof. (1) The proof is given by direct computation as follows. For v1, v2, v3, v4 ∈ g, we have

WI [v1, v2, v3, v4] = B([v1, v2], [v3, v4]) = B(v1, [v2, [v3, v4]]). (6.2.6)

Similarly,

WH [v1, v2, v3, v4] = B([v1, v4], [v2, v3]) = B(v1, [v4, [v2, v3]]),

WX [v1, v2, v3, v4] = B([v1, v3], [v4, v2]) = B(v1, [v3, [v4, v2]]).
(6.2.7)

Therefore,

(WI +WH +WX)[v1, v2, v3, v4]

=B(v1, [v2, [v3, v4]]) +B(v1, [v4, [v2, v3]]) +B(v1, [v3, [v4, v2]])

=B(v1, [v2, [v3, v4]] + [v4, [v2, v3]] + [v3, [v4, v2]])

=0.

(6.2.8)

(2) follows immediately from (1), since the computation of a weight system can be decomposed into
that of several pieces of weight systems by construction.

Remark 6.2.2. We can also consider weight systems associated with trivalent graphs which have
loops. However, in the present article, we only consider weight systems associated with trees, because
these tensors appear by iterated contractions of internal edges of trivalent graphs as we will see in
the subsequent subsections.

6.3 Decorated graphs

In this subsection, we define a decorated graph which is a variant of one defined in [BC99]. Let
H = ⊕i∈ZH

i be a Z-graded finite dimensional vector space. Now we introduce the definition of a
decorated graph associated to a given H and the connected semi-simple Lie group G considered in the
previous subsection. Moreover, in the potential applications of such graphs to integral invariants, the
vector space H will be taken as the cohomology group H•(M ;Eρ) of the local system Eρ discussed
before.
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Definition 6.3.1. (Decorated graph) Let Γ be a connected graph whose internal vertices have valency
≥ 3. Also suppose that when H = 0, Γ has no univalent vertex. A decorated graph is a graph Γ
endowed with the following data:

• enumerations on the set of edges e(Γ) and the set of internal vertices v(Γ)int, i.e., Γ is endowed
with fixed bijections e(Γ) ≃ {1, 2, . . . , |e(Γ)|} and v(Γ)int ≃ {1, 2, . . . , |v(Γ)int|};

• directions on internal edges;

• induced order on the set of hΓ(i) of half-edges at each vertex i ∈ v(Γ) from the order of e(Γ).
Here, for a self-loop e connecting the vertex i, the order of two half-edges (i, e,+1) and (i, e,−1)
is defined so that (i, e,+1) is putted just before (i, e,−1); Note that this order on hΓ(i) defines
the vertex-wise orientation at vertex i;

• for each internal vertex i with valency n ≥ 4, information of an insertion of oriented uni-trivalent
tree Ti with exactly (2n − 3) edges and n of them are ordered external vertices corresponding
to the n incident half-edges at this vertex i. More precisely, we consider a small ball centered
at v which intersects on the boundary with half-edges at n distinct points. Then, we endow it
with the information of embedding of Ti into the ball so that the n-external vertices are put on
the intersection points disjoint way on the boundary. Here, we also require that the embedding
of Ti is done so that

(i) the order of the external vertices of Ti are given by the order of their corresponding half-
edges of Γ attached to i;

(ii) the cyclic order of Ti at a trivalent vertex which is connected to more than one external
vertices are compatible with the order of the half-edges of Γ attached to i;

• for each internal vertex i, we equip it with the weight system defined as in (6.2.1) associated
to Ti, which is a π1(M)-equivariant homomorphism, Wi := WTi : ⊗h∈hΓ(i)gh → R which,
sometimes, is also regarded as the map

Wi : R → ⊗h∈hΓ(i)g
∗
h, 1 7→WTi (6.3.1)

where gh (resp. g∗h) is a copy of g (resp. g∗). To unify the notation, when i is a trivalent vertex,
then we set Ti to be the Y -shape uni-trivalent tree and Wi := Tri;

• external vertices of Γ are decorated by homogeneous elements of H . If H = 0, then only the
graph without external edges is concerned.

Remark 6.3.2. Note that for a vertex i of valency n ≥ 4, the inserted uni-trivalent tree Ti is required
to have exactly (2n−3) edges with n of them being external, this condition forces the choices of such
tree to lie in a finite list of uni-trivalent trees. This way, if we fix the numbers of edges and vertices,
we only have finitely many different decorated graphs satisfying our definition.

In this article, we depict decorated graphs by dashed curves as Fig. 4, where the trivalent graphs
with two loops are presented. As long as we have the ordering on the half-edges, the decoration Tr
(or the corresponding π1(M)-equivariant homomorphism) for each vertex is determined uniquely by
our above conventions. Note that in the sequel, we sometimes omit the numberings of vertices, edges,
and half-edges or the equivariant homomorphisms for simplicity when depicting decorated graphs.

• •v1 v2

e1

e2

e3

h1,1

h2,1

h3,1

h1,2

h2,2

h3,2

e2h3,1 h1,2

h1,1

h2,1e1

h2,2

h3,2 e3

• •v1 v2

Fig. 4: An example of decorated trivalent graphs, whose underlying topological
graphs are called Theta graph and dumbbell graph respectively. Here, hi,a

denotes the i-th half-edge at the vertex va, and the associated equivariant
homomorphisms are omitted.

Example 6.3.3. For a vertex with valency 4, there are only three ways (by inserting only one edge)
to insert uni-trivalent trees as Fig. 5. Each tree in the small balls carries a vertex-wise orientation
uniquely induced from the order of these four half-edges and corresponds to one of the cases presented
in Fig. 3 up to a sign (also cf. (6.4.7) and (6.4.8)).
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•
, ,

·
·

·· ··

Fig. 5: Three ways to insert a uni-trivalent tree in place of a 4-valent vertex.
These graphs are denoted by I,H , and X respectively.

Generally, one can also decorate a vertex with valency 4 with a more complicated weight system,
for example, inserting a uni-trivalent connected graph as follows, but we exclude this case from our
definition.

•
·

·
· ·

·
·

Fig. 6: A more complicated weight system, which is not allowed in our defini-
tion.

6.4 Graph complex for an acyclic local system

Now let G be a connected semi-simple Lie group with Lie algebra g and the Killing form B as
considered in Section 3. In this subsection, we introduce a graph complex for the acyclic local systems
associated to g and B, more precisely, the trace form Tr. The acyclic local system corresponds to the
case H = 0 in the definition of decorated graphs, so that, by our convention, only the decorated graphs
without external edges are concerned here. In the sequel, we do not distinguish internal/external edges
and vertices.

Let G̃Cac,g be the vector space spanned by all the decorated graphs without external edges (by our
convention the valency at each vertex ≥ 3) over Q. These spaces of decorated graphs are bigraded
by the following order and degree:

ord(Γ) = |e(Γ)| − |v(Γ)|,

deg(Γ) = 2|e(Γ)| − 3|v(Γ)|.
(6.4.1)

Note that by our convention on the valencies, the decorated graphs that we consider here always have
deg ≥ 0.

In some context, we also like to talk about the loops for a connected graph Γ. Viewing the
(topological) graph as a CW -complex, then the Euler characteristic number is

χ(Γ) = |v(Γ)| − |e(Γ)| = − ord(Γ) = 1− ℓ, (6.4.2)

where ℓ corresponds to the first Betti number of Γ hence the number of loops in Γ. Note that the
number of loops as above only makes sense for a connected graph, if the graph is not connected, we
also need to consider the number of the connected components to conculde the number of loops in a
topological sense.

Remark 6.4.1. • For any trivalent graph Γ, i.e., a graph whose all the (internal) vertices have
valency 3, is of deg(Γ) = 0. Since we assume that the valencies for the internal vertices are
at least 3, so that such a finite graph without any external edges and of degree 0 has to be
a trivalent graph. A (nonempty) trivalent graph has at least 2 vertices and 3 edges, so the
least order is 1. The trivalent graphs of order 1 have only two possibilities: Theta-graph and
dumbbell graph, both are connected.

• For a trivalent graph Γ, its order ord(Γ) = 1
2
|v(Γ)| defined in (6.4.1) agrees with its degree

customarily used in the theory of finite-type (Vassiliev) invariants.

Next, we define an equivalence relation on G̃Cac,g as follows: if two decorated graphs Γ and Γ′

differ by only

(1) permutation of numberings for all edges which induces k times change in total of cyclic orders of
associated trees at vertices, where the changes on the cyclic orders are forced by the compatibility
of cyclic orders on the associated trees with the new numberings on their external edge,
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(2) edge (including self-loop edges and non-self-loop edges) direction reversals of timesm; let (−1)m
′

denote the total sign change of the cyclic orders of the associated trees induced by the direction
changes on the self-loop edges (since the cyclic orders are not affected by direction reversals on
non-self-loop edges),

(3) permutation of numberings of vertices, let (−1)d denote the sign,

then we set sign(Γ,Γ′) = (−1)k+m+m′+d, and

Γ = sign(Γ,Γ′) · Γ′. (6.4.3)

We also introduce a relation, called internal vertex-wise AS relation, of connected decorated graphs
induced from relations on equivariant homomorphisms attached at an internal vertex as follows. Let
ΓY , ΓY be two connected decorated graphs with the same underlying topological graph and the same
decoration except that, at one fixed internal vertex, embedded uni-trivalent trees are different but
related by anti-symmetric identity as (6.2.2). Then, we set

ΓY + ΓY = 0. (6.4.4)

Similarly, we define internal vertex-wise IHX relation. Let ΓI , ΓH , ΓX be three connected dec-
orated graphs with the same underlying topological graph and the same decoration except that, at
one fixed internal vertex, embedded uni-trivalent trees are different but related by Jacobi identity as
(6.2.4). Then, we set

ΓI + ΓH + ΓX = 0. (6.4.5)

For a self-loop edge, we now give more details to clarify the equivalence relation under the change
of direction. Let Γ be a decorated graph, and let v be a vertex in Γ of valency 3 and attached by a
self-loop edge, let Γ′ be the decorated graph obtained by reverse the direction of this self-loop edge
attached to v, then our equivalence relation shows

Γ = Γ′, (6.4.6)

i.e., direction reversal for a self-loop edge attached to trivalent vertices does change the equivalent
class of the given graph.

However, this situation might be different for the vertex with higher valency. For a vertex with
valency 4, this relation is presented by the following figure:

( )
•v

h1,v h2,v

h3,v h4,v

= −:= −X··
3

1

4

2

Tv ( )
•v

h1,v h2,v

h4,v h3,v

:= H··
4

1

3

2

T ′
v

(6.4.7)
where black filled circles denote the small balls centered at an internal vertex which contains em-
bedding information of uni-trivalent trees, and the figures for Tv or T ′

v mean that the associated
uni-trivalent trees are the respective −X and H defined in Fig. 3. Note that by our conditions for Tv

or T ′
v given in Definition 6.3.1, the vertex-wise orientations of Tv and T ′

v are uniquely determined by
the ordering of the external vertices, so that we do not emphasize the cyclic order for each vertex in
the figures of (6.4.7), that’s also why we need to put minus sign in front of X. Note that the cyclic
orders in Tv remain the same after exchanging labels 3 and 4, then we have to put a minus sign on
the right-hand side of (6.4.7).

In the two sides of (6.4.7), the different directions of the self-loop yield a minus sign. As a
consequence, we conclude an equivalence between the weight systems X and H at this vertex with
valency 4 and attached by a self-loop. Then combining it with the internal vertex-wise IHX relation
(6.4.5), we can conclude the following nontrivial identity (where we assume that the two decorated
graphs are exactly the same except that, the weight systems for this depicted vertex are respectively
−X and I):

−2
( )

•v
h1,v h2,v

h3,v h4,v

+:= −X··
3

1

4

2

( )
= 0•v

h1,v h2,v

h3,v h4,v

:= I
·
·

1 2

3 4

(6.4.8)

Remark 6.4.2. When considering trivial local systems, as is well known, graphs with self-loop edges
are zero by AS relation (i.e., Antisymmetry of internal vertices given in [BN95, Theorem 6 (1)]) by
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using arguments in [BN95, Section 2.4]. On the other hand, in a non-trivial local system case, this is
not the case. This can be explained as follows. For trivial local system case, (if we only consider the
Lie algebra factor of associated integrations) every internal edge are associated with 1 which lies in
the symmetric part of g⊗g, whereas for a non-trivial case we associate self-loop edges anti-symmetric
element of Eρ ⊗Eρ so that AS relation does not imply vanishings of graphs with self-loops. See also
[AS94, Page 180].

Similarly to (6.4.8), if a given vertex v of valency 4 has two attached edges connecting to the same
trivalent vertex v′, we can also conclude an analogous nontrivial identity. More precisely, we consider
the following part of a connected decorated graph Γ (without external edges) described in Fig. 7.

H = ··
4

1

3

2

Tv h1,v

h2,v

h3,v

h4,v

e′

e

•• v′v

Fig. 7: An example of two non-self-loop edges with the same ending vertices,
we assume e < e′ in the given numberings on the edges of Γ.

Now we exchange the numberings e and e′ for these two edges described in Fig. 7, and we get
a decorated graph Γ′. As a consequence, the number labels 3 and 4 in Tv are exchanged, but the
induced cyclic orders at each vertex in Tv remain the same so that there is no sign produced for v.
However, since v′ is trivalent, exchanging e and e′ produces a factor (−1) for the equivalence relation
between Γ and Γ′. Then, combining the internal IHX relation, we conclude an identity in Fig. 8
(assume the two terms are given by the same graph Γ with the same decorations and numberings
except for the vertex v).

2
(

H = ··
4

1

3

2

Tv
)

+

h1,v

h2,v

h3,v

h4,v

e′

e

•• v′v
(

I = ··
1

2

3

4

Tv
)

= 0.

h1,v

h2,v

h3,v

h4,v

e′

e

•• v′v

Fig. 8: A special case of internal IHX relation.

Another situation for a vertex v with valency 4 is given in Fig. 9, where the decorated graph is
always identified to be zero by the internal IHX relations.

··

Tv

•

e2

. . .

e3e1

•

•

v′

v

Fig. 9: Vertex v with valency 4, vertex v′ with valency 3, Tv is one of the cases
{I,H,X}, the above decorated graph is identified to be 0 by the internal IHX
relation and sign relation.

Remark 6.4.3. In (6.4.8) and in Fig. 8 & Fig. 9, the identifications among I,H,X for a vertex of
valency 4 follow from the symmetry of the underlying topological graph Γ, for instance, the self-loop
edge has a natural symmetry by flipping out, the two edges e, e′ in Fig. 7 are invariant under the
swapping themselves, the three edges e1, e2, e3 in Fig. 9 carry the natural permutation symmetries.

Definition 6.4.4. We define GCac,g := G̃Cac,g/∼ as the graded commutative algebra over Q generated
by equivalent classes of decorated connected graphs without external edges, subject to
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• the sign relation (6.4.3),

• internal vertex-wise AS relation (6.4.4),

• internal vertex-wise IHX relation (6.4.5),

the (graded commutative) algebra structure on GCac,g is given by disjoint union (denoted by ∪),
which is defined as follows, the numberings on the edges and internal vertices of Γ ∪ Γ′ are given as
keeping the same for Γ and shifting the numberings for Γ′ by adding |e(Γ)|, |v(Γ)| respectively. Note
that the disjoint union of two decorated connected graphs, viewed as a newly decorated graph, leads
to the summation of their respective orders and degrees so that a multiple of a connected decorated
graph with order n and degree t is still considered as having the same order and degree, which is a
different object from the disjoint union of multiple copies of this graph (see Fig. 10). We have the
following commutative relation

Γ ∪ Γ′ = (−1)deg(Γ)deg(Γ′)Γ′ ∪ Γ. (6.4.9)

In particular, if Γ has an odd degree (equivalently, has odd number of vertices), then we have (in
GCac,g)

Γ ∪ Γ = 0. (6.4.10)

• •v12

(

v2
)
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Fig. 10: Multiple of a connected graph considered different from the disjoint
union of multiple copies of the graph.

Now we introduce an operator δ on GCac,g as follows. Set

δΓ =
∑

e=(ij):non-self-loop internal edge

σ(i, j) · Γ/e, (6.4.11)

where e = (ij) denotes a non-self-loop edge connecting the vertex i to the vertex j, Γ/e means the
decorated graph obtained from Γ by contracting e = (ij) to the original vertex i then equipped with
the consistent renumbering of edges and vertices and with the obvious information of insertion of one
edge in place of the resulting vertex, and the sign σ(i, j) is defined as follows:

σ(i, j) =

{
(−1)j if j > i

(−1)i+1 if j < i.
(6.4.12)

More concretely, the renumbering of Γ/e is defined as follows. If e = (ij) is the k-th edge of Γ,
we renumber edges el with k < l by letting them decrease by one. We renumber the vertices vl with
max{i, j} ≤ l by letting decrease by one and label the resulting vertex where the contraction has
happened by min{i, j}.

For a non-self-loop edge e = (ij) connecting the vertex i to the vertex j, the resulting vertex
i′ := min{i, j} by contracting e = (ij) is attached with the equivariant homomorphism

Wi′ : ⊗h∈hΓ/e(i
′)gh → R (6.4.13)

defined as follows. For defining Wi′ , it is enough to define the corresponding oriented uni-trivalent
tree Ti′ inserted at vertex i′ in Γ/e. Assume Ti, Tj to be the inserted oriented uni-trivalent trees
attached to vertex i and j respectively, then the inserted tree Ti′ is defined as the tree given by
connecting Ti and Tj via the external edges corresponding to the edge e = (ij). Note that the
external edges of Ti′ are ordered according to the numberings on the edges and the directions of
self-loops (if attached to i′), whose ordering is compatible with the ones of Ti and Tj . The vertex-
wise orientation on Ti′ is the one inherited from Ti and Tj . Let ni, nj denote the valencies of i, j
respectively, then the valency for this vertex i′ in Γ/e is ni′ := ni+nj −2, and the total edge number
of Ti′ is (2ni − 3) + (2nj − 3) − 1 = 2ni′ − 3, this way, we confirm that Γ/e with the above weight
system Ti′ at i′ satisfies Definition 6.3.1, i.e., Γ/e ∈ GCac,g.
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Remark 6.4.5. Assuming that e = (ij) connecting k-th half-edge of |hΓ(i)| half-edges at i and l-th
half-edge of |hΓ(j)| half-edges at j, then the weight system Wi′ can be computed by (after re-order
the tensor factors according to the ordering of half-edges)

Wi′ = Bk,|hΓ(i)|+l(Wi ⊗Wj) (6.4.14)

where Br,s denotes the bilinear form B acting on r-th and s-th components of tensor products
(⊗h∈hΓ(i)gh)⊗ (⊗h∈hΓ(j)gh).

One simple example of the above contraction of one edge is illustrated as Fig. 11

e

• • •7−→
δ

··

Fig. 11: The map δ for an internal edge e

Then, we have the following proposition analogous to [BC99, Proposition 3.4].

Proposition 6.4.6. The operator δ is a well-defined linear operator on GCac,g and satisfies δ2 = 0.
Moreover, for each t ∈ Z, denoting by GCt

ac,g the subspace of GCac,g spanned by the decorated graphs
of degree t, we have

δ : GCt
ac,g → GCt+1

ac,g. (6.4.15)

That is, the pair (
⊕

t GC
t
ac,g, δ) forms a complex.

If Γ and Γ′ are two connected decorated graphs, then we have

δ(Γ ∪ Γ′) = (δΓ) ∪ Γ′ + (−1)deg(Γ)Γ ∪ (δΓ′). (6.4.16)

Proof. By (6.4.12) and Remark 6.4.5, the well-definedness of δ and δ2 = 0 follows from the same
arguments as in the proof of [BC99, Proposition 3.4], the existence of self-loops in the graphs does
not produce any new obstacles. The identity (6.4.16) follows from the explicit computations for the
operations δ and ∪.

6.5 Graph complexes of decorated graphs without self-loops for an

acyclic local system

The self-loops of the graph concerned here play a different role from the regular edges, so that we will
investigate separately the subspaces of GCac,g consisting of graphs without any self-loop and with at
least one self-loop.

Definition 6.5.1. Let GCac,g = (GCac,g, δ) be the graph complex defined in Subsection 6.4. Then, we
similarly let Gac,g and GC′

ac,g be the Q-vector subspaces of GCac,g spanned by the equivalent classes
of decorated graphs, respectively, without self-loops and with at least one self-loop.

These spaces of decorated graphs are bigraded by their order and degree. For n, t ∈ Z, let
Gt
ac,g:n, GC

t
ac,g:n, GC

′,t
ac,g:n denote the subspaces of Gac,g, GCac,g, GC

′
ac,g respectively spanned by all the

equivalent classes of decorated graphs with order n and degree t.

Note that δ-action yields a self-loop when δ acts on non-self-loop edge which is non-regular.
Therefore, δ does not preserve the Q-subspace of decorated graphs without self-loops. For example,
we consider the decoration defined in 6.4.12, the Θ-graph with Tr at each vertex is sent to 3 figure-
eight graphs decorated at the unique vertex as in Fig. 12.

• • 7−→
δ

•
v

3 ··

Fig. 12: The action of the operator δ on Θ-graph

On the other hand, δ preserves the Q-subspace of decorated graphs with self-loops since δ does
not act on self-loops. In Fig. 13, following Example 6.3.3, the dumbbell graph with Tr at each vertex
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• • 7−→
δ

•
v ·

·

Fig. 13: The action of the operator δ on dumbbell graph

is mapped to figure-eight graph with the weight system at the unique vertex v as given in Fig. 13.
Note that this decoration is different from the one from Θ-graph in Fig. 12.

Then, noting that δ preserves the order of a connected decorated graph, by Proprositin 6.4.6, we
conclude the following results.

Proposition 6.5.2. (1) For each n ∈ Z, the pair (
⊕

t GC
t
ac,g:n, δ) forms a complex.

(2) Taking the graphs always with at least one self-loop, (
⊕

t GC
′,t
ac,g:n, δ) form a subcomplex of

(
⊕

t GC
t
ac,g:n, δ).

By Proposition 6.5.2 (2), we can define a complex by

(
⊕

t

Gt
ac,g:n, δ

♯) :=
(⊕

t

(
GCt

ac,g:n/GC
′,t
ac,g:n

)
, δ
)
. (6.5.1)

Then, the quotient complex (
⊕

t G
t
ac,g:n, δ

♯) is the direct analog of the graph complex defined in
[BC99, Proposition 3.4], where the differential δ♯ acts only on a decorated graph Γ without self-loops
by

δ♯Γ =
∑

e=(ij):regular edge

σ(i, j) · Γ/e (6.5.2)

where e = (ij) denotes a regular edge connecting the vertex i to the vertex j, and the sum is set to
be zero if there is no regular edge in Γ.

Note that for GCt
ac,g:n being nonzero, we only consider t ≥ 0, n ≥ 1. Fix such a n, for i ∈ N,

let Hi(GC•
ac,g:n, δ) (resp. Hi(G•

ac,g:n, δ
♯), Hi(GC′,•

ac,g:n, δ)) denote the i-th cohomology group of the
complex (GC•

ac,g:n, δ) (resp. (G
•
ac,g:n, δ

♯), (GC′,•
ac,g:n, δ)). Moreover, we have the following exact sequence

0 → H0(GC′,•
ac,g:n, δ) → H0(GC•

ac,g:n, δ) → H0(G•
ac,g:n, δ

♯) → H1(GC′,•
ac,g:n, δ) → · · · (6.5.3)

Definition 6.5.3. An element in Ker δ ⊂ GCac,g or in Ker δ♯ ⊂ Gac,g is called a graph cocycle in the
respective graph complexes. In particluar, the graph cocycles of degree 0 are exactly the elements in
H0(GC•

ac,g:n, δ), H
0(G•

ac,g:n, δ
♯).

In fact, we will be mainly concerned with the graph cocycles (or simply cocycles) of degree 0.
Before we proceed to see some examples, we give several easy facts on the cocycles.

• For n = 1, we have GC′,0
ac,g:1 = Q · dumbbell, GC′,1

ac,g:1 = Q · figure-eight, which are 1-dimensional.
We can conclude

H0(GC′,•
ac,g:1, δ) = H1(GC′,•

ac,g:1, δ) = 0. (6.5.4)

So that H0(GC•
ac,g:1, δ) = H0(G•

ac,g:1, δ
♯), and they are also 1-dimensional (over Q).

• Any cocycle in GCac,g, by taking its quotient class or equivalently, by removing all the terms
including self-loops, gives a cocycle in Gac,g.

• If Γ, Γ′ are two cocycles, then so is Γ ∪ Γ′. So that the spaces of cocycles carry the induced
structure of graded commutative algebra.

Example 6.5.4 (2-loop cocycles). (1) In the graph complex GCac,g, the following linear combination
gives a cocycle of degree 0 with 2-loops:

Θ−
3

2
O–O (6.5.5)

where Θ and O–O decorated as in Fig. 4. In fact, H0(GC•
ac,g:1, δ) is exactly spanned by the

above cocycle over Q. Here we need to put coefficient 3
2

instead of 3 because the factor 2
appeared in (6.4.8), following from the internal IHX relation.

(2) In the graph complex Gac,g, the Θ-graph itself gives a cocycle since δ-action on it yields graph
with self-loops which is defined to be zero in the quotient space Gac,g ≃ GCac,g/GC

′
ac,g. So that

H0(G•
ac,g:1, δ

♯) is spanned by the Θ-graph.
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(3) The decorated graph Θ ∪ Θ is a nontrivial cocycle in G0
ac,g:2, but it has 4 loops in topological

sense.

Example 6.5.5 (3-loop cocycles). In [BC98, Example 4.6], for the trivial local system on a framed
homology 3-sphere, Bott-Cattaneo gave an example of cocycle with degree 0 and order 2 (hence with
3 loops) by the following linear combination:

Γ′ =
1

12
Γ1 +

1

4
Γ2, (6.5.6)

where Γ1 and Γ2 are given in Fig. 14 (without the weight systems induced from Lie algebra g or the
numbering on the edges).

As an element in G0
ac,g:2, the following linear combination is a cocycle (the coefficient of Γ2 has

been changed to − 1
8
):

Γ =
1

12
Γ1 −

1

8
Γ2, (6.5.7)

where Γ1 and Γ2 are given in Fig. 14 with all the decorations.

••

••

Γ1

v1 v2

v3v4

e1

e2

e3

e4
e5 e6

•• ••

Γ2

v1

v2 v3

v4e1 e2

e3

e4

e5

e6

Fig. 14: Two examples of decorated trivalent 3-loop graphs without self-loop

• ••

ΓI

v1

v2

v3e1

e2

e3

e4

e5

··
1

2

3

4

Tv3

Fig. 15: Graph ΓI in the computation of δ♯Γ

• • • •

Γ3 Γ4

• •

•

•

•

• •
•

Γ5

Fig. 16: Three examples of decorated trivalent 3-loop graphs with self-loops.

To show Γ being a cocycle in G0
ac,g:2, we need to use the identity in Fig. 8 and the following

equations in G0
ac,g:2,

δ♯Γ1 = 3ΓI , δ
♯Γ2 = 2ΓI . (6.5.8)

However, if we view Γ as an element in GC0
ac,g:2, then it is no longer a cocycle since the contraction

map on Γ2 produces the terms with self-loops which do not cancel out each other.
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In fact, we have three more connected trivalent graphs of order 2, which are displayed in Fig. 16
(one needs to assign numberings on their vertices or edges to make a decorated graph). We can add

these graphs with self-loops into Γ to obtain a cocycle Γ̃ in GC0
ac,g:2:

Γ̃ = Γ +Q-linear combination of Γ3,Γ4 and Γ5. (6.5.9)

A precise formula for Γ̃ can be deduced from Example 6.6.8.

Remark 6.5.6. As we already saw in Section 5, the graph cocycle in Example 6.5.4 (1) is implicitly
considered in [CS21] to define their Z1-invariants. That’s also one motivation that we need to include
the graphs with self-loops into our consideration in the first place, which makes differences from the
settings in [BC98, BC99]. Then we will explain in the next subsection the use of adapted propagators
for an acyclic Eρ will naturally exclude such graphs with self-loops.

6.6 Topological trivalent graph and Chern–Simons perturbation the-

ory

Now we focus on the connected trivalent graphs. Let Γ be a connected trivalent graph, for Γ being
a decorated trivalent graph as in Definition 6.3.1, it is enough to fix numberings on the edges and
vertices as well as directions on the edges. Then the weight system at each vertex of Γ is uniquely
determined by the induced cyclic order of the incident half-edges.

Definition 6.6.1 (Relative orientation). Suppose that Γ is a connected decorated trivalent graph, and
let h(Γ) denote the set of all half-edges of Γ. Then we have the induced vertex orientation and the
induced edge orientation on the same set h(Γ), the relative orientation of Γ, denoted by orΓ ∈ {±1},
is defined as the sign of the permutation which maps the edge orientation to the vertex orientation.

The following Lemma 6.6.2 is an analog of [CV03, Corollary 1] and [AS92, §3].

Lemma 6.6.2. Let Γ be a connected decorated trivalent graph, let Γ′ be the decorated trivalent graph
given by the same underlying topological graph as of Γ but with different numberings on the edges and
vertices, then we have the identity in GC0

ac,g

orΓ · Γ = orΓ′ · Γ′. (6.6.1)

Let Γ1, Γ2 be two connected decorated trivalent graphs, then we have

orΓ1∪Γ2 = orΓ1 · orΓ2 . (6.6.2)

Proof. It is enough to check that the term orΓ cancels the sign change coming from the numbering
change of vertices, edges, and direction reversals of edges. If we permute the numbering on v(Γ) by a
permutation of order p, then edge orientation of h(Γ) is fixed but vertex orientation of h(Γ) gives sign
change of (−1)p so that orΓ also change sign by (−1)p. If we change the direction of a non-self-loop
edge e = (ij), then the edge orientation of h(Γ) differs by (−1) under this direction reversal whereas
the vertex orientation of h(Γ) is fixed. If we change the direction of a self-loop edge e = (ii) incident
to vertex i, then both edge orientation and vertex orientation of h(Γ) differ by (−1) under this change,
hence the total change is 1. Similarly, if numbering change of e(Γ) gives rise to k-times changes of
cyclic ordering at trivalent vertices, then edge orientation of h(Γ) is fixed but vertex orientation of
h(Γ) changes by the same manner.

Therefore, orΓ cancels any sign change from permutation of numberings of edges and vertices, and
direction reversals of edges.

The above lemma indicates that for the decorated trivalent graphs, the underlying topological
graph determines uniquely its equivalence class up to a sign.

For integer n ≥ 1, let G be a topological trivalent graph with 2n vertices and 3n edges, or
equivalently, consider a set h(G) of 6n (abstract) half-edges, then a trivalent graph means the couple
of partitions of h(G):

• A partition into pairs of half-edges which we call edges.

• A partition into sets of cardinality (=valency) 3 which we call vertices.

If any two vertices can be connected by a consecutive path of edges (any neighboring edges have
only one common half-edge), then we call the graph to be connected. If G1, G2 are two topological
trivalent graphs, they are called equivalent to each other if there is a bijection between h(G1) and
h(G2) which maps the couple of partitions of h(G1) to the ones of h(G2). We will always identify
the equivalent graphs as the same one. Note that the order of G is defined by the same formula as in
(6.4.1) (since G is trivalent, it always has degree 0).
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Definition 6.6.3 (Automorphism group of topological trivalent graph). let G be a topological trivalent
graph with 2n vertices and 3n edges, then an automorphism of G is an element of the permutation
group of h(G) which preserves both partitions of h(G) for the edges and vertices of G, we denote the
group of all automorphism of G by Aut(G).

Remark 6.6.4. If G is a topological trivalent graph that is not connected, then by our definition of
Aut(G), its action always preserves the non-equivalent connected components of G. For example,
suppose that G1, G2 are two connected topological trivalent graphs, then

Aut(G1 ∪G2) =

{
Aut(G1)×Aut(G2)⋊ Z2, if G1 = G2 6= ∅;

Aut(G1)×Aut(G2), if else.
(6.6.3)

Let T Gn denote the vector space spanned by all the topological trivalent graphs with 2n vertices
over Q. We consider the linear map

Ψn : T Gn → GC0
ac,g:n, G 7→ orΓ(G) · Γ(G) (6.6.4)

where Γ(G) is any decorated trivalent graph whose underlying topological graph is G.
As a consequence of Lemma 6.6.2, we have the following result.

Corollary 6.6.5. For each n ≥ 1, the linear map Ψn is an isomorphism of finite dimensional vector
spaces.

Let’s consider the generating series of perturbative invariants for a framed closed 3-manifold
defined from the perturbative Chern-Simons theory (see [Kon94, Section 2], [AS92, AS94], [Saw06,
§3]), which, in terms of the trivalent graph, is formally given by

∑

n≥0

~
n

∑

trivalent graph G
of order n

1

|Aut(G)|
G = exp

(∑

n≥1

~
n

∑

connected trivalent graph G
of order n

1

|Aut(G)|
G
)
, (6.6.5)

where for n = 0 we take G = ∅ viewed as a unit element, |Aut(G)| = 1, and the multiplication of the
topological graphs is given by the disjoint union ∪ (it is commutative).

Proposition 6.6.6. • For each integer n with n ≥ 1, there is a cocycle of order n in GC0
ac,g:n

given as the form ∑

connected G

1

|Aut(G)|
Ψn(G) ∈ H0(GC•

ac,g:n, δ), (6.6.6)

where the sum runs over all the connected topological trivalent graph G of order n.

• For each integer n with n ≥ 1, there is a cocycle of order n in G0
ac,g:n given as the form

∑

connected G
without self-loops

1

|Aut(G)|
Ψn(G) ∈ H0(G•

ac,g:n, δ
♯), (6.6.7)

where the sum runs over all the connected topological trivalent graph G without self-loops and
of order n.

Proof. Fix a partition V of (6n) half-edges into the sets of cardinality 3 (viewed as vertices), let Pn

denote the set of partitions of this set of (6n) half-edges into pairs. Then, consider a surjective map

πn : Pn → T Gn, (6.6.8)

which sends a partition E in Pn to the topological graph G(E, V ) given by the equivalent class of the
couple of partitions (E, V ).

For a topological graph G ∈ T Gn, let Gh(G) be the permutation group of the set h(G) of half-edges
of G, and let Gv(G), Ge(G) ⊂ Gh(G) denote the subgroups preserving the partitions of h(G) for the
vertices and edges of G respectively. With these notations, we get

|π−1
n (G)| =

|Gv(G)|

|Aut(G)|
(6.6.9)

41



Then the sum (6.6.6) can be written as

∑

connected G

1

|Aut(G)|
Ψn(G)

=
∑

connected G

|π−1
n (G)|

|Gv(G)|
Ψn(G)

=
∑

connected G

|π−1
n (G)|

(3!)|v(G)||v(G)|!
Ψn(G)

=
1

(3!)2n(2n)!

∑

E∈Pn;connected

Ψn(G(E, V ))

(6.6.10)

where in the last summation E runs over all the partitions in Pn which give connected trivalent graphs.
Since we consider all the possible partitions giving connected trivalent graphs, all the resulting terms
after the map δ vanish by IHX relation at the vertex with valency 4. Indeed, we focus on a vertex
with valency 4. Then, there are only 3 possible ways to insert weight systems at the vertex, i.e., IHX
type graphs as Fig. 5. We know that such insertions happen at each vertex with valency 4 with the
same coefficient from the last equation. Finally, we note that the sign of the resulting weight systems
is compatible with Jacobi identity (6.2.4), since X graph in Fig. 3 has opposite cyclic ordering from
our convention but one sees that this sign emerges from orΓ in Ψn by direct computation for local
graphs as Fig. 3. (2) is immediate from (1) by removing graphs with self-loops. This completes the
proof.

Example 6.6.7. In particular, considering the order-1 part in Proposition 6.6.6, we can recover
Cattaneo–Shimizu’s 2-loop term (5.1.4). Indeed, let Θ and O–O be the theta graph and dumbbell
graph decorated as Fig. 4 (they are the only connected trivalent graphs of order 1), then orΘ = −1
and orO−O = 1. For their underlying topological graphs, we have |Aut(Θ)| = 12, |Aut(O−O)| = 8 (cf.
[Saw06, §3]). Thus, we get a cocycle in GC0

ac,g:1,

Γ =
1

12
orΘ ·Θ+

1

8
orO−O ·O–O = −

1

12
Θ+

1

8
O–O. (6.6.11)

Applying the linear map (−12)ZΓ(ω), we obtain Z1(ρ;ω, ξ) in (5.1.4).

Example 6.6.8. For the connected topological trivalent graph of order 2, there are two cases without
self-loops as given in Fig. 14, and there are 3 other cases with at least one self-loop edge given in
Fig. 16. Let Gj , j = 1, · · · , 5, denote the respective underlying topological graphs of Γj , j = 1, · · · , 5
in Fig. 14 & Fig. 16, then we have

|Aut(G1)| = 24, |Aut(G2)| = 16,

|Aut(G3)| = 16, |Aut(G4)| = 8, |Aut(G5)| = 48.
(6.6.12)

Meanwhile, we have orΓ1 = −1 and orΓ2 = 1, this way, from (6.6.7) we get a cocycle (without self-
loops) in G0

ac,g:2, which is proportional to the one defined in (6.5.7). If we include the other 3 cases
with self-loops (Γ3, Γ4, Γ5), we can work out explicitly a cocycle Γ′ mentioned in (6.5.9).

7 Higher-loop invariants of framed closed 3-manifolds

with acyclic local systems

This section studies the higher integral invariants associated with graph cocycles in the complex of
decorated graphs. In general, the refined situation as in Cattane–Shimizu [CS21] requires a graph
complex allowing self-loops which generalizes that of Bott–Cattaneo [BC99] which consists of graphs
without self-loops. By using the graph complex introduced in Section 6 and the adapted propagators
as in Definition 4.4.1, we show that the integral map Z factors through a quotient graph complex
which coincides with that of Bott–Cattaneo [BC99] without self-loops. This means that when an

acyclic local system is given by ρ : π1(M) → G
Ad
→ Aut(g), graph complex without self-loops are

enough to define the integral invariants associated to the higher-loop terms.
In this section, a framing f of M and an orientation o(M) are always fixed, and we always assume

the local system Eρ to be acyclic.
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7.1 Integral invariants of higher order associated to acyclic local

systems

In this subsection, we study graph cocycle invariants of a framed closed 3-manifold with acyclic local

system associated with a representation π1(M) → G
Ad
→ Aut(g).

In the sequel, we mainly consider degree 0 part and degree 1 part of graph complexes considered
in subsection 6.5, hence internal vertices are decorated by the cubic trace form Tr or WT with
T = I,H,X as given in Example 6.3.3.

Assume the local system Eρ to be acyclic. For a fixed propagator ω as defined in Subsection
4.3 which satisfying conditions in Proposition 4.3.1 and Corollary 4.3.2, let us define a Q-linear map
Z−(ω) on GC0

ac,g.
At first, associated to each edge e ∈ e(Γ) of a decorated trivalent graph Γ (hence of degree 0), we

define the 2-form ωe on C2n(M) as follows:

ωe :=

{
p∗ijω if e = (ij) with i 6= j,

q∗p∗i ξ if e = (ii) is a directed self-loop,
(7.1.1)

where pij : C2n(M) → C2(M) is the natural projection map induced by M2n → M × M which
sends (x1, . . . , x2n) 7→ (xi, xj), q : C2n(M) →M2n is the blow-down map (by abuse of notation), and
pi : M2n → M is the natural i-th projection map. Note that when e = (ij), i 6= j, the coefficient
of form ωe is in p∗iEρ ⊗ p∗jEρ; when e = (ii) is a self-loop with the orientation given by the ordered
half-edges h+ = (i, e,+1) < h− = (i, e,−1), then the form ω(ii) is valued in p∗i (Eρ,h+ ⊗ Eρ,h−

). In
particular, since T ∗ω = −ω, we conclude for i 6= j,

ω(ij) = −ω(ji). (7.1.2)

Take a decorated trivalent graph Γ of order n, then 2n = 2 ord(Γ) = |v(Γ)| is the number of
vertices of Γ. At each vertex, the weight system Tr is a Ad(G)-invariant linear form on g⊗3, so that it
descends to a morphism of vector bundles E⊗3

ρ → R over M , equivalently, we view the weight system
at each vertex of Γ as a flat skew-symmetric section of (E∨

ρ )
⊗3 →M (also cf. Subsection 3.4).

The order of the product manifold M2n (which has an induced orientation from o(M)) coincides
with the given numbering on v(Γ), or equivalently, we may write (x1, . . . , x2n) = (xi)i∈v(Γ) ∈ M2n.
At each point (x1, . . . , x2n) ∈M2n, we have the tensor product of vector bundles:

(E∨
ρ )

⊗3
x1

⊗ (E∨
ρ )

⊗3
x2

⊗ · · · ⊗ (E∨
ρ )

⊗3
x2n

, (7.1.3)

then by considering the set of half-edges h(Γ) of Γ, each factor E∨
ρ,xj

in (7.1.3) can be regard as
a copy of E∨

ρ indexed by a half-edge h attached to vertex j. Then we consider the pull-back of
E∨

ρ ⊠E∨
ρ →M×M by pij for a non-self-loop edge e = (ij) and the pull-back E∨

ρ ⊗E∨
ρ →M by pi for

a self-loop edge e = (ii), then each copy of E∨
ρ is clearly index by the half-edges of e, therefore we get

again the tensor product of vector bundles as in (7.1.3). We always identify these two perspectives
for the vector bundle p∗1(E

∨
ρ )

⊗3 ⊗ p∗2(E
∨
ρ )

⊗3 ⊗ · · · ⊗ p∗2n(E
∨
ρ )

⊗3 over M2n or C2n(M).
Set

ZΓ(ω) :=

∫

C2n(M)


 ⊗

i∈v(Γ)

Tri


 ∧

e∈e(Γ)

ωe, (7.1.4)

where e = (ij) means the edge connecting the vertex i to the vertex j (which always carry an
orientation when i = j). Note that in (7.1.4), the factor

⊗
i∈v(Γ) Tri corresponds to the tensor

product of the decoration Tr at each vertex given in Definition 6.3.1. Note that by our convention,
to apply

⊗
i∈v(Γ) Tri on

∧
e∈e(Γ) ωe, we need to pair the factor of E∨

ρ in
⊗

i∈v(Γ) Tri corresponding

to a half-edge h ∈ h(Γ) with the factor Eρ in
∧

e∈e(Γ) ωe that corresponds to the same half-edge h.

Proposition 7.1.1 (Definition of Z−(ω)). Let Γ be a decorated trivalent graph of order n. If Γ′ is
another decorated trivalent graph of order n which is equivalent to Γ via the equivalence relation of
(6.4.3), then sign(Γ,Γ′)ZΓ′(ω) = ZΓ(ω).

Therefore, the following linear map is well-defined:

Z−(ω) : GC
0
ac,g:n → R, Γ 7→ ZΓ(ω). (7.1.5)

Proof. Note that if we permute the numbering on v(Γ) by a permutation of order p, this gives an
auto-identification of C2n(M) with the orientation change by (−1)p. If we change an orientation of
a non-self-loop edge e = (ij), it is equivalent to change ω(ij) to ω(ji), we obtain a factor (−1) by
(7.1.2), let (−1)m denoete the total change by this kind of operation. If we change the orientation of
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a self-loop edge at vertex i, we obtain the same term by our convention and the property T ∗ξ = −ξ.
If we permute the numbering on e(Γ) which implies k-times change cyclic orders at trivalent vertices,
we obtain a factor (−1)k by corresponding sign change on associated cubic traces. This way, we
obtain the sign (−1)p+m+k when we compare ZΓ′(ω) with ZΓ(ω), it completes the proof of our
proposition.

Lemma 7.1.2. Fix a propagator ω. If Γ1, Γ2 are two decorated trivalent graphs, then

ZΓ1∪Γ2(ω) = ZΓ1(ω)ZΓ2(ω). (7.1.6)

Proof. Set n1 = ord(Γ1), n2 = ord(Γ2), then ord(Γ1 ∪ Γ2) = n1 + n2. Consider the smooth map

Ψ : Conf2n1+2n2(M) → Conf2n1 (M)× Conf2n2 (M). (7.1.7)

It induces a diffeomorphism between Conf2n1+2n2(M) and Image(Ψ), and Image(Ψ) has full measure
in Conf2n1 (M)× Conf2n2(M), i.e.,

(
Conf2n1(M) × Conf2n2 (M)

)
\ Image(Ψ) has Lebesgue measure

zero. Moreover, the tangent map of Ψ acts as identity map on each copy of TM .
In the same time, on Conf2n1+2n2(M) ≃ Image(Ψ), we have the identity


 ⊗

i∈v(Γ1∪Γ2)

Tri


 ∧

e∈e(Γ1∪Γ2)

ωe =


 ⊗

i∈v(Γ1)

Tri


 ∧

e∈e(Γ1)

ωe ∧


 ⊗

i∈v(Γ2)

Tri


 ∧

e∈e(Γ2)

ωe. (7.1.8)

In the definition (7.1.4), we can replace the integrals on C2n(M) by the integrals on Conf2n(M) or on
an open dense subset with full measure. Therefore, our lemma follows from the relation (7.1.8).

In the above definition, ZΓ(ω) depends on the decorations of connected graphs. Following Lemma
6.6.2, for a fixed propagator, we can get configuration integrals depending only on the underlying
topological graph as follows.

Lemma 7.1.3. Fix a propagator ω. Let Γ be a decorated trivalent graph, and let orΓ be the relative
orientation as in Definition 6.6.1. Then, the quantity

orΓ · ZΓ(ω) (7.1.9)

is independent of the choice of numbering of v(Γ), e(Γ) and orientations of edges. In other words, it
only depends on the underlying topological graph of Γ.

Remark 7.1.4. Definition in (7.1.9) is essentially the same as [AS94] where they use super propagator
to define their integral invariants. The key difference is that we are allowed to permute freely each

factor E∨
ρ in p∗1(E

∨
ρ )

⊗3 ⊗ p∗2(E
∨
ρ )

⊗3 ⊗ · · · ⊗ p∗2n(E
∨
ρ )

⊗3 to make
(⊗

i∈v(Γ) Tri
)
pair with

∧
e∈e(Γ2)

ωe,

while permutations produce nontrivail signs in the formalism of super propagators of [AS94]. Our
definition here is inspired by that of [Les04, Les20] for the integral invariants of rational homology
3-spheres.

We first give the following theorem which can be viewed as a direct higher-order extension of the
Z1-invariants introduced by Cattaneo-Shimizu [CS21], where we use the general propagators instead
of adapted propagators to define the integral invariants for the cocycles in GC0

ac,g:n. The Z1-invariants
are associated to the cocycle Example 6.5.4 (1) in GC0

ac,g:1 (with order n = 1 or with 2 loops), and here
we show that for the cocycles with higher orders (or loops), we also have the well-defined invariants
associated to the acyclic local system Eρ.

Theorem 7.1.5. Fix a homotopy class [f ] of framing of M and an orientation o(M). Let Eρ be

an acyclic local system over M associated with a representation ρ : π1(M) → G
Ad
−→ Aut(g). Let

Γ ∈ GC0
ac,g:n be a cocycle (i.e., δΓ = 0). Then the number ZΓ(ω) ∈ R is independent of the choice

of the propagator ω or the framing f ∈ [f ], which is called the integral invariant associated to the
cocycle Γ.

Therefore, the linear functional

Z(M, ρ, [f ]) : ker(δ|GC0
ac,g:n

) = H0(GC•
ac,g:n, δ) → R,

given by Z(M,ρ, [f ])(Γ) := ZΓ(ω) with any propagator ω constructed from a given framing f ∈ [f ],
is an invariant of (M,o(M), [f ]) and of the acyclic local system Eρ.
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The proofs of Theorem 7.1.5 will be given in Subsection 7.2.
Next, we connect the integral invariants associated with graph complex GCac,g possibly with self-

loops and those associated with Gac,g without self-loops. This extends the idea in Theorem 5.2.1,
where the introduction of an adapted propagator is the key step.

Recall that GC′,0
ac,g ⊂ GC0

ac,g is the subspace consisting of all decorated trivalent graphs always
with self-loops.

Proposition 7.1.6. Let ω♯ be an adapted propagator with i∗∂(ω
♯) = I(η) + q∗∂(ξ

♯) as in Definition
4.4.1, the map Z−(ω

♯) restricts to zero on GC′,0
ac,g.

Proof. The vanishing argument is almost the same as the case of dumbbell graph. We focus only on
integrand q∗p∗i ξ

♯ associated with a self-loop (ii). Note that by our definition of an adapted propagator
ω♯, we have L(ξ♯) = 0.

Suppose that the vertex i is connected by an edge (ij) with j 6= i. By (3.5.5) and (5.1.1), the
integrand associated with the vertex i and the edges (ii) and (ij) becomes

Tri(ω
♯
(ij)q

∗p∗i ξ
♯)

=Bi(L(ξ
♯), ω♯

(ij))

=0

(7.1.10)

where we suppress other forms associated with edges connecting the vertex j and the associated
cubic trace for simplicity. Therefore, it means that, if a decorated trivalent graph Γ has at least one
self-loop, ZΓ(ω

♯) = 0. This completes the proof.

Recall Gac,g denote the subspace of GCac,g spanned by the decorated graphs without self-loops.
For each order n, we have the quotient graph complex (G•

ac,g:n, δ
♯) defined in (6.5.1).

Theorem 7.1.7. Assume Eρ to be acyclic. For any adapted propagator ω♯ in Definition 4.4.1, the
map Z−(ω

♯) factors through the quotient GC0
ac,g:n/GC

′,0
ac,g:n ≃ G0

ac,g:n:

GC0
ac,g:n R

GC0
ac,g:n/GC

′,0
ac,g:n ≃ G0

ac,g:n

Z−(ω♯)

(7.1.11)

This way, we have a linear map
Z−(ω

♯) : G0
ac,g:n → R. (7.1.12)

Proof. This follows from (6.5.1) and Propositions 7.1.1 & 7.1.6.

Our main results of this section are as follows. The first part is a refinement of [BC99, Theorem
1.1] for acyclic representation via adjoint representation of π1(M), which asserts that, for any cocycle
without self-loops (i.e. in H0(G•

ac,g:n, δ
♯)), we have the associated integral invariant of framed closed

3-manifolds with acyclic local systems. In the second part, we connect the integral invariants defined
by graph cocycles with self-loops to those without self-loops. Recall that the adapted propagator is
defined in Definition 4.4.1.

Theorem 7.1.8. Fix a homotopy class [f ] of framing of M and an orientation o(M). Let Eρ be an

acyclic local system over M associated with a representation ρ : π1(M) → G
Ad
−→ Aut(g).

(1) Let Γ ∈ G0
ac,g:n be a cocycle of order n (i.e., δ♯Γ = 0). Then the number ZΓ(ω

♯) ∈ R is
independent of the choice of the adapted propagator ω♯ or the framing f ∈ [f ], which is called
the integral invariant associated to the cocycle Γ.

Therefore, the linear functional

Z♯(M,ρ, [f ]) : ker(δ♯|G0
ac,g:n

) = H0(G•
ac,g:n, δ

♯) → R,

given by Z♯(M,ρ, [f ])(Γ) := ZΓ(ω
♯) with any adapted propagator ω♯ defined with a framing

f ∈ [f ], is an invariant of (M,o(M), [f ]) and local system Eρ.
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(2) With the notation in (1), we have the following commutative diagram:

H0(GC•
ac,g:n, δ) R

H0(G•
ac,g:n, δ

♯) R

Z(M,ρ,[f ])

=

Z♯(M,ρ,[f ])

(7.1.13)

where the left vertical map is induced by the quotient map GC0
ac,g:n → GC0

ac,g:n/GC
′,0
ac,g:n ≃ G0

ac,g:n,
which is already explained in (6.5.3).

More precisely, let Γ ∈ GC0
ac,g:n be a cocycle, and let ω be any propagator as in Definition 4.3.3

which is not necessary to be adapted. Let Γ′ ∈ G0
ac,g:n be the cocycle given by removing the terms

with self-loops from Γ. Then we have, for any adapted propagator ω♯,

ZΓ(ω) = Z(M, ρ, [f ])(Γ) = Z♯(M,ρ, [f ])(Γ′) = ZΓ′(ω♯). (7.1.14)

The proof of Theorem 7.1.8 will be given in Subsection 7.3.
By Theorem 7.1.5 and Theorem 7.1.8, we conclude that, for acyclic local system associated with

ρ : π1(M) → G
Ad
−→ Aut(g), any graph cocycle invariant can be computed via a graph cocycle

without self-loops. However, it is interesting to ask about the explicit relation between these two
spaces H0(GC•

ac,g:n, δ) and H0(G•
ac,g:n, δ

♯): when n = 1, they are the isomorphic and 1-dimensional
(cf. Example 6.5.4), so that Z(M, ρ, [f ]) = Z♯(M,ρ, [f ]), how about the cases of higher orders?

Finally, combining Theorems 7.1.5 & 7.1.8 with Proposition 6.6.6, we obtain a generating series
of perturbative invariants of a closed 3-manifold associated with acyclic representation ρ : π1(M) →

G
Ad
−→ Aut(g).

Corollary 7.1.9. Fix a homotopy class [f ] of smooth framing of M and an orientation o(M). Let

Eρ be an acyclic local system over M associated with a representation ρ : π1(M) → G
Ad
−→ Aut(g).

(1) Let ω be a propagator. Consider the formal sum

ZCS(M,ρ, [f ]) :=
∑

connected G

~ord(G)

|Aut(G)|
ZΨn(G)(ω) ∈ R[[~]], (7.1.15)

where the sum runs over all the connected topological trivalent graph G. Then, it is independent
of the choice of propagator ω. Therefore, ZCS(M,ρ, [f ]) is an invariant of (M,o(M), ρ, [f ]).

(2) Let ω♯ be any adapted propagator, then the formal sum in (7.1.15) satisfies the following identity

ZCS(M,ρ, [f ]) =
∑

connected G
without self-loops

~ord(G)

|Aut(G)|
ZΨn(G)(ω

♯) ∈ R[[~]], (7.1.16)

where the sum runs over all the connected topological trivalent graph G without self-loops.

Remark 7.1.10. Corollary 7.1.9 (1) is our version for the analogous result given in [AS92] and [AS94].

7.2 A variation formula and proof of Theorem 7.1.5

We will adopt some ideas from the proofs of [BC98, Theorem 4.7] and of [BC99, Theorem 1.1]
to achieve our proofs of Theorem 7.1.5 and Theorem 7.1.8, we also provide the necessary details
for completeness. One of the differences from theirs is that we compute the graphs obtained by
contracting non-regular edges in detail, which involves self-loops. For the case of 2-loop trivalent
graphs, such computation was already explained in [CS21, §4.2].

Proof of Theorem 7.1.5 is given in the similar way as in [BC98, Theorem 4.7]. Here is the outline of
the proof: we consider a smooth one parameter family of propagators over the unit interval I = [0, 1]
as a parameter space. Here the unit interval I parametrizes information used to define a propagator,
that is, representatives of the class of framing f , η, ω and ξ in Proposition 4.3.1 and Corollary 4.3.2.
Then, this family of propagators gives rise to a family of integrals associated to a given decorated
trivalent graph. To prove the independence of the choice of propagators, it suffices to show this family
of integrals being constant on I , or equivalently, its differential on I is identically 0. Stokes’ formula
and Kontsevich’s lemma (Lemma 7.2.3) tell that there are non-vanishing boundary contributions, but
they can be made zero by graph cocycle relation. This way, we finally obtain Theorem 7.1.5. In fact,
we at first will prove a result analogous to [BC98, Corollary 4.12] from which Theorem 7.1.5 follows
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clearly. This result gives us a formula for the variations of ZΓ(ω) as ω varies smoothly and for any
decorated trivalent graph Γ which is not necessary to be a cocycle.

Note that in our construction the map Z(M, ρ, [f ]) exactly gives rise to an invariant of framed
3-manifold with acyclic representation ρ associated to a graph cocycle Γ. This is different from
[BC99] where, to obtain a graph cocycle invariant, a modification of Z(M,ρ, [f ]) is required to cancel
a boundary contribution by adding correction terms.

7.2.1 A variation formula for a family of propagators

Let I = [0, 1] denote the unit interval with the standard coordinate τ ∈ [0, 1]. The vector bundles on
M , C2(M), etc, are viewed naturally as vector bundles on I ×M , I × C2(M), etc, respectively, and
so do the differential forms. We also extend the action of T on I × · · · by trivial action on the factor
I . Let dtot = dτ ∧ ∂

∂τ
+ dM denote the total differential on the product space I ×M . We will use the

same notation for the spaces I ×C2(M), I × ∂C2(M), I ×M ×M , etc.
If Γ is a connected decorated graph with degree 1 and without any external edges, due to our

convention that the minimal valency at each vertex is at least 3, we can conclude that Γ has exactly
one vertex with valency 4 and all other vertices are trivalent. Set m = |v(Γ)|. Then m has to be an
odd integer, and we have

ord(Γ) =
1

2
(m+ 1). (7.2.1)

We consider a pair of differential 2-forms (ω̃, ξ̃) ∈ Ω2(I ×C2(M);Fρ)×Ω2(I ×M ;Eρ ⊗Eρ) such
that

T ∗ω̃ = −ω̃, T ∗ξ̃ = −ξ̃. (7.2.2)

Analogous to (7.1.1), we associate a 2-form on I × Cm(M) to each e = (ij) ∈ e(Γ) as follows

ω̃e :=

{
p∗ijω̃ if e = (ij) with i 6= j,

q∗p∗i ξ̃ if e = (ii) is a directed self-loop,
(7.2.3)

Let σ : I × Cm(M) → I denote the obvious projection, and let σ∗ : Ω•+3m(I × Cm(M)) → Ω•(I) be
the fiber integration (Definition 2.2.3). Similar to (7.1.4), we define

ZΓ(ω̃, ξ̃) := σ∗




 ⊗

i∈v(Γ)

Wi


 ∧

e∈e(Γ)

ω̃e


 ∈ Ω1(I), (7.2.4)

where Wi denotes the weight system at vertex i, it is Tri when vertex i is trivalent and is ±WI ,
±WH , ±WX at the only vertex of valency 4.

If Γ is a decorated trivalent graph, then ZΓ(ω̃, ξ̃) ∈ Ω0(I) can also be defined by considering a
smooth family of the integrations as in (7.1.4). In summary, we have the following result.

Lemma 7.2.1. The following linear map is well-defined for j = 0, 1,

Z−(ω̃, ξ̃) : GCj
ac,g → Ωj(I), Γ 7→ ZΓ(ω̃, ξ̃). (7.2.5)

Proof. If j = 0, this is exactly a family version of Proposition 7.1.1, which follows from the same
proof since the boundary condition (4.3.27) for {ω̃|{τ}×C2(M)}τ∈I is not needed.

For the case of j = 1, by (7.2.2) and (7.2.3), the same arguments in the proof of Proposition
7.1.1 shows that the definition (7.2.4) is compatible with the sign convention on the decorated graphs
of degree 1. For internal IHX relation, we can consider a decorated graph to be the sum of three
decorated graphs Γj , j = 1, 2, 3, which have exactly the same underlying topological graph and the
decorations on the edges and vertices except for the different weight systems (I, H, X, respectively) at

the vertices of valency 4, then by (6.2.4), the sum of
(⊗

i∈v(Γj)
Wi

)∧
e∈e(Γj)

ω̃e vanishes identically.

This way, we complete our proof.

Now we can state our result to compute the variations of the integrals ZΓ(ω) defined in (7.1.4),
when ω varies smoothly, which is an analog of the second part of [BC98, Corollary 4.12].

Proposition 7.2.2. Let the pair (ω̃, ξ̃) ∈ Ω2(I × C2(M);Fρ)× Ω2(I ×M ;Eρ ⊗ Eρ) be such that

• dtotω̃ = 0, dtotξ̃ = 0;

• T ∗ω̃ = −ω̃, T ∗ξ̃ = −ξ̃;

• there exists a closed smooth 2-form µ̃ ∈ Ω2(I × ∂C2(M);R) such that

– µ̃ is vertical 2-form with respect to the submersion I × ∂C2(M) ≃ I ×M × S2 → M ;
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– q̃∂∗µ̃ = 1 on I ×M , where q̃∂ := (IdI , q∂) : I × ∂C2(M) ≃ I ×M × S2 → I ×M ;

– let ĩ∂ denote the inclusion I × ∂C2(M) → I × C2(M), then analogous to (4.3.27), we have

ĩ∂
∗
(ω̃) = µ̃⊗ 1+ q̃∂

∗(ξ̃), (7.2.6)

where 1 is the flat section in Lemma 3.4.1.

Then we have the following identity for any Γ ∈ GC0
ac,g,

dZΓ(ω̃, ξ̃) = −ZδΓ(ω̃, ξ̃) ∈ Ω1(I). (7.2.7)

Let’s do some preparations before proving the above proposition, we will always take the pair
(ω̃, ξ̃) as given in the proposition. Let Γ is a connected decorated trivalent graph with order n, then
δΓ is a linear combination of connected decorated graphs in GC1

ac,g:n. For simplicity, set

TrΓ(ω̃, ξ̃) =




 ⊗

i∈v(Γ)

Tri


 ∧

e∈e(Γ)

ω̃e


 ∈ Ω6n(I × C2n(M)). (7.2.8)

It is clear that TrΓ(ω̃, ξ̃) is dtot-closed form. Applying Stokes’ formula (Proposition 2.2.5), we get

dZΓ(ω̃, ξ̃) = dσ∗ Tr
Γ(ω̃, ξ̃)

= σ∗
(
dtot TrΓ(ω̃, ξ̃)

)
− σ∂

∗
(
ĩ∂

∗
TrΓ(ω̃, ξ̃)

)

= −σ∂
∗
(
ĩ∂

∗
TrΓ(ω̃, ξ̃)

)
,

(7.2.9)

where ĩ∂ denotes the inclusion I × ∂C2n(M) → I ×C2n(M), and σ∂ : I × ∂C2n(M) → I denotes the
obvious projection.

Therefore, our computation reduces to that of σ∂
∗
(
ĩ∂

∗
TrΓ(ω̃, ξ̃)

)
. So that we need to investigate

the geometry of 1-codimensional boundary ∂∗C2n(M), more precisely, S1(C2n(M)). Let S be a
subset of {1, 2, · · · , 2n} or v(Γ) with ℓ = |S| ≥ 2. Let ∂SC2n(M) denote the component of ∂∗C2(M)
corresponding to M({S}) in the notation of Subsection 2.4, they are defined by collapsing points
{xi}i∈S ∈M ℓ into the same point.

Note that a point in the open strata M({S})0 can be represented by

(
xS = (z, . . . , z) ∈ ∆S ≃ M,uS ∈ R

∗
+\
(
(TzM)S/TzM−{0}

)
; {xj}j 6∈S ∈ Conf2n−ℓ(M) with xj 6= z

)
.

(7.2.10)
By the results recalled in Subsection 2.4, the normal vector uS do not have any two components
which are equal. Let ConfS(TzM) denote the configuration space of vectors in TzM indexed by
S, let TzM act on ConfS(TzM) by on-diagonal translations and let R∗

+ act on ConfS(TzM) by
rescalings. Then we can rewrite the above requirements on uS as uS ∈ ConfS(TzM)/TzM ⋊ R∗

+.
Consider the smooth projection PrS : M({S})0 → Conf2n−ℓ+1(M) which sends the above point in
M({S})0 to the point (z,xj , j 6∈ S) ∈ Conf2n−ℓ+1(M), then the fibre of this projection is given by
ConfS(TzM)/TzM ⋊ R∗

+ ≃ Confℓ(R
3)/R3 ⋊ R∗

+.
Then we extend it smoothly to the projection, denoted by the same notation, PrS : ∂SC2n(M) →

C2n−ℓ+1(M). The generic fibre of PrS is given by FS ≃ Cℓ(R
3)/R3 ⋊ R∗

+. In particular, dimR FS =
3ℓ− 4.

To compute the contribution of ∂SC2n(M) in σ∂
∗
(
ĩ∂

∗
TrΓ(ω̃, ξ̃)

)
, we need the following lemma.

Lemma 7.2.3 (Kontsevich’s vanishing lemma [Kon94, Lemma 2.1], [BC98, Lemma 4.9]). Let FS be
the fiber of the face ∂SC2n(M) corresponding to the collapse of ℓ points with coordinate xj , j ∈ S, i.e.,
FS denote the generic fibre of PrS : ∂SC2n(M) → C2n−ℓ+1(M). Fix a smooth framing f : TM →
M×R3, then it induces an identification FS = f∗(Cℓ(R

3)/R3⋊R∗
+). Let η ∈ Ω2(S2;R) be any volume

form of S2 with T ∗η = −η. For i, j ∈ S, i 6= j, let πij : FS → S2 be the projection defined as

πij : FS → S
2; (xj)j∈S 7→

xj − xi

|xj − xi|
(i 6= j) (7.2.11)

and π∗
ijη be the pullback η via πij. Then, any triple of indices i, j, k in S with i 6= j and i 6= k, the

integral vanishes: ∫

xi

π∗
ijη ∧ π

∗
ikη = 0, (7.2.12)

where
∫
xi

· · · denotes the fibre integration for the projection of forgetting xi-coordinate: Cℓ(R
3)/R3 ⋊

R∗
+ → Cℓ−1(R

3)/R3 ⋊ R∗
+ (provided ℓ ≥ 3).
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Remark 7.2.4. With the same notation as above, note that Lemma 7.2.3 immediately implies the
following (original) statement. For any two sequences si, ti (i = 1, . . . , L) of integers with si 6= ti
(1 ≤ si, ti ≤ ℓ), the integral vanishes:

∫

(x1,...,xℓ)∈FS

L∧

i=1

π∗
sitiη = 0. (7.2.13)

Proof of Proposition 7.2.2. We use the above notation, and we consider the face ∂SC2n(M). Note
that each component in the coordinate (x1, . . . ,x2n) corresponds to one labeled vertex of the decorated
trivalent graph Γ. We will regard the vertices in S as the collapsing vertices.

Using the projection PrS : ∂SC2n(M) → C2n−ℓ+1(M), and for a differential form α on ∂SC2n(M),
we can decompose α into two parts: the vertical direction and the basic direction. For the integral∫
∂SC2n(M)

α being nonzero, the degree of α shall be 6n− 1 with the vertical degree of α being 3ℓ− 4.

Moreover, we have ∫

∂SC2n(M)

α =

∫

C2n−ℓ+1(M)

(PrS)∗α. (7.2.14)

Let’s consider the differential form TrΓ(ω̃, ξ̃)|∂SC2n(M), which can be obtained by taking the prod-
uct of ω̃e|∂SC2n(M). Note that by (7.2.3), if e = (ii) is a self-loop edge, then ω̃e|∂SC2n(M) is always
basic differential form (with respect to the projection PrS); if e = (ij) is non-self-loop edge such that
i or j does not lie in S, then ω̃e|∂SC2n(M) is also basic. To have the vertical directions in ω̃e|∂SC2n(M),
we need e = (ij) with i, j ∈ S, i 6= j, and in this case the vertical form contributed by ω̃e|∂SC2n(M)

is µ̃ in (7.2.6). Our assumptions on µ̃ implies that its contribution in ω̃e|∂SC2n(M) can be written as
follows, for τ ∈ I ,

µ̃ = π∗
ijητ + dτ ∧ π∗

ijβτ , (7.2.15)

where ητ is a volume form on S2 (depending smoothly on τ ), and βτ is a 1-form on S2.
Let ev be the total number of edges connecting two distinct collapsing vertices (in S) and let eh be

the total number of self-loop edges incident to the collapsing vertices. Let e0 be the number of edges
connecting a collapsing vertex in S with a non-collapsing one. Since we consider trivalent graphs, we
have the relation 2(ev+eh)+e0 = 3ℓ. Then, the maximal degree of vertical form in TrΓ(ω̃, ξ̃)|∂SC2n(M)

is 2ev. Considering (PrS)∗ Tr
Γ(ω̃, ξ̃)|∂SC2n(M), it is nonzero only if 2ev − (3ℓ− 4) = 4− e0 − 2eh ≥ 0.

Let us first consider the case ℓ = |S| ≥ 3. By (7.2.15), the integrand form along the vertical direc-
tion of PrS is given by a product of π∗

ijητ and dτ ∧ π∗
ijβτ . Since ℓ ≥ 3, dimR FS = 3ℓ− 4 ≥ 5, so that

we shall have at least two non-self-loop edges attached to the collapsing vertices to reach this vertical
degree, then by Kontsevich’s vanishing lemma (Lemma 7.2.3), we get (PrS)∗ Tr

Γ(ω̃, ξ̃)|∂SC2n(M) = 0.
The remaining case is that ℓ = 2 and S = {i, j} (i 6= j) with e = (ij) or (ji) is an edge of

Γ. If e1, e2 are two different non-self-loop edges in Γ connecting the same vertices S = {i, j}, then
ω̃e1 ∧ ω̃e2 |∂SC2n(M) has two nontrivial terms

ũ⊗ 1 ∧ ξ̃ + ξ̃ ∧ ũ⊗ 1.

The first term, in the computation of σ∂
∗
(
ĩ∂

∗
TrΓ(ω̃, ξ̃)

)
, corresponds to the contraction operation on

e1, i.e., the term Γ/e1 in δΓ, and the second term corresponds to Γ/e2. It is similar to the case where
we have three different non-self-loop edges with the same ending vertices. Note that in the definition
of the weight system Wi at a vertex of valency 4, it is the same as decorating the contracted edge by
the Casimir element 1 then applying the cubic trace Tr. This way, we conclude from (7.2.9) and the
assumption q̃∂∗µ̃ = 1 that

dZΓ(ω̃, ξ̃) =
∑

e∈e(Γ)
non-self-loop edge

±ZΓ/e(ω̃, ξ̃). (7.2.16)

The last step is to calculate precisely the sign ± in front of each term and then check the compatibility
with the sign convention (6.4.12) in the definition of δΓ in (6.4.11).

By Proposition 6.4.6, the map δ is well-defined under the sign relation (6.4.3), so that we can
assume that S = {1, 2}, e = (12) is the edge numbered as 1. Then (7.2.16) can be written as

dZΓ(ω̃, ξ̃) = −ZΓ/e(ω̃, ξ̃) +
∑

other e′∈e(Γ)
non-self-loop edge

±ZΓ/e′(ω̃, ξ̃), (7.2.17)

while we have δΓ = Γ/e +
∑

other e′∈e(Γ)
non-self-loop edge

±Γ/e′. This way, we get exactly (7.2.7) for a connected

decorated trivalent graph Γ. Then combing this result with (6.4.16) and Lemma 7.1.2, we complete
the proof for general Γ in GC0

ac,g.
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7.2.2 Proof of Theorem 7.1.5

Note that we always fix an orientation o(M) of M . Let f and f ′ be two smooth framings of M which
are homotopic, and let η, η′ be two normalized volume forms on S2. Let (ω, f, η, ξ), (ω′, f ′, η′, ξ′) be
two propagators defined for the acyclic local sytem Eρ as in Definition 4.3.3.

Since Eρ is assumed to be acyclic, by Proposition 4.3.4, the cohomological class [ω] = [ω′] is
unique. But we need a more explicit relation between ω, ω′ with which we can apply Proposition
7.2.2.

Recall that H2(I × S2;R) ≃ H2(S2;R). For two T -asymmetric normalized volume form η, η′ on
S2, there exists a closed 2-form η̃ ∈ Ω2(I × S2;R) such that

η̃τ=0 = η, η̃τ=1 = η′. (7.2.18)

The closedness of η̃ implies that for each τ ∈ I ,
∫

S2

η̃τ = 1. (7.2.19)

We also require that T ∗
S2
η̃ = −η̃.

Since f and f ′ are homotopic, let f̃ : I×S(TM) → I×M×S2 denote the smooth path of framings
which connects f (τ = 0) and f ′(τ = 1). Set

I(η̃) = f̃∗(η̃)⊗ 1 ∈ Ω2
−(I × ∂C2(M);Eρ ⊗ Eρ). (7.2.20)

At the same time, we have

H2(I ×M ×M ;Eρ ⊠Eρ) ≃ H2(M ×M ;Eρ ⊠Eρ)⊕ Rdτ ∧H1(M ×M ;Eρ ⊠Eρ) = 0. (7.2.21)

Note that by Corollary 4.3.2, the cohomology class [ξ] is uniquely determined for any propagator ω
associated to this acyclic local system Eρ.

Now we can follow the arguments as the proof of Theorem 4.3.1 to construct a propagator on
I × C2(M) with the analogous properties. More precisely, there exists a closed 2-form ω̃ ∈ Ω2

−(I ×

C2(M);Fρ) (i.e., d
totω̃ = 0) and closed 2-form ξ̃ ∈ Ω2

−(I ×∆;Eρ ⊗Eρ) such that

• ω̃{0}×C2(M) = ω, ω̃{1}×C2(M) = ω′, or equivalently, ξ̃{0}×C2(M) = ξ, ξ̃{1}×C2(M) = ξ′;

• let ĩ∂ denote the inclusion I × ∂C2(M) → I × C2(M), then analogous to (4.3.27), we have

ĩ∂
∗
(ω̃) = I(η̃) + q̃∂

∗(ξ̃), (7.2.22)

where q̃∂ = (IdI , q∂) : I × ∂C2(M) → I ×∆ ≃ I ×M ;

Now we can take µ̃ to be f̃∗η̃, and then ω̃, ξ̃ constructed above satisfy the conditions in Proposition
7.2.2. Let Γ ∈ GC0

ac,g be a cocycle, i.e., δΓ = 0, then by (7.2.7), we get

dZΓ(ω̃, ξ̃) = −ZδΓ(ω̃, ξ̃) = 0. (7.2.23)

Therefore,
ZΓ(ω̃, ξ̃)|τ=0 = ZΓ(ω̃, ξ̃)|τ=1. (7.2.24)

Then by (7.1.4) and (7.2.8), we get ZΓ(ω) = ZΓ(ω
′). This way we prove Theorem 7.1.5.

7.3 Proof of Theorem 7.1.8

The proof of Theorem 7.1.8 (1) goes along the same line as that of Theorem 7.1.5, but, to prove that
ZΓ(ω

♯) is an invariant defined from the graph complex (G•
ac,g:n, δ

♯), we need to check the followings
in addition to the above.

(i) For an adapted propagator ω♯, we need to show that the map Z−(ω
♯) factors through the space

of decorated trivalent graphs without self-loops.

(ii) (Analogous to Subsection 7.2.2) For two different adapted propagators ω♯, ω♯,′, a closed form
ω̃♯ on I × C2(M) can be constructed to connect smoothly ω♯ and ω♯,′, and that for τ ∈ I ,
ω̃♯|{τ}×C2(M) is an adapted propagator.

(iii) Applying Stokes’ theorem to one parameter family Z−(ω̃
♯, ξ̃♯) as defined in (7.2.5), we need

to show that the vanishing of the contributions of the boundary terms corresponding to the
collapse of two distinct vertices connected by a non-regular edge, so that Z−(ω

♯) is invariant
associated with the cocylces in G0

ac,g:n.
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For (i), it follows immediately from Theorem 7.1.7. For (ii), combining the proof of Theorem 4.4.2
with the proof in Subsection 7.2.2, we can construct a closed 2-form ω̃♯ ∈ Ω2

−(I × C2(M);Fρ) and

closed 2-form ξ̃♯ ∈ Ω2
−(I ×∆;Eρ ⊗ Eρ) such that

• ω̃♯
{0}×C2(M)

= ω♯, ω̃♯
{1}×C2(M)

= ω♯,′, or equivalently, ξ̃♯{0}×C2(M)
= ξ♯, ξ̃♯,′{1}×C2(M)

= ξ♯,′;

• Analogous to (4.4.2), we have

ĩ∂
∗
(ω̃♯) = I(η̃) + q̃∂

∗(ξ̃♯) (7.3.1)

with L(ξ̃♯) = 0.

Therefore, it suffices to show (iii). For this, under the same arguments in the proof of Proposition
7.2.2, we investigate in a more detailed manner the case that ℓ = |S| = 2 and S corresponds exactly

to an edge in the graph. Note that a variation formula like (7.2.7) can be deduced for ZΓ(ω̃
♯, ξ̃♯) with

arbitrary Γ ∈ G0
ac,g:n, but we now focus on the proof of Theorem 7.1.8, so that we will assume in the

sequel that Γ ∈ G0
ac,g:n is a cocycle, i.e., δ♯Γ = 0.

There are following cases (a) and (b), where we use the notation introduced after (7.2.15),
(a) one of the edges connecting two collapsing vertices {i, j} is regular; in this case, there are three
types of local graphs corresponding to (e0, ev, eh) = (4, 1, 0), (2, 1, 1), (0, 1, 2) as in Fig. 17. For

••
ji

••
ji

••
ji

Fig. 17: Parts of trivalent graphs with regular edge (ij) connecting two col-
lapsing vertices corresponding to (e0, ev, eh) = (4, 1, 0), (2, 1, 1), (0, 1, 2) respec-
tively. Here, such regular edges are depicted as solid lines.

(e0, ev, eh) = (2, 1, 1), (0, 1, 2), the corresponding graphs must have at least one self-loop edge, so
there is nothing to show. For the remaining case (e0, ev, eh) = (4, 1, 0), the graph cocycle condition
(δ♯Γ = 0) gives a cancellation of these boundary contributions;
(b) the edge connecting two collapsing vertices i and j is not regular; This case is further divided
into two cases (b-1) and (b-2):
(b-1) the number of such non-regular edges is 2 as Fig. 18 (case that e0 = 2, ev = 2, eh = 0); in

••

e

e′
i j

Fig. 18: Part of trivalent graph with two non-regular edge e and e′ which
connect the vertices i and j. The contraction of the edge e or e′ yields one
self-loop edge. Here, such regular edges are depicted as solid lines.

this case integrand Tri ⊗Trj(ω̃
♯
(•i) ∧ (ω̃♯

(ij))
2 ∧ ω̃♯

(j•)) associated to edges connecting i and j (we may

assume i < j) restricts to

Tri ⊗Tri
(
ω̃♯
(•i) ∧

(
I(η̃)(ii) + q̃∗p̃∗i ξ̃

♯
)2

∧ ω̃♯
(i•)

)
(7.3.2)

= Tri ⊗Tri
(
ω̃♯
(•i) ∧

(
I(η̃)2(ii) + 2p̃∗I(η̃)(ii) ∧ q̃

∗p̃∗i ξ̃
♯ + q̃∗p̃∗i (ξ̃

♯)2
)
∧ ω̃♯

(i•)

)
(7.3.3)

on the boundary component.
Then, performing fiber integration along S2 fiber, we get 2 Tri ⊗Tri(ω̃

♯
(•i) ∧ 1q̃∗p̃∗i ξ̃

♯ ∧ ω̃(i•)) since

I(η̃)2 = 0 on S2 and q̃∗p̃∗i ξ̃
2 is degree 0 along the fiber. We need the following Lemma which is a

variant of [CS21, Lemma 4.4].

Lemma 7.3.1. With the same notations as above, we have the following equation.

Tri ⊗Tri(ω̃
♯
(•i) ∧ 1q̃∗p̃∗i ξ̃

♯ ∧ ω̃♯
(i•)) =

1

2
Bi

(
Li(q̃

∗p̃∗i ξ̃
♯),Li(ω̃

♯
(•i) ∧ ω̃

♯
(i•))

)
(7.3.4)

where Bi,Li means that such operations occur at the vertex i.
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Proof of Lemma 7.3.1. It suffices to show the claim fiberwise, that is, for g⊗3⊗g⊗3. Since T ∗ acts on
the diagonal subspace ∆ by identity, we have Ω•

−(∆;Eρ ⊗Eρ) = Ω•(∆; (Eρ ⊗Eρ)−) = Ω•(∆;Λ2Eρ).
Let e1, . . . , edim g be basis of g which is normalized with the condition B(ei, ej) = εiδij , εi ∈ {1,−1}.
Then the Casimir element is given as

1 =
∑

i

εiei ⊗ ei.

Then, for each fiber at x ∈ M , Λ2Eρ,x = Λ2g has a basis {ei ⊗ ej − ej ⊗ ei | 1 ≤ i < j ≤ n}.
Thus, in terms of this basis, one obtains, for some ea and eb corresponding to the i-components of
coefficients of ω̃♯

(•i) and ω̃♯
(i•) respectively,

Tr⊗Tr

(
(ei ⊗ ej − ej ⊗ ei)⊗ (ea ⊗ eb)⊗ (

dim g∑

n=1

εnen ⊗ en)

)

=

dim g∑

i=1

B([ei, ea], εnen)B(en, [ej , eb]) −

dim g∑

i=1

B([ej , ea], εnen)B(en, [ei, eb])

=B([ei, ea], [ej , eb])−B([ej , ea], [ei, eb])

=B(ei, [ea, [ej , eb]])−B([ej , ea], [ei, eb])

=−B(ei, [ej , [eb, ea]])−B(ei, [eb, [ea, ej ]])−B([ej , ea], [ei, eb])

=−B([ei, ej ], [eb, ea])−B([ei, eb], [ea, ej ])−B([ej , ea], [ei, eb])

=B([ei, ej ], [ea, eb])

=
1

2
B(L(ei ⊗ ej − ej ⊗ ei),L(ea ⊗ eb))

(7.3.5)

where in the third and fifth equality use the property B([x, y], z) = B(x, [y, z]) for x, y, z ∈ g and the
fourth equality follows from the Jacobi identity.

By Lemma 7.3.1 and L(ξ̃♯) = 0, we conclude that the factor

2Tri ⊗Tri(ω̃
♯
(•i) ∧ 1q̃∗p̃∗i ξ̃

♯ ∧ ω̃♯
(i•)) = Bi(Li(q̃

∗p̃∗i ξ̃
♯),Li(ω̃

♯
(•i) ∧ ω̃

♯
(i•))) = 0. (7.3.6)

(b-2) the number of such non-regular edges is 3 (case that e0 = 0, ev = 3, eh = 0); note that this case
occurs only when the given connected trivalent graph is the Theta graph. The integrand associated
with edges connecting i and j becomes

Tri ⊗Tri(I(η̃)(ii) + q̃∗p̃∗i ξ̃
♯)3

=Tri ⊗Tri(I(η̃)
3
(ii) + 3I(η̃)(ii) ∧ q

∗π∗
i (ξ̃

♯)2 + 3I(η̃)2(ii) ∧ q̃
∗p̃∗i ξ̃

♯ + q̃∗p̃∗i (ξ̃
♯)3).

(7.3.7)

Similarly, after integrating along the fiber, we get 3Tri ⊗Tri(1q̃
∗p̃∗i (ξ̃

♯)2) and it vanishes since

Tri ⊗Tri(1q̃
∗p̃∗i (ξ̃

♯)2) =
1

2
Bi(L(q̃

∗p̃∗i ξ̃
♯),L(q̃∗p̃∗i ξ̃

♯)) = 0 (7.3.8)

by [CS21, Lemma 4.4] and L(ξ̃♯) = 0. This completes the proof of Theorem 7.1.8 (1).
Next, we show Theorem 7.1.8 (2). By Theorem 7.1.5, Z(M, ρ, [f ])(Γ) is independent of the choice

of propagators. Hence, by using adapted propagator instead of a general propagator, we obtained the
same invariant as Z(M, ρ, [f ])(Γ), but associated with Γ′ obtained by removing graphs with self-loops.
As we have shown in Theorem 7.1.8 (1), Z♯(M,ρ, [f ])(Γ′) is an invariant associated with cocycle Γ′

in G0
ac,g. Thus, we obtain the commutative diagram (7.1.13). This completes the proof.
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