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BREDON HOMOLOGICAL STABILITY FOR CONFIGURATION

SPACES OF G-MANIFOLDS

EVA BELMONT, J.D. QUIGLEY, AND CHASE VOGELI

Abstract. McDuff and Segal proved that unordered configuration spaces of
open manifolds satisfy homological stability: there is a stabilization map σ :
Cn(M) → Cn+1(M) which is an isomorphism on Hd(−;Z) for n ≫ d. For a finite
group G and an open G-manifold M , under some hypotheses we define a family
of equivariant stabilization maps σG/H : Cn(M) → Cn+|G/H|(M) for H ≤ G.
In general, these do not induce stability for Bredon homology, the equivariant
analogue of singular homology. Instead, we show that each σG/H induces isomor-
phisms on the ordinary homology of the fixed points of Cn(M), and if the group
is Dedekind (e.g. abelian), we obtain the following Bredon homological stability
statement: H

G
d (

⊔
n≥0 Cn(M)) is finitely generated over Z[σG/H : H ≤ G]. This

reduces to the classical statement when G = e.
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1. Introduction

Let X be a topological space and let Ck(X) denote the configuration space of k
unordered points in X. If X is the interior of a manifold with nonempty boundary,
then there are stabilization maps

(1.0.1) σ : Ck(X) → Ck+1(X)

defined by “adding a point near the boundary" (cf. Section 3.1). In the 1970’s,
McDuff [McD75] and Segal [Seg79] observed that these stabilization maps induce
isomorphisms in a range of integral homology groups:

Theorem 1.0.2 (McDuff–Segal, Stability for Configuration Spaces (Strong Form)).
Assume M is the interior of a manifold with nonempty boundary. The stabilization
map (1.0.1) induces an isomorphism

σ∗ : Hd(Ck(M)) → Hd(Ck+1(M))

for d ≤ k/2.
1
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1.1. Statement of main results. In this paper, we investigate an equivariant
analogue of the McDuff–Segal theorem where the manifold M is replaced by a G-
manifold (where G is a finite abelian group) and singular homology is replaced by
Bredon homology.

The Bredon homology of a G-space X with coefficients in the constant Mackey
functor Z, written HG

∗ (X;Z), is an equivariant analogue of singular homology with
integer coefficients. We recall this definition of Bredon homology, as well as its
representation by a G-spectrum, in Section 2.1.

If X is a G-space, then the space of unordered configurations of k points in X

Ck(X) := {(x1, . . . , xk) ∈ Xk : xi 6= xj for all i 6= j}/Σk

is also a G-space with G acting diagonally. If X is a G-manifold which is the interior
of a G-manifold with nonempty boundary containing a fixed point, then we can
define G-equivariant stabilization maps

(1.1.1) σG/G : Ck(X) → Ck+1(X)

by “adding a fixed point near the boundary” (see Section 3.3). In this situation,
we say X is G-stabilizable (Definition 3.3.1). We can then ask if these maps induce
isomorphisms in Bredon homology for k sufficiently large. Surprisingly, this is not
the case:

Theorem A (Failure of Strong Equivariant Form of McDuff–Segal, Proposition
4.2.1). Let G = Cp and let M be a G-manifold which is G-stabilizable. The map

(1.1.2) (σG/G)∗ : H
G
0 (Cn(M);Z) → HG

0 (Cn+1(M);Z)

is not surjective for any n ≥ 1.

Although the strong form of the McDuff–Segal Theorem fails equivariantly, there
is a weaker form which we can extend to the equivariant setting. Let

C(X) :=
⊔

k≥0

Ck(X)

denote the space of all unordered configurations of finitely many points in X equipped
with the disjoint union topology. The nonequivariant stabilization maps (1.0.1) give
rise to a self-map

(1.1.3) σ : C(X) → C(X)

which allows us to state the following corollary of the McDuff–Segal Theorem:

Theorem 1.1.4 (McDuff–Segal, Nonequivariant Stability (Finite Generation Form)).
Assume M is an open, connected manifold with dim(M) ≥ 2. Moreover, suppose that
Hd(M) is finitely generated as an abelian group for all d ≥ 0. Then the homology
group Hd(C(M)) is finitely generated as a Z[σ∗]-module for all d ≥ 0.

Remark 1.1.5. The assumption that Hd(M) is finitely generated ensures that
Hd(Ck(M)) is finitely generated for all k ≥ 0 (Proposition 4.1.5), so the finite gener-
ation form of nonequivariant stability is equivalent (cf. Proposition 4.1.2) to saying
that the map (1.0.1) is an isomorphism for all k ≫ 0.

We note that the philosophy of encoding stability as a finite generation condition
is not new. It has become increasingly prevalent in the literature on homological
stability (e.g., [ADCK20, Theorem 1.1]) and representation stability (e.g. [CEF15,
Theorem 6.2.1]).
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The obvious finite generation form of equivariant stability fails since the equivari-
ant stabilization map (1.1.2) does not induce isomorphisms for all k ≫ 0. In other
words, HG

d (C(M);Z) is not finitely generated as a Z[(σG/G)∗]-module.
However, there is a naturally occurring polynomial ring over which HG

d (C(M);Z)
is a finitely generated module. If X is a G-manifold which is the interior of a G-
manifold with boundary containing an orbit of the form G/H, then we can define a
new equivariant stabilization map

(1.1.6) σG/H : Ck(M) → Ck+|G/H|(M)

by “adding an orbit of type G/H near the boundary.” In this situation, we say X is
H-stabilizable (Definition 3.3.1).

We adopt the philosophy that since orbits are equivariant analogues of points, the
equivariant analogue of stabilization maps should be the family of stabilization maps
σG/H . As such, we replace the ring Z[σ∗] by the ring

PG = Z[(σG/H)∗ : (H) ≤ G]

of all equivariant stabilization maps. By considering all possible equivariant stabi-
lization maps, we obtain our stability result.

Theorem B (Bredon Homological Stability, Theorem 4.5.5). Let G be an abelian
group and M a G-manifold that is the interior of a compact G-manifold with bound-
ary. Assume that for all H ≤ G, M is H-stabilizable and MH is connected. Then
HH

d (C(M);Z) is finitely generated over PG for all H ≤ G.

For example, these hypotheses are satisfied in the case where M is a sum of copies
of the regular representation (see Example 4.5.6).

Remark 1.1.7. See Lemma 4.4.2 for the main reason for the abelian hypothesis, and
Remark 4.4.3 for a mild relaxation of this hypothesis. Group-theoretic hypotheses
are also used in Lemma 4.5.1 and 4.5.3.

Remark 1.1.8. We discuss two natural extensions of Theorem B in Section 5: in
Theorem 5.1.3, we show that stability holds for RO(G)-graded Bredon homology,
and in Theorem 5.2.5, we show that stability holds for Mackey functor-valued Bredon
homology. The RO(G)-graded Bredon homology of ordered configuration spaces of
G-manifolds will also be studied in forthcoming work of Dugger and Hazel [DH].

1.2. Motivation. Before discussing the proofs of Theorem A and Theorem B, we
discuss some motivating ideas and directions for future work.

1.2.1. Equivariant loop spaces and Dyer–Lashof operations. Nonequivariantly, May’s
recognition principle [May72] implies that n-fold loop spaces are equivalent to alge-
bras over the En-operad En whose k-th space is Ck(R

n). Using Cohen’s computation
of H∗(Ck(R

n)) in [CLM76, Ch. III], one can then define Dyer–Lashof operations on
the mod p homology of any n-fold loop space.

In [GM17], Guillou and May proved an equivariant analogue of the recognition
principle: if V is a real orthogonal G-representation, then V -fold loop spaces are
equivalent to algebras over the EV -operad EV whose k-th space is Ck(V ). They
remark that in contrast with the nonequivariant situation, very little is known about
HG

d (Ck(V )). Theorem B gives the first step toward a more systematic analysis of
these Bredon homology groups which could shed light on equivariant Dyer–Lashof
operations (cf. [Wil19] for G = C2). We verify that the hypotheses of Theorem B
are satisfied in the case of sums of regular representations in Example 4.5.6.



4 EVA BELMONT, J.D. QUIGLEY, AND CHASE VOGELI

1.2.2. Equivariant diffeomorphism groups of smooth G-manifolds. Configuration spaces
of ordinary manifolds appear in the study of diffeomorphism groups of smooth man-
ifolds via the “decoupling theorems" of Bödigheimer–Tillmann [BT01] and Bonatto
[Bon22]. It would be interesting to see if the configuration spaces of G-manifolds
arise analogously in the equivariant diffeomorphism groups of smooth G-manifolds.

1.3. Overview of key ideas. We now summarize the key ideas going into the
proofs of Theorem A and Theorem B.

1.3.1. Equivariant stabilization maps. A map between G-spaces induces a map on
Bredon homology only if it is G-equivariant, so we must be careful about how we
add points. One natural option is to add a fixed point near infinity (provided our
space has such a fixed point), which yields the equivariant stabilization map (1.1.1)
mentioned above with underlying map (1.0.1). However, Theorem A shows that this
map does not produce isomorphisms in Bredon homology after iteration.

One of our key observations is that under suitable hypotheses on the manifold M ,
there is a stabilization map (1.1.2) for each subgroup H ≤ G. Theorem B says that
the Bredon homology stabilizes when all of these equivariant stabilization maps are
taken into account simultaneously.

Remark 1.3.1. The stabilization map corresponding to H ≤ G inserts an orbit of
the form G/H, i.e., inserts |G/H| points at once. Other stabilization maps which add
multiple points at once have appeared in the context of higher order representation
stability [MW19].

1.3.2. Formulating stability in terms of finite generation. While none of the orbit
stabilization maps (1.1.2) yield Bredon homological stability for a fixed H (Theo-
rem A), the collection of maps {σG/H : (H) ≤ G} yield a form of stability (Theo-
rem B). To make this precise, we translate homological stability from a statement
about maps in homology to a statement about finite generation over a polynomial
ring (Proposition 4.1.2).

1.3.3. Reduction from Bredon homology to singular homology of fixed points. The
analogue of cellular homology in the context of G-spaces is Bredon homology, HG

d (−)
(cf. [May96, XIII.4.1], Section 2.1). The Bredon homology of a G-space is not sim-
ply the homology of its fixed points, but in Section 2 we use equivariant stable
homotopy theory to relate these notions. The main lemma enabling this compari-
son is Lemma 2.4.2, together with statements in Section 2.5 relating the geometric
localization of Bredon homology to singular homology.

1.3.4. Expressing fixed points in terms of nonequivariant configuration spaces. We
prove that the fixed points Cn(M)G satisfy homological stability by reducing to
Theorem 1.0.2. To do so, we express Cn(M)G in terms of configuration spaces of
other manifolds using the notion of unordered S-configurations. We note that we are
not the first to consider equivariant configuration spaces (cf. [RS00]), but we use a
new convention here.

Let X be a G-space and let S be a finite G-set. We define the space of unordered
S-configurations in X (Definition 3.2.3) by

CG
S (X) := EmbG(S,X)/Aut(S).

When M is H-stabilizable, the equivariant stabilization map (1.1.6) restricts to a
stabilization map

σG/H : CG
S (M) → CG

S+G/H(M),
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where S +G/H denotes the disjoint union of S and G/H as G-sets.

Example 1.3.2. If S is a trivial G-set of cardinality k, then we have that

CG
S (X) = Ck(X

G)

is the space of unordered configurations of k points in the G-fixed points of X. If X
is a G-stabilizable G-manifold, the stabilization map

σG/G : CG
S (X) → CG

S+[G/G](X)

is the classical stabilization map

σ : Ck(X
G) → Ck+1(X

G).

Passing through the S-configuration spaces CG
S (X) allows us to identify the fixed

points Cn(X)G in terms of ordinary configuration spaces:

Theorem C (Proposition 3.2.10 and Corollary 3.2.9).

(1) For a G-space X and n ≥ 0, there is a disjoint union decomposition

Cn(X)G ∼=
∐

|S|=n

CG
S (X),

where the disjoint union runs over isomorphism classes of finite G-sets S with
cardinality n.

(2) Let S be the finite G-set

S =
⊔

(H)

k(H)[G/H],

where k(H) ≥ 0 for each conjugacy class of subgroups (H). Then

CG
S (X) ∼=

∏

(H)

Ck(H)
(X(H)/G),

where X(H) is the subspace of X consisting of points with stabilizer conjugate
to (H) (Definition 3.2.4).

We apply part (1) of Theorem C to prove Theorem A; the essential point is that
when G is nontrivial, the number of summands appearing in Cn(X)G increases as
n increases, so the stabilization map cannot be surjective on homology. We apply
parts (1) and (2) to prove Theorem D.

1.3.5. Stability for S-configurations and Bredon homology. Since they can be ex-
pressed in terms of ordinary configuration spaces, the spaces of S-configurations
often satisfy an analogue of the McDuff–Segal theorem:

Theorem D (Theorem 4.3.1). Let M be a G-manifold and S a finite G-set con-
taining k copies of the orbit [G/H] for a conjugacy class of subgroups (H). If M is
H-stabilizable and M(H)/G is connected, then the (H)-stabilization map of (3.3.3)
induces an isomorphism

(σG/H)∗ : Hd(C
G
S (M)) → Hd(C

G
S+[G/H](M))

in integral homology in degrees d ≤ k/2.
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As explained above, Theorem B follows from stability for the fixed points Cn(M)G.
Theorem C allows us to express these fixed points in terms of S-configurations, and
Theorem D states that the equivariant stabilization map σG/H from (1.1.6) induces
an isomorphism in the homology of CG

S (M) when S contains sufficiently many copies
of [G/H]. In particular, once S contains sufficiently many copies of [G/K] for any
conjugacy class of subgroups (K), there is some equivariant stabilization map which
induces an isomorphism on homology. Roughly speaking, Theorem B then follows
from the fact that there are finitely many finite G-sets S for which none of the
equivariant stabilization maps induce isomorphisms in homology.

1.4. Outline. In Section 2, we recall the equivariant homology theory (Bredon ho-
mology) we work with throughout the paper. We also recall the isotropy separation
sequence and prove some key results (Lemma 2.4.2, Proposition 2.5.1) needed to
reduce from the equivariant to nonequivariant setting.

In Section 3, we recall configuration spaces, stabilization maps, and their equi-
variant analogues. We then introduce the more refined spaces of S-configurations
and use them to prove Theorem C which identifies the fixed points of the config-
uration spaces of G-manifolds with (sums of products of) configuration spaces in
nonequivariant manifolds.

In Section 4, we prove Theorem A, Theorem B, and Theorem D, using the results
of the previous section to reduce to classical homological stability results.

In Section 5, we extend our results to the RO(G)-graded and Mackey functor-
valued settings.

1.5. Conventions. Throughout, G denotes a finite group. If M is an abelian group,
then M denotes the constant Mackey functor on M . In this work, “manifold” means
“smooth manifold.”

1.6. Acknowledgments. The authors thank Dan Dugger, Jeremy Hahn, Ben Knud-
sen, Irakli Patchkoria, Oscar Randal-Williams, Bridget Schreiner, Inna Zakharevich,
and Mingcong Zeng for helpful discussions. The first author was partially supported
by NSF grant DMS-2204357. The second author was partially supported by NSF
grants DMS-2039316 amd DMS-2314082, as well as an AMS-Simons Travel Grant.
The second author also thanks the Max Planck Institute in Bonn for providing a
wonderful working environment and financial support during the beginning of this
project.

2. Equivariant homotopy theory

In this section, we discuss the ideas from equivariant homotopy theory which we
will need in the sequel. Section 2.1 contains a rapid recollection of Bredon homol-
ogy with coefficients in a Mackey functor, which is the central equivariant homology
theory we use throughout this work. Section 2.2 and Section 2.3 recall two stan-
dard constructions from equivariant stable homotopy theory: geometric fixed points
and proper homotopy orbits. These auxiliary constructions appear in the isotropy
separation sequence, which we recall in Section 2.4. Our main technical result,
Lemma 2.4.2, applies the isotropy separation sequence to pass from Bredon homol-
ogy to a simpler nonequivariant homology theory. This simpler theory is identified
as a sum of singular homology theories in Section 2.5.
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2.1. Bredon homology. Bredon homology associates to a G-space a sequence of
Mackey functors (see [May96, §IX.4]). As in nonequivariant homotopy theory,
Bredon homology with coefficients in a Mackey functor M is representable in the
equivariant stable homotopy category. By [May96, Theorem XIII.4.1], there is an
Eilenberg–MacLane G-spectrum HM with the property that its homotopy Mackey
functors satisfy π0(HM ) ∼= M and πi(HM) = 0 for i > 0. If X is a G-space, then
we have

H
(−)
∗ (X;M ) ∼= π∗(Σ

∞
GX ∧HM),

where Σ∞
G X is the suspension G-spectrum of X, and −∧− is the smash product of

G-spectra.
The Bredon homology of a G-CW complex can equivalently be defined using an

equivariant analogue of the cellular chain complex [May96, §I.4]. A coefficient system
is a contravariant functor OG → Ab, where OG is the orbit category of G. If X is a
G-CW complex, we may define a coefficient system by

Cn(X)(G/H) := Hn(X
n,Xn−1;Z)(G/H) := Hn((X

n)H , (Xn−1)H ;Z).

The connecting homomorphisms for the triples ((Xn)H , (Xn−1)H , (Xn−2)H) define
a map of coefficient systems

d : Cn(X) → Cn−1(X).

If M is a Mackey functor, we may define cellular chains with coefficients in M by

CG
n (X;M ) := Cn(X) ⊗M :=

⊕

G/H∈OG

(Cn(X)(G/H) ⊗M(G/H)) / ∼,

where f∗c ⊗ m ∼ c ⊗ f∗m for a map f : G/H → G/K ∈ OG and elements c ∈
Cn(X)(G/H) and m ∈ M(G/H). This is a chain complex of abelian groups, with
differential given by ∂ = d⊗ 1. By forgetting structure, we may analogously define

CH
n (X;M ) := Cn(i

∗
HX)⊗ i∗HM

for each subgroup H < G; these assemble into a chain complex of coefficient systems
whose homology

H
(−)
∗ (X;M ) := H∗(C

(−)
n (X;M ))

is the Bredon homology of X with coefficients in M .
For much of the paper, we will be concerned with Z-graded Bredon homology

groups. By this, we mean the G/G-levels HG
∗ (X;M ) of the Bredon homology Mackey

functors constructed here. We return to the level of generality of Bredon homol-
ogy Mackey functors in Section 5. It is also possible to extend Bredon homology
with coefficients in a Mackey functor from a Z-graded collection of groups to a
RO(G)-graded collection of groups, where RO(G) denotes the representation ring of
G [May96, §IX.5]. We review this extension in Section 5 as well.

2.2. Geometric fixed points. As outlined in the previous section, the Bredon
homology groups of a G-space X are the (categorical) fixed points of the G-spectrum
Σ∞
GX ∧HM . The geometric fixed points construction is related to categorical fixed

points (in a way that will be made precise in Section 2.4), but has properties that
make it more amenable to computation. We refer the reader to [HHR16, Sec. 2.5]
for proofs of the results in this section.
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Definition 2.2.1. Let G be a finite group and let X be a G-spectrum. Let P be
the family of proper subgroups of G, and EP be the unique G-homotopy type such
that

EPH ≃

{
∅ H = G,

∗ H < G.

Consider the collapse map EP+ → S0 and denote by ẼP its cofiber. The geometric
fixed points of X are given by

ΦGX = (ẼP ∧X)G.

The key properties of the geometric fixed points functor are that it commutes with
taking suspension spectra and is strong symmetric monoidal. These properties are
the content of the following propositions.

Proposition 2.2.2. For any G-space X, there is an equivalence of spectra

ΦGΣ∞
G X ≃ Σ∞(XG).

Proposition 2.2.3. For any two G-spectra X and Y , there is an equivalence of
spectra

ΦG(X ∧ Y ) ≃ ΦGX ∧ ΦGY.

2.3. Proper homotopy orbits. In order to relate geometric fixed points to cate-
gorical fixed points, we will need the following auxiliary construction.

Definition 2.3.1. The proper homotopy orbits of a G-spectrum X are given by

XhP = (EP+ ∧X)G.

2.4. Isotropy separation sequence. In this section, we prove Lemma 2.4.2, a
central tool in our analysis of Bredon homology. It is based on the following cofiber
sequence, which allows us to understand categorical fixed points, provided we can
understand geometric fixed points and proper homotopy orbits.

Lemma 2.4.1 (Isotropy Separation Sequence [HHR16, Section 2.5.2]). The collapse
map of Definition 2.2.1 induces a cofiber sequence of spectra

XhP → XG → ΦGX.

Lemma 2.4.2. Let G be a finite group, let d ≥ 0, and let X be a G-spectrum. Let
C be a Serre class. Assume πqΦ

K(HZ ∧ X) ∈ C for all K ≤ G, q ≤ d + 1. Then
HK

q (X;Z) ∈ C for all K ≤ G, q ≤ d.

The proof relies on the following homological fact, the proof of which we learned
from Piotr Pstrągowski.

Lemma 2.4.3 (Four Lemma mod Serre). Suppose we have a commutative diagram

A B C D

A′ B′ C ′ D′

f

ℓ

g

m

h

n p

r s t

in an abelian category A. Let C ⊆ A be a Serre subcategory. Suppose the rows are
exact, ℓ is an epimorphism mod C and p is a monomorphism mod C. If n is an
epimorphism mod C then so is m. If m is a monomorphism mod C then so is n.
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Proof. We just prove the first statement, as the second is analogous. As C is a Serre
subcategory, there exists an abelian category A/C and an exact functor F : A → A/C
which is essentially surjective with kernel C [Sta18, Lemma 02MS]. Applying F yields
a commutative diagram

FA FB FC FD

FA′ FB′ FC ′ FD′

Ff

Fℓ

Fg

Fm

Fh

Fn Fp

Fr Fs F t

in the abelian category C/A in which the rows are exact, Fℓ and Fn are epimor-
phisms, and Fp is a monomorphism. The classical Four Lemma implies that Fm is
an epimorphism, so F coker(m) = coker(Fm) = 0, i.e., coker(m) lies in C, i.e., m is
an epimorphism mod C. �

Lemma 2.4.4. Let C ⊆ A be a Serre category. Let σ : E′
r → E′′

r be a map of
spectral sequences that is an isomorphism modulo C on the Er page for some r.

Then E′
r+1

σ
→ E′′

r+1 is an isomorphism mod C.

Proof. This is a straightforward consequence of Lemma 2.4.3. First apply Lemma
2.4.3 to the diagram

0 //

��

Z ′
r

//

��

E′
r

dr
//

σ

��

E′
r

σ

��

0 // Z ′′
r

// E′′
r

dr
// E′′

r

(where Z ′
r denotes the submodule of cycles) to show that Z ′

r → Z ′′
r is an isomorphism

mod C. Similar arguments involving the exact sequences 0 → Z ′
r → E′

r → B′
r → 0

and 0 → B′
r → Z ′

r → Z ′
r/B

′
r = E′

r+1 → 0 show that the induced maps Z ′
r → Z ′′

r and
E′

r+1 → E′′
r+1, respectively, are isomorphisms mod C. �

Proof of Lemma 2.4.2. By induction up the subgroup lattice. For the base case,

He
q (X;Z) = πq((HZ ∧X)e) = πq(Φ

e(HZ ∧X)) ∈ C.

Now let {e} < K ≤ G and let P denote the family of proper subgroups of K. The
isotropy separation sequence

(HZ ∧X)hP → (HZ ∧X)K → ΦK(HZ ∧X)

gives rise to a long exact sequence

· · · → πq+1(Φ
K(HZ ∧X)) → πq((HZ ∧X)hP ) → HK

q (X;Z)

→ πq(Φ
K(HZ ∧X)) → πq−1((HZ ∧X)hP) → · · · .

To show that the middle term is in C, we claim it suffices to show that all the other
terms are in C: apply Lemma 2.4.3 to the map from the above exact sequence to the
zero exact sequence.

The assumption says that the first and fourth terms are in C, so we focus on
showing the second term is in C, which would also show the fifth term is in C because
q ≤ d is arbitrary. There is a cell decomposition of EP+ by a finite collection of cells

{K/Hi+ ∧ Sni}i∈I

with every Hi < K (cf. [HHR16, Section 2.5.2]). Filtering EP+ ∧X by the cells of
EP+ gives rise to a spectral sequence

Ei,p−ni
1

∼= HK
p (K/Hi+ ∧ Sni ∧X) ⇒ HK

p−ni
(EP+ ∧X).
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We have

HK
p (K/H+ ∧ Sn ∧X) ∼= [S,HZ ∧K/H ∧X]Kp−n

∼= [K/H+,HZ ∧X]Kp−n

∼= [S,HZ ∧X]Hp−n
∼= HH

p−n(X;Z)

using self-duality of K/H+. In particular, since Hi < K, we have Ei,q
1 ∈ C by the

induction hypothesis. By Lemma 2.4.4, HK
q (EP+ ∧X) is also in C. �

2.5. Geometric fixed points of Eilenberg–MacLane G-spectra. In light of the
previous section, one piece of understanding the Bredon homology (HM ∧ Σ∞

GX)G

of a G-space X is understanding a geometric fixed points term of the form

ΦG(HM ∧ Σ∞
GX) ≃ ΦGHM ∧ ΦGΣ∞

GX ≃ ΦGHM ∧Σ∞XG,

which is the ΦGHM -homology of the space XG. In many cases of interest (see Propo-
sition 2.5.1), this splits into (nonequivariant) Eilenberg-Maclane spaces, allowing us
to reduce to studying ordinary homology of fixed point spaces.

Recall that the category of Mackey functors is symmetric monoidal with unit the
Burnside Mackey functor A and monoidal product the box product. A Green functor
is a monoid in the category of Mackey functors [Lew].

Proposition 2.5.1. Let M be a Green functor. For all H ≤ G, the spectrum ΦHHM
is a connective generalized Eilenberg–MacLane spectrum, i.e., it splits as a wedge of
nonnegative suspensions of Eilenberg–MacLane spectra. Moreover, if M(G/K) is
finitely generated as an abelian group for all K ≤ H, then πkΦ

HHM is a finitely
generated abelian group for each k ∈ Z.

Proof. The lax monoidal transformation (−)H → ΦH(−) induces a map of commu-
tative ring spectra (cf. [HHR16, §B.10.5])

(HM )H → ΦHHM.

Since HM is Eilenberg–MacLane, (HM)H ≃ HM(G/H), and since M is a Green
functor, M(G/H) is a commutative ring (see, e.g., [Shu10, §2.2.5]). Therefore we
have a map of commutative ring spectra

HZ → HM(G/H) ≃ (HM)H → ΦHHM

which determines an HZ-module structure on ΦHHM . The claim that ΦHHM is
generalized Eilenberg–MacLane then follows from the classical fact (usually attrib-
uted to Adams) that any HZ-module is generalized Eilenberg–MacLane.

That ΦHHM is connective follows from the isotropy separation sequence: we have

ΦHHM ≃ cofib((HM)hP → (HM)H)

and both (HM )hP and (HM)H are connective, so ΦHHM is connective.
Finite generation also follows from the isotropy separation sequence: the finite

generation hypothesis on M(G/K), along with the fact that EP admits an H-CW
structure with finitely cells in each dimension, implies that each homotopy group of
(HM)hP and (HM )H ≃ H(M (G/H)) is finitely generated, so the same is true for
ΦHHM . �

Example 2.5.2. The Burnside Mackey functor A is the Mackey functor given by

A(G/K) = A(K),

where A(K) denotes the Grothendieck ring of finite K-sets. The restrictions and
transfers in A are induced by restriction and induction of K-sets, respectively.
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The constant Mackey functor Z has Z(G/K) = Z in every level. The restrictions
in Z are the identity map Z → Z and the transfer Z(G/K) → Z(G/L) is given by
multiplication by the index [L : K].

Both A and Z are Green functors, so ΦHHA and ΦHHZ are both connective gen-
eralized Eilenberg–MacLane spectra. Moreover, A(G/K) = A(K) and Z(G/K) = Z

are finitely generated abelian groups for all K ≤ H, so πkΦ
HHA and πkΦ

HHZ are
both finitely generated abelian groups for all k ≥ 0.

Remark 2.5.3. It is possible to describe ΦGHM explicitly in many cases of interest
using previous computations of π∗ΦGHM (e.g., [HHR16, Kri20]), but this will not
be necessary for our applications.

We conclude by recording the following fact which can be used to reduce to p-
Sylow subgroups for coefficients in a constant Mackey functor. We will not need it
later, but it can be used to simplify some arguments in the sequel if one works with
constant Mackey functor coefficients.

Proposition 2.5.4. Let R be a constant Green functor and let M be an R-algebra.
If G is not a p-group, then

ΦGHM ≃ ∗.

Proof. The G-spectrum HM is an HR-algebra, and since geometric fixed points are
strong symmetric monoidal, the spectrum ΦGHM is a ΦGHR-algebra. But [Kri20,
Prop. 11] implies that when G is not a p-group, ΦGHR ≃ ∗, from which we conclude
ΦGHM ≃ ∗. �

Example 2.5.5. The constant Green functor Z is an algebra over itself, so ΦGHZ ≃
∗ if G is not a p-group. On the other hand, one can show that π0ΦGHA ∼= Z for any
finite group G, so ΦGHA 6≃ ∗ for any G.

Remark 2.5.6. For simplicity, we will work with Z coefficients in the sequel. If M
is a constant Mackey functor which is levelwise finitely generated, then it is straight-
forward to deduce M coefficient analogues of all of the Z coefficient statements below
using the presentation of M as a Z-module (cf. deducing homology isomorphisms
with M coefficients from homology isomorphisms with Z coefficients).

For certain groups, e.g., any cyclic p-group Cpn , it is also straightforward to pass
from Z coefficients to A coefficients using induction up the subgroup lattice, the
short exact sequence of Mackey functors

0 → I → A → Z → 0,

and the fact that H
Cpn

∗ (X; I) ∼= H
Cpn−1

∗ (XCp ; I ′), where I ′ is the Cpn−1 Mackey
functor with I ′(Cpn−1/Cpm) = I(Cpn/Cpm+1). Since every Mackey functor is an A-
module, one can deduce analogues of our results with coefficients in any Mackey
functor which is finitely generated for cyclic p-groups.

We leave the extension to other coefficients and more complicated groups to the
interested reader.

3. Configuration spaces and stabilization maps

As in the previous section, G is any finite group. In this section, we discuss
configuration spaces and stabilization maps. We recall the nonequivariant theory
in Section 3.1 and discuss the equivariant analogues in Section 3.2 and Section 3.3.
In Section 3.2, we define the more nuanced notion of S-configuration spaces (Def-
inition 3.2.2 and Definition 3.2.3) and their stabilization maps. Our main results
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are Proposition 3.2.10, which expresses the G-fixed points of configuration spaces in
terms of S-configurations, and Corollary 3.2.9 which expresses each S-configuration
space in terms of products of ordinary configuration spaces. Combining these results
yields Theorem C.

3.1. Nonequivariant configuration spaces and stabilization maps.

Definition 3.1.1. Let M be a space. The configuration space of n ordered points
in M is

Confn(M) := Emb({1, . . . , n},M) = {(x1, . . . , xn) ∈ M×n : xi 6= xj for all i 6= j}

topologized as a subspace of M×n.
The configuration space of n unordered points in M is the quotient space

Cn(M) := Confn(M)/Σn,

where the symmetric group Σn acts by permuting points.

When M is an open, connected manifold with dimM ≥ 2, then M is the in-
terior of a manifold with boundary, and there there are well-defined stabilization
maps Cn(M) → Cn+1(M) (cf. [Pal18, Secs. 2.1-2.2]). Since we will describe the
equivariant analogue of these maps in some detail in Section 3.3, we review the
non-equivariant construction.

Definition 3.1.2. We say that an n-dimensional manifold M is stabilizable if M is
homeomorphic to the interior of a n-dimensional manifold with nonempty boundary.

Construction 3.1.3. When M is stabilizable, we can define a stabilization map on
unordered configurations as follows. Let M be stabilizable with M ∼= W ◦, where
W is an n-dimensional manifold with nonempty boundary. Let p ∈ ∂W . By the
definition of manifold with boundary, there exists an open neighborhood U ⊂ W
containing p together with a diffeomorphism

φ : U
∼=
−→ R

n
+ = {x = (x1, . . . , xn) ∈ R

n : x1 ≥ 0}

sending p to 0. Let b : Rn
+ → R

n
+ be a smooth bump function which sends 0 to

(1, 0, . . . , 0). Let e : W → W be the self-embedding defined by

e(x) =

{
x if x /∈ U,

(φ−1 ◦ b ◦ φ)(x) if x ∈ U.

Then by construction, e(M) ⊆ M and e(p) /∈ e(M), so we may define

(3.1.4) σ : Cn(M) → Cn+1(M)

by
σ(m1, . . . ,mn) = (e(m1), . . . , e(mn), e(p)).

3.2. Equivariant configuration spaces. In this section, we study equivariant con-
figuration spaces. Our main result (Corollary 3.2.9) will allow us to relate these
spaces back to nonequivariant configuration spaces.

Definition 3.2.1. Let X be a G-space and let n ≥ 1. The configuration space of n
ordered points in X is the G-space of nonequivariant embeddings

Confn(X) = Emb({1, . . . , n},X).

The configuration space of n unordered points in X is the quotient G-space

Cn(X) = Confn(X)/Σn.
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Let C(X) =
⊔

n≥1 Cn(X) equipped with the disjoint union topology. In Confn(X)

and Cn(X), the G-action is induced by the action on X.

These are the same definitions as in the nonequivariant case, but now they are
G-spaces. In Proposition 3.2.10, we will show that their fixed points Cn(X)G split
into pieces CG

S (X) which are described below.

Definition 3.2.2. Let X be a G-space and let S be a finite G-set of cardinality
n. The space of ordered S-configurations in X, denoted ConfGS (X), is the space of
G-equivariant embeddings S → X,

ConfGS (X) := EmbG(S,X).

This is a G-equivariant analogue of the ordinary notion of an ordered configuration
space. Indeed, if G = e is the trivial group, we have

ConfeS(X) ∼= Confn(X
e).

Precomposing a G-equivariant embedding S → X by an automorphism of S yields
another such embedding. In this way, ConfGS (X) admits an action by the automor-
phism group Aut(S).

Definition 3.2.3. The space of unordered S-configurations in X is the quotient

CG
S (X) := ConfGS (X)/Aut(S)

of ConfGS (X) by the Aut(S)-action.

Similarly, this is a G-equivariant analogue of the ordinary notion of unordered
configuration space. If G = e is the trivial group, then Aut(S) ∼= Σn, and we have

Ce
S(X) = ConfeS(X)/Aut(S) ∼= Confn(X

e)/Σn = Cn(X
e).

We can express CG
S (X) in terms of nonequivariant configuration spaces of a related

space.

Definition 3.2.4 ([tD87, Section I.5]). For a G-space X and subgroup H ≤ G, we
denote by X(H) the subspace

X(H) = {x ∈ X : (Gx) = (H)} ⊆ X

consisting of points with stabilizer conjugate to H.

Since the stabilizers of points in a fixed orbit are conjugate, the G-action on X
restricts to a G-action on X(H). The preimage of any point under the projection
X(H) → X(H)/G is a full orbit isomorphic to G/H.

Proposition 3.2.5. Given a subgroup H ⊆ G and k ≥ 0, the space of unordered
k[G/H]-configurations in X satisfies

CG
k[G/H](X) ∼= Ck

(
X(H)/G

)
.

Proof. A point in CG
k[G/H](X) is a subset S ⊆ X which is isomorphic as a G-set

to k[G/H]. Each point in S has stabilizer conjugate to H, so S is furthermore a
subset of X(H). The set S consists of k orbits of type G/H, so its image under the
projection X(H) → X(H)/G is a size k subset of X(H)/G. This defines a map

CG
k[G/H](X) → Ck

(
X(H)/G

)
,

which is a homeomorphism. Indeed, the preimage of any k element subset of X(H)/G
is a subset S ⊆ X(H) ⊆ X of the above form, which defines an inverse map. �
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The space X(H)/G can also be expressed in terms of H-fixed points of X and their
WGH-action, as we show in the following lemma.

Lemma 3.2.6. For any G-space X,

X(H)/G ∼=
(
XH \

⋃

K>H

XK
)
/WGH.

Proof. There is a G-equivariant homeomorphism

(3.2.7) ϕ : X(H) → G×NGH

(
XH \

⋃

K>H

XK
)

and hence on orbits we have

X(H)/G ∼=
(
XH \

⋃

K>H

XK
)
/NGH ∼=

(
XH \

⋃

K>H

XK
)
/WGH

since H ≤ NGH acts trivially on XH . �

In Corollary 3.2.9 we generalize Proposition 3.2.5 to a formula for CG
S (X) for an

arbitrary G-set S. It follows from the next lemma, whose proof is omitted.

Lemma 3.2.8. Let S and T be finite G-sets such that no orbit of S is isomorphic
to an orbit of T . Then,

CG
S+T (X) ∼= CG

S (X)× CG
T (X).

Combining Proposition 3.2.5 and Lemma 3.2.8, we obtain our desired decomposi-
tion formula.

Corollary 3.2.9. Let S be the finite G-set

S =
∐

(H)

k(H)[G/H],

where k(H) ≥ 0 for each conjugacy class of subgroups (H). Then,

CG
S (X) ∼=

∏

(H)

Ck(H)
(X(H)/G).

Recall that Cn(X) denotes the G-space of nonequivariant embeddings of n points.
The next proposition is the main result of this section, which describes its fixed
points in terms of the spaces CG

S (X) we have been studying above, in the case that
X is a manifold.

Proposition 3.2.10. For a G-manifold M and n ≥ 0, there is a disjoint union
decomposition

Cn(M)G ∼=
∐

|S|=n

CG
S (M),

where the disjoint union runs over isomorphism classes of finite G-sets S with car-
dinality n.

Proof. Let S =
∐

i∈I G/Hi be a G-set of cardinality n. Since CG
S (M) and Cn(M)G

are given compatible quotient topologies, it suffices to show that ConfGS (M) is open
in Confn(M)G. Let x ∈ ConfGS (M) be an ordered configuration consisting of orbits
Oi = {g · xi}g∈G/Hi

for i ∈ I. By the equivariant slice theorem (see e.g. [Aud91,
Theorem I.2.1.1]), there are open neighborhoods Ui,g ∋ g · xi and diffeomorphisms
φi :

⊔
g Ui,g

∼= G×Hi TxiM with φi(g · xi) = (g, 0). Then U =
∏

i,g Ui,g ⊆ M×n is an
open neighborhood of x.
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An element of ConfGn (M) ∩ U is an n-tuple (yi,g) where yi,g ∈ Ui,g, and we may
assume that the Ui,g’s are disjoint in M . It suffices to show that yi,g has isotropy Hi.
Since each Ui,g contains a single yi,g and G acts on {yi,g}, an element g′ ∈ G fixes
yi,g if and only if it preserves Ui,g

∼= {g} × TxiM ⊆ G ×Hi TxiM , and this occurs if
and only if g′ ∈ Hi. �

Remark 3.2.11. Though Proposition 3.2.10 uses the theory of (finite-dimensional)
manifolds, we will investigate an analogous statement for ρ∞ in future work and
identify the pieces:

(3.2.12) CG
G/H(ρ∞) ≃ B(WGH).

These spaces are interesting because Guillou and May [GM17, Lem. 1.2] identify
Cn(ρ

∞) with the n-th space in the G-equivariant little ρ∞-disks operad, which is
well-known to be G-equivalent to BGΣn (cf. [CW91, Pg. 489]). In particular,
the splitting here recovers the Lashof–May splitting [May96, Theorem VII.2.7] of
(BGΣn)

G.

3.3. Equivariant stabilization maps. Our goal in this subsection is to define an
equivariant version of Construction 3.1.3.

Definition 3.3.1. Let H ≤ G be a subgroup. A G-manifold M is H-stabilizable if
it is equivariantly homeomorphic to the interior of a G-manifold W with boundary
containing a point of isotropy group H.

Construction 3.3.2. Suppose M is an H-stabilizable G-manifold of dimension n,
and write M ∼= W ◦ where W is a G-manifold with boundary containing a point
p ∈ ∂W with isotropy group H. By the equivariant slice theorem for manifolds with
boundary [Kan07, Theorem 3.6], there exists an open subset U ⊆ W containing the
orbit {g · p : g ∈ G/H} together with a G-equivariant diffeomorphism

φ : U → R≥0 × (G×H V )

sending g · p to (0, g, 0), where R≥0 has the trivial action and V ∼= Tp(∂M) is the G-
representation determined by the action of G on the tangent space of ∂M at p. Let
b : R≥0 × (G×H V ) → R≥0 × (G×H V ) be a smooth, G-equivariant bump function
which is the identity in the G ×H V component and sends (0, g, 0) to (1, g, 0). Let
e : W → W be the G-equivariant self-embedding defined by

e(x) =

{
x if x /∈ U,

(φ−1 ◦ b ◦ φ)(x) if x ∈ U.

Let g1, . . . , gr range over the elements of G/H. We define

(3.3.3) σG/H : Cn(M) → Cn+|G/H|(M)

by
σ(m1, . . . ,mn) = (e(m1), . . . , e(mn), e(p), g1e(p), . . . , gre(p)).

Remark 3.3.4. Observe that in Construction 3.3.2, the bump function φ, and hence
σG/H , preserves isotropy type. Moreover, since σG/H adds a single G/H orbit, it
descends to maps

Cn(M/G) → Cn+1(M/G)

Cn(M)G → Cn+|G/H|(M)G

CG
S (M) → CG

S+[G/H](M).
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Putting together Corollary 3.2.9 and Proposition 3.2.10, we expect equivariant
homological stability of M should be related to nonequivariant homological stability
of M(H)/G. First (Lemma 3.3.5) we check that M(H)/G satisfies the hypotheses of
nonequivariant homological stability except for connectedness, which is an additional
assumption and not needed for the definition of stabilization maps. Then (Lemma
3.3.6) we check that the stabilization maps agree. In the next section (Theorem 4.3.1)
we will put these together to prove a form of equivariant homological stability.

Lemma 3.3.5. If M is an H-stabilizable smooth G-manifold for H ≤ G, then
M(H)/G is an open smooth manifold.

Proof. Let W = WHG. To see that M(H)/G is a manifold, note that M(H)/G =
M(H)/W since M(H) consists entirely of G/H-orbit types. Thus W = Aut(G/H)
acts freely on the manifold M(H), and its acts properly because W is finite. Thus
M(H)/W is a (smooth) manifold.

For noncompactness, first we show noncompactness of M(H). The stabilizability
assumption says that there is a neighborhood of the manifold with boundary W
that is diffeomorphic to R≥0 × (G ×H V ), where V is the tangent space in ∂W of a
point p ∈ ∂W of isotropy H (see Construction 3.3.2). The subspace of isotropy H in
this neighborhood is r≥0 × (G×H V H), and taking away the boundary, we see that
M(H) is missing a limit point, namely {0} × (G×H {0}) = p. Now passing to orbits
M(H)/G, we have a neighborhood R>0 × V H with limit point (0, 0) that is also not
in M(H)/G. �

Lemma 3.3.6. Suppose M is H-stabilizable. Then the equivariant stabilization map
(3.3.3) induces a map

σ̄G/H : Cn(M(H)/G) → Cn+1(M(H)/G)

that agrees with the nonequivariant stabilization map (3.1.4).

Note that Lemma 3.3.5 is used to guarantee the map (3.1.4) exists.

Proof. Since σG/H : Cn(M) → Cn+|G/H|(M) preserves isotropy type and adds a
G/H orbit, it induces a map σ̄e

G/H : Cn(M(H)/G) → Cn+1(M(H)/G), and the equi-
variant bump function b induces a function b̄ on M(H)/G. First note from Lemma
3.3.5 that M(H)/G is a manifold. To check σ̄G/H agrees with the classical stabiliza-
tion map, we must check that b̄ is a bump function. It is clear that it has compact
support. To check it is smooth, first note that the restriction of the smooth function
b to M(H) is smooth. To check it is smooth after taking orbits, recall that every orbit
in M(H) has a neighborhood diffeomorphic to G ×H R

n, and taking orbits simply
collapses the |G/H| Euclidean components to one Euclidean component. �

4. Equivariant homological stability

In this section, we prove our main theorems, Theorem A and Theorem B. Our
proof is by reduction to the classical stability result of McDuff–Segal (Theorem 4.1.1),
which we recall in Section 4.1. We also discuss a weaker notion of homological sta-
bility (Corollary 4.1.3) in terms of finite generation; the relationship between finite
generation stability and sequential stability is made precise in Proposition 4.1.2. Us-
ing nonequivariant homological stability, we prove Theorem D (Theorem 4.3.1) that
the equivariant stabilization maps eventually induce isomorphisms in the homology
of S-configuration spaces in Section 4.3. We then use our decomposition of the
G-fixed points of configuration spaces into S-configuration spaces, along with our
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Bredon-to-geometric-fixed-point reduction result (Lemma 2.4.2), to prove Bredon
homological stability in Section 4.4.

4.1. Nonequivariant homological stability.

Theorem 4.1.1 (McDuff–Segal, as stated in [Pal18, Thm. 1.2] with X = ∗).
Assume M is an open, connected manifold with dim(M) ≥ 2. The stabilization map
σ : Cn(M) → Cn+1(M) induces an isomorphism on integral homology in degrees
∗ ≤ n

2 .

Our goal for the rest of this subsection is to relate homological stability with
respect to iterated applications of σ with finite generation over Z[σ∗]. Since this
does not depend on the fact that the groups that stabilize are homology groups,
we take an abstract approach, presenting the translation for arbitrary sequences of
modules that stabilize.

Fix a commutative noetherian ring R and let

A0
σ
−→ A1

σ
−→ A2

σ
−→ · · ·

be a sequence of R-modules An for n ≥ 0 connected by maps σn : An → An+1.
Write

A =
⊕

n≥0

An.

The collection of maps σn assemble into an endomorphism σ : A → A, and this
map endows A with the structure of a R[σ]-module. The next proposition relates
finiteness conditions on A and σ to a stability condition on the sequence.

Proposition 4.1.2. With R, A and σ as above, the following are equivalent:

(1) An is a finitely generated R-module for each n, and the sequence stabilizes:
that is, there exists N ≥ 0 such that for all n ≥ N , σ : An → An+1 is an
isomorphism; and

(2) A is finitely generated as an R[σ]-module.

Proof. To see (1) ⇒ (2), let fn : Rrn → An be a surjection. Define a map

f : R[σ]r0 ⊕ · · · ⊕R[σ]rN → A

which maps the generators of R[σ]rn to An ⊆ A according to fn and extends R[σ]-
linearly. To see that f is surjective, note that by construction it surjects onto⊕N

n=0An, and it surjects onto
⊕∞

n=N An
∼= AN ⊗ Z[σ] because it is a σ-linear map

that surjects onto AN .
To see (2) ⇒ (1), let f : R[σ]r → A be a surjection from a free R[σ]-module of

finite rank r. Since f(σR[σ]r) ⊆ σA, f descends to a surjective map on quotients

f̄ : Rr ∼= R[σ]r/σR[σ]r → A/σA = coker σ

which exhibits coker σ as a finitely generated R-module. Note that

coker σ ∼=
⊕

n≥0

(coker σn).

That coker σ is finitely generated thus implies that (coker σ)n = 0 for sufficiently
large n. It follows that the sequence is eventually surjective, that is, there exists a
M such that σn is surjective for n ≥ M . If we let

Ki = ker(AM → Ai),

for i ≥ M , we obtain an increasing chain KM ⊆ KM+1 ⊆ · · · of submodules of
AM . As a finitely generated module over the noetherian ring R, AM is noetherian.
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Therefore, there must exist an N ≥ 0 at which point this increasing chain stabilizes,
that is KN = KN+1 = · · · . It follows that for n ≥ N , σn is an isomorphism.

Now we show that An is finitely generated over R by induction on n. Since
coker(σ)|A0 = A0, we must have that A0 is finitely generated. Now assume n ≥ 1
and assume inductively that An−1 is finitely generated. Consider the exact sequence

An−1
σ
→ An

σ
→ coker(σ)|An → 0.

Since An−1 and coker(σ)|An are finitely generated by assumption, we have that An

is also finitely generated. �

Corollary 4.1.3. Let M be a stabilizable open, connected manifold with dim(M) ≥
2. If Hd(Ck(M)) is finitely generated as an abelian group for all d ≥ 0, then
H∗(

⊔
k≥0Ck(M)) is finitely generated as a Z[σ∗]-module.

We note that the finite generation of Hd(Ck(M)) in Corollary 4.1.3 follows from
the finite generation of Hd(M). First we need a lemma.

Lemma 4.1.4. Suppose X has a free G-action, and Hd(X;Z) is a finitely generated
abelian group for all d. Then Hd(X/G;Z) is finitely generated.

Proof. There is a fibration X → EG ×G X → BG, and since the action of G on X
is free, we have EG ×G X ≃ X/G. There is a Serre spectral sequence with local
coefficients

E∗,∗
2 = H∗(BG;H∗(X;Z)) ⇒ H∗(X/G).

The E2-page is the cohomology of the complex C∗(EG;Z) ⊗Z[G] H∗(X;Z) which
is finitely generated in each degree by assumption. Thus the E2-term is finitely
generated in each degree, and so is the target. �

Proposition 4.1.5. If Hd(M) is finitely generated for all d ≥ 0, then so is Hd(Cn(M))
for all d, n ≥ 0.

Proof. By Lemma 4.1.4, it suffices to show that Hd(Confn(M);Z) is finitely gener-
ated. Since Confn(M) is a manifold, its homology is Poincaré dual to cohomology
with compact support Hd

c (Confn(M);O) with coefficients in the orientation sheaf O
(see [Bre97, Example 2.9]). To study this, we apply [Pet20, Theorem 5.18], which
gives a spectral sequence that in our case specializes to

Ep,q
1 =

⊕

T∈JU0
|T |=n−p

⊕

i+j=p+q

H̃ i(J(T );Hj
c (M(T );O)) =⇒ Hp+q

c (Confn(M);O)

where JU0 is a subset of the set of partitions of {1, . . . , n}, J(T ) is a finite CW
complex, and M(T ) is a closed submanifold of

{(x1, .., xn) ∈ Mn : xi = xj ⇐⇒ xi = xj if i and j are in the same block of T},

which is itself a closed submanifold of Mn. Closed manifolds have cohomology that
is finitely generated in each degree. Since the E1 page of the spectral sequence is
finitely generated for each (p, q) and p, q ≥ 0 we have that the target is finitely
generated in each degree. �

4.2. Instability for adding a trivial orbit. If M is G-stabilizable, then we may
add a fixed point to obtain a G-equivariant stabilization map

σG/G : Cn(M) → Cn+1(M)
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whose underlying map

σe
G/G = σ : Cn(M) → Cn+1(M)

is the classical stabilization map. In this section, we show that the Bredon homology
of C(M) cannot be stable with respect to this stabilization map alone. For simplicity
of exposition, we consider the degree 0 case where G = Cp.

Proposition 4.2.1. For G = Cp and M an open G- and e-stabilizable manifold, the
Z[(σG/G)∗]-module HG

0 (C(M);Z) is not finitely generated.

Proof. The cellular chain complex CG
∗ (C(M)) computing Bredon homology (cf. Sec-

tion 2.1) is given by

CG
∗ (C(M)) =

( ∑

G/H

C∗(C(M)H)⊗ Z(G/H)
)
/ ∼

=
(
C∗(C(M)e)⊗ Z(Cp/e)⊕ C∗(C(M)G)⊗ Z(Cp/Cp)

)
/ ∼,

In the case G = Cp, the orbit category is generated by the projection r : Cp/e →
Cp/Cp and automorphism γ : Cp/e → Cp/e which corresponds to the action of the
generator of Cp. Therefore, in CG

∗ (C(M)), we have the relations:

• γ · x ∼ x for x ∈ C∗(C(M)e) and γ ∈ Cp the generator of Cp, and
• r∗x ∼ px for x ∈ C∗(C(M)G), where r∗ : C(M)G → C(M)e is the inclusion

of fixed points.

From Proposition 3.2.10, we have that the components of C(M)G are indexed by
finite G-sets, so we have

H0(C(M)Cp) ∼= Z[σ]{x0, x1, x2, . . .},

where xi represents the component corresponding to the G-set i ·Cp/e. The compo-
nents of C(M) are indexed by natural numbers, so we have

H0(C(M)e) ∼= Z[σ]{y0}.

We conclude that HG
0 (C(M)) is given by

HG
0 (C(M)) ∼=

Z[σ]{x0, x1, x2, · · · , y0}

pxi = σiy0
,

which is not finitely generated as a Z[σ]-module. �

4.3. Homological stability for S-configurations. As above, let M be a G-
manifold. In this section, we fix a conjugacy class of subgroups (H) and study
stabilization maps for [G/H] orbits. We will combine Corollary 3.2.9 with classi-
cal homological stability applied to the nonequivariant space M(H)/G, to obtain
homological stability for CG

S (M).

Theorem 4.3.1. Let M be a G-manifold and S a finite G-set containing k copies
of the orbit [G/H] for a conjugacy class of subgroups (H). If M is H-stabilizable
and M(H)/G is connected, then the (H)-stabilization map of (3.3.3) induces an iso-
morphism

(σG/H)∗ : Hd(C
G
S (M)) → Hd(C

G
S+[G/H](M))

in integral homology in degrees d ≤ k/2.
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Proof. Decompose the finite G-set S as

S ∼= k[G/H] ⊔ S′,

where S′ is a finite G-set with no orbits isomorphic to [G/H]. Corollary 3.2.9 allows
us to decompose the space of unordered S-configurations in M as

CG
S (M) ∼= CG

k[G/H](M)× CG
S′

∼= Ck(M(H)/G)× CG
S′(M).

By Corollary 3.2.9, we have

H∗(C
G
S (M)) ∼= H∗(Ck(M(H)/G)× CG

S′(M)),

H∗(C
G
S+[G/H](M)) ∼= H∗(Ck+1(M(H)/G)× CG

S′(M)).

By naturality, we obtain a map of Künneth short exact sequences
⊕

i+j=d−1

Tor1
(
Hi(Ck(M(H)/G)),Hj(C

G
S′(M))

) ⊕

i+j=d−1

Tor1
(
Hi(Ck+1(M(H)/G)),Hj(C

G
S′(M))

)

Hd(C
G
S (M)) Hd(C

G
S+[G/H](M))

⊕

i+j=d

Hi(Ck(M(H)/G)) ⊗Hj(C
G
S′(M))

⊕

i+j=d

Hi(Ck+1(M(H)/G)) ⊗Hj(C
G
S′(M))

(σG/H )∗

By Lemma 3.3.6, the top and bottom horizontal arrows in the above diagram are
given by the classical stabilization maps σ : Ck(M(H)/G) → Ck+1(M(H)/G) for the
manifold M(H)/G, and so Theorem 4.1.1 implies that these maps are isomorphisms
for d ≤ k/2. (Note that M(H)/G is not empty because we have assumed that there
are k points of isotropy type (H).) It follows from the five lemma that (σG/H)∗ is
an isomorphism in the range d ≤ k/2. �

4.4. Bredon homological stability. We now return to the situation of ordinary
configuration spaces.

For K ≤ G, let
PK = Z[σK/H : H ⊆ K].

Clearly, PK acts on K-Bredon cohomology HK
∗ (C(M)), but we can also consider

the action of PG on HK
∗ (C(M)) via the restriction map resGK : PG → PK , which is

defined as follows. Given H,K ≤ G, the double coset formula gives an isomorphism
of K-sets

G/H ∼=
⊔

KgH∈K\G/H

K/(K ∩ gHg−1),

and so

(4.4.1) resGK(σG/H) =
∏

KgH∈K\G/H

σK/(K∩gHg−1).

Lemma 4.4.2. Suppose G is a Dedekind group (i.e., every subgroup is normal).
Then for all K ≤ G, PK is finitely generated as a PG-module, where the action is
via the restriction map resGK : PG → PK .

Proof. As PK is a finitely generated algebra, it suffices to show that PK is integral
over PG. We will show that there is a power of every generator σK/H (for K ≤ H)
in the image of resGK , which implies the same for every monomial. Combining the
Dedekind assumption with (4.4.1) shows that resGK(σG/H) = σ

[G:K]
K/H . �
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Remark 4.4.3. The “Dedekind” hypothesis is needed to ensure that resGK(σG/H) =

σ
[G:K]
K/H in the last line of the previous proof. It is known [Ded97] that a finite group

is Dedekind if and only if it is abelian or isomorphic to Q8 × A where A is a finite
abelian group whose 2-component has the form (Z/2)r for r ≥ 0.

We remark that the conclusion of Lemma 4.4.2 holds for a more general class of
nonabelian groups than those mentioned in the previous paragraph, but an explicit
characterization is not known. For example, it can be checked that it holds for
dihedral groups of order 2n for n squarefree.

Lemma 4.4.4. Assume M is H-stabilizable and M(H)/G is connected for every
H ≤ G. For every d there exists Nd such that

πd(Φ
G(HZ ∧ C(M))) ∼= PG · πd(Φ

G(HZ ∧ C≤Nd
(M))).

Moreover, if Hi(M(H)/G) is a finitely generated abelian group for all i ≤ d and

(H) ≤ G, then πd(Φ
G(HZ ∧ C≤Nd

(M))) is a finitely generated abelian group.

Proof. Using the splitting in Corollary 3.2.9 we have

πd(Φ
G(HZ ∧ C(M))) ∼= πd(Φ

GHZ ∧ C(M)G) ∼=
⊕

G-sets S

πd(Φ
G(HZ) ∧ CG

S (M)).

By Proposition 2.5.1, there is a finite collection of nonnegative integers ni and finitely
generated abelian groups Ai such that

πd(Φ
G(HZ) ∧CG

S (M)) ∼=
⊕

i

Hd−ni
(CG

S (M);Ai).

For fixed i and H, Theorem 4.3.1 says that there exists Nd,i,H such that

Hd−ni
(CG

S (M);Ai) = σG/H ·Hd−ni
(CG

S−[G/H](M);Ai)

whenever S contains at least Nd,i,H copies of G/H. For fixed i, there are finitely many
G-sets S such that Hd−ni

(CG
S (M);Ai) is not in the image of σG/H for some H. Let

Nd,i be the maximum cardinality of the exceptional G-sets, and let Nd = maxi{Nd,i}.
Then for every S and ni, we have

Hd−ni
(CG

S (M);Ai) ⊆ PG ·
⊕

|S′|≤Nd

Hd−ni
(CG

S′(M);Ai).

Summing over i, we obtain πd(Φ
G(HZ ∧CG

S (M))) ⊆ PG · πd(Φ
G(HZ ∧C≤Nd

(M))).
This shows the first statement. For the second statement, combine Corollary 3.2.9

and Proposition 4.1.5, which holds for homology with Ai-coefficients because Ai is a
finitely generated abelian group. �

Proposition 4.4.5. Let G be a Dedekind group. For K ≤ G, let i∗K denote re-
striction from G-spaces to K-spaces. Assume that for all H ≤ K ≤ G, M is H-
stabilizable, (i∗KM)(H)/K is connected, and Hi(i

∗
K(M)(H)/K) is a finitely generated

abelian group for all i ≤ d+1. Then HK
d (C(M);Z) is finitely generated over PG for

all K ≤ G.

Proof. We will apply Lemma 2.4.2 with the Serre class of finitely generated PG-
modules. It suffices to check the hypothesis, namely that πi(Φ

K(HZ ∧ C(M))) is
finitely generated over PG for all K ≤ G and i ≤ d + 1. We will apply Lemma
4.4.4 to i∗K(M). Checking the hypotheses, first note that if M is H-stabilizable
as a G-manifold, then i∗K(M) is H-stabilizable. Thus πi(Φ

K(HZ ∧ C(i∗K(M)))) =

πi(Φ
K(HZ ∧ C(M))) is finitely generated over PK . Now use Lemma 4.4.2 to get

finite generation over PG. �
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4.5. Simplifying the hypotheses of Proposition 4.4.5. We will show (Lemma
4.5.3) that the finite generation hypothesis in Proposition 4.4.5 follows from the
assumption that M the interior of a compact G-manifold W . Such finite type hy-
potheses are common in the literature on this subject; see for example [RW13] for
the non-equivariant version of our result. We also translate the connectedness hy-
pothesis of Proposition 4.4.5 into a condition which involves MH instead of M(H)

(see Lemma 4.5.1). The results are combined in Theorem 4.5.5.

Lemma 4.5.1. Suppose G is Dedekind or a p-group, and let W = WGH denote
the Weyl group. If MH/W is connected then M(H)/G (if nonempty) is connected.
Moreover,

M(H)/G ∼=
(
MH\

⋃

e<L≤W

(MH)L
)
/W.

Proof. Applying Lemma 3.2.6 to the G-manifold M and the W -manifold MH , re-
spectively, we have

M(H)/G ∼=
(
MH\

⋃

H<K≤G

MK
)/

W

(MH)(e)/W ∼=
(
MH\

⋃

e<L≤W

(MH)L
)/

W ∼=
(
MH\

⋃

H<K≤NG(H)

MK
)/

W.

Because of the group-theoretic conditions, H < K ≤ G implies H < NK(H), and
hence M(H)/G ∼= (MH)(e)/W .

If M(H) is nonempty, then (e) is the principal orbit type of MH as a W -manifold.
Then [tD87, Theorem I.5.14] applied to MH says that (MH)(e)/W ∼= M(H)/G is
connected. �

The next lemma is used to prove Lemma 4.5.3.

Lemma 4.5.2. Suppose M is G-manifold that is the interior of a compact G-
manifold with boundary. Let H ≤ G. If A is a π1(M

H)-module that is finitely
generated as an abelian group, then the homology with local coefficients Hq(M

H ;A)
is a finitely generated abelian group for every q.

Proof. Let Z be a compact G-manifold whose interior is M . First, we observe that
MH is the interior of ZH ; this can be checked on Euclidean neighborhoods. Since
ZH is a compact manifold with boundary, it has a collar neighborhood, and this can
be used to produce a homotopy equivalence MH ≃ ZH . Since π1(M

H) = π1(Z
H),

we may view A as a sheaf of abelian groups over ZH , and consider an open cover U

that trivializes A. There is a refinement U′ that is a good cover (see [BT82, Corollary
5.2]) and since ZH is compact, we may take U

′ to be finite. Since this is a good
cover, homology with local coefficients Hq(Z

H ;A) = Hq(M
H ;A) agrees with Čech

cohomology Ȟq(U
′;A). The Čech complex

Čq(U
′;A) =

⊕

(i0,...,iq)

A(Ui0 ∩ . . . ∩ Uiq ) =
⊕

(i0,...,iq)

A

is a finitely generated abelian group in each degree, and hence so is its homology. �

Lemma 4.5.3. Assume G is abelian, and M is the interior of a compact G-manifold.
Then Hd(M(H)/G;Z) is finitely generated for all d ∈ Z,H ≤ G.
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Proof. Let W = WGH be the Weyl group. Lemma 4.5.1 says that M(H)/G ∼= X/W
where

(4.5.4) X = MH\
⋃

e<L≤W

(MH)L.

By Lemma 4.1.4, it suffices to show that H∗(X;Z) is finitely generated in each degree.
If q : G → W = G/H is the quotient, then (MH)L = M q−1(L). Abusing notation,

we write ML = (MH)L; also let UL = MH\ML. Since ML is a submanifold, there
is a normal bundle N(ML) which is open, and N(ML) ∪ UL

∼= MH . First we will
show Hd(UL) is finite using a Mayer–Vietoris sequence.

The intersection term N(ML) ∩ UL is homotopy equivalent to the sphere bundle
S(N(ML)). There is a Serre spectral sequence associated to the fibration Sn →
S(N(ML)) → ML,

E∗,∗
2 = H∗(M

L;H∗(S
n;Z)) ⇒ H∗(S(N(ML));Z)

where π1(M
L) may act nontrivially on H∗(S

n;Z). By Lemma 4.5.2, the E2 term is
finitely generated in each degree, and hence so is the target.

Now consider the Mayer–Vietoris sequence

· · · → Hd+1(M
H) → Hd(S(N(ML))) → Hd(N(ML))⊕Hd(UL) → . . . .

The first term is finitely generated by Lemma 4.5.2 and above we showed the second
is as well. Hence the third term is finitely generated; in particular so is Hd(UL).

Since G is abelian, write W =
∏

i Z/p
ri
i . In the union (4.5.4), it suffices to

restrict L to products of elementary abelian subgroups Z/pi ∼= 〈pri−1
i 〉 ≤ Z/prii ,

since any nontrivial subgroup H ≤ Z/prii contains this Z/pi. If L×L′ ≤ W , we have
(MH)L ∩ (MH)L

′
= (MH)L×L′

. More generally, given L =
∏

i Li and L′ =
∏

i L
′
i,

note that LL′ ≤ W is a product of all Li and L′
i factors, with duplicates removed.

Thus we have

UL ∪ UL′ = MH\((MH )L ∩ (MH)L
′
) = MH\(MH)LL

′
.

We will show that
X =

⋂

L=L1×...×Ln
Li elem.ab.

UL

has finitely generated homology, by induction on the number of sets intersected.
The base case was shown above. Suppose any intersection of n such sets has finitely
generated homology, and consider UL1 ∩ . . . ∩ ULn ∩ UL. There is a Mayer-Vietoris
sequence

· · · → Hd+1((∩
n
i=1ULi)∪UL) → Hd((∩

n
i=1ULi)∩UL) → Hd(∩

n
i=1ULi)⊕Hd(UL) → . . . .

The inductive hypothesis implies that the third term is finitely generated, so in
order to show the second term is finitely generated, it suffices to show the first term
is finitely generated. We have

( n⋂

i=1

ULi

)
∪ UL =

n⋂

i=1

(ULi ∪ UL) =

n⋂

i=1

ULiL

and the inductive hypothesis shows this has finitely generated homology. �

Theorem 4.5.5. Let G be an abelian group and let M be a G-manifold that is the
interior of a compact G-manifold with boundary. Assume that for all H ≤ G, M is
H-stabilizable and MH is connected. Then HH

d (C(M);Z) is finitely generated over
PG for all H ≤ G.
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Proof. Combine Proposition 4.4.5, Lemma 4.5.1, and Lemma 4.5.3. �

Example 4.5.6. If G is abelian and V = nρG is a sum of regular representations,
the hypotheses of Theorem 4.5.5 are satisfied. One could also check the hypotheses
of Proposition 4.4.5 directly without using the results of this subsection: by Lemma
3.2.6 the space V(H) arises from the complement of hyperplanes in nρG. This com-
plement is Alexander dual to a union of spheres, one for each hyperplane.

5. Generalizations and variants

Throughout this section, G denotes a finite group in which every subgroup is
normal. We have established stability for Z-graded Bredon homology groups. In this
section, we discuss natural extensions of our results to

(1) RO(G)-graded Bredon homology groups, and
(2) Z-graded Bredon homology Mackey functors.

Here, RO(G) is the (group completion) of the ring of isomorphism classes of real
orthogonal representations of G.

5.1. RO(G)-graded Bredon homological stability. Let V ∈ RO(G). We write
−V for the additive inverse of V in RO(G) and write SV for the representation
sphere associated to V .

Definition 5.1.1. Let V ∈ RO(G). The V -th Bredon homology group of a G-space
X with coefficients in the Mackey functor M is the group

πG
0

(
S−V ∧HM ∧X

)
∼= HG

0 (S−V ∧X;M ).

The following is well-known:

Lemma 5.1.2. If V ∈ RO(G), then we have

(SV )e = Φe(SV ) = S|V |, ΦG(SV ) = S|V G|.

Recall that PG = Z[(σG/H)∗ : (H) ≤ G].

Theorem 5.1.3. Let V ∈ RO(G) and let M be a G-manifold satisfying the hypothe-
ses of Theorem 4.5.5. Then the PG-module HG

V (C(M);Z) is finitely generated.

Proof. Applying Lemma 2.4.2 with X = S−V ∧C(M) and C the Serre class of finitely
generated PG-modules, it suffices to show that πqΦ

K(HZ∧S−V ∧C(M)) is in C for
all K ≤ G and all q ∈ Z. Lemma 5.1.2 implies that

πqΦ
K
(
HZ ∧ S−V ∧ C(M)

)
∼= πq+|V K |Φ

K (HZ ∧C(M)) ,

and this is finitely generated by combining the same ingredients as the proof of
Proposition 4.4.5 and Theorem 4.5.5. �

5.2. Mackey functor stability. If L ≤ G is a subgroup, we may view any G-
manifold M as an L-manifold by restriction. If the G-manifold M satisfies the
hypotheses of Theorem B, then its underlying L-manifold clearly also satisfies the
conditions of Theorem B (with L in place of G) and we obtain the following:

Corollary 5.2.1. Suppose M satisfies the hypotheses of Theorem 4.5.5. Then
HL

d (C(M);Z) is finitely generated over PL for all integers d ≥ 0.
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Recall that Bredon homology is actually a Mackey functor, i.e., an additive functor
from the Burnside category of G to abelian groups. The previous corollary implies
that the value of the Mackey functor

H
(−)
d (C(M);Z)

stabilizes when evaluated on any object in the Burnside category (i.e., any finite
G-set). We can encode this levelwise stability, and more, with the following notion:

Definition 5.2.2. A module over a Green functor R is a Mackey functor M equipped
with an action map R ⊠ M → M satisfying the usual associativity and unitality
conditions.

An R-module M is finitely generated if there is a surjective R-linear map R{xT } →
M , where R{xT } is the free R-module on a generator xT with T a finite G-set.

According to [Shu10, Lem. 2.17], a map R ⊠ M → M determines, and is de-
termined by, its Dress pairing : a collection of maps R(S) ⊗ M(S) → M(S) for S
in the Burnside category of G satisfying certain compatibility axioms. Using Dress
pairings, we can relate levelwise finite generation to Mackey finite generation:

Lemma 5.2.3. An R-module M is finitely generated if and only if M(S) is finitely
generated as a R(S)-module for each finite G-set S.

Proof. Surjectivity for Mackey functors is checked levelwise. �

To express stability in terms of Mackey functors, we need a Green functor to
encode the action of the equivariant stabilization maps for each subgroup of G. This
is accomplished through the following:

Definition 5.2.4. For each finite group G, let PG be the constant Green functor on
PG = Z[(σG/H)∗ : (H) ≤ G]. (A priori, PG is only a Mackey functor. It is a Green
functor since it is the fixed point functor of a commutative ring with trivial action.)
We define an action of PG on H

(−)
∗ (C(M);Z) via Dress pairing: the map

PG(G/H) ⊗HH
∗ (C(M);Z) ∼= PG ⊗HH

∗ (C(M);Z) → HH
∗ (C(M);Z)

comes from the restriction map resGH : PG → PH as defined in Section 4.4.

In particular, if HH
∗ (C(M);Z) is finitely generated over PH(H/H) for every sub-

group H ≤ G, and if PH(H/H) is finitely generated as a PG(G/H)-module via
the restriction map (e.g., if every subgroup of G is normal), then HH

∗ (C(M);Z) is
finitely generated as a PG(G/H)-module. Combined with Lemma 5.2.3, this proves:

Theorem 5.2.5. Let M be as in Theorem 4.5.5. Then H
(−)
d (C(M);Z) is finitely

generated over PG for all integers d ≥ 0.
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