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SERRE ALGEBRA, MATRIX FACTORIZATION AND CATEGORICAL

TORELLI THEOREM FOR HYPERSURFACES

XUN LIN AND SHIZHUO ZHANG

Abstract. Let X be a smooth Fano variety. We attach a bi-graded associative algebra AS =
⊕

i,j∈Z
Hom(Id, Si

Ku(X)[j]) to the Kuznetsov component Ku(X) whenever it is defined. Then we

construct a natural sub-algebra of AS when X is a Fano hypersurface and establish its relation

with Jacobian ring J(X). As an application, we prove a categorical Torelli theorem for Fano

hypersurface X ⊂ Pn(n ≥ 2) of degree d if gcd((n+1), d) = 1. In addition, we give a new proof

of the main theorem [Pir22, Theorem 1.2] using a similar idea.

1. Introduction

LetX be a smooth complex projective variety. Reconstruction ofX from its categorical invari-

ant originates from Gabriel’s thesis [Gab62], where the author proves X can be recovered from its

category of coherent sheaves. Later on, this theorem is generalized to arbitrary quasi-separated

scheme in [Ros98]. In the celebrated work [BO01], the authors prove smooth Fano variety X

can be reconstructed from its bounded derived category Db(X) of coherent sheaves. Since the

last decades, people are interested in reconstruction of Fano varieties from the non-trivial semi-

orthogonal component Ku(X), known as Kuznetsov component, of its bounded derived category

of coherent sheaves, called Categorical Torelli problem. The first result in this direction is given

in [BMMS12], where the authors prove categorical Torelli theorem for smooth cubic threefolds.

Since then tremendous work have been carried out along this direction, see [PS23] for a review of

known results. In this paper, we focus on Fano hypersurfaces X ⊂ Pn of degree d ≤ n. Our work

is inspired by the paper [HR16], where the authors relate a variant of Hochschild cohomology

HH(Ku(X), (1)) of Kuznetsov component Ku(X) to the Jacobian ring J(X) of the hypersur-

face X, in particular they show the Hochschild cohomology ring is isomorphic to the Jacobian

ring whenever Ku(X) is a Calabi-Yau category, hence establish a categorical Torelli theorem for

cubic fourfolds. In addition, they suggested using the category of graded matrix factorizations

Injcoh(A
n+1,C∗, ω) of a Fano hypersurface defined by a polynomial ω to reconstruct Jacobian

ring via Hochschild cohomology HH•(Injcoh(A
n+1,C∗, ω)), which motivates our approach to this

problem. On the other hand, for any smooth DG category A, there is a natural associative

algebra AS attached to it, called Serre algebra(cf. Definition 3.3), which is a Morita invariant

of A. In [BO01], the authors construct a subring of A, i.e. canonical ring to reconstruct smooth
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complex projective variety with canonical bundle ample or anti-ample. It is interesting to ask

if certain sub-algebra of the Serre algebra Ku(X)S of a smooth Fano variety X can be used to

determine the isomorphism class of it. In this article, we hope to answer this question.

1.1. Main results. Let X,X ′ ⊂ Pn(n ≥ 2) be Fano hypersurfaces of degree d ≤ n. Instead of

making additional assumption that the equivalence Ku(X) ≃ Ku(X ′) is compatible with degree

shifting functor (1) and passing the equivalence Injcoh(A
n+1,C∗, ω) ≃ Injcoh(A

n+1,C∗, ω′) to

the equivalence Injcoh(A
n+1,C∗, ω)/(1) ≃ Injcoh(A

n+1,C∗, ω′)/(1), we only assume that there

is an equivalence Φ : Ku(X) ≃ Ku(X ′) and note that it commutes with Serre functors of

Ku(X),Ku(X ′) respectively. Then it is not hard to show that the associated Serre algebra(cf.

Definition 3.3) of Ku(X) and Ku(X ′) are isomorphic. We construct a subalgebra of Serre algebra

Ku(X)S and establish its relation with Jacobian ring.

Theorem 1.1. Let X ⊂ Pn be a smooth hypersurface of degree d ≤ n defined by ω. Consider its

affine LG model whose underlying stack is Z = [An+1/Zd] and associate dg category of matrix

factorization Injcoh(A
n+1,C∗, ω) ≃ Ku(X). Assume gcd((n + 1), d) = 1. There is a sub-algebra

⊕

t≥0 Hom(∆,∆(t)) of the Serre algebra Injcoh(A
n+1,C∗, ω)S such that

Hom(∆,∆(t)) =



















Jac(ω)t, n = 2m,m ∈ Z

Jac(ω)t, n = 2m+ 1,m ∈ Z, t 6= (d−2)(n+1)
2

Jac(ω)t ⊕ kd−1, n = 2m+ 1,m ∈ Z, t = (d−2)(n+1)
2 .

In particular, if n is odd, the Serre algebra has a sub-graded algebra Jac(ω) and if n is even, the

Serre algebra has a degree d graded subspace Jac(ω)d.

Remark 1.2. Consider a smooth hypersuface of degree d ≤
∑n+1

j=1 qj − 1 in weighted projec-

tive space P(q1, q2 · · · , qn+1) with gcd(q1, q2, · · · , qn+1) = 1. One can prove the same state-

ment. Namely if gcd(
∑n+1

j=1 qj, d) = 1, then there is a sub-algebra
⊕

t≥0 Hom(∆,∆(t)) of

Injcoh(A
n+1,C∗, ω)S , where C∗-action on An+1 is of weight (q1, q2, · · · , qn+1).

As an application, we establish Categorical Torelli theorem for smooth hypersurface X ⊂

Pn of degree d whenever gcd((n + 1), d) = 1. Namely, we show the Kuznetsov component

Ku(X)(cf.Proposition 2.2) determines its isomorphism class.

Theorem 1.3. Let X,X ′ ⊂ Pn be degree d smooth hypersurfaces. Assume gcd(n+1, d) = 1. If

there is a Fourier-Mukai equivalence Ku(X) ≃ Ku(X ′), then X ∼= X ′.

Remark 1.4. Consider a smooth hypersufaces of degree d ≤
∑n+1

j=1 qj − 1 in weighted projective

space P(q1, q2 · · · , qn+1) with gcd(q1, q2, · · · , qn+1) = 1. By similar arguments in the proof of

Theorem 1.3(or Theorem 4.1), one is able to obtain Categorical Torelli theorem for a series

of hypersurfaces. In particular, our method works for a degree 6 hypersurface in weighted
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projective space P(1, 1, 1, 1, 3), which is isomorphic to an index one degree two Fano threefold(See

Section 6).1

Let us briefly explain the idea of the proof. We work on dg category of graded matrix

factorization Injcoh(A
n+1,C∗, ω). An equivalence Φ : Ku(X) ≃ Ku(X ′) in Hqe(dg-cat) induces

an equivalence Injcoh(A
n+1,C∗, ω) ≃ Injcoh(A

n+1,C∗, ω′), commuting with Serre functors on

both categories. Whenever n is even, we get graded ring isomorphism Jac(ω) ∼= Jac(ω′) coming

from a degree one map, then Mather-Yau reconstruction theorem [Don83, Proposition 1.1] gives

X ∼= X ′. If n is odd, we get the isomorphism of degree d or d− 1 components of Jac(ω). Then

similar arguments shows X ∼= X ′.

As a corollary, we give some interesting examples where Categorical Torelli theorem holds.

Corollary 1.5. Categorical Torelli theorem holds for following Fano varieties:

(1) Cubic hypersurfaces of dimension 3k − 1 and 3k with k ≥ 1.

(2) Quintic fourfolds.

In the paper [Pir22], the author shows in [Pir22, Theorem 1.2] that a class of Fano hypersur-

faces X are determined by the Kuznetsov components Ku(X) together with rotation functors

(1) : Ku(X) ≃ Ku(X), which generalizes a result in [HR16, Corollary 2.10]. Using the framework

of matrix factorization, we give a simple proof for [Pir22, Theorem 1.2].

Theorem 1.6. Let X and X ′ be smooth hypersurfaces of degree d < n + 1 in Pn(n ≥ 2). If

there is a Fourier-Mukai equivalence of pairs (Ku(X), (1)) ∼= (Ku(X ′), (1)′) , then X ∼= X ′.

1.2. Related Work. Our work is inspired by the paper [HR16], where the authors suggest using

the framework of graded matrix factorization of a smooth hypersurface to relate the extended

Hochschild cohomology HH(Ku(X), (1)) to the Jacobian ring J(X), but they do all the work

on derived category side. In [Pir22], the author generalized results [HR16, Corollary 2.10] to

arbitrary Fano hypersurfaces. In an upcoming paper [Ren23], the author proves if d does not

divide n + 1 and the pair (d, n) is not of the form (4, 4k + 1), then the Kuznetsov component

alone reconstructs X. In upcoming work [LPS23] and [DJR23], the authors prove categorical

Torelli theorem for sextic hypersurface in weighted projective space P(1, 1, 1, 1, 3) via completely

different methods.

Remark 1.7. While preparing the paper, we learned that the authors of the paper [BFK23] also

define and study the Serre algebra under the name Hochschild-Serre cohomology in [BFK23,

Definition A.1], where they give a formula for Hochschild cohomology of Hilbert scheme of

1In an earlier version of the paper, a weaker version of Theorem 1.3 is obtained. Namely the statement is

obtained if gcd(2(n + 1), d) = 1 for non-weighted case and gcd(2Σn+1
j=1 qj , d) = 1 for weighted case, while we are

informed by Paolo Stellari that in their paper [LPS23], categorical Torelli theorem for sextic hypersurface in

P(1, 1, 1, 1, 3) is established. Then we found that our method applies to their case and a stronger statement (as

presented in the paper) is obtained and we give a new proof of the sextic weighted hypersurface case in Appendix.
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points on a surface in terms of Hochschild-Serre cohomology(as a bi-graded vector space)on the

surface.

1.3. Organization of the article. In Section 2 we introduce the terminology of graded matrix

factorization associated with a hypersurface in projective space. Then we describe an important

auto-equivalence on category of matrix factorization Injcoh(A
n+1,C∗, ω). In Section 3, we intro-

duce an associative algebra naturally attached to any smooth and proper differential graded(dg)

category, called Serre algebra and show it is a Morita invariant. Then we give several examples

of Serre algebra for various dg category, in particular, we construct interesting sub-algebra of

Serre algebra for category of matrix factorization Injcoh(A
n+1,C∗, ω) corresponding to a Fano

hypersurface in Pn, proving Theorem 1.1. In Section 4.1 we prove Theorem 1.3 and Corol-

lary 1.5. In Section 5 we prove Theorem 1.6. In Section 6, we give a new proof of Categorical

Torelli theorem for sextic hypersurface in P(1, 1, 1, 1, 3) as recently shown in [LPS23].

1.4. Acknowledgement. We would like to thank Will Donovan, Daniel Huybrechts, Ziqi

Liu, Jørgen Rennemo, Ed Segal, Junwu Tu and Jieheng Zeng for useful conversation on re-

lated topics. We thank Paolo Stellari for letting us know about the paper [LPS23], where

they prove categorical Torelli theorem for degree 6 hypersurfaces in weighted projective space

P(1, 1, 1, 1, 3) via a completely different method and the same statement is also proved in an-

other upcoming preprint [DJR23]. SZ is supported by ANR project FanoHK, grant ANR-

20-CE40-0023, Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy-EXC-

2047/1-390685813, and partially supported by GSSCU2021092. Part of the work was finished

when XL and SZ are visiting Max-Planck institute for mathematics and Hausdorff institute for

mathematics. They are grateful for excellent working condition and hospitality.

2. dg category of graded matrix factorizations

In this section, we recall the terminology of dg-category of matrix factorization. We follow

the context in [BFK14]. We refer the reader to [Kel06] for the basic of dg categories. Let

Hqe(dg-cat) be the localizing of dg-cat with respect to the quasi-equivalences of dg categories.

Let (X,G,L, ω) be a quadruple where X is a quasi-projective variety with G action, G is

a reductive algebraic group, L is a G-equivariant line bundle and ω is a G-invariant section

of L. Our main example is (An+1,C∗,O(d), ω). The action of λ ∈ C∗ on An+1 is given by

λ · (x0, x1, · · · , xn) = (λ · x0, λ · x1, · · · , λ · xn). ω is a C∗-invariant section of O(d). Namely ω is

a degree d polynomial. We always assume ω has only isolated singularity at 0 ∈ An+1.

We have dg category Fact(X,G,L, ω), whose objects are a quadruple (E−1, E0,Φ−1,Φ0), where

E−1 and E0 are G-equivariant quasi-coherent sheaves, Φ−1 : E0 → E−1 ⊗ L and Φ0 : E−1 → E0

are morphism of G-equivariant sheaves such that

Φ−1 ◦ Φ0 = ω.

(Φ0 ⊗ L) ◦Φ−1 = ω.
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The space of morphisms in Fact(X,G,L, ω) are the internal Hom of G-equivariant sheaves

while extending the pairs of morphisms to certain Z-graded complexes. We point out the

reference [BFK14] for interested reader. Let Inj(X,G,L, ω) ⊂ Fact(X,G,L, ω) be a dg sub-

category whose components are G-equivariant injective quasi-coherent sheaves. There is a cat-

egory Acycli(Fact(X,G,L, ω)) which imitates acyclic complexes in category of complexes of

sheaves. The absolute derived category Dabs(Fact(X,G,L, ω)) is the homotopy category of dg

quotient Fact(X,G,L,ω)
Acyclic(Fact(X,G,L,ω)) in Hqe(dg-cat).

Lemma 2.1. The natural morphism Inj(X,G,L, ω) → Dabs(Fact(X,G,L, ω)) induces isomor-

phism in homotopic categories.

Let Injcoh(X,G,L, ω) ⊂ Inj(X,G,L, ω) be a dg sub-category whose objects are quasi-

isomorphic to objects with coherent components in category Fact(X,G,L, ω).

Define shiftting functor

[1] : (E−1, E0,Φ−1,Φ0) 7→ (E0, E−1 ⊗ L,−Φ0,−Φ−1 ⊗ L).

With cone construction, the homotopic categories [Injcoh(X,G,L, ω)] is a triangulated category

which is isomorphic to graded matrix factorization in [Orl09] for (An+1,C∗,O(d), ω).

Denote by

{1} : Injcoh(A
n+1,C∗,O(d), ω) → Injcoh(A

n+1,C∗,O(d), ω)

the twisting functor which maps

E−1
Φ0

// E0
Φ−1

// E−1(d)

to

E−1(1)
Φ0(1)

// E0(1)
Φ−1(1)

// E−1(d+ 1)

Clearly, we have equality of functors {d} := {1}d = [2].

Let X ⊂ Pn be a smooth hypersurface of degree d ≤ n defined by ω. Let

Ku(X) :=
〈

OX ,OX (1), · · · ,OX(n− d)
〉⊥

.

Consider the natural enhancement Injcoh(X), and let Kudg(X) be a dg subcategory that enhance

Ku(X). Write (1) as the quasi-endofuntor (Fourier-Mukai type) of Kudg(X) that define degree

shifting functor (1) : Ku(X) → Ku(X) in the sense of [HR16].

Theorem 2.2. [BFK14, Theorem 6.13] There is an equivalence in Hqe(dg-cat),

Φ : Injcoh(A
n+1,C∗, ω) ∼= Kudg(X).

In particular, there is an isomorphism of quasi-funtors

Φ ◦ {1} ∼= (1) ◦ Φ.
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Proof. Firstly, we have quasi-functor

Φ : Injcoh(A
n+1,C∗,O(d), ω) → Kudg(X),

and quasi-functor

Φ! : Injcoh(X) → Injcoh(A
n+1,C∗,O(d), ω)

such that Φ! ◦ Φ ≃ Id. Since Φ defines an equivalence of triangulated category

[Injcoh(A
n+1,C∗,O(d), ω)] ≃ Ku(X), and both Injcoh(A

n+1,C∗,O(d), ω) and Kudg(X) are exact

dg categories, therefore Φ is an isomorphism in Hqe(dg-cat). The equality Φ! ◦ Φ = Id implies

Φ! is the inverse of Φ when restricting to Kudg(X). Write (1)F : Injcoh(X) → Injcoh(X) as

the Fourier-Mukai functor that restricts to rotation functor (1) on Kudg(X) in [BFK14, Theo-

rem 6.13]. The isomorphims of quasi-functors Φ! ◦ (1)F ◦ Φ ≃ {1} implies an isomorphism of

quasi-functors Φ−1 ◦ (1) ◦Φ ≃ {1}. �

3. Serre algebra

Theorem 3.1. [Toë07] Let A be a dg category over the field k. In Hqe(dg-cat), we have

isomorphism,

Ddg(A
op ⊗A) ∼= RHomc(Ddg(A),Ddg(A)),

where RHomc is the quasi-functor preserving coproduct.

If A is a smooth proper dg category, then the bimodules for Serre functor and inverse of Serre

functor are constructed explicitly in [Shk07], where the author defines Serre functor(inverse Serre

functor) of the triangulated category Perf(A) in the usual sense. From now on, we interpret

those bimoudles by quasi-functors by Theorem 3.1.

Definition 3.2. The Hochschild (co)homology of a smooth proper dg category A are defined

as,

HHm(A) = Hom(Id, Id[m]),

HHm(A) = Hom(Id, S[m]).

The Hochschild cohomology is an algebra, and the homolology is a graded module over

the Hochschild homology. We define an algebra which contains Hochschild cohomology and

Hochschild homoloy, and encodes the algebra structure of Hochschild cohomology and the mod-

ule structure of Hochschild homology over the Hochschild cohomology.

Definition 3.3. (Serre algebra) Let A be a smooth proper dg category. Define bi-graded algebra

AS =
⊕

m,n∈Z

Hom(Id, Sm[n])

The multiplication map

Hom(Id, Sm1 [n1])×Hom(Id, Sm2 [n2])
×

// Hom(Id, Sm1+m2 [n1 + n2])
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is defined as follows. For element (a, b) ∈ Hom(Id, Sm1 [n1])×Hom(Id, Sm2 [n2]), a× b is defined

as the composition

Id
b

// Id ◦ Sm2 [n2]
a◦Id

// Sm1 [n1] ◦ S
m2 [n2] = Sm1+m2 [n1 + n2] .

We check the associativity. Namely for elements a ∈ Hom(Id, Sm1 [n1]), b ∈ Hom(Id, Sm2 [n2]),

and c ∈ Hom(Id, Sm3 [n3]), we have (ab)c = a(bc) = abc. For example, a(bc) = abc follows from

the commutative diagram,

Id
c

//

bc
,,❨❨❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨ Sm3 [n3]
b

// Sm3 [n3] ◦ S
m2 [n2]

a
// Sm3 [m3] ◦ S

m2 [n2] ◦ S
m1 [n1]

Sm3+m2 [n3 + n2]
a

// Sm3+m2+m1 [n3 + n2 + n1]

Let Hmo(dg-cat) be the localization of dg-cat with respect to the Morita equivalences of dg

categories. If A and B are smooth and proper, HomHmo(dg-cat)(A,B) is the isomorphism classes

of Perf(Aop ⊗ B) [Tab15, Corollary 1.44], and the composition corresponds to tensor product.

Theorem 3.4. If A ∼= B in Hmo(dg-cat), then AS
∼= BS.

Proof. There is an isomorphism of Serre functor SA◦Φ ∼= Φ◦SB. Hence, Φ induces isomorphism

for any integer m, n,

Hom(IdA, S
m
A [n]) ∼= Hom(IdB, S

m
B [n]).

by the following commutative diagram,

IdB //

∼=
��

Sm
B [n]

∼=
��

Φ−1 ◦ IdA ◦ Φ // Φ−1 ◦ Sm
A [n] ◦ Φ

The isomorphism is an isomorphism of algebra since both algebra are defined by composition of

functors. �

3.1. Examples of Serre Algebras. In this section, we give examples of Serre algebra for

various categories.

3.1.1. Orlov’s algebra HA(X). Let A = Db(X) be the bounded derived category of coherent

sheaves on a smooth projective variety X. In this case, SA = −⊗ωX [l], where l = dimX. Thus

the Serre algebra AS is given by

AS :=
⊕

m,n∈Z

Hom(Id,SmDb(X)[n])
∼=

⊕

m,n∈Z

HomDb(X×X)(ι∗ OX , ι∗ω
⊗m
X [ml + n])

∼=
⊕

m,n∈Z

Extml+n
X×X(ι∗ OX , ι∗ω

⊗m
X ),
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where ι : X →֒ X × X be the diagonal inclusion. It is clear that AS is isomorphic

to the bi-graded algebra HA(X) in [Orl03]. In particular, if ml + n = 0, then AS =
⊕

m≥0 HomX×X(ι∗ OX , ι∗ω
⊗m
X ) ∼=

⊕

m≥0 HomX(OX , ω⊗m
X ) is the canonical ring of X.

3.1.2. dg-category of matrix factorization on affine LG model. According to Orlov’ sigma/LG

correspondence, the Kuznetsov components of hypersurfaces X ⊂ Pn of degree d are affine LG

model. First, the Serre functor of Injcoh(A
n+1,C∗, ω)(Theorem 2.2) is −⊗OAn+1(−n− 1)[n+1]

[FK18, Theorem 1.2]. According to [BFK14], the natural functors can be reinterpreted as

Fourier-Mukai transformation of kernels, and the natural transformation between these functors

is morphism of kernels. We write ∆(m) as the kernel of functor −⊗OAn+1(m). Next we recall

a key theorem in [BFK14, Theorem 1.2]. For g ∈ C∗, we write Wg as the conormal sheaf of

(An+1)g, kg the character of det(Wg). We write H•(dωg) as the Koszul cohomology of the

Jacobian ideal of ωg := ω|(An+1)g .

Theorem 3.5. [BFK14, Theorem 5.9] Assume ω has isolated singularity exactly at 0 ∈ An+1.

Hom(∆,∆(m)[t]) ∼=(
⊕

g∈µd, l≥0, t−rkωg=2u

H2l(dωg)(m− kg + d(u− l))

⊕
⊕

g∈µd, l≥0, t−rkWg=2u+1

H2l+1(dωg)(m− kg + d(u− l)))C
∗

Furthermore, since H•(dωg) has only non-trivial cohomology at degree zero, namely H•(dωg) =

H0(dωg) = Jac(ωg), we have

Hom(∆,∆(m)[t]) ∼=(
⊕

g∈µd, t−rkWg is even

Jac(dωg)(m− kg + d(
t− rkWg

2
)))C

∗

.

Remark 3.6. If Hom(∆,∆(t1)) ∼= Jac(ω)t1 and Hom(∆,∆(t2)) ∼= Jac(ω)t2 , then the multiplica-

tion

Hom(∆,∆(t1))×Hom(∆,∆(t2)) → Hom(∆,∆(t1 + t2))

is the composition of functions on An+1 (namely product of polynomials) while identifying with

certain graded pieces of Jacobian algebra Jac(ω).

Proposition 3.7. Consider the affine LG model Injcoh(A
n+1,C∗, ω). Assume gcd((n+1), d) =

1. There is a sub-algebra
⊕

t≥0 Hom(∆,∆(t)) of Injcoh(A
n+1,C∗, ω)S such that

Hom(∆,∆(t)) =



















Jac(ω)t, n = 2m,m ∈ Z

Jac(ω)t, n = 2m+ 1,m ∈ Z, t 6= (d−2)(n+1)
2 .

Jac(ω)t ⊕ kd−1, n = 2m+ 1,m ∈ Z, t = (d−2)(n+1)
2 .

In particular, if n is odd, the Serre algebra has a sub-graded algebra Jac(ω) and if n is even, the

Serre algebra has a degree d graded subspace Jac(ω)d.
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Proof. Firstly, It is known that the Serre functor S ∼= ∆(−(n + 1))[n + 1] [FK18, Theorem

1.2], and we have ∆(d) = [2]. If gcd(n + 1, d) = 1, then there exists k1, k2 ∈ Z such that

k1(n+ 1) + k2d = 1. Then

Sk1 ∼= ∆(−k1(n+ 1))[k1(n + 1)] ∼= ∆(−1 + k2d)[k1(n+ 1)] ∼= ∆(−1)[2k2 + k1(n+ 1)].

Thus for any integer t, (S−k1 [2k2 + k1(n + 1)])t ∼= ∆(t). The composition of − ⊗ O(−) is

the same as the composition of Serre functors, hence
⊕

t≥1 Hom(∆,∆(t)) is a sub-algebra of

Injcoh(A
n+1,C∗, ω)S . According to Proposition 3.5, we have

Hom(∆,∆(t)) ∼= (
⊕

g∈µd, − rkWg is even

Jac(ωg)(t− kg + d(
− rkWg

2
)))C

∗

.

In our case, if g = 1, then rkWg = 0, and kg = 0; if g 6= 1, then rkWg = n + 1, kg = −n − 1,

and Jac(ωg) = k(0). Therefore,

• If n+ 1 is odd, then Hom(∆,∆(t)) ∼= (Jac(ω)(t))C
∗

= Jac(ω)t.

• If n+ 1 is even,

Hom(∆,∆(t)) ∼= (Jac(ω)(t) ⊕ E)C
∗

= Jac(ω)t ⊕ EC∗

,

where E =
⊕

g 6=1 Jac(ωg)(t + n + 1 − d(n+1
2 )) =

⊕

g 6=1 Jac(ωg)(t −
(d−2)(n+1)

2 ). If t 6=
(d−2)(n+1)

2 , then EC∗

= (
⊕d−1 k(t− (d−2)(n+1)

2 ))C
∗

= 0 because Jac(ωg) = k(0) for g 6= 1.

Thus Hom(∆,∆(t)) ∼= Jac(ω)t.

�

Remark 3.8. In [BO01], the canonical ring as the sub-algebra of Orlov’s algebra HA described in

section 3.1.1 is used to reconstruct smooth projective varieties with canonical line bundles ample

or anti-ample. So it is reasonable to expect the subring of Serre algebra Injcoh(A
n+1,C∗, ω) can

be used to reconstruct the hypersurface defined by ω. We will prove this expectation in Section 4.

4. Categorical Torelli theorem for Fano hypersurfaces

Theorem 4.1. Let X and X ′ be degree d ≤ n smooth hypersurfaces in Pn(n ≥ 2) defined

by ω and ω′ respectively. Assume gcd(n + 1, d) = 1. If there is a Fourier-Mukai equivalence

Ku(X) ≃ Ku(X ′), then we have isomorphism X ∼= X ′.

Proof. First, if n + 1 is odd, then the Serre algebra has a natural sub-algebra isomorphic

to
⊕

t≥0 Hom(∆,∆(t)) by Proposition 3.7. By the calculation in [BFK14, Theorem 5.39],

the composition of
⊕

t≥0 Hom(∆,∆(t)) is the composition of functions under isomorphism
⊕

t≥0 Hom(∆,∆(t)) ∼= Jac(ω), see also Remark 3.6. Therefore, Ku(X) ∼= Ku(X ′) implies an

isomorphism of graded algebra Jac(ω) ∼= Jac(ω′) by Theorem 3.4. Note that in degree one, it is

a linear map A. Therefore, we have equality of ideal 〈∂i(Aω)〉 = 〈∂iω
′〉. Then by Mather-Yau’s

reconstruction theorem [Don83, Propsition 1.1], Aω is projective equivalent to ω′. Thus, ω is

projective equivalent to ω′, which implies X ∼= X ′.
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Next, if n + 1 is even, though we don’t have Jac(ω) as a natural sub-algebra, still we have

natural graded piece Jac(ω)d since d 6= (d−2)(n+1)
2 by Proposition 3.7, otherwise

d =
(d− 2)(n + 1)

2
>

(d− 2)d

2
.

Then d ≤ 3. If d = 3, then n+ 1 = 6, contradicts that gcd(n + 1, d) = 1. It is clear that d 6= 1

and d 6= 2. Thus Ku(X) ∼= Ku(X ′) implies isomorphism Jac(ω)d ∼= Jac(ω′)d which is induced

by a linear transformation of degree one polynomials. Then similar argument as above implies

X ∼= X ′. �

Corollary 4.2. Categorical Torelli theorem holds for following Fano varieties:

(1) Cubic hypersurfaces of dimension 3k − 1 and 3k for k ≥ 1.

(2) Quintic fourfolds.

Proof.

(1) Assume d = 3, then gcd(3, n + 1) = 1 implies 3 ∤ n+ 1, this means that dimension of X

is n = 3k − 1 or 3k with k ≥ 1.

(2) If d = 5, and n = 5, then gcd(6, 5) = 1.

Then the statement follows from Theorem 4.1. �

5. Categorical Torelli Theorem with rotation functor

In this section, we give a very simple proof of [Pir22, Theorem 1.2] via matrix factorizations.

Theorem 5.1. Let X and X ′ be smooth hypersurfaces of degree d < n + 1 in Pn(n ≥ 2). If

there is a Fourier-Mukai equivalence of pairs (Ku(X), (1)) ∼= (Ku(X ′), (1)′), then X ∼= X ′.

Proof. Let ω and ω′ define X and X ′ respectively. According to Theorem 2.2, there are isomor-

phisms of pairs in Hqe(dg-cat)

(Kudg(X), (1)) ∼=(Injcoh(A
n+1,C∗, ω), {1})

(Kudg(X
′), (1)′) ∼=(Injcoh(A

n+1,C∗, ω′), {1}′)

Which induces an isomorphism of pairs by diagram chasing

(Injcoh(A
n+1,C∗, ω), {1}) ∼= (Injcoh(A

n+1,C∗, ω′), {1}′).

If n+1 is odd, then we have isomorphism of graded algebra by Proposition 3.7and Theorem 3.4,

(n+1)(d−2)
⊕

t≥0

Hom(∆,∆(t)) ∼=

(n+1)(d−2)
⊕

t≥0

Hom(∆′,∆′(t)).

That is, we have isomorphism of graded algebra Jac(ω) ∼= Jac(ω′). Thus, ω is projective equiv-

alent to ω′.
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If n + 1 is even, the case for d = (d−2)(n+1)
2 is (d, n) = (3, 5). But then d − 1 6= (d−2)(n+1)

2 .

So in this case we have isomorphism Jac(ω)d−1
∼= Jac(ω′)d−1 induced by linear map of degree

one polynomials by Proposition 3.7 and Theorem 3.4. Thus X ∼= X ′. Similarly, the case for

d − 1 = (d−2)(n+1)
2 is (d, n) = (3, 3). So there is an isomorphism Jac(ω)d ∼= Jac(ω′)d induced

by linear map of degree one polynomials by Proposition 3.7 and Theorem 3.4, which implies

X ∼= X ′. �

Remark 5.2. Let {i} : Injcoh(A
n+1,C∗, ω) ≃ Injcoh(A

n+1,C∗, ω) be the degree shift functor with

corresponding Fourier-Mukai kernel Qi. Define LMF(X) :=
⊕

Hom(Q0, Qi). On the other hand,

the degree shift auto-equivalence (i) : Ku(X) ≃ Ku(X) is represented by Fourier-Mukai kernel

Pi. Then we define another ring L(X) :=
⊕

i Hom(P0, Pi). In [HR16], the authors conjecture

that LMF(X) ∼= L(X). Indeed, by [Pir22], Hom(P0, Pi) ∼= Hom(Id, (1)i). Now since we have

equivalence of the pair 〈Ku(X), (1)〉 ≃φ 〈Injcoh(A
n+1, G, ω), {1}〉, namely (1) ∼= φ−1 ◦ {1} ◦ φ by

Theorem 2.2. We get

Hom(Id, (1)i) ∼= Hom(Id, {1}i).

Then

L(X) :=
⊕

Hom(P0, Pi) ∼=
⊕

Hom(Q0, Qi) ∼= LMF (X).

6. Appendix: Categorical Torelli theorem for weighted hypersurfaces

In this section, we illustrate the method used in proof of Theorem 4.1 for a degree 6 hyper-

surface in weighted projective space P(1, 1, 1, 1, 3), which is isomorphic to an index one prime

Fano threefold of genus 2. It is constructed as a double cover of P3 with branch divisor a sex-

tic hypersurface. Categorical Torelli theorem for this case was already established in [LPS23]

and [DJR23] via completely different methods. We give a new proof.

Theorem 6.1. Let X and X ′ be smooth sextic hypersurfaces in weighted projective space

P(1, 1, 1, 1, 3). Assume there is a Fourier-Mukai equivalence Ku(X) ≃ Ku(X ′), then X ∼= X ′.

Proof. Consider Matrix Factorization Injcoh(A
5,C∗, ω), the weight of C∗-action is (1, 1, 1, 1, 3).

According to [BFK14, Theorem 6.13], we have Ku(X) ∼= Injcoh(A
5,C∗, ω) and Ku(X ′) ∼=

Injcoh(A
5,C∗, ω′), where ω and ω′ are degree 6 polynomial defining X and X ′ respectively.

Then a Fourier-MuKai equivalence Ku(X) ∼= Ku(X ′) induces an equivalence Injcoh(A
5,C∗, ω) ∼=

Injcoh(A
5,C∗, ω) in Hqe(dg-cat). Since gcd(

∑n+1
j qj , d) = gcd(7, 6) = 1, according to Proposi-

tion 3.4 and the same proof in Proposition 3.7, we have isomorphism of algebra,

(1)
⊕

t≥0

Hom(∆,∆(t)) ∼=
⊕

t≥0

Hom(∆′,∆′(t)).

Then by [BFK14, Theorem 1.2],

Hom(∆,∆(t)) ∼= (
⊕

g∈µ6, − rkWg is even

Jac(ωg)(t− kg + 6(
− rkWg

2
))))C

∗

.
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Write µ6 = 〈λ〉. Then

(A5)λ
i

=



















(0, 0, 0, 0, 0); kλi = −7; rk(Wλi) = 5, if i = 1, 3, 5,

(0, 0, 0, 0, x5); kλi = −4; rk(Wλi) = 4, if i = 2, 4

A5; kλi = 0; rkWλi = 0, if i = 6

Write ω = x25+f(x1, x2, x3, x4). Then Jac(ωλ4) = Jac(ωλ2) = k[x5]/∂x
2
5 = k(0), and Jac(ωλ1) =

Jac(ωλ3) = Jac(ωλ5) = Jac(ωλ6) = k(0). Therefore,

Hom(∆,∆(t)) ∼=
⊕

i

(Jac(ωλi)(t− kλi + 6(
− rkWλi

2
)))C

∗

= Jac(ω)t ⊕ k(t− 8)⊕ k(t− 8).

Thus Hom(∆,∆(t)) ∼= Jac(ω)t for t 6= 8. The same for Hom(∆′,∆′(t)), ω′ = x25 +

f ′(x1, x2, x3, x4). According to isomorphism (1), we have k[x1, x2, x3, x4]6/〈
∂f
∂xi

〉k = Jac(ω)6 ∼=

Jac(ω′)6 = k[x1, x2, x3, x4]6/〈
∂f ′

∂xi
〉k induced by autormorphism of degree one polynomials, which

implies f is projective equivalent to f ′. Thus X ∼= X ′. �
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