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Higher surface folding of the human
premotor cortex is associated with better
long-term learning capability

Check for updates

Marco Taubert 1,2,3 , Gabriel Ziegler 3,4,5 & Nico Lehmann 1,3,6

The capacity to learn enabled the human species to adapt to various challenging environmental
conditions and pass important achievements on to the next generation. A growing body of research
suggests links between neocortical folding properties and numerous aspects of human behavior, but
their impact on enhanced human learning capacity remains unexplored. Here we leverage three
training cohorts to demonstrate that higher levels of premotor cortical folding reliably predict individual
long-term learning gains in a challenging new motor task, above and beyond initial performance
differences. Individual folding-relatedpredisposition tomotor learningwas found to be independent of
cortical thickness and intracortical microstructure, but dependent on larger cortical surface area in
premotor regions. We further show that learning-relevant features of cortical folding occurred in close
spatial proximity to practice-induced structural brain plasticity. Our results suggest a link between
neocortical surface folding and human behavioral adaptability.

Cortical folding is a highly complex developmental process that depends on
the genotype1 and reflects the functional organization of the cortex2–6, with
striking similarities but also numerous differences between individuals and
across species7,8. It has been suggested that cortical folding evolved to fit a
larger sheet-like cortex into a compact cranial space and to keep cortical
nerve fiber connections short9–11. This evolutionary expansion and folding
of the human neocortex, especially in associative cortices, likely enhanced
the neurocomputational capacities required for complex social interaction,
tool-making, and mobility12. Compared to cortical folding, which develops
very early in prenatal and postnatal periods13, cortical surface area increases
threefold in the postnatal period and peaks at 11–12 years of age14. It,
therefore, seems plausible to assume that differences in cortical folding in
adults represent consequences of early developmental influences on
behavior13.

However, the exact role of cortical folding in behavior is still debated15

and this topic has fascinated early neuroanatomists16–18 and stimulates
contemporary research in diverse fields such as biology, anthropology or
cognitive neuroscience12,19–21. The dominant view is that higher levels of
cortical folding are linked to improved cognitive performance both within

and across species11,17,22,23. Patients with certain neurodevelopmental dis-
orders present cortical folding abnormalities and cognitive deficits24 and
cross-sectional studies in healthy populations demonstrate positive corre-
lations between cortical morphology and behavioral performance (most
frequently with parameters of ‘intelligence’) but with varying small to
moderate effect sizes22,25–28. A recent prospective observational study found
strong correlations between cortical folding and intra-individual changes in
cognition27, although possible differences in the extent and intensity of
practice could not be taken into account. In the motor domain, previous
investigations revealed performance correlations with cortical folding (at a
single point in time) in developmental and clinical samples29,30, as well as
relationships between handedness with sulcation31, speech motor recovery
with gyrification32 and expertise-related gyral differences in elderly
musicians33. However, according to a recent review on individual difference
predictors of motor learning34, the association between cortical folding and
differences in motor learning remains unexplored. We here exploit multi-
cohort longitudinal data to test whether cortical folding in themotor system
might form a potential predisposition for intra-individual performance
gains during motor practice over several weeks.
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It has been suggested that high human performance does not directly
result from evolved brain features alone, but rather from an interaction
between fertile learning environments and remarkable learning capacities
provided by the brain35,36. Motor learning induces brain plasticity37 but
behavioral genetics research also indicated that practice increases the
relative importance of genetic influences on performance and reduces the
effects of environmental variation resulting from different prior
experiences38,39. Research in patients indicate that the ability to perform
efficient visual-based corrective movements in adulthood is highly
dependent onmotor experience at a very young age40. Therefore, learning
in the human brain appears to bemediated by certain predispositions and
practice-induced neural plasticity in the cortical and subcortical gray and
white matter25,28,41,42. However, no study to date investigated whether
individual differences motor learning capability are associated with rela-
tively stable markers of cortical neuroanatomy, such as neocortical fold-
ing. Building on recent developmental studies of behaviorally relevant
features of cortical shape5 and our own work on motor learning-induced
cortical plasticity43, we hypothesize that individual variations in cortical
folding does predict the individual potential to learn a newmotor task and
that such folding variations colocalize with learning-induced neural
plasticity.

In the human brain, local geometric features of the cortical surface
(e.g., cortical curvature) appear to fundamentally constrain brain
function44. Cortical curvature can be examined in vivo using magnetic
resonance imaging (MRI), providing a folding-related measure to inves-
tigate spatially-specific brain-behavior relationships45,46. Recent
comparative15 and experimental4 studies indicate that, under the limited
space constraints of the skull, the size, thickness and cellular composition
of the cortical sheet influence the degree of cortical folding. Under equal

space conditions, a larger cortical surface area and/or a smaller cortical
thickness leads to higher degrees of folding. Therefore, indices of cortical
surface area, cortical thickness and intracortical microstructure enable a
complementary investigation of brain-behavioral associations of cortical
folding. To comprehensively characterize the link between local cortical
folding and motor learning, we pursue a stepwise analysis approach.
Specifically, in cortical regionswith learning-relevant geometrical features
(cortical curvature), we further investigate contributions of cortical sur-
face area, cortical thickness and intracortical microstructure (assessed
using myelin-sensitive magnetization transfer saturation and neurite
density index).

Using data sets from previous motor learning studies, we aim to dis-
entangle the contributions of higher cortical folding either to superior
(absolute)performance or superior learning capability (steeper learning rate
above and beyond initial performance differences). The joint analysis of
MRI data from three separate motor learning experiments43,47–49 allowed us
to examine individual learning differences in a challenging balance task over
a practice period of 4 to 6 weeks50 (Fig. 1a). The stabilometer balance task
served as a model paradigm for learning new whole-body motor coordi-
nation patterns51.We identified a robust positive association betweenhigher
cortical folding in premotor cortical regions and superior motor learning
capability (learning rate). The effect of higher cortical folding to superior
absolute performance was fully mediated by differences in learning rate.
Larger cortical surface area, but not cortical thickness or cortical micro-
structure, contributed to the identified relation between premotor cortical
folding and learning rate. A spatial overlapwas identified between premotor
cortical folding predispositions and learning-induced structural brain
plasticity. These results suggest a link between neocortical surface folding
and individual differences in learning ability.

Fig. 1 | Behavioral data. Motor learning task, performance improvements, per-
formance stabilization and increased inter-individual differences in motor learning
over 6 practice sessions. a We tested motor learning of a challenging whole-body
balancing task51. Participants were instructed to keep a seesaw-like moving stabil-
ometer balance platform in a horizontal target interval (±3°) as long as possible
during a trial length of 30 s. b Motor performance was measured as the time (in
seconds) in which participants kept the board within the ±3° target interval in each
of 15 practice trials per session (see Supplementary Video files for motor perfor-
mance of participants at the beginning and end of practice). c Decrease in trial-to-

trial variability (coefficient of variation, COV) of session-specific motor perfor-
mance. d Increase of the interquartile range (IQR) of session-specific between-
person variation in motor performance. IQR increased from 3.7 s at session 1 to
8.7 s at session 6. e From the first to the sixth session, participants tended
to maintain their performance rank (Spearman correlation between initial
and final performance, R2 = 0.238, p < 0.001) but there were large individual dif-
ferences in learning (blue/yellow: higher/lower performance than predicted from
baseline).
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Results
Long-termmotor practice improvesperformance, reduces intra-
individual performance variability and enhances inter-individual
performance differences
Participants practiced a whole-body balance task in six sessions evenly
spaced over 4 to 6 weeks (Fig. 1a, b). Throughout the practice periodmotor
performance increased continuously (main effect of session F(5,
415) = 202.61, p < 0.001, ηp2 = 0.709) with significant performance gains
across the six practice sessions (all post-hoc comparisons between time
points were significant at p < 0.001, Bonferroni corrected for multiple
comparisons). Intraindividual (trial-to-trial) variability decreased (main
effect of session F(5, 415) = 109.89, p < 0.001, ηp2 = 0.570, Fig. 1c) and
absolute between-person performance differences (IQR) increased during
practice (Fig. 1d). This shows significant inter-individual variability in
motor learning (Fig. 1e). To relate the differences in motor learning to
variations in cortical folding, we fitted a general power function

y xð Þ ¼ a � xn

to the session-specific mean performance scores of each participant. The
intercept a of the power function represents initial performance, while
the exponent n reflects the individual learning rate and x is session. The
general power function yielded an adequate fit to the individual
performance data with a median coefficient of determination of
R² = 0.90. In accordance with the literature52, initial performance a
negatively predicted learning rate n (R2 = 0.350, p < 0.001, Supplementary
Fig. 1). Therefore, we adjusted the learning rate for interindividual
differences in initial performance53 and used the term ‘learning rate’ for
this in all subsequent analyses.

Cortical folding is associated with inter-individual differences in
motor learning
We quantified vertex-wise cortical curvature to measure local cortical
folding54. Due to the relatively low initial image resolution (1 × 1 × 1mm
voxel size), we had to limit our analysis of the folding to the cerebral cortex.
Larger cortical curvature values indicate higher degrees of local cortical
folding. We tested for correlations between higher cortical curvature and
steeper learning rate (adjusted learning rate n), higher initial performance
(intercept a), enhanced short-term improvements within the first practice
session and higher asymptotic/final performance in the last practice session
6. All analyses were adjusted for age, gender, body height, study, and total
intracranial volume (see covariate correlation matrix in Supplemen-
tary Fig. 2).

We did not observe significant correlations between local cortical
curvature and initial performance or short-term improvements (Supple-
mentary Figs. 3 and 4). Instead, a steeper learning rate n was positively
associated with higher cortical curvature in the left pre-supplementary/
supplementarymotor area (pre-SMA/SMA, peak at x =−13, y = 18, z = 63,
T = 5.97, whole-cortex analysis with FWE correction at p < 0.05, nonpara-
metric t-statistic with 5000 permutations, see Fig. 2a, b and Supplementary
Fig. 5). No dataset was excluded due to outliers in performance values.
However, using a fixed threshold (two standard deviations below and above
the learning rate mean), there were two outliers below participants’ per-
formance scores. A re-analysis showed that the relationship between
learning rate and cortical foldingwas comparable inpre-SMA/SMAwithout
these two participants (R2 = 0.31 for N = 84 and R2 = 0.29 for N = 82). This
positive correlation was reproducible in a second MRI scan of the same
participants (Supplementary Fig. 6). Approximately 30% of the variance in
learning rates was explained by differences in cortical curvature in pre-

Fig. 2 | Cortical folding is related to motor learning. Results of whole-brain
correlation of vertex-wise cortical curvature and learning rate (N = 84).
a Uncorrected results at p < 0.001 (left) and family-wise error-corrected results at
p < 0.05 (inset) were projected onto a template showing surface variations in sulcus
depth. b Association between cortical folding (in the cluster representing the FWE-
corrected effect in the original analysis [A]) and learning rate (displayed for visua-
lization of the range of individual values only and not for inference). c Subsample
results in the three independent learning experiments (displayed for visualization of
the range of individual values only and not for inference, detailed information
on sub-samples in Supplementary Table 1). d Structural equation model

depicting relationships between cortical folding in pre-SMA/SMA (cluster
from 2 A, unadjusted for a), learning rate (adjusted for a) and final performance
on session 6 (unadjusted for a). Results of a separate analysis of final
performance are depicted in Supplementary Fig. 8. Standardized coefficients with
95% bootstrapped confidence intervals (CI) are represented on paths. e Pearson
correlations between cortical folding and motor performance. Gray bars
represent session-specific performance controlled for initial performance in
session 1 (i.e., residual gain) and black bars represent correlations with actual
session-specific performance. * indicate significant paths at p < 0.05 (with CIs not
including zero).
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SMA/SMA (R2 = 0.30, p < 0.001,N = 84). Detailed analyses of performance
improvements in each of the six practice sessions revealed progressively
stronger associations between cortical curvature and motor performance
throughout the practice period (Fig. 2e). Lastly, the analysis of final per-
formance revealed a non-significant trend for a positive association with
cortical curvature in left pre-SMA/SMA(localmaximumat x =−15, y = 20,
z = 62, T = 4.40, whole-cortex analysis with FWE-corrected p = 0.053,
nonparametric t-statistic with 5000 permutations) and a significant asso-
ciation in a cluster in left supramarginal gyrus (local maximum at x =−59,
y =−56, z = 21, T = 4.55, whole-cortex analysis with FWE correction at
p < 0.05, nonparametric t-statistic with 5000 permutations, see Supple-
mentary Fig. 8). As can be seen in Fig. 2a and Supplementary Fig. 8, there
was a close spatial relation between curvature correlations in left pre-SMA/
SMA and learning rate as well as final performance. In order to confirm the
link between cortical folding, learning rate and final performance, we used
structural equation modeling (see Materials for SEM fit indices). The SEM
results revealed no significant direct effect but an indirect effect of cortical
folding on final performance that was fully mediated via learning rate
n (Fig. 2d).

Individual folding-related predisposition to motor learning is
independent of cortical thickness, but dependent on cortical
surface area
At the macroscopic level, cortical folding depends on the size and thickness
of the cortical sheet (surface area and cortical thickness, see ref. 15). Thus,we
tested the potential contributions of cortical surface area and cortical
thickness to the observed relationship between cortical folding and learning
rate using SEM.

Modeling results are shown in Fig. 3a (see Materials for model fit
indices). Within a larger region encompassing left pre-SMA/SMA (see
Methods for ROI description), cortical surface area, but not cortical thick-
ness, exerted an indirect effect on learning rate n via folding (indirect effect
of surface area on n: 0.54 [95% CI = 0.305, 0.749], p < 0.001; no indirect
effect of thickness on n: 0.02 [95% CI =−0.076, 0.134], p = 0.686). We
confirm a direct effect of cortical folding on learning rate nwithin this SEM
(R2 = 0.21, see also Fig. 3b for Pearson correlation between cortical folding
and learning rate n, R2 = 0.16, p < 0.001).

Interestingly, the positive relationship between cortical folding and
learning rate n remained significant in a partial correlation analysis when
adjusting for differences in surface area and cortical thickness (R2 = 0.17,
p < 0.001, Fig. 3c).

In order to extend the effect of premotor cortical curvature on learning
rate, we used the related surface area-dependent gyrification index55 and
found a spatial pattern of positive correlations that is consistent with the
premotor effects observed with the curvature-based measure (Supplemen-
tary Fig. 9). Thus, differences in cortical surface area contributed to the
association between premotor folding and learning rate, but additional
factors independentof cortical surface area and thickness also contributed to
explain differences in learning rate.

Cortical folding ties to learning rates independent of cortical
myelination and cortical neurite density
Cross-species comparisons do suggest that highly convoluted cortices have
lower neuronal densities than less convoluted cortices56. Also, the folding
process in regions developing late during gestation (secondary and tertiary
sulci) is likely to be mediated by intracortical microstructure6 as well as
biomechanical constraints57. In order to test whether the effect of folding on
learning rate is significantly influenced by intracortical microstructure, we
measured neurite density and myelin content in pre-SMA/SMA in a
subsample58 (N = 26; mean age 22.1 years, range 19–29 years, Fig. 4c) from
which we additionally obtained quantitative and multi-shell diffusion MRI
data. In this subsample, we estimated intracortical neurite density index
(NDI) andmyelin-sensitivemagnetization transfer saturation (MT). In line
with previous studies59, we observed a positive correlation between chron-
ological age and MT, in particularly in deep cortical gray matter, in vertex-

wise (Supplementary Fig. 10) and ROI-wise correlation analyses (R2 = 0.33,
p = 0.002, Fig. 4d). However, no significant correlations between MT and
learning rate n were identified, neither in ROI (R2 ranged from 0.017 to
0.034, p > 0.36, Fig. 4e) nor in vertex-wise analyses (Supplementary Fig. 10).
Partial correlations confirmed that associations between cortical folding and
learning rate n remained significant when controlling for variations in MT
or NDI (partial R2 ranged from 0.26 to 0.27, all p < 0.009, Fig. 4f). These
results via imaging proxies in a sub-sample of our study suggest that the
association between higher premotor cortical folding and steeper learning
rates is less likely to be related to lower intracortical myelin content or
neurite density across individuals.

Coincident effects of cortical folding and practice-induced
plasticity
Our previous study revealed structural gray matter plasticity in the pre-
SMA/SMAwithpractice of the very samewhole-body balance task43 (Fig. 5a
left). This gives us the opportunity to test the spatial coincidence of folding
predispositions for learning and learning-induced plasticity. Within the
cluster that showed strongest graymatter volume increases across six weeks
of motor practice (Fig. 2 in ref. 43), higher cortical curvature was sig-
nificantly associated with steeper learning rates (peak at x =−15, y = 18,
z = 59, T = 5.64, FWE corrected p = 0.001, Fig. 5a right). Also, average
cortical curvature in this cluster was significantly related to individual dif-
ferences in learning rate (R2 = 0.29, p < 0.001, Fig. 5b). This effect was
consistent across the three sub-samples (Fig. 5c). Using SEM of ‘plasticity’
ROI values, we confirm the indirect effect of cortical folding on final per-
formance (both unadjusted for a, Fig. 5d) mediated via learning rate n
(adjusted for a).

Discussion
Given the complexity ofmechanisms involved in the expansion and folding
of the cerebral cortex, and thus its tremendous costs in terms of genetic,
cellular, and histogenic evolution, the ecological advantages of cortical
folding must be more than remarkable60. Using longitudinal training
datasets, we show that human participants with higher degrees of cortical
folding in a premotor area have larger performance gains (steepness of the
learning rate) when learning a new whole-body balance task across several
sessions of practice. These local effects of cortical folding overlapped with
balance practice-induced structural plasticity in premotor areas observed in
previous studies43,58. Our data support models that (1) attribute higher
cortical folding to larger cortical surface area and (2) view individual dif-
ferences in performance in adulthood as the result of (neural) predisposi-
tions that unfold in the context of new learning experiences. The results of
our study support the hypothesis that higher levels of cortical folding endow
individuals with enhanced adaptive capacities, but not with superior per-
formance per se.

Interindividual differences in global and local cortical folding correlate
with behavioral performance in adult humans8,13,22,27,45,46,61–65. Such studies
usually assessed cognitiveormemoryperformance at a singlepoint in time–
with intelligence quotient being the most commonly measured variable to
date. The effect size of brain-behavior correlations varied considerably but
generally suggest a positive association between higher folding and per-
formance at a single point in time. Here, using a longitudinal measure of
performance change, we report that approx. 30%of variance in learning rate
can be explained by the degree of local cortical folding in premotor cortical
regions (pre-supplementary/supplementary motor areas). In line with
ref. 27, larger cortical surface area contributed to the identified association
between cortical folding and learning rate. While the technical reproduci-
bility (Supplementary Fig. 6) of the folding-learning association was
expected because of the high stability of non-invasive markers of external
brain morphology, we were surprised by the spatial overlap of positive
correlations with a previously identified brain region responding with
cortical plasticity through practice of the same balance task (Fig. 5c).

We report a comparably large effect (approx. 30% of explained var-
iance) for a brain-behavioral correlation of cortical folding in adult humans
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Fig. 3 | Cortical surface area, but not cortical thickness, is related to the effect of
cortical folding on learning. Interrelationship between folding, thickness and
surface area. a SEM depicting the relationships between cortical folding (‘folding’),
cortical surface area (‘surface’), cortical thickness (‘thickness’), and learning rate n
(‘learning’) in the left caudal superior frontal gyrus ROI. Standardized coefficients
with 95% bootstrapped CIs are represented on paths. Correlations between average

folding index and surface area in the ROI with learning rate n. Folding index is either
unadjusted (b) or adjusted (c) for differences in surface area and cortical thickness.
Note that all variables used in the model and for correlation analyses were corrected
for differences in age, gender, height, study, head coil, baseline performance, and
total intracranial volume. * indicate significant paths/correlations at p < 0.05 (with
CIs not including zero).

Fig. 4 | Cortical folding ties to learning rates
independent of cortical myelination and cortical
neurite density. Analysis of microstructural tissue
properties of the premotor cortex. Distribution of
myelin-sensitive magnetization transfer saturation
(MT) values (a) and the neurite density index NDI
(b) across the left hemisphere. Color bars show
regions of high MT or NDI in red (e.g., primary
motor and somatosensory cortices) and regions of
lower MT and NDI in blue (e.g., anterior prefrontal
regions). Note the MT product-sequence-specific
representation of MT values with a factor of 2. cMT
and NDI values were analyzed in pre-SMA/SMA,
the cluster in which cortical folding positively cor-
related with learning rate n (Fig. 2a). d Pearson
correlations between MT in superficial gray matter
(GM), deep GM, and cortex-adjacent white matter
with chronological age. e Pearson correlations
between MT in superficial GM, deep GM, and
cortex-adjacent white matter with learning rate n.
f Partial correlations between cortical folding and
learning rate adjusted for MT in superficial GM,
deep GM, and cortex-adjacent white matter. *
indicate significant correlations at p < 0.05, while ns
indicates no significant correlation.
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(Fig. 2 and Supplementary Fig. 5). The relatively long practice period could
have favored the identification of brain-behavioral relationships34. In
addition, and compared to other studies testing for associations with indi-
vidual differences in motor learning34, our study included a relatively large
sample size. This was possible by pooling datasets from three previous
studies43,48,58 with comparable MRI and behavioral learning data (Supple-
mentary Tables 1–3). The cortical folding results from the main analysis
(N = 84) were not dependent on the use of different T1-weighted MRI
protocols within these sub-samples (Supplementary Table 2). Nevertheless,
direct or close replication in new samples are essential to increase the level of
evidence of our brain-behavioral model66.

We found stronger associations between cortical folding and motor
performance with increasing amounts of practice. This can be explained by
the increasing impact of residual gains across practice (the improvement in
performance from the first session to a later practice session) on absolute
performance levels (Figs. 2e, 5e, Supplementary Fig. 6). In fact, performance
gain fully mediated the effect of cortical folding on final performance
(Figs. 2d and5d).This suggests that the relationbetween cortical folding and
(acquired) performance level may be an indirect consequence of cortical
folding’s relationship with learning ability (as suggested by our SEM’s in
Figs. 2 and 5).

Practice can further enhance individual differences in performance
associatedwith relatively stable factors (e.g., aptitude, genotype, phenotypic,
and other psychological traits), a view held in developmental psychology
and behavioral genetics39,67. We interpret our finding as a reflection of
interindividual differences in capabilities (rather than actual performance
levels),mediated by the degree of cortical folding35,36.Whenour participants
learned the postural task across six sessions, the impact of initial perfor-
mance differences on subsequent performance gains decreased during
practice (Supplementary Fig. 11). A large fraction of this decrease can be
explained by variations in cortical folding of the pre-SMA/SMA, i.e., the
influence of cortical folding on performance gains increases with practice.
Future studies are required to disentangle the specific contributions of early

environmental factors to behaviorally meaningful variations in cortical
folding.

A large network of cortical and sub-cortical regions is involved in gait
and postural control68, but MR image resolution limited our analyses to
cerebral cortical associationswith individual differences in balance learning.
The supplementarymotor area is critically involved in anticipatory postural
control and gait69,70. This region also adapts its structure in response to
balance learning71. Practice of the stabilometer balance task (as used in the
present work) induces structural gray matter changes in the left pre-SMA/
SMA and microstructural changes in the underlying white matter tracts of
the left centrum semiovale43. Practice-induced structural changes were also
accompanied by increased functional connectivity between the pre-SMA/
SMA and medial parietal areas72. This indicates that postural learning is
associated with the connectivity and folding pattern of the pre-SMA/SMA
embedded within a wider cortical-subcortical network responsible for
posture and gait control. Our study was not designed to disentangle
potential contributions of (pre-SMA/SMA) cortical folding to a general
learning ability essential for different types of motor or cognitive tasks.
Future studies are required to test the general predictive ability of cortical
foldingbyusingdifferent learning taskswithin the same sample.Thepattern
of correlations identified in our study suggest that associations with cortical
folding increase with longer practice periods.

Although theoverall patternof cortical folding is relatively stable across
the lifespan, supportive interventions could have a significant impact on
individual trajectories of motor learning48. In line with this, we found an
overlap of meaningful folding variations with practice-induced plasticity in
pre-SMA/SMA which is consistent with research using juggling as long-
term motor learning paradigm28. A spatial overlap was found between
juggling-induced graymatter changes in parietal regions and an association
between baseline parietal gray matter volume with subsequent learning-
induced performance improvements28. Together with our study, this sup-
ports future efforts tomitigate potential behavioral disadvantages related to
cortical predispositions by using appropriate training methods. In this

Fig. 5 | Cortical folding is associated with learning in regions undergoing
practice-induced structural plasticity. Relationship between cortical folding and
plasticity in the premotor cortex. a The clusters of significant learning-induced gray
matter changes43 (left) that overlapped with positive correlation of cortical curvature
in pre-SMA/SMA and learning rate (right). b, c Whole-sample and sub-sample
correlations between learning rate and cortical curvature in the pre-SMA/SMA
cluster in A. d SEM depicting the relationship between cortical folding in pre-SMA/

SMA, learning rate (adjusted for a) and final performance on session 6. Standardized
coefficients with 95% bootstrapped confidence intervals (CI) are represented on
paths. e Pearson correlation coefficients between residualized cortical folding and
motor performance.Gray bars represent session-specific performance controlled for
initial performance in session 1 (i.e., residual gain) and black bars represent corre-
lations with actual session-specific performance. * indicate significant correlations/
paths at p < 0.05 (with CIs not including zero).
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context, augmentative interventions such as vigorous physical exercise can
further improve learning in this particular postural task48. The beneficial
effect of vigorous exercise on balance learning is mediated by structural and
functional changes in the fronto-parietal brain network48,73. Thus, plasticity-
inducing intervention strategies may be a fruitful approach to enhance
learning beyond neural predispositions (see Supplementary Notes).

Lastly, cortical folding is the result of different mechanisms extrinsic
and intrinsic to the cortical sheet. Extrinsic sources can be the volumetric
constraints of the cranial vault harboring an expanded cortex or connected
axons pulling cortical and sub-cortical regions closer together to enhance
information transmission speed74. Intrinsic mechanisms can be a higher
level of cortical neurogenesis, differential tangential expansion of upper
cortical layers or neuropile growth4,6. Our structural equation model sug-
gests that cortical folding statistically mediates the effect of higher cortical
surfacearea onmotor learning (Fig. 3a). In addition to cortical surface area, a
partial correlation (Fig. 3c) indicates that surface area-independent extrinsic
and/or intrinsic factors play a role in this folding effect. Ultimately, studies
with ultra-high resolution MRI are required to reveal the microstructural
sources of cortical folding that contribute beyond surface area (e.g., U-fibers,
layer-specific microstructure).

NODDI and myelin-related quantitative MRI were the focus of our
recent longitudinal training study58 (this sub-sample is included in themain
analysis of the current paper) as we wanted to examine plasticity using
parameters with higher biological specificity. However, the multi-shell dif-
fusionMRI and quantitativeMRI sequences required to test these questions
were not available or used in our previous longitudinal studies43,48, so we
analysed relationships between cortical folding, myelin and NODDI in
participants from one subsample only (n = 26). The correlation between
cortical folding in pre-SMA/SMA and learning rate was sufficiently high
within this subsample (see Fig. 2c yellow). For this reason, we had the
opportunity to test potential microstructural contributions (using NODDI
and qMRI) to the folding-learning link using partial correlation ana-
lyses (Fig. 4).

Unfortunately, no motor transfer or retention tests were included
throughout the longitudinal study designs. However, in one of our previous
studies, retention performance was measured 3 months43 and 15 months
(not included in ref. 43) after the end of the intervention. The retention
results (see Supplementary Fig. 1 in ref. 43) suggest that performance in this
task is very stable. This would fulfill an important criterion of Schmidt and
Lee’s definition of motor learning as a relatively permanent change in a
person’s ability to perform a motor task/skill75. Furthermore, the trial-
related behavioral data presented in Supplementary Fig. 12 and additional
analyses of performance decrements between sessions (see legend of Sup-
plementary Fig. 12) suggest a high level of retention across practice days.

We can only speculate about the reasons for the left-lateralized asso-
ciation between cortical curvature andmotor learning rate (Fig. 2a). First, a
meta-analytic study of fMRI BOLD signal changes suggests that the left
dorsal premotor region is a hub for motor learning76. Second, our previous
longitudinal training study demonstrated bilateral gray matter changes in
this regionwithin the first twoweeks of balance training43. It is worth noting
that the left-sided graymatter change appeared to be longer lasting than the
right-sided effect, as we were only able to observe left-sided gray matter
changes over the entire motor practice period (6 weeks). Based on our own
results and other studies on bimanual coordination77, we interpret these
results to suggest that the left pre-SMA/SMA is a critical region in the
coordination and learning of complexmotor tasks. However, our studywas
not designed todistinguishbetween the role of left and rightpre-SMA/SMA.

From an evolutionary perspective, advanced sulcal morphology in
caudal frontal regions (rostral premotor areas) likely emerged after the
common ancestor of humans and great apes split from that of other apes
(e.g., gibbons) approx. 16 Mya, but before chimpanzees and humans
diverged from their last common ancestor approximately 2.17Mya36. Ske-
letal adaptations designate the evolution of orthograde bipedality in human
ancestors likely around 4–7 million years ago78. Whether phylogenetic
cortical brain adaptations, in addition to skeletal and vestibular organ

adaptations79,80, contributed to bipedality and the efficient use of tools
during bipedal stance and locomotion is currently unclear, but not unlikely
in light of evolutionary expansions of associative frontal andparietal regions
implicated in human mobility. Electrophysiological and clinical studies in
humans show that the pre-SMA/SMA is critical for the predictive control of
posture, e.g., during gait initiation and dynamic postural control69,70,81,82.
Predictive postural control is required both for successful learning of new
postural skills but also for efficient manual tool-use during upright stance
and gait (e.g., to predictively counteract tool-use related shifts in the body’s
center-of-mass83). When our participants acquired a new postural skill on
the stabilometer, motor control strategies shifted from an initial compen-
satory strategy (compensation of initially unpredictable board motion) to a
predictive postural control strategy with anticipatory movements of arms,
trunk and the upper body (i.e., the board motion becomes predictable and
thereby controllable through anticipatory movements; see Supplemental
Video files). Although characteristics of our postural learning task differ
from the postural demands of our ancestors during terrestrial or arboreal
stance and locomotion, the neural machinery of predictive postural control
seems critical for successful behavior in both scenarios. Although spec-
ulative, the pre-SMA/SMA could have played an important part in meeting
these higher demands, with a higher degree of cortical sheet size and folding
predisposing for better capabilities tomanage complex postural demands in
arboreal and terrestrial contexts.

While the underlying factors of cortical folding are subject to intense
research in the biological and physical sciences84, our study investigated
behavioral learning capacities associated with higher cortical folding levels
in adult humans. The fact that the learning rates in our study were adjusted
for differences in initial performance (and that cortical folding was also not
related to initial performance differences) has implications for inclusive
learning approaches. Individual learning capabilities, irrespective of initial
performance conditions, may be associated with stable and region-specific
morphological characteristics of the cortex. Under the assumption of phy-
sical constraints to the information processing capacity of the cerebral
cortex9, education seems critical for an individual to realize its potential in a
particular domain regardless of their initial performance in that domain.
Our study also showed that learning rates fullymediated the effect of cortical
folding on asymptotic levels of performance at the end of practice. In that
sense, improved human performance does not necessarily emerge from an
extraordinary brain morphology, but rather from an interaction between
fertile learning environments and remarkably high learning capabilities36. In
our study with healthy human participants, high learning capability was
partially reflected in the surface morphology of the human neocortex.

Methods
Experimental design
We analyzedmagnetic resonance imaging (MRI) and behavioral data from
three independent motor learning experiments involving adult human
participants (see Participants). All participants with complete MRI and
behavioral data from these studieswere included in the analyses.MRI of the
brain was performed before motor practice of a challenging new postural
task on a stabilometer (see Postural task practice). Indices of motor per-
formance and learning rate over several practice sessions (see Analysis of
motor learning) were correlated with local indices of cortical folding from
preprocessed MRI data (see MRI acquisition and MRI preprocessing).
Statistical analyses involved vertex-wise comparisons of cortical curvature
and region-of-interest (ROI) comparisonsof cortical and sulcalmorphology
as well as intracortical microstructure (see Statistical analysis).

Participants
Participant characteristics are depicted in Supplementary Table 4. For the
main analysis, a sample of 84 right-handed participants with normal or
corrected-to-normal vision (mean age of 23.5 years, age range of 19–35
years, 34 females, mean body height 174 cm, body height range
153–191 cm) was included from the datasets of three independent motor
learning experiments43,47–49. In addition, data from ref. 85 was used to
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increase the sample size for a separate analysis of short-term improvements
inmotor performance (only data from the first training session). All studies
were performed in accordance with the Declaration of Helsinki and
approved by the Ethics Committees of the Universities of Leipzig or Mag-
deburg (Germany). All ethical regulations relevant to human research
participants were followed. Exclusion criteria were contraindications to
MRI, body mass index (BMI) > 30 kg/cm2, a history of neuropsychiatric
diseases, left-handedness and prior experience with the task to be learnt.
Individuals who were physically active for more than 4 h per week
(including balance activities in other sports) were excluded from the studies.
Only one of the five subgroups (drawn from the three longitudinal studies)
included more physically active individuals (see Group 4 in Supplementary
Fig. 7), who exercised more than 4 h per week. Here, our aim was to test
whether people with high levels of physical activity have advantages in
learning a balance-demanding task. This was not the case, which is why we
included this subgroup in the main analysis. The correlations between
cortical folding and learning rate per subgroup (Supplementary Fig. 7)
indicate a comparable effect size in group 4 compared to the other sub-
groups with lower physical activity. All participants were screened for
contraindicationsofMRIbeforeparticipation.Participantswerenaive to the
experimental setup andpostural trainingprocedure andwereof comparable
educational level (all participants had A-level).

Postural task practice
Participants learned a challenging whole-body postural task on a sta-
bilometer either on one practice session (N = 131) or over six practice
sessions (N = 84). From the 84 participants, practice sessions were either
distributed over six consecutive weeks with one training session per week
(N = 58, study 1 and study 3) or distributed over four consecutive weeks
with 1–2 practice sessions per week (N = 26, study 2). The stabilometer is
a movable, seasaw-like platform attached to a superimposed pivot with a
maximum board deviation of 26° to each tilt side (stability platform,
model 16030 L, Lafayette Instrument). Participants were instructed to
stand on the stabilometer board and hold/restabilize the platform within
a tolerance interval of ± 3° from the horizontal (see Supplementary Video
files). After each of the 15 trials (30 s in each trial) per practice session,
participants received verbal feedback on motor performance, measured
as the accumulated time (in seconds) that the Stabilometer board could
be held within the target interval of ± 3° (time-in-balance). A short break
of 2 min between trials was used to avoid fatigue. Each practice session
lasted approx. 45min while net practice time on the stabilometer was
7.5 min per session. To familiarize subjects with the task and to prevent
falls, we allowed the use of a supporting hand rail in the first trial of
session 1. Familiarization trials were excluded from the analysis. We used
a discovery learning approach86 in which no information about the
performance strategy (only the trial-wise quantitative performance
feedback) was provided during practice. Therefore, participants had to
discover their optimal strategy to improve task performance (e.g., error
correction strategy with legs, hip, and arms) based on by trial and error.

Analysis of motor learning
The mean performance scores (mean of time-in-balance values across 15
trials) on each of the six practice sessions for each individual participant
were fitted to a general power function, y(x) = a * xn, which describesmotor
learning over longer timescales well87. In this function, the base a denotes
initial task performance, x is training session (time devoted to practice), and
the exponent n indicates the slope of the function (rate of learning). Fur-
thermore, early learning was calculated from performance data on the first
practice session. For that, we subtracted themean of the first five trials from
themean of the last five trials.We used learning rate (n), initial performance
(a) and early learning (performance gain during session 1) as dependent
variables in statistical analyses of brain-behavioral relationships. As expec-
ted from motor learning literature52, initial performance negatively pre-
dicted learning rate (Fig. S1). To get an unbiased readout of learning ability,
we adjusted n for differences in a53.

Magnetic resonance imaging (MRI) acquisition
Anatomical T1-weighted Magnetization Prepared Rapid Acquisition with
Gradient Echoes (MPRAGE) data88 were acquired on a 3 TMAGNETOM
MRI system (Siemens Healthcare, Erlangen, Germany) with 176 slices in
sagittal orientation (study 1 N = 27: Tim Trio system using a 32-channel
head coil, study 2N = 26: Prisma system using a 64-channel head coil, study
3 N = 31: Prisma system using a 32-channel head coil). The imaging para-
meters used were as follows. Study 3: inversion time (TI) = 900ms, repeti-
tion time (TR) = 2300ms, echo time (TE) = 2.98ms,flip angle = 9°,field-of-
view (FOV) = 256 × 240mm2, spatial resolution = 1 × 1 × 1mm3; study 1:
(TI) = 650ms, (TR) = 1300ms, (TE) = 3.46ms, flip angle = 10°,
(FOV) = 256 × 240mm2, spatial resolution = 1 × 1 × 1mm3; study 2:
(TR) = 2600ms; (TE) = 5.18ms; flip angle = 7°; (FOV) = 256 × 256mm2;
spatial resolution = 0.8 × 0.8 × 0.8 mm3.Due to thepotential influenceof the
radiofrequency head coil on brain morphometric indices89 we corrected for
this factor in the statistical models. In addition, we corrected for MRI
scanner and MPRAGE sequence-specific effects using a separate nuisance
covariate for each of the three studies.

MRI data sensitive to cortical microstructure were acquired in the
context of study 2 (see above,N = 26) by a 3 TMAGNETOMPrisma system
(SiemensHealthcare, Erlangen,Germany) using a 64-channel head coil.We
acquired the multiparameter mapping (MPM) protocol90 using three dif-
ferent predominant T1-, proton density (PD-), and magnetization-transfer
(MT-)weighted images with multi-echo Fast Low-Angle Shot (FLASH)
scans by appropriate choice of the repetition time (TR) and the flip angle α:
TR/α = 23.0ms/25° for T1w scan, 23.0ms/5° for PDw scan, and 37.0ms/7°
for MTw scan. Multiple gradient echoes were acquired with alternating
readout polarity at 8 equidistant echo times (TE) between 2.46ms and
19.68ms for T1w and PDw acquisitions and at 6 equidistant TE between
2.46ms and 14.76ms for MTw acquisition. Other acquisition parameters
were: 0.8 mm isotropic resolution, 224 sagittal partitions, field of view
(FOV) = 230 × 230mm.The total acquisition timewas34.23min.Transmit
and receive field correction acquisition was done before every single image
(56 sagittal partitions, field of view FOV= 230 × 230mm, TR = 4,1ms,
TE = 1,98ms).

Whole-brain diffusion-weighted (DW) images were obtained with a
monopolar single-shot spin echo EPI sequence: TE = 74ms; TR = 4970ms;
flip angle α = 90°; parallel Generalized autocalibrating partially parallel
acquisitions (GRAPPA) acceleration factor = 2, matrix: 130 × 130;
FOV= 208 × 208mm2; nominal spatial resolution = 1.6 × 1.6 × 1.6mm3;
multiband acceleration factor = 2; phase-encoding direction: anterior »
posterior; 228 isotropically distributed diffusion sensitization directions (38
at b = 1000 s/mm2, 76 at b = 2000 s/mm2, and 114 at b = 3000 s/mm2) and
14 b = 0 s/mm2 images (interleaved throughout the acquisition) were col-
lected. The sampling scheme was designed according to Caruyer and co-
workers (http://www.emmanuelcaruyer.com/q-space-sampling.php91). To
generate appropriate fieldmaps to correct for susceptibility-induced dis-
tortions, nine b = 0 s/mm2 imageswith reversedphase encoding (posterior »
anterior) were also acquired. The total scan duration was 22min 31 s.

MRI preprocessing
Data quality control. MR images of all participants passed both the
visual quality inspection and the CAT12 data quality checks. All scans
from 131 participants reached a weighted average image quality rating
(IQR) of 86.79% (range 80.64–89.87%) corresponding to a quality grade
B while the long-term practice cohort (N = 84) reached a weighted
average (IQR) of 87.32% (quality grade B; range 85.62–89.87%). In the
main analysis (N = 84), data quality per sub-sample (Fig. 2) was com-
parable with slightly higher quality values for the T1-weighted images
obtained with the 64-channel head coil (study2: 89.41%) than with the
32-channel head coil (study1: 86.41%, study3: 86.35%).

Cortical curvature estimation. T1-weighted images were preprocessed
using the CAT12 toolbox, v12.7 r1738 (Christian Gaser, Structural Brain
Mapping Group, Jena University Hospital; http://www.neuro.uni-jena.
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de/cat12/92), within SPM12 v7771 (Statistical Parametric Mapping,
Wellcome Trust Center for Neuroimaging; http://www.fil.ion.ucl.ac.uk/
spm/software/spm12/) for Matlab R2017b (The MathWorks, Inc.). This
image analysis pipeline allows for the computation of surface-based
parameters based on, e.g., the mean curvature and procedures are
described in detail on the CAT 12 website and manual (https://neuro-
jena.github.io/cat/index.html#DOWNLOAD). All procedures followed
the recommendations in the CAT 12 manual. Briefly, initial voxel-based
processing involves spatially adaptive denoising, resampling, bias cor-
rection, affine registration and unified segmentation and provides
starting estimates for subsequently refined image processing. Output
images were then skull-stripped, parcellated into left and right hemi-
sphere, cerebellum and subcortical areas as well as corrected for local
intensity differences and adaptively segmented followed by spatial nor-
malization. Subsequently, central cortical surfaces were reconstructed
and topological defects were repaired using spherical harmonics. The
refined central surface mesh provided the basis for extraction of local
cortical folding metrics (e.g., local curvature) and resulting local values
were projected onto each mesh node. Local gyrification54 is revealed
through estimations of “smoothed absolute mean curvature” based on
averaging curvature values from each vertex of the surface mesh. Mean
curvature is an extrinsic surface measure and represents change in
direction of surface normals along the surface (normal are vectors
pointing outwards perpendicular to the surface). Large negative values
correspond to sulci and large positive values to gyri. The resulting
valueswere averagedwithin a distance of 3 mmand converted to absolute
values (both sulcal and gyral regions have positive values, see ref. 54).
We then applied a surface-based heat kernel filter with Full-Width atHalf
Maximum (FWHM) = 20 mm, as recommended for vertex-wise gyr-
ification in the CAT12 user manual. The resulting values give informa-
tion about the local amount of gyrification. Finally, individual central
surfaces were registered to the Freesurfer “FsAverage” template using
spherical mapping withminimal distortions. Local gyrification values are
transferred onto this FsAverage template.

Reconstruction of cortical folding, surface area and thickness. To
assess local interactions of cortical folding, surface area and cortical
thickness in the left caudal superior frontal gyrus and to manually define
and label sulci in individual subjects native space, we additionally used
FreeSurfer automated segmentation tools93,94 (FreeSurfer 6) to recon-
struct cortical surfaces (recon-all command; https://freesurfer.net/fswiki/
recon-all) from all baseline T1-weighted MRI images of the long-term
practice cohort (N = 84). Cortical reconstruction and volumetric seg-
mentation were performed with the Freesurfer image analysis suite,
which is documented and freely available for download online (http://
surfer.nmr.mgh.harvard.edu/). The technical details of these procedures
are described on the FreeSurfer website (https://surfer.nmr.mgh.harvard.
edu/fswiki/FreeSurferMethodsCitation). Briefly, this processing includes
motion correction of volumetric T1 weighted images, removal of non-
brain tissue using a hybrid watershed/surface deformation procedure,
automated Talairach transformation, segmentation of the subcortical
white matter and deep gray matter volumetric structures (including
hippocampus, amygdala, caudate, putamen, ventricles) intensity nor-
malization, tessellation of the gray matter white matter boundary,
automated topology correction, and surface deformation following
intensity gradients to optimally place the gray/white and gray/cere-
brospinal fluid borders at the location where the greatest shift in intensity
defines the transition to the other tissue class. Once the cortical models
are complete, a number of deformable procedures can be performed for
further data processing and analysis including surface inflation, regis-
tration to a spherical atlas which is based on individual cortical folding
patterns to match cortical geometry across subjects, parcellation of the
cerebral cortex into units with respect to gyral and sulcal structure, and
creation of a variety of surface-based data including maps of curvature
and surface area. This method uses both intensity and continuity

information from the entire three-dimensional MR volume in segmen-
tation and deformation procedures to produce representations of cortical
thickness, calculated as the closest distance from the gray/white boundary
to the gray/cerebro-spinal fluid (CSF) boundary at each vertex on the
tessellated surface. The maps are created using spatial intensity gradients
across tissue classes and are therefore not simply reliant on absolute
signal intensity. The maps produced are not restricted to the voxel
resolution of the original data thus are capable of detecting submillimeter
differences between groups. Procedures for the measurement of cortical
thickness have been validated against histological analysis and manual
measurements.

Based on the group-level result of a correlation betweenmotor learning
ability and local cortical curvature in the left pre-SMA/SMA (Fig. 2a), we
manually defined a region-of-interest (ROI) in the left caudal superior
frontal gyrus (SFG, including pre-SMA/SMA) encompassing the cortex in
SFG extending from the anterior edge of the superior precentral sulcus
(joining the medial precentral sulcus) to the caudal part of the superior
frontal sulcus (at the level of the gyral bridge between middle and superior
frontal gyrus) and, in themedio-lateral dimension, the cortex running from
the interhemisphericfissure to the superior frontal sulcus95 on theFreesurfer
“FsAverage” template brain. This ROI was projected to each participant’s
native space and local indices of cortical folding96, cortical surface area and
cortical thickness were extracted from the white matter surface (to avoid
blood vessel contamination8) and averaged in this ROI.

Local gyrification index (LGI). We supplemented the analysis of local
cortical geometry (curvature)with an analysis of a gyrificationmetric that
depends on the ratio between the outer hull surface area and the local
cortical surface area (called outer-surface-based gyrification indices).
Therefore, we computed the local gyrification index55 of freesurfer cor-
tical reconstructions.

MPMpreprocessing. The generation of (semi-) quantitative maps were
performed using the hMRI toolbox (version 0.2.0, www.hmri.info90)
using default parameters. Preprocessing steps are described in detail in
ref. 49. Briefly, the hMRI toolbox uses approximations of the signal
equations for small repetition time TR and small flip angles α, and esti-
mates the longitudinal relaxation rate R1, the apparent signal amplitude
A* map (proportional to the proton density map PD) and the MTsat.
Here, we focus on myelin-sensitive magnetization transfer saturation
(MTsat) in pre-SMA/SMA. The MTsat was adjusted for T1 and B1 con-
tributions, which often leads to additional variability90. The map was
reoriented towards a standard pose by setting the anterior commissure at
the origin and both anterior and posterior commissure (AC/PC) in the
axial plane. This is a common step to increase the consistency in indi-
vidual head positions prior to normalization and/or segmentation. The
output resolution of this multi-parameter map was set to 1 mm isotropic.

Neurite-orientation dispersion and density imaging (NODDI)—pre-
processing. In accordance with the majority of existing NODDI papers
we opted for preprocessing tools provided by the FMRIB Software
Library (FSL). Preprocessing steps are described in detail in ref. 97. After
visual quality assessment, preprocessing of diffusion-weighted (DW)
images started with the creation of a fieldmap using topup for later
correction of susceptibility-induced distortions (unwarping). The
approach combines the b = 0 s/mm2 images acquired with reversed
phase-encoding as described in the previous section. Using the eddy tool,
data sets were corrected for susceptibility (using the fieldmap to emerge
from topup), eddy current-induced distortions and head motion, and
outlier slices were detected and corrected. Realignment of images in the
course of motion correction was accompanied by appropriate correction
of gradient directions.

NODDI parameter maps were estimated from corrected multishell
DWimages (b = 0 s/mm2, b = 1000 s/mm2, b = 2000 s/mm2, andb = 3000 s/
mm2) using the NODDI Matlab Toolbox v1.0.1 (http://nitrc.org/projects/
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noddi_toolbox, default settings), implementing the model formulation of
ref. 98. In brief, NODDI models the diffusion signal in each voxel as con-
tribution from three compartments: intraneurite signal, referring to the
space boundedby themembraneof neurites, extraneurite signal, referring to
the space around the neurites (glial cells, cell bodies), and CSF signal,
referring to the space occupied by CSF. In the mathematical formulation of
the model, intraneurite signal is represented by a set of zero-radius sticks
following a Watson distribution, extraneurite signal is represented by a
cylindrically symmetric tensor and CSF is modeled as isotropic Gaussian
diffusion.Herewe focus on themicrostructural neurite density index (NDI)
map to emerge from the NODDImodel, which is the fraction of tissue that
comprises axons or dendrites.

Statistics and reproducibility
Our main goals were to test for positive relationships between inter-
individual differences in learning rate or motor performance with local
cortical folding. In these analyses, we corrected for the influence of age,
gender, body size, total intracranial volume (estimated using CAT12
module “Estimating TIV”) and study (initial differences in a were only
adjusted in the analysis of learning rate).

Motor behavior. Short-term changes in motor performance (time-in-
balance in seconds) in the first practice session (N = 131) were analyzed
with repeated measures analysis of variance (RM-ANOVA) with within-
subject factor TRIAL (15 levels) in SPSS (IBM SPSS Statistics, Version
28.0.1.0, Armonk, NY). Long-term changes inmotor performance across
the six practice sessions were analyzed with RM-ANOVA of the session
mean values (mean of 15 trails per session) with within-subject factor
SESSION (6 levels). Trial-to-trial variation in performance were calcu-
lated with the coefficient-of-variation (COV, standard deviation divided
by the mean) for each session and subjected to RM-ANOVA with factor
SESSION (6 levels). Session-specific inter-individual variation was
quantified using interquartile range between the upper and lower 25% of
mean performance values. Spearman correlations were used to relate
mean performance values across sessions.

Analysis of cortical folding on long-term learning, initial perfor-
mance and short-term adaptation. Our main predictions were tested
with a multiple linear regression model in SPM12 with local cortical
folding values across the cortex as dependent variable and learning rate n
(N = 84, corrected for individual differences in initial performance
level a) or initial performance a as well as short-term adaptation (N = 84
and N = 131) as predictors. In each analysis, we corrected for the influ-
ence of age99, gender100, body height47, head coil89, total intracranial
volume101 and training study43,48,49. Covariation between (nuisance)
variables are shown in Fig. S2. Statistical inference of positive relation-
ships between behavioral parameters and cortical curvature was
performed across the whole cortex (exploratory analysis) with non-
parametric permutation test (vertex-level T-statistics) and 5000 permu-
tations. p-values were considered significant at an FWE corrected
threshold of p < 0.05. Technical reproduction of significant effects was
performed using a second MRI scan from the same participants. This
second MRI scan was obtained after the motor practice period either six
weeks (study 1 and study 3 from refs. 43,48) or four weeks (study 2 from
ref. 58) after the baseline MRI scan. The cluster extent from the initial
exploratory whole-cortex analysis (Fig. 2a) was used as inclusive mask
and surface measures from the second time point were averaged in this
respective mask. Cortical folding values in this mask were highly reliable
across the twoMRI time points (r = 0.964). The overlap between cortical
folding and practice-induced plasticity in gray matter volume was cal-
culated using a group-space mask of the cluster in pre-SMA/SMA where
we previously identified gray matter changes across the 6-week practice
period43 (xyz MNI coordinate −12, 13, 64, cluster with highest Z = 4.35
across the whole brain). The voxel-space cluster (rendered brain see
Fig. 2) was projected to the FsAverage surface template using

CAT12 surface tools. The cortical folding values in this mask as well as in
the mask for technical replication were averaged and subjected to sta-
tistical analysis in SPSS. In correlation analyses, we used residualized
learning rate and cortical curvature values (corrected for age, gender,
initial performance, body height, head coil, TIV, training study) to
determine reproducibility, effect sizes and coincidence of folding and
plasticity (Figs. 2, 5 and S6).

In addition to the main cohort (N = 84) we included additional 47
participants from ref. 47 in the correlation of initial performance and short-
term adaptation with cortical folding. These additional participants were
measured on a TimTrioMRI systemusing either 12-channel or 32-channel
head coil (which was corrected for in the respective statistical model, for
more details see ref. 47). Behavioral variableswere either initial performance
(mean performance of 15 trials in practice session 1) or early learning
calculated as the difference between the mean of the last 5 trials and the
mean of the first 5 trails from practice session one.

Myelin-sensitive magnetization transfer saturation (MT) and esti-
mates of neurite density index (NDI) from neurite-orientation-and-
dispersion-imaging (NODDI) modeling of diffusion MRI. Myelin-
sensitive MT values were calculated from multiparametric quantitative
MRI protocol49 and NDI values were calculated from NODDI modeling
of diffusion MRI data97 within the gray matter in the study2-subsample
(N = 26). Both MT and NODDI metrics are highly reliable49,97 and cal-
culation of NDI values within gray matter was adjusted according to
ref. 102. Based on previous findings1, MT values were extracted and
averaged within three cortical depth-dependent tissue compartments
(superficial and deep cortical gray matter [GM] and cortex-adjacent
white matter) in individual space using CAT12 surface tools. For each
compartment, a mean sampling function (average along surface normal)
and a equi-distance mapping model with 7 steps was employed (start-
point: superficial =−0.5, deep = 0, white matter = 0.5; endpoint: super-
ficial = 0, deep = 0.5, white matter = 1.0). Superficial GM extends from
the graymatter/CSF border to the central surface. DeepGMextends from
the central surface to the gray/white matter border and the cortex-
adjacent whitematter extends from the gray/whitematter border into the
cortex-adjacent white matter. Due to lower resolution of diffusion data,
NDI values were sampled from the whole GM compartment (start-
point =−0.5, endpoint = 0.5). Resulting MT maps and NDI maps were
resampled into template space and smoothed with filter size of 15 mm
FWHM. To visualize MT/NDI distribution across the whole cortex
(Fig. 4a, b), we additionallymapped and averagedMTvalues in the whole
gray matter compartment (from gray matter/CSF to gray/white matter
boundary). For statistical analysis, compartment-specific values were
extracted from the region overlapping with the pre-SMA/SMA cluster
(Fig. 2a), but also analyzed vertex-wise. We used residualized (corrected
for age, gender, body height, TIV, initial performance)MT/NDI, learning
rate, cortical folding and age parameters for all Pearson and partial
correlation analyses or adjusted for these nuisance variables in SPM
statistical models for vertex-wise analyses (except of the age by MT/NDI
correlation in which we did not correct for age and initial performance).

Structural equation modeling (SEM). SEM was used to better under-
stand the dependencies between motor behavior and cortical folding
(Figs. 2, 3 and 5). For this purpose, we used the lavaan package103 running
in R (i386 4.1.1, R Core Team, 2020) and RStudio. In the first model
(Fig. 2d), cortical folding in the pre-SMA/SMA and residualized learning
rate n were used as exogenous variables to predict final performance in
practice session 6 (SEM fit indices RMSEA = 0.000, SRMR = 0.000,
CFI = 1.000, TLI = 1.000). Note that values of cortical folding and final
performance were not adjust for differences in initial performance in this
analysis. In the second model (SEM fit indices RMSEA = 0.000,
SRMR = 0.000, CFI = 1.000, TLI = 1.000, Fig. 5) we used the independent
ROI in which practice-induced gray matter changes were found
previously43 (Fig. 2). In the third model (Fig. 3, SEM fit indices
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RMSEA = 0.000, SRMR = 0.000, CFI = 1.000, TLI = 1.000), surface area,
cortical thickness and cortical folding indices in the left caudal SFG were
used as exogenous variables to predict learning rate n. All values were
residualized for age, gender, body height, TIV, initial performance and
training study with the exception that values of cortical folding and final
performance in the first two models were not adjust for differences in
initial performance. We calculated direct and indirect effects with 95%
bootstrapped CIs using 5000 permutations.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
All data are available in the main text or the supplementary materials. In
addition, data used for the study/figures have been made freely available
under https://doi.org/10.24352/UB.OVGU-2023-095. Requests for further
information or MRI data should be directed to the corresponding author,
M.T. (marco.taubert@ovgu.de).

Code availability
The code used for the study/figures have been made freely available
under https://doi.org/10.24352/UB.OVGU-2023-095. Requests for fur-
ther information should be directed to the corresponding author, M.T.
(marco.taubert@ovgu.de).
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