
 

 

Supplementary Text 1 

Regional specificity of the association between cortical folding and learning rate   2 

Cortical folding develops mostly prenatally and during the first years of life 1. 3 

Therefore, cortical developmental events preceding the late maturation phase could have an 4 

impact on cortical folding in pre-SMA/SMA and its relation to learning ability. To rule out 5 

factors that influenced the extent of cortical folding of the whole hemisphere, we re-6 

examined the correlation between local cortical folding in pre-SMA/SMA and the learning 7 

rate (R2 = 0.317, p < .001, Fig. 2B), this time adjusted for individual differences in the 8 

folding of the whole cortex (total folding index, see 2). Although a higher total folding index 9 

was significantly correlated with a steeper learning rate (R2 = 0.05, p = .041), the 10 

relationship between local cortical folding in pre-SMA/SMA and learning ability was only 11 

slightly reduced when we adjusted for total folding index (partial R2 = 0.286, p < .001). This 12 

shows that the impact of cortical folding on learning is region-specific and relatively 13 

independent from hemispheric cortical folding. 14 

 15 

Effect size estimation for interventions using correction for individual differences in folding  16 

Quantitative comparison of effect sizes suggests that performance-enhancing 17 

psychological strategies (positive social comparative feedback [R2 = 0.31 in 3]) or exercise 18 

interventions (post-exercise physical activity [R2 = 0.301 in 4 or chronic physical activity 19 

[R2 = 0.259 in 5]) can have as large an impact on stabilometer motor performance as cortical 20 

folding in the pre-SMA/SMA (R2 = 0.30). Our previous study 5 showed that 2 weeks of 21 

intense physical exercise prior to motor practice increases the learning rate in this postural 22 

task. Since we included this subsample in our analysis (e.g., the green dots in Fig. 2C), we 23 

were interested in the covariation pattern of cortical folding and previous physical exercise 24 

effects on learning rate. Therefore, we reanalyzed the data and, first, replicated the positive 25 

effect of prior intense physical activity on learning rate compared to the control condition 26 

(two-tailed unpaired t-test, t(29) = 2.50, p = .022, mean difference = 0.12, Cohen's d = 27 

0.898, 95% CI = 0.150, 1.632). When we adjusted for inter-individual differences in cortical 28 

folding in pre-SMA/SMA, the magnitude of the exercise effect continued to increase (two-29 

tailed unpaired t-test, t(29) = 3.29, p = .003, mean difference = 0.13, Cohen's d = 1.181, 30 

95% CI = 0.406, 1.940), indicating independent effects of prior intense exercise and cortical 31 

folding on learning rate. From a statistical perspective, this finding suggests that 32 

consideration of individual predispositions in the brain can improve effect size estimation 33 

for interventions targeting behavioral change. 34 

 35 

The impact of motivation 36 

Feedback and instructions from teachers or coaches can have a positive (or negative) 37 

impact on motor performance and learning 6. Modulating a learners’ focus-of-attention or 38 

motivation can be beneficial for skill acquisition and retention 7. Although we controlled for 39 

performance feedback as well as task instructions and the degree of practice exposure 40 

throughout our experiments, individual differences in motivation may have had an impact 41 

on motor performance. However, core motivational brain circuits are localized in the 42 

midbrain, ventral striatum and orbitofrontal cortex 8 and neural activity in these areas adapts 43 

during learning 9. Future studies are required to disentangle the motivational contribution of 44 

reward-related brain structures to motor learning of the stabilometer task. Of particular 45 

interest in this context is whether individual differences in motivation share variance with 46 

the effects of cortical folding on learning rate. The spatial localization of our present 47 

neuroimaging result, however, indicates that cortical folding in pre-SMA/SMA supports 48 

postural task-specific learning capabilities rather than general functions such as motivation.  49 



 

 

Relationship between cortical curvature and training-induced microstructural cortical 50 

plasticity 51 

The sample used for the main analysis consists of three subsamples (see 52 

Supplementary Table 4) with slightly different research questions and study designs. 53 

Respective research questions centered around balance-induced and exercise-induced brain 54 

plasticity and the time course of training-related functional and structural brain changes. In 55 

some of these studies, and thus also in the sample for our main analysis, training-related 56 

changes in the left pre-SMA/SMA were identified. For example, in our original balance 57 

training study10,11, we found changes in gray matter volume and functional connectivity in 58 

the left pre-SMA/SMA. The pre-SMA/SMA was also observed in our most recent training 59 

study12 (n=26). Both data sets were part of the current sample for the main analysis (n=84). 60 

A thorough comparison between cross-sectional measurements of cortical anatomy (e.g., 61 

cortical folding) and training-induced changes in cortical structure requires homogenization 62 

of different training protocols and different imaging methodologies between studies (partly 63 

on different MRI scanners). This is crucial in order to identify common patterns of plasticity 64 

across studies, which can then be compared with the baseline values of e.g. cortical folding. 65 

In the meantime, however, we can correlate effects within a subsample. Our most recent 66 

study12 provides the largest subsample (n=26) and a plasticity index (orientation dispersion 67 

index, ODI) that changed with balance training and also correlated with inter-individual 68 

differences in learning rate. While both measures individually correlated with learning rate 69 

in this sub-sample (r = 0.59 for ODI change and r = 0.51 for cortical curvature), a 70 

correlation analysis suggests a low correlation between ODI change and cortical folding in 71 

pre- SMA/SMA (r = .18). When we entered these two variables (change in ODI as well as 72 

cortical curvature) in a linear regression model predicting learning rate, the results show that 73 

both ODI change and cortical curvature represent two distinct mechanisms significantly 74 

predicting individual differences in learning rate (β=.53, T=3.3, p=.004 for ODI change; 75 

β=.36, T=2.2, p=.036 for curvature).  76 

   77 
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Supplementary Table 1: List of differing head coils, echo times, repetition times, flip 80 

angles, and inversion times of the T1-weighted MRI datasets used for the main analysis 81 

of learning rate (n=84, samples marked with *) and the additional analysis of the first 82 

practice session (n =131).  83 

  84 



 

 

Supplementary Table 2: Cortical folding results from the main analysis (N=84) are not 85 

dependent on the use of different imaging protocols. Table shows multiple regression 86 

models containing cortical folding in pre-SMA/SMA, age, gender, body height, and TIV 87 

as predictors of learning rate (Model A). In model B, head coil (binary coded) was 88 

included as additional co-regressor, whereas models C considered the three imaging 89 

protocols as dummy coded variable (based on Suppl. Table 1, marked with*). Partial 90 

regression statistics between cortical folding and learning rate are shown.  91 

  92 



 

 

Supplementary Table 3: Correlations between cortical folding and learning rate are 93 

consistent between the 32-ch (N=58) and 64-ch (N=26) data subsets of the main analysis 94 

(see supplementary table 1). We extracted cortical folding values in pre-SMA/SMA for 95 

these two subsets of participants. The residuals of learning rate and cortical folding (see 96 

Fig. 2 in the main manuscript) constituted the input for Chow’s test (Chow, 1960), which 97 

tests the null hypothesis that two regression lines are equal (i.e. can be represented by one 98 

single regression line). 99 

  100 



 

 

Supplementary Table 4: Detailed characteristics of samples included in the main 101 

analysis (N=84) and the separate analyses of initial performance and short-term 102 

adaptations (N=131). The table includes sub-study, sub-sample, age (mean), number of 103 

female participants, body height (in cm) and mean TIV (in ml). Data was analyzed from 104 

several studies: a from Taubert et al. (2010)11, b unpublished data, c from Lehmann et al. 105 

(2023)12, d from Lehmann et al. (2020)5, e from Taubert et al. (2016)13. 106 
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 108 

Supplementary Figure 1: Relationship between learning rate and initial level of 109 

performance.  110 

Scatter plot showing Spearman correlation between learning rate n across the six practice sessions 111 

and initial performance in session 1.  112 
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 114 

Supplementary Figure 2: Correlation matrix including initial performance and learning 115 

rate as well as nuisance variables. 116 

Correlation matrix with learning rate n and all nuisance variables used in the main analysis 117 

(n=84). Coefficients indicate Pearson or Spearman correlations between two continuous variables 118 

(e.g. age and body height) depending on data normal distribution as well as Point-biserial 119 

correlation coefficients for a continuous and a categorial variable (e.g. gender and age). 120 

Correlations between two categorical variables (e.g. gender and study 1) were omitted. Studies 1, 121 

2 and 3 include datasets for the main analysis (N=84) indicated in supplementary table 1 with *. 122 
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 124 

Supplementary Figure 3: Cortical folding and initial performance. 125 

Correlation between local cortical folding and initial performance (mean performance across 15 126 

trials in practice session 1) in 131 (left) and 84 (right) participants (see supplementary table 1). No 127 

significant effects were found across the whole cortex. Color bar represents uncorrected p values.  128 
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 130 

Supplementary Figure 4: Cortical folding and early performance improvements. 131 

Correlation between local cortical folding and early (short-term) learning within the first practice 132 

session (N=131). No significant effects were found across the whole cortex. Color bar represents 133 

uncorrected p values. 134 
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 136 

Supplementary Figure 5: Correlation coefficients r depicting positive relationships between 137 

cortical folding and learning rate. 138 

Vertex-wise map of correlation coefficients (r) from the main exploratory analysis (Fig. 2). The 139 

color bar represents r values depicting the positive correlation between local cortical folding and 140 

learning rate n.  141 
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143 
Supplementary Figure 6: Reproducible effect of cortical folding on learning rate.  144 

(A) Results of whole-brain regression of vertex-wise cortical curvature to learning rate using a 145 

second MRI scan of the same participants. Uncorrected results at p < .001 (left) and family-wise 146 

error-corrected results at p < .05 (right) were projected onto a template brain showing variations 147 

in sulcus depth. (B) Positive correlation of residual cortical curvature (in the cluster representing 148 

the FWE-corrected effect in the exploratory analysis [Fig. 2A]) and learning rate. (C) Subsample 149 

results in the three independent learning experiments. (D) Pearson correlation coefficients 150 

between residualized cortical curvature and motor performance. Grey bars represent session-151 

specific performance controlled for initial performance in session 1 (i.e., residual gain) and black 152 

bars represent correlations with actual session-specific performance. * indicate significant 153 

correlations at p < .05. 154 
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 156 

Supplementary Figure 7: Study-specific sub-group analyses of cortical curvature effects on 157 

learning rate. 158 

The five sub-groups were drawn from the three longitudinal training studies5,11,12. Sub-group 159 

analyses of the effect of cortical curvature on learning rate n. The effect was consistent across 160 

regions-of-interests (ROI) obtained from the original analysis (Fig. 2), its reproduction with 161 

another MRI scan of the same participants as well as from a previous study in which postural 162 

learning-induced grey matter changes were found in this region 11. All correlation coefficients 163 

were significant at p < .05.  164 
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 166 

Supplementary Figure 8: Statistical maps showing positive correlations between cortical 167 

folding and asymptotic (final) performance. 168 

Correlation between local cortical folding and final performance in the sixth practice session 169 

(N=84). Significant effects (corrected for multiple comparisons) were found in a cluster located in 170 

the left supramarginal gyrus (see red circle on the right; labeling according to the Desikan-171 

Killiany atlas). Note a trend level effect (left) in the cluster in left pre-SMA/SMA overlapping 172 

with the cortical folding effect on learning rate (Fig. 2). Color bar represents uncorrected p values.   173 
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 175 

Supplementary Figure 9: Positive correlation between local gyrification index (Schaer et al., 176 

2008) and learning rate. 177 

Vertex-wise correlation between local gyrification index (lGI) and learning rate (N=84). While 178 

local curvature characterizes local geometrical properties of the cortical surface (Fig. 2), the lGI is 179 

sensitive to variations in surface area buried within cortical sulci. Note the positive correlation in 180 

the caudal part of the left superior frontal gyrus spatially coincides with results from the local 181 

curvature analysis (pre-SMA/SMA, Fig. 2). Color bar represents Z values.  182 



 

 

 183 

Supplementary Figure 10: Effects of age and learning rate on intracortical microstructure. 184 

Correlation analysis of study 2 (N = 26, yellow dots in Fig.2) for which we acquired additional 185 

quantitative MRI protocols. We analysed intracortical microstructural properties include myelin-186 

sensitive magnetization transfer (MT). Vertex-wise correlations with MT were calculated with 187 

learning rate n (A) and age (B). Exploratory statistical thresholds (p < .01 uncorrected at vertex-188 

level) were applied and thresholded t values are displayed. Color bar represents t values. 189 
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  191 

Supplementary Figure 11: The influence of initial performance differences on later 192 

achievements decreased with practice.  193 

Pearson correlation between mean performance in session 1 and mean performance in sessions 2-194 

6. 195 
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 197 

Supplementary Figure 12: Performance decrements between successive practice sessions.  198 

The bars represent the difference in our primary behavioural outcome measure (time in target 199 

zone in seconds) between the mean of the first two trials of the actual session (session n+1) and 200 

the mean of the last two trials of the previous session (session n). 201 
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