The Role of Protein-Protein Interactions in Bisindole Alkaloid Biosynthesis in *Catharanthus roseus*

Dissertation

zur Erlangung des akademischen Grades doctor rerum naturalium

(Dr. rer. nat)

vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät der Friedrich-Schiller-Universität Jena

von B.Sc Chloe Langley

geboren am 17.11.1995 in Gorleston-On-Sea, UK

Gutachter:

- 1. Prof. Dr. Arndt (Friedrich-Schiller-Universität, Jena)
- 2. Prof. Dr. Heintzmann (Friedrich-Schiller-Universität, Jena)
- 3. Prof. Dr. Hellmich (Friedrich-Schiller-Universität, Jena)

Tag der Verteidigung: 28.02.2024

Selbständigkeitserklärung

Ich erkläre, dass ich die vorliegende Arbeit selbständig und unter Verwendung der angegebenen Hilfsmittel, persönlichen Mitteilungen und Quellen angefertigt habe.

Ort	Datum	Unterschrift der Verfa	asserin/des Verfassers
Jena	28.02.2024	Chloe Langley	$\overline{\left\langle \cdot \right\rangle}$
			\mathcal{O}

Zusammenfassung der Dissertation

Diese Arbeit befasst sich mit der mechanistischen und biophysikalischen Charakterisierung von Enzymen, die an der Biosynthese einer Gruppe von Verbindungen beteiligt sind, die als Monoterpen-Indolalkaloide (MIAs) bekannt sind. Die Biosynthese vieler MIAs ist komplex und erfordert viele biochemische Schritte, die in verschiedenen Zelltypen und subzellulären Kompartimenten organisiert sind. Angesichts der pharmakologischen Bedeutung dieser Verbindungen besteht ein großes Interesse daran, die Biochemie dieser Enzyme besser zu charakterisieren und zu verstehen, wie sie innerhalb der metabolisch komplexen Umgebung der Zelle organisiert sind.

Mehrere Alkoholdehydrogenase (ADH)-Enzyme führen atypische Reduktionsreaktionen in der MIA-Biosynthese durch, obwohl die biochemischen Grundlagen ihrer Katalyse bisher kaum verstanden wurden. In Kapitel 2 haben wir mithilfe von Röntgenkristallographie und Mechanismus biochemischen Studien einen für das ADH-Enzym Dihydroprecondylocarpinacetat-Synthase (DPAS) vorgeschlagen, das eine ungewöhnliche 1,4-Iminium-Reduktion katalysiert. Darüber hinaus berichten wir über den Mechanismus für das verwandte ADH-Enzym Geissoschizin-Synthase (GS), das eine 1,2-Iminium-Reduktion katalysiert. Mit Hilfe der vergleichenden Genomik und der phylogenetischen Analyse in Kapitel 3 decken wir die Expansion und Neofunktionalisierung der ADH-Enzymfamilie auf, was darauf hindeutet, dass sie eine Schlüsselrolle bei der Chemodiversität von MIA spielt.

Kapitel 4 untersucht die Rolle von Protein-Protein-Interaktionen zwischen MIA-Biosyntheseenzymen aus der Pflanze *Catharanthus roseus*. Besonderes Augenmerk liegt dabei auf dem ADH CrDPAS (charakterisiert in Kapitel 2) und den nachgeschalteten Cyclase-Enzymen Tabersonin-Synthase (*Cr*TS) und Catharanthin-Synthase (*Cr*CS), um die strukturelle Grundlage dieser Protein-Protein-Interaktion zu bestimmen. Darüber hinaus wurde das Interaktom der *Cr*DPAS mit Hilfe von in vivo Proximity Tagging untersucht, um Interaktionen zwischen MIA und Enzymen der Phenylpropanoid-Biosynthese aufzudecken.

Die Charakterisierung dieser atypischen ADHs erweitert den chemischen Werkzeugkasten dieser Enzymfamilie und ist entscheidend für das Verständnis der Biosynthese einer breiten Palette pharmazeutisch wichtiger MIAs. Darüber hinaus hilft uns die Kartierung der ProteinProtein-Interaktionen biosynthetischer Enzyme dabei, die physikalische Organisation von Proteinen innerhalb einer Zelle zu verstehen und kann die Grundlage für künftige Bioengineering-Anstrengungen zur Anpassung des Stoffwechselflusses bilden.

Thesis Abstract

This thesis details the mechanistic and biophysical characterisation of enzymes involved in the biosynthesis of the group of compounds known as monoterpene indole alkaloids (MIAs). The biosynthesis of many MIAs is complex, requiring many biochemical steps that are organised into different cell types and subcellular compartments. Given the pharmacological importance of these compounds, there is great interest to better characterise the biochemistry of these enzymes and to understand how they are organised within the metabolically complex environment of the cell.

Several alcohol dehydrogenase (ADH) enzymes perform atypical reduction reactions in MIA biosynthesis, though the biochemical basis of their catalysis was poorly understood. In Chapter 2, we used X-ray crystallography and biochemical studies to propose a mechanism for the ADH enzyme dihydroprecondylocarpine acetate synthase (DPAS), which catalyses an unusual 1,4-iminium reduction. Furthermore, we report the mechanism for the related ADH enzyme geissoschizine synthase (GS), which catalyses a 1,2-iminium reduction. Using comparative genomics and phylogenetic analysis in Chapter 3, we uncover the expansion and neofunctionalisation of the ADH family of enzymes, suggesting their role as key drivers in MIA chemodiversity.

Chapter 4 explores the role of protein-protein interactions between MIA biosynthetic enzymes from the plant *Catharanthus roseus*. Particular focus is given to the ADH *Cr*DPAS (characterised in Chapter 2) and the downstream cyclase enzymes tabersonine synthase (*Cr*TS) and catharanthine synthase (*Cr*CS) to determine the structural basis of this proteinprotein interaction. Furthermore, the interactions of *Cr*DPAS was studied using in vivo proximity tagging, revealing inter-pathway interactions between MIA and phenylpropanoid biosynthetic enzymes.

The characterisation of these atypical ADHs expands the chemical toolbox of this enzyme family and is crucial for comprehending the biosynthesis of a wide range of pharmaceutically important MIAs. Additionally, mapping protein-protein interactions of biosynthetic enzymes helps us grasp the physical organisation of proteins within a cell and can provide the foundation of future bioengineering efforts to tailor metabolic flux.

vi

List of Publications

Kunert, M., <u>Langley, C.,</u> Ploss, K., Rodríguez López, C.E., Serna Guerrero, D.A., Rothe, E., Lucier, R., O'Connor, S.E., Sonawane, P.D. A promiscuous CYP87A enzyme activity initiates cardenolide biosynthesis in plants. *Nature Plants* doi: 10.1038/s41477-023-01515-9 (2023).

Stephan, B., <u>Langley, C.,</u> Winkler, D., Basquin, J., Caputi, L., O'Connor, S.E., Kries, H. Directed Evolution of Piperazic Acid Incorporation by a Nonribosomal Peptide Synthetase. *Angewandte Chemie Int. Edition* e202304843 (2023).

Langley, C., Tatsis, E., Hong, B., Nakamura, Y., Paetz, C., Stevenson, C.E.M., Basquin, J., Lawson, D.M., Caputi, L., O'Connor, S.E. Expansion of the Catalytic Repertoire of Alcohol Dehydrogenases in Plant Metabolism. *Angewandte Chemie Int. Edition* 61, 48 (2022).

Hernández Lozada, N.J., Hong, B., Wood, J.C., Caputi, L., Basquin, J., Chuang, L., Kunert, M., Rodríguez López, C.E., <u>Langley, C.,</u> Zhao, D., Buell, C.R., Lichman, B.R., O'Connor, S.E. Biocatalytic routes to stereo-divergent iridoids. *Nat Comms* 13, 4718 (2022).

Carqueijeiro, I., <u>Langley, C.</u>, Grzech, D., Koudounas, K., Papon, N., O'Connor, S.E., Courdavault, V. Beyond the semi-synthetic artemisinin: metabolic engineering of plantderived anti-cancer drugs, *Current Opinion in Biotechnology* 65 (17-24) (2020).

Dang, T., Franke, J., Carqueijeiro, I., <u>Langley, C.,</u> Courdavault, V. and O'Connor, S. Sarpagan bridge enzyme has substrate-controlled cyclization and aromatization modes. *Nat Chem Biol* 14, 760–763 (2018).

Acknowledgements

This thesis is the culmination of 5 years of work across two countries and through a global pandemic. I would not have achieved this without the many people I have been lucky enough to have helped me throughout this time.

Firstly, I would like to thank my supervisor Sarah O'Connor who accepted me into her lab when I was an undergraduate student completely clueless to the world of academic research, and who has ever since given me her unwavering support and encouragement. I cannot thank you enough for giving me the freedom to follow my curiosities and for giving me the opportunity to be a member of the O'Connor lab.

I am grateful to all the members of the O'Connor lab – past and present. I cannot name you all but I would not be here without your help. Thank you to the members of the O'Commune, the Corona Crafting Crew, and the SOC Sockers. I've received help from all of the PhD students in the lab, but I especially want to thank Omar Kamileen for his friendship and support over the years, I am constantly amazed by the passion you have for your work and the respect and kindness you show to others. I am also very grateful to Matilde Florean for her positivity and for being the enabler in all my 'projects'.

I'd like to thank all the people who helped me achieve the work in this thesis, especially Lorenzo Caputi, Veit Gabe, Delia Serna Guerrero, Sarah Heinicke, Benke Hong, Manuela Inak, Maritta Kunert, Katrin Luck, Yoko Nakamura, Marlen Siegmund, and Kotaro Yamamoto. I especially thank Thu-Thuy Dang and Scott Farrow who both welcomed me into the lab and shared their passion for science with me as an undergraduate, without which I would not have pursued a PhD. I was also lucky to work with the extremely talented structural biologists Dave Lawson and Clare Stevenson at the JIC, and Jerome Basquin at the MPI Biochemistry. Thank you too to the institute's greenhouse team and haus technik – especially Eva Rothe, Andrea Schuenzel and Daniel Viet – without whom this work would not have been possible.

I'm grateful to my friends Elizabeth 'LizBiz' Jackson, Elin 'Swaggy' Isted, Ana 'Sloth Mother' Zadel, Joshua Daffydd Lewis, Matthew 'Ratthew' Parfitt, and the meme queens Mirha Wasim and Olive Taylor for keeping me going. Thank you to Mark and Tracey Garratley for your support and the endless supply of shortbread. I would have not gotten through my PhD without my partner Ryan Garratley, who has rooted for me through at every step of this journey. You have believed in me when I could not see a way forward and I am so lucky to have you in my life.

I am forever grateful for the support of my family, especially my brothers Ross and Ellis, my Nanny and Grandad, and my dogs Charlie and Tilly. Lastly, I would like to thank my mum and dad for their constant love and for always being my biggest supporters. Thank you for giving me the courage to explore my passions. I would not have achieved any of this without your belief in me and I am so grateful to be your daughter.

Contents

Selbständigkeitserklärung	ii
Zusammenfassung der Dissertation	iv
Thesis Abstract	vi
List of Publications	viii
Acknowledgements	x
Contents	xii
List of Tables	xix
List of Figures	xxi
List of Abbreviations	xxix
Chapter 1. MIA Chemical Diversity and Biosynthesis	1
1.1. Plant Natural Products	1
1.2. Monoterpene Indole Alkaloids: Structure, Pharmacology and Biosy	ynthetic Gene
Discovery	3
1.3. MIA Enzyme Discovery in <i>Catharanthus roseus:</i> A Case Study of Piocynthesis	of Vinblastine
1.2.1 Corvenanthe Scoffold Riosynthesis	
1.3.1. Corynantine Scarrold Biosynthesis	
1.3.3 Vindoline Biosynthesis: Elaborating the Aspidosperma Scaffold	10
1.3.4. Vinblastine Biosynthesis: Dimerisation and Decoration of the Bisi	ndole Scaffold
11	
1.4. Alcohol Dehydrogenase Enzymes: Overview and Evolutionary Origin	າ12
1.5. Protein-Protein Interactions in Plant-Specialised Metabolism	14
1.6. Scope of this Thesis	
1.7. References	
Chapter 2. The Structural and Mechanistic Study of CADs in MIA Biosyntl	hesis26

2.1	Intr	oduction26
2	2.1.1	Cinnamyl Alcohol Dehydrogenases26
ź	2.1.2	ADH Catalytic Mechanism27
2	2.1.3	CAD-Catalysed Reductions in Monoterpene and MIA Biosynthesis28
ź	2.1.4	Chapter Overview
2.2	Res	ults33
ź	2.2.1	DPAS-Catalysed Reduction of Precondylocarpine Acetate and
[Dehydro	osecodine
2	2.2.2	Isotopic Labelling of the DPAS-Catalysed Reduction of Precondylocarpine
ł	Acetate	34
ź	2.2.3	Stereoselectivity of the DPAS-Catalysed Production of Vincadifformine35
ź	2.2.4	DPAS-Catalysed Reduction of Strictosidine Aglycone
ź	2.2.5	Solution of the <i>Cr</i> DPAS Structure
2	2.2.6	Solution of <i>Ti</i> DPAS2 Structure
ź	2.2.7	Comparison of CAD Structures in Apocynaceae43
ź	2.2.8	CrDPAS Mutagenesis Study on the Reduction of Precondylocarpine Acetate
ź	2.2.9	Mechanism of CrDPAS-Catalysed 1,4-Iminium Reduction of
F	Precond	lylocarpine Acetate and Dehydrosecodine52
ź	2.2.10	CrDPAS Mutagenesis Study on the Reduction of Strictosidine Aglycone53
2	2.2.11	Mechanism of CrDPAS-Catalysed 1,4-Reduction of Vallesiachotamine55
ź	2.2.12	CrGS and CrTHAS Mutagenesis Study on the Reduction of Strictosidine
ļ	Aglycon	e55
2	2.2.13	Mechanism of CrGS-Catalysed 1,2-Iminium Reduction of 4,21-
[Dehydro	ogeissoschizine59
2.3	Disc	cussion

2.3.1	Elucidation of <i>Cr</i> DPAS and <i>Ti</i> DPAS2 Structures Reveals Basis of 1,4-Reductions
2.3.2	Reduction of α , β -unsaturated Aldehydes in Plant Specialised Metabolism .61
2.3.3	Mechanism of CrGS-Catalysed 1,2-Iminium Reduction of 4,21-
Dehydr	ogeissoschizine63
2.4 Cor	nclusions64
2.5 Me	thods and Materials65
2.5.1	Chemicals and molecular biology reagents65
2.5.2	Cloning and mutagenesis65
2.5.3	Protein Expression in <i>E. coli</i> 69
2.5.4	CrPAS Insect Cell Expression70
2.5.5	Small-scale Protein Purification70
2.5.6	CrDPAS, TiDPAS2, CrGS, CrSGD, CrPAS and TbADH Large-scale Protein
Purifica	tion71
2.5.7	Synthesis of NADPD71
2.5.8	<i>In vitro</i> Enzyme Assays72
2.5.9	UPLC-MS Analysis72
2.5.10	Production and Isolation of <i>d</i> -angryline and <i>d</i> ₂ -vincadifformine73
2.5.11	Production and Isolation of 19,20-dihydrovallesiachotamine74
2.5.12	NMR of <i>d</i> -angryline, <i>d</i> -vincadifformine and 19,20-
dihydro	vallesiachotamine75
2.5.13	ECD Measurement and Spectral Calculations of Vincadifformine75
2.5.14	Protein Crystallisation75
2.5.15	X-ray Data Collection, Processing and Structure Solution76
2.5.16	Docking simulations77
2.5.17	Phylogenetic analysis77
2.6 Ref	erences79

Chapter 3.	The Emergence of Atypical CADs as Drivers of MIA Chemical Diversity 83
3.1. Intro	oduction83
3.1.1.	MIA Chemical Diversity in Gentianales83
3.1.2.	Gene Duplication and Neofunctionalisation in Plant-Specialised
Metabol	lism
3.1.3.	CADs in MIA Biosynthesis85
3.1.4.	Chapter Overview86
3.2. Resu	ılts87
3.2.1.	Genomic organisation of CADs in <i>C. roseus</i> 87
3.2.2.	Phylogeny of CADs in <i>C. roseus</i> 89
3.2.3.	Cell-Specific Expression Patterns of CADs in <i>C. roseus</i>
3.2.4.	Phylogenetic Evolution of CADs in Gentianales93
3.2.5.	Genomic Synteny between <i>C. roseus</i> and <i>O. pumila</i> 95
3.3. Disc	ussion
3.3.1.	Emergence of CADs that Catalyse Atypical Reductions in <i>C. roseus</i> 98
3.3.2.	Emergence of Atypical CADs in Gentianales Correlates with MIA Chemical
Diversity	/
3.4. Con	clusions
3.5. Met	hods and Materials101
3.5.1.	CAD Sequence Collection and Analysis101
3.5.2.	CAD Phylogenetic Analysis103
3.5.3.	Chemicals and molecular biology reagents103
3.5.4.	CrDPAS and CrADH9 Cloning and Protein Expression in E. coli103
3.5.5.	Protein Purification105
3.5.6.	<i>In vitro</i> Enzyme Assays106
3.5.7.	UPLC-MS Analysis106

3.5	5.8.	Gene Expression and Metabolite Level Analysis	106
3.5	5.9.	Synteny Analysis between C. roseus and O. pumila Genomes	107
3.6.	Refer	rences	108
Chapte	r4. 1	The Role of Protein-Protein Interactions in MIA Biosynthesis	113
4.1.	Intro	duction	113
4.1	1.1.	Protein-Protein Interactions in MIA Biosynthesis	113
4.1	1.2.	Methods Used to Detect Protein-protein Interactions	115
4.1	1.3.	Chapter Overview	118
4.2.	Resul	lts	119
4.2	2.1.	Interaction Network of C. roseus MIA Biosynthetic Proteins using	ng Split-
Lu	ciferase	e 119	
4.2	2.2.	Conservation of the ADH-Cyclase Protein-Protein Interaction	120
4.2	2.3.	Engineering the CrDPAS-Cyclase Interaction	122
4.2	2.4.	AP-MS Analysis of CrDPAS and CrTS	124
4.2	2.5.	Differential Scanning Fluorimetry Analysis of CrDPAS-Cyclase Com	plex.124
4.2	2.6.	In vivo Proximity Tagging of CrDPAS	125
4.2	2.7.	Interactions between MIA and Phenylpropanoid Biosynthetic Enzy	'mes 127
4.2	2.8.	Probing Protein-Protein Interactions in Pseudo-Scaffold MIA Bios	ynthesis
4.3.	Discu	ission	131
4.3	3.1.	Establishment of a <i>C. roseus</i> MIA Biosynthetic Protein-Protein Int	eraction
Ne	etwork	131	
4.3	3.2.	Engineering MIA Enzyme-Enzyme Interactions	131
4.3	3.3.	Inter-pathway Interactions and Metabolic Crosstalk between N	VIA and
Ph	enylpro	opanoid Biosynthesis in <i>C. roseus</i>	132
4.3	3.4.	Potential Role of Protein-Protein Interactions in Wider MIA Bios	ynthesis
			132

4.4	1.	Conclu	usions	133
4.5	5.	Metho	ods and Materials	134
	4.5.	1.	Chemicals and molecular biology reagents	134
	4.5.	2.	Cloning and mutagenesis	134
	4.5.	3.	Plant growth	149
	4.5.4	4.	Transient Overexpression in <i>N. benthamiana</i>	149
	4.5.	5.	Split-luciferase Complementation Assays	150
	4.5.	6.	Transient Overexpression in <i>C. roseus</i>	150
	4.5.	7.	TurboID Proximity-labelling in <i>C. roseus</i>	151
	4.5.	8.	Heterologous Expression and Protein Purification from <i>E. coli</i>	152
	4.5.9	9.	In vitro Enzyme Assays	154
	4.5.	10.	UPLC-MS Analysis	154
	4.5.	11.	Complex Affinity Co-Purification	155
	4.5.	12.	Thermal Stability Assays	155
	4.5.	13.	Co-purification and TurboID Sample Proteomics	156
	4.5.	14.	C. roseus Lignin Extraction and Quantification	156
	4.5.	15.	Phylogenetic Analysis	157
4.6	5.	Refere	ences	159
Chap	ter	5. C	onclusions and Future Perspectives	163
5.1	L.	The St	ructural and Mechanistic Basis of Atypical CAD-Catalysed Reductions in I	MIA
Bio	osyn	thesis		163
5.2	2.	Phylog	genetic Study Reveals the Neofunctionalisation of CADs as Drivers of I	MIA
Ch	emi	cal Div	ersity	163
5.3	3.	Protei	n-Protein Interactions in MIA Biosynthesis and Beyond	164
5.4	1.	Future d	e Directions: Biochemical and Biophysical Insights into MIA Biosynthesis	and
De	yon	u		T02

5.5. References	
Appendices 168	
Appendix I. NMR Characterisation of <i>d</i> -angryline	
Appendix II. NMR Characterisation of (-)-vincadifformine	
Appendix III. NMR Characterisation of d_2 -(+)-vincadifformine	
Appendix IV. NMR Characterisation of 19,20-dihydrovallesiachotam	ine176
Appendix V – X-Ray Data and Model Parameters used for Structure	Solutions196
Appendix VI. Identification of CADs in <i>C. roseus</i>	
Appendix VII. Genomic Synteny between C. roseus and O. pumila	
Appendix VIII. Subcellular Localisation of <i>C. roseus</i> MIA Biosynthetic	Enzymes212
Appendix IX. Split-Luciferase Assays of <i>C. roseus</i> MIA Biosynthetic Er	nzymes213
Appendix X. Split-Luciferase Assays of CADs and α/β hydrolases	
Appendix XI. Split-Luciferase Assays of Cyclase Enzyme Interaction E	ngineering279
Appendix XII. AP-MS of CrDPAS and CrTS	
Appendix XIII. DFS of <i>Cr</i> DPAS	
Appendix XIV. CrDPAS In Vivo Proximity Tagging	
Appendix XV. Split-Luciferase Assays between C. roseus MIA ar	nd Phenylpropanoid
Biosynthetic Enzymes	
Appendix XVI. Split-Luciferase Assays of Ψ -Tabersonine Biosynthetic	: Enzymes307

List of Tables

Table 1. Amino acid sequence identity (%) of the solved structures of CADs from
Apocynaceae44
Table 2. Primer sequences used for gene amplification and site-directed mutagenesis in
Chapter 266
Table 3. Full length nucleotide sequences of genes used in Chapter 2. 67
Table 4. Genbank accession for sequences used to construct tree of maximum likelihood in
Chapter 277
Table 5. Transcriptomes and genomes accessed for CAD sequence collection in Chapter 3.
Table 6. Full length nucleotide sequences of CrDPAS and CrADH9 genes
Table 7. Primer sequences used in for gene amplification. In Chapter 3. 105
Table 8. Full-length nucleotide sequences of unpublished and synthetic genes used in
Chapter 4135
Table 9. GenBank accessions of previously deposited sequences used in Chapter 4142
Table 10. Primer sequences used for gene amplification and site-directed mutagenesis in
Chapter 4 143
Table 11. Genbank accessions for sequences used to construct the tree of maximum
Table 11. Genbank accessions for sequences used to construct the tree of maximum likelihood in Chapter 4.
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4.157 Table 12. Comparison of ¹ H NMR data between angryline and d-angryline.168 Table 13. ¹ H NMR data for (-)-vincadifformine in MeOH-d ₃ .170 Table 14. ¹ H NMR data for d_2 -(±)-vincadifformine in MeOH- d_3 .173
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4.157 Table 12. Comparison of ¹ H NMR data between angryline and d-angryline.168 Table 13. ¹ H NMR data for (-)-vincadifformine in MeOH-d ₃ .170 Table 14. ¹ H NMR data for d_2 -(±)-vincadifformine in MeOH-d ₃ .173 Table 15. ¹ H NMR spectra for 19,20-dihydrovallesiachotamine in MeOH-d ₃ .177
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4.157 Table 12. Comparison of ¹ H NMR data between angryline and d-angryline.168 Table 13. ¹ H NMR data for (-)-vincadifformine in MeOH-d ₃ .170 Table 14. ¹ H NMR data for d_2 -(±)-vincadifformine in MeOH-d ₃ .173 Table 15. ¹ H NMR spectra for 19,20-dihydrovallesiachotamine in MeOH-d ₃ .177 Table 16. Summary of X-ray data and model parameters for <i>Cr</i> DPAS.197
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4.157Table 12. Comparison of ¹ H NMR data between angryline and d-angryline.168Table 13. ¹ H NMR data for (-)-vincadifformine in MeOH-d ₃ .170Table 14. ¹ H NMR data for d_2 -(±)-vincadifformine in MeOH- d_3 .173Table 15. ¹ H NMR spectra for 19,20-dihydrovallesiachotamine in MeOH-d ₃ .177Table 16. Summary of X-ray data and model parameters for $CrDPAS$.197Table 17. Summary of X-ray data and model parameters for apo- <i>TiDPAS2</i> .198
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4.157Table 12. Comparison of ¹ H NMR data between angryline and d-angryline.168Table 13. ¹ H NMR data for (-)-vincadifformine in MeOH-d ₃ .170Table 14. ¹ H NMR data for d_2 -(±)-vincadifformine in MeOH-d ₃ .173Table 15. ¹ H NMR spectra for 19,20-dihydrovallesiachotamine in MeOH-d ₃ .177Table 16. Summary of X-ray data and model parameters for <i>CrDPAS</i> .197Table 17. Summary of X-ray data and model parameters for apo- <i>TiDPAS2</i> .198Table 18. Summary of X-ray data and model parameters for precondylocarpine acetate- bound <i>TiDPAS2</i> .199
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4.157Table 12. Comparison of ¹ H NMR data between angryline and d-angryline.168Table 13. ¹ H NMR data for (-)-vincadifformine in MeOH-d ₃ .170Table 14. ¹ H NMR data for d_2 -(±)-vincadifformine in MeOH-d ₃ .173Table 15. ¹ H NMR spectra for 19,20-dihydrovallesiachotamine in MeOH-d ₃ .177Table 16. Summary of X-ray data and model parameters for apo- <i>Ti</i> DPAS2.198Table 18. Summary of X-ray data and model parameters for precondylocarpine acetate- bound <i>Ti</i> DPAS2.199Table 19. Summary of X-ray data and model parameters for stemmadenine acetate-bound199
Table 11. Genbank accessions for sequences used to construct the tree of maximum likelihood in Chapter 4. .157 Table 12. Comparison of ¹ H NMR data between angryline and d-angryline. .168 Table 13. ¹ H NMR data for (-)-vincadifformine in MeOH-d ₃ . .170 Table 14. ¹ H NMR data for d ₂ -(±)-vincadifformine in MeOH-d ₃ . .173 Table 15. ¹ H NMR spectra for 19,20-dihydrovallesiachotamine in MeOH-d ₃ . .177 Table 16. Summary of X-ray data and model parameters for CrDPAS. .197 Table 18. Summary of X-ray data and model parameters for precondylocarpine acetate-bound <i>TiDPAS2</i> . .199 Table 19. Summary of X-ray data and model parameters for stemmadenine acetate-bound <i>TiDPAS2</i> . .199 Table 19. Summary of X-ray data and model parameters for stemmadenine acetate-bound <i>TiDPAS2</i> . .200
Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Chapter 4.157Table 12. Comparison of ¹ H NMR data between angryline and d-angryline.168Table 13. ¹ H NMR data for (-)-vincadifformine in MeOH-d ₃ .170Table 14. ¹ H NMR data for d_2 -(±)-vincadifformine in MeOH-d ₃ .173Table 15. ¹ H NMR spectra for 19,20-dihydrovallesiachotamine in MeOH-d ₃ .177Table 16. Summary of X-ray data and model parameters for <i>CrDPAS</i> .197Table 17. Summary of X-ray data and model parameters for apo- <i>TiDPAS2</i> .198Table 18. Summary of X-ray data and model parameters for precondylocarpine acetate- bound <i>TiDPAS2</i> .199Table 19. Summary of X-ray data and model parameters for stemmadenine acetate-bound <i>TiDPAS2</i> .200Table 20. Contigs encoding CADs retrieved from the <i>C. roseus</i> genome.201

Table 22. Genes encoding enzymes involved in MIA biosynthesis or CADs in C. roseus that
have genomic synteny with O. pumila207
Table 23. Experimentally or predicted subcellular localisation of C. roseus MIA biosynthetic
enzymes
Table 24. Nucleic acid sequence identity of CADs tested for the α/β hydrolase interaction
conservation
Table 25. Nucleic acid sequence identity of α/β hydrolases tested for ADH interaction
conservation260
Table 26. AP-MS results using CrDPAS or CrTS in C. roseus leaf tissue. 282
Table 27. Summary of CrDPAS ΔT°m compared to CrDPAS control in various conditions
investigating cyclase complex formation283
Table 28. Contig matches with \geq 1.5 log fold change in peptide hits between CrDPAS-
TurboID protein pulldown compared to YFP-TurboID protein pulldown control

List of Figures

Figure 1. Overview of the major classes of plant natural products1
Figure 2. MIA scaffolds generated from central precursor strictosidine
Figure 3. Timeline of significant advances in MIA elucidation and biosynthetic pathway
discovery4
Figure 4. Structures of MIAs vinblastine and vincristine produced in <i>C. roseus</i>
Figure 5. Biosynthesis of corynanthe MIA scaffold in <i>C. roseus</i>
Figure 6. Biosynthesis of iboga and aspidosperma MIA scaffolds in <i>C. roseus</i>
Figure 7. Vindoline biosynthesis in C. roseus11
Figure 8. Coupling of catharanthine and vindoline to form bisindole MIAs in <i>C. roseus</i> 12
Figure 9. Emergence and evolution of ADH enzyme family13
Figure 10. Classifications of protein-protein complexes14
Figure 11. Reversible reduction of aromatic cinnamyl aldehydes by CAD26
Figure 12. Structural features of AtCAD527
Figure 13. Mechanism of the Cr8HGO-catalysed reduction of 8-oxogeranial27
Figure 14. CAD-catalysed reactions in vinblastine biosynthesis in C. roseus
Figure 15. Cr8HGO catalysed oxidation of 8-hydroxygeraniol to 8-oxogeranial29
Figure 16. Characterised 1,2-iminium reduction reactions catalysed by CADs in MIA
biosynthesis
Figure 17. DPAS-catalysed 1,4-iminium reduction of precondylocarpine acetate
Figure 18. UPLC-MS chromatograms of in vitro reactions of CrDPAS and CrGS with substrate
precondylocarpine acetate and cofactor NADPH33
Figure 19. Deuterium labelling of DPAS-catalysed 1,4-reductions of precondylocarpine
acetate and dehydrosecodine35
Figure 20. Stereoselectivity of vincadifformine cyclisation
Figure 21. DPAS-catalysed reduction of vallesiachotamine 37
Figure 22. Crystalisation of CrDPAS
Figure 23. Apo-CrDPAS crystal structure
Figure 24. Apo- <i>Ti</i> DPAS2 crystal structure40
Figure 25. Structure of <i>Ti</i> DPAS2 bound to precondylocarpine acetate
Figure 26. Structure of TiDPAS2 bound to stemmadenine acetate

Figure 27. Conformational changes between apo- and substraste-bound TiDPAS
Figure 28. MUSCLE amino acid alignment of solved structures of CADs from Apocynaceae
and their respective PDB accessions45
Figure 29. Catalytic zinc coordination in CADs from Apocynaceae46
Figure 30. Structural zinc coordination in CADs from Apocynaceae46
Figure 31. Cofactor binding in Cr8HGO and CrGS47
Figure 32. Comparison of cofactor positioning between Cr8HGO, CrGS and TiDPAS248
Figure 33. Docking of NADPH cofactor in <i>Ti</i> DPAS249
Figure 34. CrDPAS active site residues targeted by site-directed mutagenesis50
Figure 35. In vitro reactions of CrDPAS mutants with precondylocarpine acetate
Figure 36. Proposed mechanism of CrDPAS-catalysed reduction of precondylocarpine
acetate
Figure 37. Computational docking of vallesiachotamine and NADPH in CrDPAS53
Figure 38. Site-directed mutagenesis of CrDPAS on formation of 19,20-
dihydrovallesiachotamine54
Figure 39. Proposed mechanism of the CrDPAS-catalysed 1,4-reduction of
vallesiachotamine
Figure 40. Computational docking of 4,21-dehydrogeissoschizine in CrGS with cofactor
NADP ⁺ 56
Figure 41. LC-MS chromatograms of in vitro reactions of CrGS and mutants with substrate
strictosidine, CrSGD and cofactor NADPH57
Figure 42. UPLC-MS chromatograms of CrGS and CrGS Phe53Tyr mutant, and the
corresponding CrTHAS and CrTHAS Tyr56Phe mutant in vitro reactions with substrate
strictosidine, CrSGD and cofactor NADPH58
Figure 43. Proposed catalytic mechanism of CrGS catalysed 1,2-iminium reduction of 4,21-
dehydrogeissoschizine to form geissoschizine59
Figure 44. Tree of maximum likelihood of previously characterised plant CADs61
Figure 45. Proposed mechanism of Rauwolfia VR2 catalysed 1,4-reduction of α , β -
unsaturated aldehyde vomilenine 62
Figure 46 . Enzyme-catalysed reductions of α , β -unsaturated aldehydes in plant specialised
Figure 46 . Enzyme-catalysed reductions of α , β -unsaturated aldehydes in plant specialised metabolism

Figure 48. CAD-catalysed reductions of strictosidine aglycone in <i>C. roseus</i>
Figure 49. Genomic organisation of CADs in <i>C. roseus</i>
Figure 50. 1,2-iminium reductions of strictosidine aglycone rearrangements catalysed by
CrGS, CrGS2 and CrTHAS1-489
Figure 51. Maximum likelihood phylogenetic tree of CADs in <i>C. roseus</i>
Figure 52. Maximum likelihood phylogenetic tree of 1,2-iminum reducing CADs in C. roseus
Figure 53. Hierarchical clustered heatmap of cell-type-specific expression patterns of CADs
in <i>C. roseus</i> leaves
Figure 54. Maximum likelihood phylogenetic tree of CADs in the order Gentianales94
Figure 55. Maximum likelihood phylogenetic tree of species in the order Gentianales95
Figure 56. Biosynthetic pathway of the MIAs camptothecin and geissoschizine in O. pumila
and <i>C. roseus</i> respectively, utilising the shared precursor strictosidine
Figure 57. Syntenic analysis of <i>C. roseus</i> and <i>O. pumila</i> genomes
Figure 58. Cellular and subcellular localisation of elucidated steps of vinblastine
biosynthesis in <i>C. roseus</i> 113
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in <i>C. roseus</i> MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in <i>C. roseus</i> MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis 114 Figure 60. Overview of methods used to detect protein-protein interactions discussed in this chapter 116 Figure 61. Pairwise testing of protein-protein interactions of C. roseus MIA biosynthetic enzymes enriched in epidermal cells using a split-luciferase assay 119 Figure 62. Proposed mechanism of tabersonine, (+)-catharanthine, and (-)-coronaridine formation from the intermediate dehydrosecodine. 120 Figure 63. Protein-protein interactions between ADHs and α/β hydrolases. 121 Figure 64. Engineering CrDPAS-cyclase interaction
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis114Figure 60. Overview of methods used to detect protein-protein interactions discussed inthis chapter116Figure 61. Pairwise testing of protein-protein interactions of C. roseus MIA biosyntheticenzymes enriched in epidermal cells using a split-luciferase assay119Figure 62. Proposed mechanism of tabersonine, (+)-catharanthine, and (-)-coronaridineformation from the intermediate dehydrosecodine.120Figure 63. Protein-protein interactions between ADHs and α/β hydrolases.121Figure 64. Engineering CrDPAS-cyclase interaction123Figure 65. T°m of CrDPAS and CrTS individually and at stoichiometric ratios.
Figure 59. Previously studied enzyme-enzyme complexes in <i>C. roseus</i> MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in <i>C. roseus</i> MIA biosynthesis
Figure 59. Previously studied enzyme-enzyme complexes in <i>C. roseus</i> MIA biosynthesis114Figure 60. Overview of methods used to detect protein-protein interactions discussed inthis chapter116Figure 61. Pairwise testing of protein-protein interactions of <i>C. roseus</i> MIA biosyntheticenzymes enriched in epidermal cells using a split-luciferase assay119Figure 62. Proposed mechanism of tabersonine, (+)-catharanthine, and (-)-coronaridineformation from the intermediate dehydrosecodine.120Figure 63. Protein-protein interactions between ADHs and α/β hydrolases.123Figure 64. Engineering <i>CrDPAS</i> -cyclase interaction123Figure 65. T° m of <i>CrDPAS</i> and <i>CrTS</i> individually and at stoichiometric ratios.126Figure 67. Inter-pathway protein-protein interactions between <i>C. roseus</i> MIA andphenylpropanoid biosynthetic enzymes.128
Figure 59. Previously studied enzyme-enzyme complexes in C. roseus MIA biosynthesis114Figure 60. Overview of methods used to detect protein-protein interactions discussed inthis chapter116Figure 61. Pairwise testing of protein-protein interactions of C. roseus MIA biosyntheticenzymes enriched in epidermal cells using a split-luciferase assay119Figure 62. Proposed mechanism of tabersonine, (+)-catharanthine, and (-)-coronaridineformation from the intermediate dehydrosecodine.120Figure 63. Protein-protein interactions between ADHs and α/β hydrolases.121Figure 65. T°m of CrDPAS and CrTS individually and at stoichiometric ratios.125Figure 67. Inter-pathway protein-protein interactions between C. roseus MIA andphenylpropanoid biosynthetic enzymes.128Figure 68. Metabolic crosstalk between phenylpropanoid and MIA biosynthesis in C. roseus

Figure 69. Biosynthesis of Ψ -tabersonine in T. iboga130
Figure 70. Representative image of split-luciferase positive control AtCHIL and AtCHS in N.
benthamiana150
Figure 71. SDS-PAGE of TurboID streptavidin pull-down assays152
Figure 72. Comparison of ¹ H spectra of angryline and d-angryline. Loss of signal shown at
H19, indicating deuterium incorporation
Figure 73. ¹ H NMR data for m/z 339, (–)-vincadifformine (standard)171
Figure 74. ¹ H NMR data for <i>m/z</i> 339, (–)-vincadifformine (standard)172
Figure 75 . Phase sensitive HSQC NMR data for m/z 341, d_2 -(±)-vincadifformine full range in
MeOH- <i>d</i> ₃
Figure 76. Phase sensitive HSQC NMR data for m/z 341, d ₂ -(±)-vincadifformine, aliphatic
range in MeOH-d ₃ 175
Figure 77. MS/MS spectra of 19,20-dihydrovallesiachotamine176
Figure 78. ¹ H NMR data of 19,20-dihydrovallesiachotamine with water suppression, full
range in MeOH-d ₃ 178
Figure 79. ¹ H NMR data of 19,20-dihydrovallesiachotamine with water suppression,
aldehyde range in MeOH-d ₃ 179
Figure 80. ¹ H NMR data of 19,20-dihydrovallesiachotamine with water suppression,
aromatic range in MeOH-d ₃ 180
Figure 81. ¹ H NMR data of 19,20-dihydrovallesiachotamine with water suppression,
aliphatic range in MeOH-d ₃ 181
Figure 82. NMR data of 19,20-dihydrovallesiachotamine, phase sensitive HSQC, full range
in MeOH-d ₃
Figure 83. NMR data of 19,20-dihydrovallesiachotamine, phase sensitive HSQC, aldehyde
and aromatic range in MeOH-d ₃ 183
Figure 84. NMR data of 19,20-dihydrovallesiachotamine, phase sensitive HSQC, aliphatic
range in MeOH-d ₃
Figure 85. NMR data of 19,20-dihydrovallesiachotamine, HMBC, full range in MeOH-d _{3.}
Figure 86. NMR data of 19,20-dihydrovallesiachotamine, HMBC, aldehyde and aromatic
range in MeOH-d ₃ 186

Figure 87. NMR data of 19,20-dihydrovallesiachotamine, HMBC, aliphatic range in MeOHd₃......187 Figure 88. NMR data of 19,20-dihydrovallesiachotamine, DEPTQ, power spectrum, full range in MeOH-*d*₃......188 Figure 89. NMR data of 19,20-dihydrovallesiachotamine, ¹H-¹H DQF COSY with water Figure 90. NMR data of 19,20-dihydrovallesiachotamine, ¹H-¹H DQF COSY with water suppression, magnitude mode processed, aldehyde and aromatic range in MeOH-d₃...190 **Figure 91**. NMR data of 19,20-dihydrovallesiachotamine, ¹H-¹H DQF COSY with water **Figure 92.** NMR data of 19,20-dihydrovallesiachotamine, ¹H-¹H ROESY with water suppression, full range in MeOH-d₃.....192 **Figure 93**. NMR data of 19,20-dihydrovallesiachotamine, ¹H-¹H ROESY with water suppression, aldehyde and aromatic range in MeOH-d₃193 **Figure 94**. NMR data of 19,20-dihydrovallesiachotamine, ¹H-¹H ROESY with water suppression, aliphatic range in MeOH-d₃.....194 Figure 95. Structure of 19,20-dihydrovallesiachotamine optimized using Gaussian 16 (DFT APFD/6-311G++(2d,p), solvent MeOH).195 Figure 97 UPLC-MS chromatograms of in vitro reactions of CrADH9 and CrDPAS with Figure 98. Amino acid sequence alignment of OpADH1 and OpADH2 with C. roseus CADs Figure 99. Hierarchical clustering of tissue-specific gene expression of CADs, and Figure 100. Hierarchical clustering of tissue-specific accumulation of metabolites from O. Figure 101. Representative images of pairwise interactions of CrLAMT with C. roseus MIA Figure 102. Representative images of pairwise interactions of CrSLS with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......217

Figure 103. Representative images of pairwise interactions of CrTDC with C. roseus MIA Figure 104. Representative images of pairwise interactions of CrGS with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......223 Figure 105. Representative images of pairwise interactions of CrGO with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......225 Figure 106. Representative images of pairwise interactions of CrRedOx1 with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......228 Figure 107. Representative images of pairwise interactions of CrRedOx2 with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......231 Figure 108. Representative images of pairwise interactions of CrSAT with C. roseus MIA biosynthetic enzymes tested by split-luciferase in N. benthamiana......234 Figure 109. Representative images of pairwise interactions of CrPAS with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......237 Figure 110. Representative images of pairwise interactions of CrDPAS with C. roseus MIA biosynthetic enzymes tested by split-luciferase in N. benthamiana......240 Figure 111. Representative images of pairwise interactions of CrTS with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......243 Figure 112. Representative images of pairwise interactions of CrCS with C. roseus MIA biosynthetic enzymes tested by split-luciferase in N. benthamiana......246 Figure 113. Representative images of pairwise interactions of CrCorS with C. roseus MIA biosynthetic enzymes tested by split-luciferase in N. benthamiana......249 Figure 114. Representative images of pairwise interactions of CrT16H2 with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......251 Figure 115. Representative images of pairwise interactions of Cr16OMT with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......254 Figure 116. Representative images of pairwise interactions of CrT3O with C. roseus MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*......256 Figure 117. Representative images of pairwise interactions of CrT3R with C. roseus MIA biosynthetic enzymes tested by split-luciferase in N. benthamiana......259 **Figure 118.** Representative images of pairwise interactions of AtCAD4 with α/β -hydrolases tested by split-luciferase in *N. benthamiana*......261

Figure 119. Representative images of pairwise interactions of CrCAD with α/β -hydrolases
tested by split-luciferase in <i>N. benthamiana</i> 263
Figure 120. Representative images of pairwise interactions of <i>Cr</i> 2141 with α/β -hydrolases
tested by split-luciferase in <i>N. benthamiana</i> 265
Figure 121. Representative images of pairwise interactions of CrADH9 with α/β -hydrolases
tested by split-luciferase in <i>N. benthamiana</i> 267
Figure 122. Representative images of pairwise interactions of <i>Ti</i> DPAS1 with α/β -hydrolases
tested by split-luciferase in <i>N. benthamiana</i> 268
Figure 123. Representative images of pairwise interactions of <i>Ti</i> DPAS2 with α/β -hydrolases
tested by split-luciferase in <i>N. benthamiana</i> 269
Figure 124. Representative images of pairwise interactions of CrDPAS with α/β -hydrolases
tested by split-luciferase in <i>N. benthamiana</i> 271
Figure 125. Representative images of pairwise interactions of CrRedOx1 with α/β -
hydrolases tested by split-luciferase in <i>N. benthamiana</i> 273
Figure 126. Representative images of pairwise interactions of CrGS with α/β -hydrolases
tested by split-luciferase in <i>N. benthamiana</i> 275
Figure 127. Representative images of pairwise interactions of <i>Cr</i> THAS with α/β -hydrolases
tested by split-luciferase in <i>N. benthamiana</i> 276
Figure 128. Representative images of pairwise interactions of CrT3R with α/β -hydrolases
tested by split-luciferase in <i>N. benthamiana</i> 278
Figure 129. Amino acid sequence alignment of cyclase enzymes from <i>C. roseus</i> and <i>T. iboga</i> .
Figure 130. Representative images of pairwise interactions of CrDPAS interaction
engineering with CrCors or TiCorS tested by split-luciferase in N. benthamiana
Figure 131. Effect of pH and [NaCl] on CrDPAS T°m in the presence or absence of cyclase
CrTS or CrCS added at equimolar concentrations
Figure 132. Representative images of pairwise interactions of CrC4H with C. roseus lignin
and MIA biosynthetic enzymes tested by split-luciferase in <i>N. benthamiana</i>
Figure 133. Representative images of pairwise interactions of CrC3H with C. roseus lignin
and MIA biosynthetic enzymes tested by split-luciferase in <i>N. benthamiana</i>
Figure 134. Representative images of pairwise interactions of CrCSE with C. roseus lignin
and MIA biosynthetic enzymes tested by split-luciferase in <i>N. benthamiana</i>

List of Abbreviations

7DLH	7-deoxyloganic acid hydroxylase
8HGO	8-hydroxygeraniol oxidoreductase
160MT	16-hydroxytabersonine-O-methyltransferase
βHAD	β-hydroxy acid dehydrogenase
ADH	Alcohol dehydrogenase
AKR	Aldo-keto reductase
AP-MS	Affinity purification mass spectrometry
BBE	Berberine bridge-like enzyme
BGC	Biosynthetic gene cluster
BiFC	Bimolecular fluorescence complementation
BirA	Biotin ligase
BP	Base pairs
С3'Н	p-Coumaroyl ester 3-hydroxylase
C4H	Cinnamate-4-hydroxylase
CAD	Cinnamyl alcohol dehydrogenase
CCD	Charge-coupled device
CHIL	Chalcone isomerase-like
СНЅ	Chalcone synthase
CorS	Coronaridine synthase
COSY	Correlation Spectroscopy
CS	Catharanthine synthase
CSE	Caffeoyl shikimate esterase
CV	Column volumes
CXE	Carboxylesterase
D4H	Deacetoxyvindole 4'-hydroxylase
DAT	Deacetylvindoline 4-O-acetyl-transferase
DMAPP	Dimethylallyl diphosphate
DPAS	Dihydroprecondylocarpine acetate synthase
DSF	Differential scanning fluorimetry
ECD	Electronic circular dichroism

EDTA	Ethylenediaminetetraacetic acid
EIC	Extracted ion chromatogram
F5H	Ferulate-5-hydroxylase
FAD	Flavin adenine dinucleotide
G8H	Geraniol 8-hydroxylase
GES	Geraniol synthase
GGPPS	Geranylgeranyl diphosphate synthase
GroES	Common operon GroE Small protein
GS	Geissoschizine synthase
GO	Geissoschizine oxidase
HIDH	Hydroxyisoflavone dehydratase
НМВС	Heteronuclear multiple-bond correlation spectroscopy
HSQC	Heteronuclear single quantum correlation
HPLC	High-performance liquid chromatography
HYS	Heteroyohimbine synthase
10	Iridoid oxidase
IPAP	Internal phloem-associated parenchyma
IPP	Isopentenyl pyrophosphate
IPTG	Isopropyl β-D-1-thiogalactopyranoside
IRED	Imine reductase
ISY	Iridoid synthase
LAMT	Loganic acid methyltransferase
MATE	Multidrug and toxic compound efflux
MDR	Medium-chain dehydrogenase/reductase
MEP	2C-methyl-D-erythritol-4-phosphate
MIA	Monoterpene indole alkaloid
MVA	Mevalonic acid
NADP(H)	Nicotinamide adenine dinucleotide phosphate (hydride)
NMR	Nuclear magnetic resonance
NMT	N-methyl transferase
NPF	Nitrate/peptide family

NS	Norfluorocurarine synthase
OMT	O-methyltransferase
Ρ5βR	Progesterone 5-β-reductase
SDS-PAGE	Sodium dodecyl sulfate polyacrylamide gel electrophoresis
PAS	Precondylocarpine acetate synthase
PDB	Protein database
PNP	Plant natural product
PRX	Peroxidase
RedOx1	Reductase/oxidase 1
RedOx2	Reductase/oxidase 2
RMSD	Root mean square deviation
ROESY	Rotating frame nuclear Overhauser effect spectroscopy
SAT	Stemmadenine acetyltransferase
SDR	Short-chain dehydrogenase/reductase
SGD	Strictosidine deglucosidase
SLS	Secologanin synthase
SLTr	Secologanin transporter
STR	Strictosidine synthase
Т3О	Tabersonine 3'-oxidase
T3R	Tabersonine-3-reductase
T11H	Tabersonine-11-hydroxylase
TCA	Tricarboxylic acid
ТСЕР	Tris(2-carboxyethyl)phosphine
TDC	Tryptophan decarboxylase
TE	Transposable elements
THAS	Tetrahydroalstonine synthase
TIC	Total ion chromatogram
T _m	Melting temperature
TS	Tabersonine synthase
UPLC-MS	Ultra-performance liquid chromatography mass spectrometry
VR	Vomilenine reductase

Chapter 1. MIA Chemical Diversity and Biosynthesis

1.1. Plant Natural Products

Plant natural products (PNPs), also known as specialised metabolites, comprise a diverse range of over 245,000 phytochemicals ^[1]. As sessile organisms, plants utilise these compounds for various biological functions including defence responses and as chemical signals ^[2] to overcome biotic and abiotic stresses. In addition to their ecological roles, PNPs have been harnessed by humans for thousands of years in traditional medicines to treat a range of diseases ^[3]. In 1805, the isolation of the first medicinal PNP morphine marked the beginning of the modern drug era. Today, 73% of pharmaceuticals are derived from natural products and PNPs continue to be a source of inspiration for novel drug design ^[4]. The diversity of PNPs can be largely divided into three major classes of compound: phenolics, terpenoids and alkaloids (Figure 1).

Phenolics are phytochemicals that contain one or more hydroxyl groups attached directly to an aromatic ring. These compounds are produced through the shikimate pathways from the precursor amino acids L-phenylalanine and L-tyrosine and include major groups such as flavonoids, stilbenes and lignins. Biological roles of phenolics include UV protection, structural integrity and nutrient uptake ^[5, 6].

Figure 1. Overview of the major classes of plant natural products.

Terpenoids are produced from the condensation of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) to form an isoprene scaffold $((C_5H_8)_n)$. In plants, monoterpenoids (*n*=2) and diterpenoids (*n*=4) are typically synthesised via the plastid-localised 2*C*-methyl-D-erythritol-4-phosphate (MEP) pathway, whilst sesquiterpenoids (*n*=3) and triterpenoids (*n*=6) are synthesised from the cytosolic mevalonic acid (MVA) pathway, with some exceptions utilising both pathways ^[7]. Terpenoids exhibit diverse biological functions including as signalling molecules to attract pollinators and repel herbivores ^[8]. Additionally, some of these compounds have medicinal applications such as the anti-malarial artemisinin, the anti-cancer agent taxol and the anti-hyperglycemic stevioside ^[9].

Alkaloids are nitrogen-containing natural products that are categorised based on their biogenesis. True alkaloids derive their nitrogen atom(s) from an amino acid to form a heterocycle, whilst pseudo-alkaloids incorporate nitrogen enzymatically at a later stage of biosynthesis, and protoalkaloids do not form an amine heterocycle. The origin of the precursor molecules further classifies true alkaloids into families such as the benzylisoquinolines, the monoterpene indoles and the chinchonas ^[10, 11]. In plants, alkaloids act as anti-herbivory and growth-regulating agents, however, these compounds have also garnered significant attention due to their pharmaceutical applications ^[12]. Currently, over 50 alkaloids are used in marketed medicines including the anti-malarial chinchona alkaloid quinine, the analgesic benzylisoquinoline alkaloid morphine and the anti-cancer monoterpene indole alkaloid vinblastine ^[13].

Plants have evolved a diverse chemical arsenal to combat various biotic and abiotic stresses. Serendipitously, humans later harnessed this chemical repository for medicinal applications and continue to use nature as a source of inspiration for modern drug discovery and design. PNPs therefore remain a rich reservoir of nature's chemodiversity and understanding their biosynthesis is of significant biological and pharmaceutical importance.
1.2. Monoterpene Indole Alkaloids: Structure, Pharmacology and Biosynthetic Gene Discovery

Monoterpene indole alkaloids (MIAs) constitute a large class of compounds that have garnered considerable attention due to their structural diversity and pharmacological activities ^[14]. MIAs are exclusive to higher plants and are found in Apocynaceae, Gelsemiaceae, Loganiaceae and Rubiaceae families within the Gentianales order, and the Nyssaceae family from the Cornales order ^[15]. These alkaloids are composed of a monoterpene-derived unit (secologanin) and a tryptamine-derived indole unit, which undergo stereoselective condensation, forming the central precursor molecule strictosidine ^[16]. Subsequent formation of a central heterocycle from the secologanin-derived 9C unit forms the five major MIA scaffold types: corynanthe, aspidosperma, iboga, yohimbine and strychnos (Figure 2). The structural diversity of MIAs enables their plethora

Figure 2. MIA scaffolds generated from central precursor strictosidine. Carbon numbering based on Scott *et al.,* ^[17]. Figure made using Biorender.

of pharmaceutical applications including the anti-cancer agent vinblastine, the antiarrhythmic ajmaline and the convulsant strychnine. However, their often limited accumulation *in planta* has driven research to access these compounds using biological and chemical synthesis, as summarised in Figure 3.

Seminal research in the 1970s used radio-isotopic labelling of plant tissue and plant cell cultures to identify key pathway intermediates and form a chemical hypothesis of MIA biosynthesis ^[17–20]. These studies proposed the compound strictosidine as the key precursor of the MIA scaffold, which was later validated using molecular biology techniques to identify the corresponding biosynthetic enzyme strictosidine synthase (STR) ^[21–24]. However, the identification of MIA biosynthetic enzymes and the genes that encode them was hampered by a time-consuming "grind and find" approach, where enzymes were identified through purification from plant tissue or cell cultures. Additionally, the lack of accessible pathway intermediates for activity testing poses a challenge that remains in PNP pathway discovery.

Advances in analytical and molecular biology techniques have accelerated the discovery of PNPs. The development of analytical instrumentation with improved sensitivity such as higher-field nuclear magnetic resonance (NMR) spectroscopy and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) has enabled the detection and characterisation of PNPs at increasingly smaller quantities, addressing the challenge posed by low-accumulating biosynthetic intermediates ^[25, 26]. These techniques are often used with computational metabolomics tools to identify PNPs within a complex sample ^[26].

The advent of second- and third-generation sequencing techniques in the last 15 years has facilitated the generation of transcriptomic and genomic data for numerous medicinal plants ^[27, 28]. Technologies such as PacBio and Illumina sequencing have enabled the assembly of numerous plant genomes ^[29–34], which were historically challenging due to their size and the presence of highly repetitive sequences ^[35]. This has enabled the identification of plant biosynthetic gene clusters (BGCs) ^[29, 31, 32, 36, 37], though these remain significantly less prevalent than those reported in bacteria. The availability of sequencing data has supported the discovery of MIA biosynthetic genes through comparative genomics, whereby genes are identified by encoding enzymes with homology to previously characterised enzymes, with similar protein structures often correlating with similar functions ^[38]. Co-expression analysis is also commonly used to identify genes that are expressed in a similar tissue- or cell type-specific pattern to known genes encoding other biosynthetic enzymes within a pathway. This technique has also been integrated with the co-localisation of biosynthetic intermediates identified by metabolomics to further improve the selection of candidate genes ^[34].

In addition to sequencing, advances in molecular biology techniques have accelerated the testing of candidate biosynthetic genes. Cloning techniques such as GoldenGate have streamlined the assembly of multiple genes within a single plasmid, enabling the efficient manipulation of gene constructs ^[39]. In conjunction, various heterologous hosts have been developed to express and test the activity of biosynthetic enzymes ^[40]. These activity screens often employ a combinatorial approach to increase throughput and identify enzymes that act on unstable or hard-to-access intermediates ^[41]. Moreover, virus-induced gene silencing (VIGS) has been developed in a range of plants to investigate the *in vivo* function of genes, providing valuable insights into their biological roles ^[42].

5

Collectively, these technological advances have substantially accelerated gene discovery in plants, thereby facilitating the elucidation of the biosynthetic pathways for several pharmaceutically important MIAs ^[43, 44], including the anti-cancer agent vinblastine from *Catharanthus roseus* as detailed in section 1.3. The discovery of PNP biosynthetic pathways provides insights into the biochemistry utilised by plants to synthesise these structurally complex compounds. Furthermore, it enables the production of MIAs ^[45–47] and non-natural MIA analogues through synthetic biology and metabolic engineering approaches ^[48–51]. The study of MIA biosynthesis thus contributes to a deeper understanding of nature's chemical diversity and provides us greater access to this class of pharmacologically important compounds.

1.3. MIA Enzyme Discovery in *Catharanthus roseus:* A Case Study of Vinblastine Biosynthesis

C. roseus, commonly known as the Madagascar periwinkle or *Vinca rosea*, is a member of the Apocynaceae family of plants that has been extensively studied for its production of MIAs, most notably the anti-cancer agents vinblastine and vincristine (Figure 4). *C. roseus* extracts have been used in traditional medicines to treat a range of ailments, including cancers, diabetes and stomach disorders ^[52]. However, the biologically active alkaloids were serendipitously discovered in 1958 when Noble *et al.* observed a significant decrease in the white blood cell counts of mice following injection of *C. roseus* extracts, suggesting its potential use as a chemotherapy agent ^[53]. Vinblastine and the structurally related vincristine were isolated and shown to be effective cancer treatments ^[54, 55] by binding to microtubules and arresting cell mitosis ^[56], and subsequently approved for clinical use by the FDA ^[57]. Despite their low abundance *in planta* (0.003% based on dried plant material) ^[58], the small doses required for the pharmacological application of vinblastine and

Figure 4. Structures of MIAs vinblastine and vincristine produced in *C. roseus*. Monomeric precursors catharanthine and vindoline coloured in yellow and green respectively.

vincristine enabled their clinical supply by isolation from plant material ^[53, 59]. Nevertheless, significant efforts have been made to improve the production of these MIAs using chemical synthesis ^[60–62] and synthetic biology ^[45–47] approaches.

Over the past 40 years, the biosynthesis of MIAs has been extensively studied in *C. roseus*, revealing a highly intricate and regulated process involving over 30 enzymatic steps. Biosynthesis occurs in 3 specialised cell types within the plant, with iridoid biosynthesis taking place in internal phloem-associated parenchyma (IPAP) cells, formation of corynanthe-, iboga- and aspidosperma-type alkaloids in epidermal cells, and vindoline biosynthesis and formation of the bisindole scaffold occurring in specialised idioblast cells ^[34,63]. Vinblastine biosynthesis can broadly be split into four stages: formation of the corynanthe-type scaffold, formation of aspidosperma- and iboga-type scaffolds, elaboration of the aspidosperma-type scaffold to form vindoline, and the formation of the bisindole scaffold. The discovery and elucidation of vinblastine biosynthesis in *C. roseus* is discussed in detail below.

1.3.1. Corynanthe Scaffold Biosynthesis

The first committed step of MIA biosynthesis is the formation of the central precursor molecule strictosidine from the nitrogen-containing tryptamine and the monoterpene secologanin (Figure 5). Tryptamine is formed by the tryptophan decarboxylase (TDC) catalysed decarboxylation of the amino acid tryptophan ^[64] whilst secologanin originates from the MEP pathway ^[34, 65]. The Pictet-Spenglerase enzyme strictosidine synthase (STR) catalyses the condensation of tryptamine and secologanin to form strictosidine ^[18, 20, 21, 23, 66]. STR is localised within the cell vacuole ^[23, 67], necessitating the import of substrates into this sub-cellular compartment and the export of strictosidine to the cytosol. Whilst the tryptamine importer remains unknown, secologanin is imported into the vacuole by a multidrug and toxic compound efflux (MATE) transporter ^[34], and strictosidine is exported by a nitrate/peptide family transporter (NPF2.9) ^[68].

The glucose moiety of strictosidine is hydrolysed by strictosidine deglucosidase (SGD) in the cell nucleus to form the highly reactive aglycone ^[69–71]. Although a transporter to mediate the import of strictosidine into the nucleus has not been reported, examples of eukaryotic

Figure 5. Biosynthesis of corynanthe MIA scaffold in *C. roseus* from the monoterpene secologanin and indole-derived tryptamine precursors.

nuclear pore complexes facilitating the movement of defence-related compounds suggest that the MIA biosynthetic intermediates could employ a similar mechanism ^[72, 73]. Strictosidine aglycone, which exists as a variety of structural isomers, can be reduced by a short-chain dehydrogenase/reductase (SDR) enzyme ^[74] or a variety of members of the cinnamyl alcohol dehydrogenase (CAD) subfamily of alcohol dehydrogenase (ADH) enzymes ^[75–77] to form different MIA scaffolds. Reduction of the strictosidine aglycone rearrangement 4,21-dehydrogeissoschizine by the CAD enzyme geissoschizine synthase (GS) produces the corynanthe-type alkaloid 19-*E*-geissoschizine ^[78]. This is subsequently oxidised by the cytochrome P450 (CYP) geissoschizine oxidase (GO) to form the highly unstable intermediate preakuammicine ^[17], although only the deformylated product akuammicine was observed in *in vitro* assays ^[78, 79]. However, incubation of strictosidine with enzymes SGD, GO, an additional CAD named RedOx1 and an aldo-keto reductase (AKR) enzyme named RedOx2 resulted in the production of the known biosynthetic intermediate stemmadenine ^[79]. As initially proposed in early chemical hypotheses ^[17], preakuammicine spontaneously rearranges to an unstable iminium, which is reduced by RedOx1 to form a stable aldehyde intermediate. The aldehyde is then reduced by RedOx2 to generate stemmadenine, the precursor of aspidosperma- and iboga-type MIAs ^[80].

Orthologues of many of the enzymes involved in the formation of strictosidine and corynanthe-type MIAs have been reported in other species including *Strychnos nux-vomica* ^[43] and *Rauwolfia serpentina* ^[22, 81, 82], highlighting the shared biosynthetic pathways of these compounds as hypothesised in early chemical models ^[17].

1.3.2. Aspidosperma and Iboga Scaffold Biosynthesis

Further diversity of MIAs is achieved by the formation of the iboga- and aspidosperma-type scaffolds (Figure 6). The corynanthe-type MIA stemmadenine is acetylated by stemmadenine acetyltransferase (SAT) ^[79]. The resulting stemmadenine acetate is then oxidised by the berberine bridge-like enzyme (BBE) precondylocarpine acetate synthase (PAS) to form precondylocarpine acetate ^[83]. PAS likely catalyses stemmadenine acetate oxidation using a similar mechanism to previously characterised flavin adenine dinucleotide (FAD) dependent oxidases ^[84].

The reduction of precondylocarpine acetate catalysed by the CAD dihydroprecondylocarpine acetate synthase (DPAS) is discussed in Chapter 2 of this thesis. In brief, DPAS catalyses a 1,4-iminium reduction to form dihydroprecondylocarpine acetate, which following a spontaneous desacetoxylation, forms the highly reactive intermediate dehydrosecodine ^[83]. Early chemical hypotheses proposed dehydrosecodine as the key intermediate to aspidosperma- and iboga-type MIA scaffold formation ^[85–87].

Figure 6. Biosynthesis of iboga and aspidosperma MIA scaffolds in *C. roseus*.

This was validated *in vivo* upon the discovery of the cyclase enzymes tabersonine synthase (TS) and catharanthine synthase (CS) ^[83, 88]. Incubation of the substrate precondylocarpine acetate with DPAS and either cyclase enzyme TS or CS led to the formation of tabersonine or the bisindole precursor catharanthine respectively (Figure 4). These enzymes were all found to be co-localised in the nucleocytoplasm, suggesting the formation of protein-protein complexes as discussed further in Chapter 4 of this thesis ^[83].

Since their initial discovery in *C. roseus*, orthologues of PAS, DPAS and the cyclase enzymes have also been reported in the closely related species *Tabernanthe iboga* ^[44, 89], revealing the shared biosynthetic pathway of aspidosperma- and iboga-type MIAs.

1.3.3. Vindoline Biosynthesis: Elaborating the Aspidosperma Scaffold

Tabersonine undergoes 7 further enzymatic steps to form the remaining precursor of bisindole MIAs - vindoline (Figure 7). Firstly, this compound is oxidised by the CYP enzyme tabersonine hydroxylase (T16H) - at C11 according to the carbon numbering used in this thesis - to form 11-hydroxytabersonine ^[90, 91]. Two isoforms of T16H have been reported which display different organ-dependent expression patterns suggesting divergence of their roles *in planta* ^[92]. The product of T16H is methylated by an *O*-methyltransferase (16OMT) to form 11-methoxytabersonine ^[93, 94]. A second isoform of 16OMT was identified to act on flavonoid substrates in addition to 11-hydroxytabersonine, suggesting a potential ancestral role of this enzyme in flavonoid biosynthesis ^[94]. The CYP enzyme tabersonine ^{3'-} oxidase (T3O) forms the unstable 16-hydroxy-11-methoxy-tabersonine ^[95], which when incubated in the presence of the CAD enzyme tabersonine ^[95]. This product is subsequently methylated by an N-methyl transferase (NMT) to form deacetoxyvindoline ^[96]. NMT was localised to the thylakoids within the chloroplast ^[97, 98], though no transporter proteins have been identified which facilitate the movement of MIAs to this organelle.

The 2-oxoglutarate dependent-dioxygenase enzyme deacetoxyvindoline 4'-hydroxylase (D4H) catalyses the formation of deacetylvindoline ^[99–101], which is subsequently catalysed by deacetylvindoline 4-O-acetyl-transferase (DAT) to form vindoline ^[102, 103]. These penultimate steps of vindoline biosynthesis were found to be localised in the

10

Figure 7. Vindoline biosynthesis from aspidosperma-type alkaloid tabersonine in C. roseus.

nucleocytoplasmic compartment within the cell ^[98] and enriched in specialised idioblast cell types ^[34]. This suggests the action of unknown transporter proteins to exchange deacetoxyvindoline between epidermal and idioblast cells. Elucidation of vindoline biosynthesis in conjunction with catharanthine biosynthesis thus enables access to the proposed precursors of bisindole MIAs.

1.3.4. Vinblastine Biosynthesis: Dimerisation and Decoration of the Bisindole Scaffold

The final steps of vinblastine biosynthesis require the dimerisation of the precursor's catharanthine and vindoline (Figure 8). These precursors were identified by *in vivo* isotopic label feeding experiments ^[104], though the biosynthetic steps remain unknown. Catharanthine and vindoline are sequestered in the vacuole of idioblast cells through a proton antiport system ^[105, 106]. Bis-indole MIA biosynthesis is then proposed to occur through the peroxidase-catalysed oxidation of catharanthine to form catharanthine iminium. This compound then spontaneously couples with vindoline to form the bisindole anhydrovinblastine iminium ^[58, 107]. This oxidation was reported to be catalysed by the *C. roseus* peroxidase PRX1 ^[105, 108, 109], however, was also catalysed by the commercial enzyme horseradish peroxidase, suggesting that it is a nonselective reaction ^[58, 110].

Anhydrovinblastine iminium is proposed to act as a central intermediate of bisindole MIAs observed in *C. roseus* including vinblastine ^[111]. Isoforms of the CAD enzyme tetrahydroalstonine (THAS) catalyse the 1,2-iminium reduction of anhydrovinblastine iminium to form anhydrovinblastine ^[34]. Vinblastine biosynthesis is proposed to go through

Figure 8. Coupling of catharanthine and vindoline to form bisindole MIAs in *C. roseus*. Catharanthine and vindoline precursors coloured in yellow and green respectively. Formation of vinblastine based on biochemical hypothesis by Langlois and Potier ^[111].

a 1,4-reduction of anhydrovinblastine iminium, reminiscent of the DPAS-catalysed reduction of dihydroprecondylocarpine acetate ^[83], before a final oxidation and reduction step (Figure 8). Members of the CAD family of enzymes have neofunctionalised to perform atypical reductions in MIA biosynthesis as discussed in Chapters 2 and 3 of this thesis. The final reductions to produce vinblastine may therefore be catalysed by one or more CAD enzymes in *C. roseus*.

Vinblastine biosynthesis is one of the longest and most complex PNP pathways studied to date and its elucidation is a culmination of over 40 years of study. Vinblastine biosynthesis in *C. roseus* not only acts as a model system for discovering MIA pathways in other species, but demonstrates the biochemical ingenuity of plants and the diversity of PNPs.

1.4. Alcohol Dehydrogenase Enzymes: Overview and Evolutionary Origin

ADHs are a large family of medium chain reductase (MDR) enzymes that catalyse the reversible oxidation of primary or secondary alcohols to their corresponding aldehyde or ketone using the cofactor nicotinamide adenine dinucleotide phosphate (hydride) (NADP(H)) ^[112–115]. ADHs are found in all kingdoms of life, though have phylogenetically and functionally diverged to act in a range of primary and specialised metabolic pathways ^{[116,}

^{117]}. They are proposed to have evolved from an ancestral SDR protein (Figure 9) ^[118, 119], which are structurally characterised by a single domain and a Rossmann-fold motif important for cofactor binding ^[120]. The merging of a SDR and a common operon GroE Small (GroES) chaperonin protein led to the formation of the MDR superfamily of enzymes ^[121]. MDRs later incorporated a variety of metal ions to form metalloenzyme MDRs, including the zinc-containing ADH family of enzymes.

Members of the CAD subfamily of ADHs catalyse numerous reductions in MIA biosynthesis as outlined in section 1.3. Many CADs involved in MIA biosynthesis have functionally diverged from their typical catalytic activity of reducing a primary alcohol to an aldehyde to catalysing highly atypical reactions such as the 1,2- and 1,4- reduction of an iminium moiety (e.g. *Cr*GS and *Cr*DPAS respectively; Figure 9). Understanding the mechanism of these atypical CAD-catalysed reductions is therefore of biochemical and bioengineering interest and is the focus of Chapter 2 of this thesis. Furthermore, the expansion and neofunctionalisation of this enzyme family within Gentianales, as discussed in Chapter 3, sheds light on the evolution of MIA chemodiversity.

1.5. Protein-Protein Interactions in Plant-Specialised Metabolism

Plants produce over 350,000 specialised metabolites, with many being synthesised in parallel pathways utilising a common intermediate ^[122, 123]. Since seminal works in the 1960s ^[124, 125], the cell is now understood to be a metabolically complex and crowded space with protein-protein interactions mediating numerous biological processes. The dynamic assembly of protein complexes in plants is proposed to enable these sessile organisms to react to biotic and abiotic stresses in their environment. Complexes are formed by interchain non-covalent interactions between proteins and can be classified by their composition, structural and/or functional stability, and temporal stability (Figure 10) ^[126, 127]. Protein-protein complexes have a variety of biological functions in plants including co-

Figure 10. Classifications of protein-protein complexes. Complexes are classified by their composition (i.e. homo- (identical) or heteromeric (non-identical) protein chains), structural and/or functional stability as obligate (stable) or non-obligate (unstable) monomers, and temporal stability (i.e. permanent or transient). Figure made using Biorender.

localising organelles ^[128], regulating gene transcription ^[129, 130], and scaffolding biosynthetic enzymes ^[131, 132]. Furthermore, these complexes have been observed to form between proteins acting within different metabolic pathways to orchestrate defence responses ^[133].

Some enzymes physically interact to form supramolecular structures known as metabolons. These comprise two or more sequential enzymes in a biosynthetic pathway interacting to directly channel intermediates between their active sites. Metabolons can aid metabolic organisation by controlling flux at network branch points, and in some cases, improve metabolic efficiency ^[134]. Examples of metabolons have been found in highly conserved metabolic pathways across the kingdoms of life to produce compounds essential for cellular respiration such as purine ^[135] and ubiquinone biosynthesis ^[136].

The high number of enzymes and the generation of unstable intermediates in PNP biosynthetic pathways has led to speculation of the formation of protein complexes and/or metabolons. However, experimental and technical limitations including the limited access to often unstable intermediates make metabolons, particularly in PNP biosynthesis, challenging to study. Metabolons in plants have been most extensively studied in primary metabolism such as the tricarboxylic acid cycle, glycolysis and lignin biosynthesis ^[137–139]. Although less studied, there are metabolons and enzyme-enzyme complexes have been reported in a range of PNP pathways such as the biosynthesis of isoflavonoids ^[140], cyanogenic glucosides ^[141], iridoids ^[142], sporopollenin ^[143], camalexin ^[144], bitter acids ^[145] and flavonoids ^[146–148]. Identifying and characterising the protein-protein interactions within a biosynthetic pathway can enlighten our understanding of the metabolic organisation within a cell and the observed chemodiversity of PNPs.

As described in section 1.3, vinblastine biosynthesis is a long PNP pathway that contains several intermediates that act as metabolic branch points to generate chemical diversity (e.g. dehydrosecodine to form either aspidosperma- or iboga-type MIAs, Figure 6). In addition, several steps generate unstable intermediates that require the activity of further enzymes to generate a more stable compound (e.g. the formation of stemmadenine, Figure 5). Due to these observations, vinblastine biosynthesis is speculated to be facilitated or aided by the formation of protein-protein complexes and/or metabolons. Chapter 4 of this thesis explores the extent of protein-protein complexes in MIA biosynthesis and uses structural biology to elucidate the basis of an enzyme-enzyme interaction.

15

1.6. Scope of this Thesis

Great progress over the last 40 years have revealed the complex biosynthetic pathways of many pharmaceutically important MIAs including the anti-cancer agent vinblastine. This work has discovered that the CAD subfamily of ADH enzymes catalyse atypical reactions in MIA biosynthesis - namely, the 1,2- and the 1,4-reduction of an iminium moiety instead of the 1,2-reduction of an aldehyde. In Chapter 2 of this thesis, the activity of the MIA enzyme *CrDPAS* is confirmed as a bonafide 1,4-iminium reductase. Structural elucidation of DPAS orthologues from *C. roseus* and *T. iboga* reveal the highly unusual loss of residues involved in coordinating the catalytic zinc ion. In conjunction with mutational studies, we propose a mechanism for the *CrDPAS*-catalysed 1,4-iminium reduction of 4,21-dehydrogeissoschizine to expand the catalytic repertoire of this enzyme family.

Building on the identification of key sequence motifs in CADs that catalyse atypical reductions, Chapter 3 of this thesis explores the expansion and neofunctionalisation of this enzyme family in MIA-producing species in Gentianales. Comparative genomics and phylogenetic analysis are used to propose the emergence of atypical CADs as requisite drivers in the evolution of MIA chemodiversity.

Protein-protein complexes have been proposed to facilitate the metabolic organisation of complex PNP pathways such as MIA biosynthesis. In Chapter 4 of this thesis, the pairwise interactions of 17 MIA enzymes from *C. roseus* are mapped using a split-luciferase assay to better understand the extent of protein-protein interactions in PNP biosynthesis. Furthermore, we use structural biology to elucidate the basis of interaction between the CAD *Cr*DPAS and the downstream cyclase enzymes. Additionally, the interactions of *Cr*DPAS are elucidated using *in vivo* proximity tagging, revealing inter-pathway interactions between MIA and phenylpropanoid biosynthetic enzymes.

The biochemical characterisation of CADs that catalyse atypical reductions expands the chemical toolbox of this enzyme family. Meanwhile, the protein-protein interactions of MIA biosynthetic enzymes can help us understand the organisation of PNP metabolism within a cell. The work in this thesis therefore explores how the neofunctionalisation of an enzyme family and how interactions between biosynthetic enzymes contribute to the biosynthesis and chemodiversity of this group of PNPs.

16

1.7. References

[1] F. Ntie-Kang, D. Svozil, Phys. Sci. Rev. 2020, 5, 20180121.

[2] L. Guo, H. Yao, W. Chen, X. Wang, P. Ye, Z. Xu, S. Zhang, H. Wu, *Hortic. Res.* 2022, *9*, uhac223.

[3] P. Wangchuk, J. Biol. Act. Prod. Nat. 2018, 8, 1–20.

[4] H. Yuan, Q. Ma, L. Ye, G. Piao, *Molecules* 2016, 21, 559.

[5] N. Kumar, N. Goel, *Biotechnol. Rep.* 2019, 24, e00370.

[6] K. Li, S. Ji, W. Song, Y. Kuang, Y. Lin, S. Tang, Z. Cui, X. Qiao, S. Yu, M. Ye, *J. Nat. Prod.* 2017, *80*, 334–346.

[7] M. E. Bergman, B. Davis, M. A. Phillips, *Molecules* 2019, 24, 3961.

[8] J. Gershenzon, N. Dudareva, Nat. Chem. Biol. 2007, 3, 408–414.

[9] R. Jaeger, E. Cuny, Nat. Prod. Commun. 2016, 11, 9.

[10] B. R. Lichman, Nat Prod Rep 2020, 38, 103–129.

[11] P. Dey, A. Kundu, A. Kumar, M. Gupta, B. M. Lee, T. Bhakta, S. Dash, H. S. Kim, *Recent Adv. Nat. Prod. Anal.* 2020, 505–567.

[12] B. Debnath, W. S. Singh, M. Das, S. Goswami, M. K. Singh, D. Maiti, K. Manna, *Mater. Today Chem.* 2018, *9*, 56–72.

[13] M. Heinrich, J. Mah, V. Amirkia, Molecules 2021, 26, 1836.

[14] Q. Pan, N. R. Mustafa, K. Tang, Y. H. Choi, R. Verpoorte, *Phytochem. Rev.* 2016, 15, 221–250.

[15] S. E. O'Connor, J. J. Maresh, *Nat Prod Rep* 2006, *23*, 532.

[16] A. E. Mohammed, Z. H. Abdul-Hameed, M. O. Alotaibi, N. O. Bawakid, T. R. Sobahi, A. Abdel-Lateff, W. M. Alarif, *Molecules* 2021, *26*, 488.

[17] A. I. Scott, Accounts Chem Res 1970, 3, 151–157.

[18] J. Stöckigt, M. H. Zenk, J. Chem. Soc., Chem. Commun. 1977, 646–648.

[19] A. R. Battersby, N. G. Lewis, J. M. Tippett, *Tetrahedron Lett.* 1978, *19*, 4849–4852.

[20] R. T. Brown, J. Leonard, S. K. Sleigh, *Phytochemistry* 1978, *17*, 899–900.

[21] J. F. Treimer, M. H. Zenk, Eur. J. Biochem. 1979, 101, 225–233.

[22] T. M. Kutchan, N. Hampp, F. Lottspeich, K. Beyreuther, M. H. Zenk, FEBS Lett. 1988, 237, 40–44.

[23] T. D. McKnight, C. A. Roessner, R. Devagupta, A. I. Scott, C. L. Nessler, *Nucleic Acids Res.* 1990, *18*, 4939–4939.

[24] T. M. Kutchan, *Phytochemistry* 1993, *32*, 493–506.

[25] B. D. Hilton, G. E. Martin, J. Nat. Prod. 2010, 73, 1465–1469.

[26] J.L. Wolfender, J.-M. Nuzillard, J. J. J. van der Hooft, J.-H. Renault, S. Bertrand, Anal. Chem. 2019, 91, 704–742.

[27] J. H. Leebens-Mack, M. S. Barker, E. J. Carpenter, M. K. Deyholos, M. A. Gitzendanner, S. W. Graham, I. Grosse, Z. Li, M. Melkonian, S. Mirarab, M. Porsch, M. Quint, S. A. Rensing, D. E. Soltis, P. S. Soltis, D. W. Stevenson, K. K. Ullrich, N. J. Wickett, L. DeGironimo, P. P. Edger, I. E. Jordon-Thaden, S. Joya, T. Liu, B. Melkonian, N. W. Miles, L. Pokorny, C. Quigley, P. Thomas, J. C. Villarreal, M. M. Augustin, M. D. Barrett, R. S. Baucom, D. J. Beerling, R. M. Benstein, E. Biffin, S. F. Brockington, D. O. Burge, J. N. Burris, K. P. Burris, V. Burtet-Sarramegna, A. L. Caicedo, S. B. Cannon, Z. Çebi, Y. Chang, C. Chater, J. M. Cheeseman, T. Chen, N. D. Clarke, H. Clayton, S. Covshoff, B. J. Crandall-Stotler, H. Cross, C. W. dePamphilis, J. P. Der, R. Determann, R. C. Dickson, V. S. D. Stilio, S. Ellis, E. Fast, N. Feja, K. J. Field, D. A. Filatov, P. M. Finnegan, S. K. Floyd, B. Fogliani, N. García, G. Gâteblé, G. T. Godden, F. (Qi Y. Goh, S. Greiner, A. Harkess, J. M. Heaney, K. E. Helliwell, K. Heyduk, J. M. Hibberd, R. G. J. Hodel, P. M. Hollingsworth, M. T. J. Johnson, R. Jost, B. Joyce, M. V. Kapralov, E. Kazamia, E. A. Kellogg, M. A. Koch, M. V. Konrat, K. Könyves, T. M. Kutchan, V. Lam, A. Larsson, A. R. Leitch, R. Lentz, F.-W. Li, A. J. Lowe, M. Ludwig, P. S. Manos, E. Mavrodiev, M. K. McCormick, M. McKain, T. McLellan, J. R. McNeal, R. E. Miller, M. N. Nelson, Y. Peng, P. Ralph, D. Real, C. W. Riggins, M. Ruhsam, R. F. Sage, A. K. Sakai, M. Scascitella, E. E. Schilling, E.-M. Schlösser, H. Sederoff, S. Servick, E. B. Sessa, A. J. Shaw, S. W. Shaw, E. M. Sigel, C. Skema, A. G. Smith, A. Smithson, C. N. Stewart, J. R. Stinchcombe, P. Szövényi, J. A. Tate, H. Tiebel, D. Trapnell, M. Villegente, C.-N. Wang, S. G. Weller, M. Wenzel, S. Weststrand, J. H. Westwood, D. F. Whigham, S. Wu, A. S. Wulff, Y. Yang, D. Zhu, C. Zhuang, J. Zuidof, M. W. Chase, J. C. Pires, C. J. Rothfels, J. Yu, C. Chen, L. Chen, S. Cheng, J. Li, R. Li, X. Li, H. Lu, Y. Ou, X. Sun, X. Tan, J. Tang, Z. Tian, F. Wang, J. Wang, X. Wei, X. Xu, Z. Yan, F. Yang, X. Zhong, F. Zhou, Y. Zhu, Y. Zhang, S. Ayyampalayam, T. J. Barkman, N. Nguyen, N. Matasci, D. R. Nelson, E. Sayyari, E. K. Wafula, R. L. Walls, T. Warnow, H. An, N. Arrigo, A. E. Baniaga, S. Galuska, S. A. Jorgensen, T. I. Kidder, H. Kong, P. Lu-Irving, H. E. Marx, X. Qi, C. R. Reardon, B. L. Sutherland, G. P. Tiley, S. R. Welles, R. Yu, S. Zhan, L. Gramzow, G. Theißen, G. K.-S. Wong, Nature 2019, 574, 679–685.

[28] X. Su, L. Yang, D. Wang, Z. Shu, Y. Yang, S. Chen, C. Song, Hortic. Res. 2022, 9, uhac075.

[29] F. Kellner, J. Kim, B. J. Clavijo, J. P. Hamilton, K. L. Childs, B. Vaillancourt, J. Cepela, M. Habermann, B. Steuernagel, L. Clissold, K. Mclay, C. R. Buell, S. E. O'Connor, *Plant J* 2015, *82*, 680–692.

[30] D. Zhao, J. P. Hamilton, G. M. Pham, E. Crisovan, K. Wiegert-Rininger, B. Vaillancourt, D. DellaPenna, C. R. Buell, *Gigascience* 2017, *6*, 1–7.

[31] J. Franke, J. Kim, J. P. Hamilton, D. Zhao, G. M. Pham, K. Wiegert-Rininger, E. Crisovan, L. Newton, B. Vaillancourt, E. Tatsis, C. R. Buell, S. E. O'Connor, *Chembiochem* 2019, *20*, 83–87.

[32] A. Rai, H. Hirakawa, R. Nakabayashi, S. Kikuchi, K. Hayashi, M. Rai, H. Tsugawa, T. Nakaya, T. Mori, H. Nagasaki, R. Fukushi, Y. Kusuya, H. Takahashi, H. Uchiyama, A. Toyoda, S. Hikosaka, E. Goto, K. Saito, M. Yamazaki, *Nat Commun* 2021, *12*, 405.

[33] E. A. Stander, C. Cuello, C. Birer-Williams, N. Kulagina, H. J. Jansen, I. Carqueijeiro, L.-V. Méteignier, V. Vergès, A. Oudin, N. Papon, R. P. Dirks, M. K. Jensen, S. E. O'Connor, T. D. de Bernonville, S. Besseau, V. Courdavault, *G3: GenesGenomesGenet.* 2022, *12*, jkac268.

[34] C. Li, J. C. Wood, A. H. Vu, J. P. Hamilton, C. E. R. Lopez, R. M. E. Payne, D. A. S. Guerrero, K. Gase, K. Yamamoto, B. Vaillancourt, L. Caputi, S. E. O'Connor, C. R. Buell, *Nat Chem Biol* 2023, 1–11.

[35] W.-B. Jiao, K. Schneeberger, Curr. Opin. Plant Biol. 2017, 36, 64–70.

[36] S. K. Singh, B. Patra, P. Paul, Y. Liu, S. Pattanaik, L. Yuan, *Plant Sci* 2020, 293, 110408.

[37] J. Liang, T. An, J.-X. Zhu, S. Chen, J.-H. Zhu, R. J. Peters, R. Yu, J. Zi, *J Nat Prod* 2021, *84*, 2709–2716.

[38] M. M. Alami, Z. Ouyang, Y. Zhang, S. Shu, G. Yang, Z. Mei, X. Wang, *Int. J. Mol. Sci.* 2022, 23, 15932.

[39] C. Engler, S. Marillonnet, *Methods Mol. Biol.* 2013, *1116*, 119–131.

[40] I. Carqueijeiro, C. Langley, D. Grzech, K. Koudounas, N. Papon, S. E. O'Connor, V. Courdavault, *Curr Opin Biotech* 2020, *65*, 17–24.

[41] K. Eljounaidi, B. R. Lichman, Front. Chem. 2020, 8, 596479.

[42] K. Yamamoto, D. Grzech, K. Koudounas, E. A. Stander, L. Caputi, T. Mimura, V. Courdavault, S. E. O'Connor, *Plant Physiol* 2021, *187*, 846–857.

[43] B. Hong, D. Grzech, L. Caputi, P. Sonawane, C. E. R. López, M. O. Kamileen, N. J. H. Lozada, V. Grabe, S. E. O'Connor, *Nature* 2022, 1–6.

[44] S. C. Farrow, M. O. Kamileen, L. Caputi, K. Bussey, J. E. A. Mundy, R. C. McAtee, C. R. J. Stephenson, S. E. O'Connor, *J Am Chem Soc* 2019, *141*, 12979–12983.

[45] S. Brown, M. Clastre, V. Courdavault, S. E. O'Connor, *Proc. Natl. Acad. Sci.* 2015, *112*, 3205–3210.

[46] J. Zhang, L. G. Hansen, O. Gudich, K. Viehrig, L. M. M. Lassen, L. Schrübbers, K. B. Adhikari, P. Rubaszka, E. Carrasquer-Alvarez, L. Chen, V. D'Ambrosio, B. Lehka, A. K. Haidar, S. Nallapareddy, K. Giannakou, M. Laloux, D. Arsovska, M. A. K. Jørgensen, L. J. G. Chan, M. Kristensen, H. B. Christensen, S. Sudarsan, E. A. Stander, E. Baidoo, C. J. Petzold, T. Wulff, S. E. O'Connor, V. Courdavault, M. K. Jensen, J. D. Keasling, *Nature* 2022, *609*, 341–347.

[47] D. Grzech, B. Hong, L. Caputi, P. D. Sonawane, S. E. O'Connor, ACS Synth. Biol. 2023, 12, 27–34.

[48] W. Runguphan, J. J. Maresh, S. E. O'Connor, *Proc National Acad Sci* 2009, *106*, 13673–13678.

[49] E. K. Leggans, K. K. Duncan, T. J. Barker, K. D. Schleicher, D. L. Boger, *J Med Chem* 2013, *56*, 628–639.

[50] H. Gotoh, K. K. Duncan, W. M. Robertson, D. L. Boger, *Acs Med Chem Lett* 2011, *2*, 948–952.

[51] A. A. Lopes, B. Chioca, B. Musquiari, E. J. Crevelin, S. de C. França, M. F. das G. F. da Silva, A. M. S. Pereira, *Sci Rep-uk* 2019, *9*, 11349.

[52] S. Kumar, B. Singh, R. Singh, J. Ethnopharmacol. 2022, 284, 114647.

[53] R. L. Noble, C. T. Beer, J. H. Cutts, Ann Ny Acad Sci 1958, 76, 882–894.

[54] I. S. Johnson, H. F. Wright, G. H. Svoboda, J. Vlantis, *Cancer Res.* 1960, 20, 1016–22.

[55] O. H. Warwick, J. M. Darte, T. C. Brown, C. T. Beer, J. H. Cutts, R. L. Noble, *Cancer Res.* 1960, *20*, 1032–40.

[56] M. A. Jordan, R. H. Himes, L. Wilson, *Cancer Res.* 1985, 45, 2741–7.

[57] P. Dhyani, C. Quispe, E. Sharma, A. Bahukhandi, P. Sati, D. C. Attri, A. Szopa, J. Sharifi-Rad, A. O. Docea, I. Mardare, D. Calina, W. C. Cho, *Cancer Cell Int.* 2022, *22*, 206.

[58] J. P. Kutney, L. S. L. Choi, T. Honda, N. G. Lewis, T. Sato, K. L. Stuart, B. R. Worth, *Helvetica Chim. Acta* 1982, *65*, 2088–2101.

[59] R. A. Rahim, N. H. Ahmad, K. M. A. Azzam, I. Mat, Adv. Pharm. Bull. 2017, 8, 157–161.

[60] S. Yokoshima, T. Ueda, S. Kobayashi, A. Sato, T. Kuboyama, H. Tokuyama, T. Fukuyama, J Am Chem Soc 2002, 124, 2137–2139.

[61] T. Kuboyama, S. Yokoshima, H. Tokuyama, T. Fukuyama, *P Natl Acad Sci Usa* 2004, *101*, 11966–11970.

[62] H. Ishikawa, D. A. Colby, S. Seto, P. Va, A. Tam, H. Kakei, T. J. Rayl, I. Hwang, D. L. Boger, *J Am Chem Soc* 2009, *131*, 4904–4916. [63] K. Yamamoto, K. Takahashi, L. Caputi, H. Mizuno, C. E. Rodriguez-Lopez, T. Iwasaki, K. Ishizaki, H. Fukaki, M. Ohnishi, M. Yamazaki, T. Masujima, S. E. O'Connor, T. Mimura, *New Phytol* 2019, *224*, 848-859.

[64] V. D. Luca, C. Marineau, N. Brisson, Proc. Natl. Acad. Sci. 1989, 86, 2582-2586.

[65] K. Miettinen, L. Dong, N. Navrot, T. Schneider, V. Burlat, J. Pollier, L. Woittiez, S. V. D. Krol, R. Lugan, T. Ilc, R. Verpoorte, K. M. Oksman-Caldentey, E. Martinoia, H. Bouwmeester, A. Goossens, J. Memelink, D. Werck-Reichhart, *Nat Commun* 2014, *5*, 3606.

[66] A. I. Scott, S. L. Lee, P. de Capite, M. G. Culver, C. R. Hutchinson, *Heterocycles* 1977, 7, 979.

[67] T. D. McKnight, D. R. Bergey, R. J. Burnett, C. L. Nessler, *Planta* 1991, 185, 148–152.

[68] R. M. E. Payne, D. Xu, E. Foureau, M. I. S. T. Carqueijeiro, A. Oudin, T. D. de Bernonville, V. Novak, M. Burow, C.-E. Olsen, D. M. Jones, E. C. Tatsis, A. Pendle, B. A. Halkier, F. Geu-Flores, V. Courdavault, H. H. Nour-Eldin, S. E. O'Connor, *Nat Plants* 2017, *3*, 16208.

[69] T. J. C. Luijendijk, L. H. Stevens, R. Verpoorte, *Plant Physiol. Biochem.* 1998, *36*, 419–425.

[70] A. Geerlings, M. M.-L. Ibañez, J. Memelink, R. van der Heijden, R. Verpoorte, J. Biol. Chem. 2000, 275, 3051–3056.

[71] G. Guirimand, V. Courdavault, A. Lanoue, S. Mahroug, A. Guihur, N. Blanc, N. Giglioli-Guivarc'h, B. St-Pierre, V. Burlat, *Bmc Plant Biol* 2010, *10*, 182.

[72] C. E. Zimmerli, M. Allegretti, V. Rantos, S. K. Goetz, A. Obarska-Kosinska, I. Zagoriy, A. Halavatyi, G. Hummer, J. Mahamid, J. Kosinski, M. Beck, *Science* 2021, *374*, 1341.

[73] X. Wu, J. Han, C. Guo, Int. J. Mol. Sci. 2022, 23, 3031.

[74] A. K. Stavrinides, E. C. Tatsis, T.-T. Dang, L. Caputi, C. E. M. Stevenson, D. M. Lawson, B. Schneider, S. E. O'Connor, *Chembiochem* 2018, *19*, 940–948.

[75] A. Stavrinides, E. C. Tatsis, E. Foureau, L. Caputi, F. Kellner, V. Courdavault, S. E. O'Connor, *Chem Biol* 2015, *22*, 336–41.

[76] A. Stavrinides, E. C. Tatsis, L. Caputi, E. Foureau, C. E. M. Stevenson, D. M. Lawson, V. Courdavault, S. E. O'Connor, *Nat Commun* 2016, *7*, 12116.

[77] C. Langley, E. Tatsis, B. Hong, Y. Nakamura, C. Paetz, C. E. M. Stevenson, J. Basquin, D. M. Lawson, L. Caputi, S. E. O'Connor, *Angew. Chem. Int. Ed.* 2022, *61*, e202210934.

[78] E. C. Tatsis, I. Carqueijeiro, T. D. D. Bernonville, J. Franke, T.-T. T. Dang, A. Oudin, A. Lanoue, F. Lafontaine, A. K. Stavrinides, M. Clastre, V. Courdavault, S. E. O'connor, *Nat Commun* 2017, *8*, 316.

[79] Y. Qu, M. E. A. M. Easson, R. Simionescu, J. Hajicek, A. M. K. Thamm, V. Salim, V. D. Luca, *Proc National Acad Sci* 2018, *115*, 3180–3185.

[80] A. A. Qureshi, A. I. Scott, Chem. Commun. (Lond.) 1968, 945–946.

[81] X. Ma, J. Koepke, G. Fritzsch, R. Diem, T. M. Kutchan, H. Michel, J. Stöckigt, *Biochim. Biophys. Acta (BBA) - Proteins Proteom.* 2004, *1702*, 121–124.

[82] G. von Schumann, S. Gao, J. Stöckigt, Bioorgan Med Chem 2002, 10, 1913–1918.

[83] L. Caputi, J. Franke, S. C. Farrow, K. Chung, R. M. E. Payne, T.-D. Nguyen, T.-T. T. Dang, I. S. T. Carqueijeiro, K. Koudounas, T. D. de Bernonville, B. Ameyaw, D. M. Jones, I. J. C. Vieira, V. Courdavault, S. E. O'Connor, *Science* 2018, *360*, 1235–1239.

[84] B. Daniel, B. Konrad, M. Toplak, M. Lahham, J. Messenlehner, A. Winkler, P. Macheroux, *Arch. Biochem. Biophys.* 2017, *632*, 88–103.

[85] A. I. Scott, A. A. Qureshi, *Tetrahedron* 1974, *30*, 2993–3002.

[86] A. I. Scott, C. C. Wei, *Tetrahedron* 1974, 30, 3003–3011.

[87] A. I. Scott, P. C. Cherry, C. C. Wei, *Tetrahedron* 1974, 30, 3013–3019.

[88] L. Caputi, J. Franke, K. Bussey, S. C. Farrow, I. J. C. Vieira, C. E. M. Stevenson, D. M. Lawson, S. E. O'Connor, *Nat Chem Biol* 2020, *16*, 383–386.

[89] M. O. Kamileen, M. D. DeMars, B. Hong, Y. Nakamura, C. Paetz, B. R. Lichman, P. D. Sonawane, L. Caputi, S. E. O'Connor, *J Am Chem Soc* 2022, *144*, 19673-19679.

[90] B. St-Pierre, V. D. Luca, *Plant Physiol* 1995, *109*, 131–139.

[91] G. Schröder, E. Unterbusch, M. Kaltenbach, J. Schmidt, D. Strack, V. D. Luca, J. Schröder, *Febs Lett* 1999, *458*, 97–102.

[92] S. Besseau, F. Kellner, A. Lanoue, A. M. K. Thamm, V. Salim, B. Schneider, F. Geu-Flores, R. Höfer, G. Guirimand, A. Guihur, A. Oudin, G. Glevarec, E. Foureau, N. Papon, M. Clastre, N. Giglioli-Guivarc'h, B. St-Pierre, D. Werck-Reichhart, V. Burlat, V. D. Luca, S. E. O'Connor, V. Courdavault, *Plant Physiol* 2013, *163*, 1792–803.

[93] D. Levac, J. Murata, W. S. Kim, V. D. Luca, *Plant J* 2007, *53*, 225–236.

[94] P. L. Cruz, I. Carqueijeiro, K. Koudounas, D. P. Bomzan, E. A. Stander, C. Abdallah, N. Kulagina, A. Oudin, A. Lanoue, N. Giglioli-Guivarc'h, D. A. Nagegowda, N. Papon, S. Besseau, M. Clastre, V. Courdavault, *Protoplasma* 2023, *260*, 607–624.

[95] Y. Qu, M. L. A. E. Easson, J. Froese, R. Simionescu, T. Hudlicky, V. DeLuca, *Proc National Acad Sci* 2015, *112*, 6224–6229.

[96] V. Deluca, J. Balsevich, R. T. Tyler, W. G. Kurz, *Plant Cell Rep* 1987, *6*, 458–61.

[97] V. D. Luca, A. J. Cutler, *Plant Physiol* 1987, 85, 1099–102.

[98] G. Guirimand, A. Guihur, P. Poutrain, F. Hericourt, S. Mahroug, B. St-Pierre, V. Burlat, V. Courdavault, *J Plant Physiol* 2011, *168*, 549–557.

[99] E. D. Carolis, F. Chan, J. Balsevich, V. D. Luca, *Plant Physiol*. 1990, *94*, 1323–1329.

[100] E. D. Carolis, V. D. Luca, J. Biol. Chem. 1993, 268, 5504–11.

[101] F. Vazquez-Flota, E. D. Carolis, A. M. Alarco, V. D. Luca, *Plant Mol Biol* 1997, *34*, 935–48.

[102] R. Power, W. G. W. Kurz, V. D. Luca, Arch. Biochem. Biophys. 1990, 279, 370–376.

[103] B. St-Pierre, P. Laflamme, A.-M. Alarco, V. D, e Luca, *Plant J* 1998, 14, 703–713.

[104] A. I. Scott, F. Gueritte, S. L. Lee, J. Am. Chem. Soc. 1978, 100, 6253-6255.

[105] M. Sottomayor, M. C. Pinto, R. Salema, F. DiCosmo, M. A. Pedreoo, A. R. Barcelo, *Plant Cell Environ* 1996, *19*, 761–767.

[106] I. Carqueijeiro, H. Noronha, P. Duarte, H. Gerós, M. Sottomayor, *Plant Physiol* 2013, *162*, 1486–1496.

[107] T. Endo, A. Goodbody, J. Vukovic, M. Misawa, *Phytochemistry* 1988, 27, 2147–2149.

[108] M. Sottomayor, M. López-Serrano, F. DiCosmo, A. R. BarceÍo, Febs Lett 1998, 428, 299–303.

[109] M. Sottomayor, A. R. Barceló, Protoplasma 2003, 222, 97–105.

[110] A. Goodbody, T. Endo, J. Vukovic, J. Kutney, L. Choi, M. Misawa, *Planta Med.* 1988, 54, 136–140.

[111] N. Langlois, P. Potier, J. Chem. Soc., Chem. Commun. 1979, 582–584.

[112] J. Strommer, *Plant J* 2011, *66*, 128–142.

[113] B. V. Plapp, H. A. Charlier, S. Ramaswamy, Arch Biochem Biophys 2016, 591, 35–42.

[114] B. V. Plapp, B. R. Savarimuthu, D. J. Ferraro, J. K. Rubach, E. N. Brown, S. Ramaswamy, *Biochemistry-us* 2017, *56*, 3632–3646.

[115] H. Jörnvall, T. Bergman, in *Encyclopedia of Metalloproteins*, Springer New York, 2013, 2349–2354.

[116] C. E. Thompson, C. L. Fernandes, O. N. D. Souza, L. B. D. Freitas, F. M. Salzano, *J Mol Model* 2010, *16*, 919–928.

[117] B. Persson, J. Hedlund, H. Jörnvall, Cell Mol Life Sci 2008, 65, 3879–3894.

[118] B. Persson, Y. Kallberg, J. E. Bray, E. Bruford, S. L. Dellaporta, A. D. Favia, R. G. Duarte, H. Jörnvall, K. L. Kavanagh, N. Kedishvili, M. Kisiela, E. Maser, R. Mindnich, S. Orchard, T. M. Penning, J. M. Thornton, J. Adamski, U. Oppermann, *Chem-biol Interact* 2009, *178*, 94–98.

[119] H. Moummou, Y. Kallberg, L. B. Tonfack, B. Persson, B. van der Rest, *Bmc Plant Biol* 2012, *12*, 219.

[120] K. L. Kavanagh, H. Jörnvall, B. Persson, U. Oppermann, Cell Mol Life Sci 2008, 65, 3895.

[121] H. Jörnvall, J. Hedlund, T. Bergman, U. Oppermann, B. Persson, *Biochem Bioph Res Co* 2010, *396*, 125–130.

[122] G. Anarat-Cappillino, E. S. Sattely, Curr. Opin. Plant Biol. 2014, 19, 51–58.

[123] M.-L. Shih, J. A. Morgan, Metab. Eng. Commun. 2020, 10, e00123.

[124] M. Zalokar, Exp. Cell Res. 1960, 19, 114–132.

[125] E. S. Kempner, J. H. Miller, *Exp. Cell Res.* 1968, *51*, 150–156.

[126] J. M. Matthews, 2013, 1965–1965.

[127] Y. Ofran, B. Rost, J. Mol. Biol. 2003, 325, 377–387.

[128] Y. Zhang, A. Sampathkumar, S. M. L. Kerber, C. Swart, C. Hille, K. Seerangan, A. Graf, L. Sweetlove, A. R. Fernie, *Nat Commun* 2020, *11*, 1–15.

[129] J. I. Watkinson, P. A. Bowerman, K. C. Crosby, S. B. Hildreth, R. F. Helm, B. S. J. Winkel, *Peerj* 2018, *2018*, e5598.

[130] S. B. Hildreth, E. S. Littleton, L. C. Clark, G. C. Puller, S. Kojima, B. S. J. Winkel, *Plant J.* 2022, *110*, 932–945.

[131] M. Gou, X. Ran, D. W. Martin, C.-J. Liu, Nat Plants 2018, 4, 299–310.

[132] Z. Ban, H. Qin, A. J. Mitchell, B. Liu, F. Zhang, J. K. Weng, R. A. Dixon, G. Wang, *Proc National Acad Sci* 2018, *115*, E5223–E5232.

[133] S. J. Nintemann, D. Vik, J. Svozil, M. Bak, K. Baerenfaller, M. Burow, B. A. Halkier, *Front. Plant Sci.* 2017, *8*, 2028.

[134] L. J. Sweetlove, A. R. Fernie, Nat Commun 2018, 9, 2136.

[135] V. Pareek, H. Tian, N. Winograd, S. J. Benkovic, *Science* 2020, *368*, 283–290.

[136] M. H. Chehade, L. Pelosi, C. D. Fyfe, L. Loiseau, B. Rascalou, S. Brugiere, K. Kazemzadeh, C.-D.-T. Vo, L. Ciccone, L. Aussel, Y. Coute, M. Fontecave, F. Barras, M. Lombard, F. Pierrel, *Cell Chem Biol* 2019, *26*, 482-492.e7.

[137] Y. Zhang, K. F. M. Beard, C. Swart, S. Bergmann, I. Krahnert, Z. Nikoloski, A. Graf, R. G. Ratcliffe, L. J. Sweetlove, A. R. Fernie, T. Obata, *Nat Commun* 2017, *8*, 15212.

[138] J. W. A. Graham, T. C. R. Williams, M. Morgan, A. R. Fernie, R. G. Ratcliffe, L. J. Sweetlove, *Plant Cell* 2007, *19*, 3723–38.

[139] C.-Y. Lin, Y. Sun, J. Song, H.-C. Chen, R. Shi, C. Yang, J. Liu, S. Tunlaya-Anukit, B. Liu, P. L. Loziuk, C. M. Williams, D. C. Muddiman, Y.-C. J. Lin, R. R. Sederoff, J. P. Wang, V. L. Chiang, *Front Plant Sci* 2021, *12*, 727932.

[140] M. Dastmalchi, M. A. Bernards, S. Dhaubhadel, *Plant J* 2016, *85*, 689–706.

[141] T. Laursen, J. Borch, C. Knudsen, K. Bavishi, F. Torta, H. J. Martens, D. Silvestro, N. S. Hatzakis, M. R. Wenk, T. R. Dafforn, C. E. Olsen, M. S. Motawia, B. Hamberger, B. L. Møller, J.-E. Bassard, *Science* 2016, *354*, 890–893.

[142] J. Zhang, J. Shin, N. Tague, H. Lin, M. Zhang, X. Ge, W. Wong, M. J. Dunlop, J. Cheng, *Adv. Sci.* 2022, *9*, 2203887.

[143] B. Lallemand, M. Erhardt, T. Heitz, M. Legrand, Plant Physiol 2013, 162, 616–625.

[144] S. Mucha, S. Heinzlmeir, V. Kriechbaumer, B. Strickland, C. Kirchhelle, M. Choudhary, N. Kowalski, R. Eichmann, R. Hückelhoven, E. Grill, B. Kuster, E. Glawischnig, *Plant Cell* 2019, *31*, 2697–2710.

[145] H. Li, Z. Ban, H. Qin, L. Ma, A. J. King, G. Wang, *Plant Physiol.* 2015, *167*, 650–659.

[146] T. Nakayama, S. Takahashi, T. Waki, Front Plant Sci 2019, 10, 821.

[147] J. Diharce, J. Golebiowski, S. Fiorucci, S. Antonczak, *Phys Chem Chem Phys* 2016, *18*, 10337–10345.

[148] N. Fujino, N. Tenma, T. Waki, K. Ito, Y. Komatsuzaki, K. Sugiyama, T. Yamazaki, S. Yoshida, M. Hatayama, S. Yamashita, Y. Tanaka, R. Motohashi, K. Denessiouk, S. Takahashi, T. Nakayama, *Plant J* 2018, *94*, 372–392.

[149] J. Murata, J. Roepke, H. Gordon, V. D. Luca, *Plant Cell* 2008, 20, 524–542.

[150] H. Jörnvall, M. Landreh, L. J. Östberg, Chem-biol Interact 2015, 234, 75–79.

Chapter 2. The Structural and Mechanistic Study of CADs in MIA Biosynthesis

2.1 Introduction

2.1.1 Cinnamyl Alcohol Dehydrogenases

CADs are a subfamily of ADHs that are named after their primary catalytic activity of reducing aromatic cinnamaldehydes to cinnamyl alcohols (Figure 11). Comparative phylogenetic and structural analyses suggest that both plant and bacterial CADs originated from a common glutathione-dependent formaldehyde dehydrogenase ancestor ^[1]. The prevalence of CADs in plants is strongly linked to their functional role in monolignol biosynthesis, though there are reports of members of this enzyme family acting on other defence-related substrates ^[2, 3]. In bacteria, the function of CADs is less known, though they are speculated to act in defence responses ^[4, 5].

Figure 11. Reversible reduction of aromatic cinnamyl aldehydes to their respective primary alcohols catalysed by CAD in monolignol biosynthesis ^[8].

Structurally, CADs are comprised of two domains – a catalytic domain consisting of an ancestral GroES protein and a nucleotide-binding domain containing the Rossmann-fold motif that binds the adenine dinucleotide of the NADP(H) cofactor (Figure 12) ^[6]. The catalytic domain coordinates two zinc ions referred to as the catalytic and the structural zinc. The structural zinc is thought to maintain the tertiary structure of the protein and is tetrahedrally coordinated by the thiol groups of four highly conserved Cys residues. The catalytic zinc resides within the enzyme active site and acts as a Lewis acid during catalysis. It is typically coordinated by two thiol groups each from a Cys residue, an imidazole group from a His residue, and a variable fourth position. This is typically occupied by water molecule, though is substituted for a Glu residue in *Arabidopsis thaliana* CAD4 and CAD5 ^[7, 8].

Figure 12. Structural features of *At*CAD5 (PDB 2CF6). Catalytic domain is coloured blue and nucleotide binding domain is coloured red. Insets show residues involved in coordinating the structural (top) and the catalytic (bottom) zinc ions.

2.1.2 ADH Catalytic Mechanism

The catalytic mechanism of ADHs and their subfamilies (including CADs) is highly conserved with examples studied from mammals, yeast and plants ^[8–13]. During reduction, the aldehyde moiety of the substrate binds to the catalytic zinc in the fourth position, displacing the previously bound water molecule or residue (Figure 13). The binding of the NADP(H) cofactor relies on a conserved network of hydrogen bonds between residues within the Rossmann-fold. Notably, an imidazole group from a histidine residue (*Cr*8HGO His55) and

Figure 13. Mechanism of the *Cr*8HGO-catalysed aldehyde reduction of 8-oxogeranial. Figure adapted from Yuon *et al.*, ^[8].

a hydroxyl-containing residue (*Cr*8HGO Ser52) bind to the O3' and O2' groups of the cofactor ribose ring respectively. These residues collectively function as a proton relay during catalysis, facilitating the transfer of a hydride from the cofactor to the substrate's aldehyde moiety. The resulting primary alcohol product then leaves the active site and the water molecule or residue rebinds to the catalytic zinc in the fourth position. Typical CADs can also catalyse the oxidation of the alcohol product, performing the reaction in the reverse direction.

2.1.3 CAD-Catalysed Reductions in Monoterpene and MIA Biosynthesis

Members of the CAD subfamily catalyse numerous steps in MIA biosynthesis, including in vinblastine biosynthesis (Figure 14) ^[14–30]. CADs typically catalyse the reversible reduction of aldehydes of monolignol substrates. However, these enzymes have functionally diverged to act on non-aromatic substrates such as monoterpenes and MIAs. In addition, some CADs have been reported to catalyse the irreversible 1,2- or 1,4-reduction of an iminium moiety. The reduction chemistries catalysed by CADs within monoterpene and MIA biosynthesis is summarised below.

Figure 14. CAD-catalysed reactions in vinblastine biosynthesis in *C. roseus*. Typical oxidation of a primary alcohol to an aldehyde catalysed by 8HGO ^[31] coloured in red, 1,2-iminium reductions catalysed by GS ^[14], Redox1 ^[26], T3R ^[25], THAS1 and THAS2 ^[15, 16] coloured in green, and 1,4-iminium reduction catalysed by DPAS ^[22] coloured in blue.

2.1.3.1 CAD-Catalysed Aldehyde Reductions in Monoterpene Biosynthesis

Monoterpene biosynthesis forms the secologanin precursor subunit required for MIA scaffold biogenesis. The CAD *C. roseus* 8-hydroxygeraniol oxidase (*Cr*8HGO) catalyses two successive alcohol oxidations of the monoterpene 8-hydroxygeraniol to form 8-oxogeranial or 8-hydroxygeranial respectively. The remaining alcohol group of these intermediates then undergoes a further *Cr*8HGO-catalysed oxidation to form 8-oxogeranial (Figure 15)^[30]. While *Cr*8HGO is capable of catalysing the reverse reactions *in vitro*, it appears to perform a solely oxidative function *in vivo*^[31]. The catalytic mechanism of *Cr*8HGO is similar to previously reported aldehyde-reducing CADs, whilst differences in the active site are proposed to enable the binding of the monoterpene substrates ^[31].

Figure 15. *Cr*8HGO catalysed oxidation of 8-hydroxygeraniol to 8-oxogeranial. Figure adapted from Krithika *et al.*, ^[30].

2.1.3.2 CAD-Catalysed 1,2-Reduction of an Iminium Moiety in MIA Biosynthesis

In addition to their divergence to accept non-aromatic substrates, CADs have been reported to perform the 1,2-reduction of an iminium moiety in MIA biosynthesis (Figure 16). This atypical reduction chemistry was shown using isotopic labelling and subsequent structural characterisation of the enzymatic products of the CADs *C. roseus* tetrahydroalstonine synthase (*Cr*THAS; Figure 16C) and *C. roseus* heteroyohimbine synthase (*Cr*THAS; Figure 16C). Furthermore, structural analyses of these enzymes revealed variations in otherwise highly conserved residues which typically form a proton relay between the substrate and cofactor during catalysis ^[15]. CADs have since been reported to catalyse the 1,2-reduction of an iminium moiety in MIA-producing species across Gentianales, as discussed in Chapter 3 of this thesis. This discovery highlights the catalytic divergence of CADs within MIA biosynthesis.

Figure 16. Characterised 1,2-iminium reduction reactions catalysed by CADs in MIA biosynthesis. **A.** *Strychnos nux-vomica* Wieland-Gumlich synthase (*Snv*WS) ^[20]; **B**. *Catharanthus roseus* tabersonine-3-reductase (*Cr*T3R) ^[25]; **C**. *Catharanthus roseus* tetrahydroalstonine synthase (*Cr*THAS) ^[16]; **D**. *Catharanthus roseus* geissoschizine synthase (*Cr*GS) ^[14]; **E**. *Chinchona pubescens* dihydrocorynantheine aldehyde synthase (*Cp*DCS) ^[29]; **F**. *Catharanthus roseus* heteroyohimbine synthase (*Cr*HYS) ^[15]; **G**. *Cr*THAS1 or *Cr*THAS2 ^[28].

2.1.3.3 CAD-Catalysed 1,4-Reduction of an Iminium Moiety in MIA Biosynthesis

The CAD enzyme DPAS was recently proposed to catalyses the 1,4-iminium reduction of the MIA precondylocarpine acetate (Figure 17)^[22]. Although initially identified in *C. roseus* (CrDPAS) ^[22], DPAS orthologues have since been reported in the related species Tabernanthe iboga (TiDPAS1 and TiDPAS2) ^[19]. This enzyme is proposed to catalyse a hydride addition at C19 of the substrate precondylocarpine acetate, resulting in the 1,4reduction of the iminium moiety (Figure 17). The resulting 19,20dihydroprecondylocarpine acetate is then postulated to undergo a spontaneous desacetoxylation to form the highly unstable dehydrosecodine. Although this intermediate could not be isolated, the formation of the stable isomer angryline under acidic conditions enabled structural characterisation of this compound. Dehydrosecodine, in turn, can be cyclised by various α/β -hydrolase enzymes including *C. roseus* tabersonine synthase (*Cr*TS) and *C. roseus* catharanthine synthase (*Cr*CS), giving rise to the aspidosperma- or iboga-type MIAs (-)-tabersonine or (+)-catharanthine, respectively ^[22, 32]. Furthermore, DPAS catalyses the 1,4-iminium reduction of dehydrosecodine to form the unstable intermediate secodine, which is subsequently cyclised to yield vincadifformine ^[22].

Figure 17. DPAS-catalysed 1,4-iminium reduction of precondylocarpine acetate. Reaction catalysed by *Catharanthus roseus* or *Tabernanthe iboga* dihydroprecondylocarpine acetate synthase orthologues (*Cr*DPAS, *Ti*DPAS1, or *Ti*DPAS2). The resulting dehydrosecodine can rearrange in acidic conditions to form angryline, undergo a further DPAS-catalysed 1,4-reduction to form vincadifformine, or be cyclised by *Catharanthus roseus* tabersonine synthase (*Cr*TS) or *Catharanthus roseus* catharanthine synthase (*Cr*CS) enzymes to form tabersonine or catharanthine, respectively.

Contrary to these findings, the previously characterised 1,2-iminium reducing *Cr*GS (Figure 16D) was also reported to catalyse the 1,4-iminium reduction of precondylocarpine acetate ^[26]. Nevertheless, the 1,4-reductions of precondylocarpine acetate and dehydrosecodine were previously unreported chemistries for an ADH enzyme. The chemical reduction of imines remains challenging and engineering of enzymatic imine reductases to accept non-native substrates has had limited success ^[33–35]. Therefore understanding the mechanism of the ADH-catalysed 1,2- and 1,4-reduction of an iminium moiety observed in MIA biosynthesis is of biochemical and bioengineering interest.

2.1.4 Chapter Overview

Members of the CAD subfamily perform atypical reductions in MIA biosynthesis, though the underlying mechanisms of these reactions are poorly understood. This chapter uses comparative structural analysis of CADs that act in monoterpene and MIA biosynthesis to identify key residues that enable the atypical 1,2- and 1,4-reduction of an iminium moiety. Notably, DPAS orthologues are found to have changes in residues that typically coordinate the catalytic zinc which result in the highly unusual loss of this ion. Additionally, we report the DPAS-catalysed 1,4-reduction of an α , β -unsaturated aldehyde and identify that the loss of residues coordinating the catalytic zinc underlies this hitherto unprecedented ADH chemistry. Furthermore, changes in otherwise conserved residues resulting in the atypical binding of the cofactor are found to form the mechanistic basis of the *Cr*GS-catalysed 1,2reduction of an iminium moiety. The findings discussed in this chapter expand the catalytic repertoire of the ADH family of enzymes and provide the mechanistic basis of these atypical reductions in MIA biosynthesis.

2.2 Results

2.2.1 DPAS-Catalysed Reduction of Precondylocarpine Acetate and Dehydrosecodine Conflicting reports suggest that the enzymatic reduction of the substrate precondylocarpine acetate is catalysed by both *Cr*GS and *Cr*DPAS ^[22, 26]. To address this ambiguity, we conducted *in vitro* assays with the substrate precondylocarpine acetate and cofactor NADPH in the presence of either *Cr*DPAS or *Cr*GS and analysed the products using UPLC-MS (Figure 18). Given the instability of both the substrate and the product, determination of the steady-state kinetic constants for these reactions was not possible. Nevertheless, assays containing *Cr*DPAS showed the formation of a product that co-eluted and had the same MS/MS fragmentation pattern as the chemically synthesised standard of angryline – a rearrangement of dehydrosecodine that forms under acidic conditions. In contrast, assays containing *Cr*GS exhibited substantially reduced product levels, suggesting that *Cr*DPAS is better able to catalyse the reduction of precondylocarpine acetate.

Figure 18. UPLC-MS chromatograms of *in vitro* reactions of *Cr*DPAS and *Cr*GS with substrate precondylocarpine acetate and cofactor NADPH. EIC m/z 337.180 ± 0.05. Inset of *Cr*GS and no ADH control reactions to show small amount of *Cr*GS-specific product formation.

2.2.2 Isotopic Labelling of the DPAS-Catalysed Reduction of Precondylocarpine Acetate DPAS orthologues from C. roseus (CrDPAS) and T. iboga (TiDPAS1 and TiDPAS2) are proposed to catalyse the 1,4-reduction of the substrate precondylocarpine acetate (Figure 19A). Following a subsequent spontaneous desacetoxylation, this product forms the unstable intermediate dehydrosecodine which in turn can rearrange in acidic conditions to form the more stable compound, angryline. Alternatively, DPAS can catalyse the further reduction of dehydrosecodine to produce the unstable intermediate secodine, which subsequently cyclises to form the compound vincadifformine (Figure 19A). Catalysis of a 1,4-reduction by an ADH is unprecedented. Therefore, to investigate the mechanism of DPAS, we performed in vitro assays of precondylocarpine acetate and DPAS orthologues CrDPAS, TiDPAS1 or TiDPAS2, using either cofactor (NADPH) or deuterated cofactor (pro-R-NADPD). Analysis using UPLC-MS showed that reactions containing DPAS and NAPDPH formed a product which co-eluted and had the same MS/MS spectra as the chemically synthesised standard of angryline. However, in analogous reactions using NADPD, the peak displayed a +1 m/z shift (Figure 19B and C). Through preparative-HPLC isolation and subsequent NMR analysis, we confirmed this product as d-angryline. Comparing the dangryline and angryline ¹H NMR spectra revealed a signal loss at H19, indicating deuterium incorporation at C19^[22] (Figure 19A; Appendix I).

Furthermore, *in vitro* reactions with the substrate precondylocarpine acetate, a DPAS orthologue and the cofactor NADPH resulted in the generation of vincadifformine (Figure 19B). This product is proposed to form through the DPAS-catalysed 1,4-reduction of the intermediate dehydrosecodine (Figure 19A) ^[22]. Interestingly, repeating these assays using NADPD formed a product that co-eluted with the vincadifformine standard but had a +2 m/z shift, indicative of a doubly-reduced product (Figure 19B and C). Through preparative-HPLC isolation and NMR characterisation, we identified this peak as d_2 -vincadifformine. Furthermore, comparing the d_2 -vincadifformine and the vincadifformine ¹H NMR spectra showed a loss of signal at H15, indicative of deuterium incorporation at C15 (Figure 19A; Appendix II and III). These findings show that the hydride in the DPAS-catalysed reductions of both precondylocarpine acetate and dehydrosecodine is donated from the cofactor through a 1,4-iminium reduction mechanism at C19 and C15, respectively.

Figure 19. Deuterium labelling of DPAS-catalysed 1,4-reductions of precondylocarpine acetate and dehydrosecodine. **A.** DPAS-catalysed reduction of precondylocarpine acetate and dehydrosecodine showing deuterium incorporation at C19 and C15, respectively. **B.** UPLC/MS TIC of *in vitro* reactions of DPAS orthologs with substrate precondylocarpine and either NADPH or NADPD. **C.** MS/MS2 spectra of angryline (1), *d*-angryline (2), vincadifformine (3), and *d*₂-vincadifformine (4) products corresponding to peaks numbered in **B**.

2.2.3 Stereoselectivity of the DPAS-Catalysed Production of Vincadifformine

DPAS catalyses the reduction of the proposed substrate dehydrosecodine to form secodine, which subsequently cyclises to form vincadifformine (Figure 19A). However, it is not known whether DPAS catalyses the stereospecific cyclisation of secodine, or whether

Figure 20. Stereoselectivity of vincadifformine cyclisation. **A.** Enantiomers of d_2 -vincadifformine. Chiral centres are highlighted. **B.** ECD spectra of d_2 -vincadifformine (green), vincadifformine standard (black) and calculated spectra of (–)-vincadifformine (red).

the cyclisation occurs spontaneously outside the enzyme active site, resulting in the observation of both enantiomers of vincadifformine (Figure 20A). To address this question, we used electronic circular dichroism (ECD) to compare the spectra of the enzymatically prepared d_2 -vincadifformine, the (–)-vincadifformine standard, and the calculated spectra of (–)-vincadifformine (Figure 20B). While the (–)-vincadifformine standard matched the calculated (–)-vincadifformine spectra, the enzymatically produced d_2 -vincadifformine exhibited a weak ECD signal. This observation is indicative of a racemic mixture of vincadifformine enantiomers, suggesting that the cyclisation of secodine occurs externally to the DPAS substrate pocket and is not catalysed by DPAS itself.

2.2.4 DPAS-Catalysed Reduction of Strictosidine Aglycone

Several CADs have been reported to catalyse the 1,2-iminium reduction of structural rearrangements of the substrate strictosidine aglycone ^[14–16]. To test whether DPAS catalyses a similar reduction, we conducted *in vitro* reactions using the substrate strictosidine and the enzyme *Cr*SGD to generate the unstable aglycone in the presence of

Figure 21. DPAS-catalysed reduction of vallesiachotamine. **A.** Proposed formation of 19,20dihydrovallesiachotamine. **B.** UPLC/MS TIC of *in vitro* reactions of the substrate strictosidine, NADPH, *Cr*SGD and either *Cr*DPAS, *Ti*DPAS1 or *Ti*DPAS2.

a DPAS orthologue (*Cr*DPAS, *Ti*DPAS1 or *Ti*DPAS2), and NADPH cofactor. Using UPLC-MS analysis we detected the formation of a peak that did not co-elute with previously characterised reduced products of strictosidine aglycone (Figure 21B). This was subsequently isolated by preparative HPLC and characterised by NMR as 19,20-dihydovallesiachotamine (Figure 21A; Appendix IV). This compound was previously only partially characterised using chemical synthesis ^[36]. We propose that 19,20-dihydrovallesiachotamine is formed through a DPAS-catalysed 1,4-reduction of the structural rearrangement of strictosidine aglycone known as vallesiachotamine. A hydride transfer at C19 of the substrate reduces the α , β -unsaturated aldehyde, resulting in the spontaneous rearrangement of the C20 double-bond and ultimately giving rise to 19,20-dihydrovallesiachotamine (Figure 21A). This is the first report of a 1,4-reduction of an α , β -unsaturated aldehyde to be catalysed by an ADH, further expanding the chemical repertoire of this class of enzymes.

2.2.5 Solution of the CrDPAS Structure

DPAS catalyses the highly unusual 1,4-reduction of substrates precondylocarpine acetate, secodine and vallesiachotamine (Figure 19 and Figure 21). To understand the enzymatic mechanism of these reactions, we sought to solve the structure of *Cr*DPAS using X-ray crystallography. To achieve this, *Cr*DPAS was codon-optimised for expression in *E. coli* and the resulting protein purified using several rounds of affinity and size exclusion chromatography. The protein was then plated using the sitting-drop method with excess NADP⁺ and commercially available precipitant screens to yield crystals (Figure 22).

Figure 22. Crystalisation of *Cr*DPAS. Crystals of 8 mg/mL *Cr*DPAS protein with 1 mM NADP⁺ grown in 1.26 M ammonium sulfate precipitant and 200 mM lithium sulfate in 100 mM TRIS buffer pH 8.5.

The apo-*Cr*DPAS structure was solved to 2.5 Å resolution as a homodimer using molecular replacement (Figure 23, Appendix V Table 16). However, a 34 amino acid region in each chain (between residues 102-136) of the structure lacked density within the 2Fo-Fc map, indicative of significant protein disorder. This missing region contained residues known to coordinate the structural zinc. Despite efforts to further optimise crystallisation conditions, we did not achieve an improved resolution or a complete structure of *Cr*DPAS. However, analysis of the structure found that despite ADHs widely being reported to co-purify bound with the catalytic and structural zinc ions ^[8, 15], there was a lack of density in the 2Fo-Fc map at the expected site of the catalytic zinc (Figure 23C). Moreover, although NADP⁺ was present in both the crystallisation solution and cryoprotectant, no density correlating to the cofactor was observed in the *Cr*DPAS structure.

Figure 23. Apo-*Cr*DPAS crystal structure. **A.** Partial structure of *Cr*DPAS crystallised as a homodimer, coloured by chains. **B.** Monomer of *Cr*DPAS coloured by secondary structure. 34 amino acid missing region represented by black dashed line. **C.** Loss of coordination of the catalytic zinc ion. Residues in positions that typically coordinate the ion shown as sticks. Density of 2Fo-Fc map shown as mesh contoured to 1.0 σ .

2.2.6 Solution of *Ti*DPAS2 Structure

The species *T. iboga* is closely related to *C. roseus* and also produces iboga- and aspidosperma-type alkaloids through the proposed intermediate dehydrosecodine ^[37]. Two orthologues of *Cr*DPAS have been identified in *T. iboga* (named *Ti*DPAS1 and *Ti*DPAS2) that each catalyse the 1,4-reduction of precondylocarpine acetate, secodine and vallesiachotamine (Figure 19 and Figure 21) ^[19]. Seeking to elucidate a complete structure

of DPAS, we solved the structure of apo-*Ti*DPAS2, achieving a resolution of 2.4 Å (Figure 24, Appendix V Table 17). *Ti*DPAS2 was crystallised as a homodimer and bound to the structural zinc ion by four Cys residues (Figure 24D). Remarkably, no density was observed in the 2Fo-Fc map at the expected sites of the catalytic zinc (Figure 24C) or the NADP⁺ cofactor. Despite extensive efforts, attempts to solve the structure of *Ti*DPAS1 were unsuccessful.

Figure 24. Apo-*Ti*DPAS2 crystal structure. **A.** Structure of *Ti*DPAS2 homodimer coloured by chains. **B.** Monomer of *Ti*DPAS2 coloured by secondary structure. **C.** Loss of coordination of the catalytic zinc. **D.** Coordination of the structural zinc. Residues in positions that typically coordinate metal ions shown as sticks. Density of 2Fo-Fc map shown as mesh contoured to 1.0σ .

In addition, the structures of *Ti*DPAS2 bound to precondylocarpine acetate (Figure 25, Appendix V Table 18) and stemmadenine acetate (Figure 26, Appendix V Table 19) were solved to 1.8 Å and 2.2 Å, respectively. The substrate-bound structures both crystallised as homodimers, and as observed in the apo-structure, lacked density in the 2Fo-Fc map at the expected sites of the NADP⁺ cofactor and the catalytic zinc ion.

Figure 25. Structure of *Ti*DPAS2 bound to precondylocarpine acetate. **A.** Surface view of *Ti*DPAS2 bound to precondylocarpine acetate coloured by electrostatic charge. **B.** Substrate pocket of *Ti*DPAS2 bound to precondylocarpine acetate. Density of 2Fo-Fc map for substrate shown as mesh, contoured to 1.0 σ . **C.** Structure of precondylocarpine acetate.

Figure 26. Structure of *TiD*PAS2 bound to stemmadenine acetate. **A.** Surface view of *TiD*PAS2 bound to stemmadenine acetate coloured by electrostatic charge. **B.** Substrate pocket of *TiD*PAS2 bound to stemmadenine acetate. Density of 2Fo-Fc map for substrate shown as mesh, contoured to 1.0 σ . **C.** Structure of stemmadenine acetate.

The substrate pocket of *Ti*DPAS2 is framed by α -helix 2 and several flexible loop regions, suggesting there may be movement upon substrate binding. However, comparison of the apo- and substrate-bound *Ti*DPAS2 revealed only a 0.38 Å RMSD between the structures (Figure 27A and B). Conformational changes were detected in α -helix 2 upon precondylocarpine acetate binding, including a 1.0 Å shift of residue Thr54 to form a hydrogen bond with the substrate's iminium moiety (Figure 27C). Although this movement may be a resolution artefact from the structure solutions, it suggests a potential role of *Ti*DPAS2 Thr54 in binding the substrate within the active site.

Figure 27. Conformational changes between apo- and precondylocarpine acetate bound **(A.)**, and apo-*Ti*DPAS2 and stemmadenine acetate bound structures **(B.)**. Ca RMSD rendered by worm radius. **C.** Movement of Thr54 between apo-*Ti*DPAS2 (grey) and precondylocarpine acetate-bound *Ti*DPAS2 (blue). Distance of Thr54 to the substrate's iminium moiety shown by red dashed line and movement between structures shown by black dashed line.

2.2.7 Comparison of CAD Structures in Apocynaceae

In addition to *Cr*DPAS and *Ti*DPAS2, the structures of four other CADs involved in monoterpene and MIA biosynthesis have previously been solved. Despite their high amino acid identity (Table 1), these enzymes catalyse different reduction reactions, namely the reduction of an aldehyde (*Cr*8HGO), the 1,2-reduction of an iminium moiety (*Cr*GS, *Cr*THAS1, *Cr*THAS2) or the 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehyde (*Cr*DPAS, *Ti*DPAS2). Therefore, to understand the mechanistic basis of these atypical reductions, we compared the structures of these CADs. Although their secondary structures were largely conserved, significant variability was observed in the region surrounding the substrate pocket previously reported to influence the enzyme's substrate specificity (namely *Cr*THAS2 β -strands 5-9; Figure 28) ^[15].

Table 1. Amino acid sequence identity (%) of the solved structures of CADs fromApocynaceae. Cr8HGO (PDB 6KJ5), CrGS (PDB 8A3N), CrTHAS1 (PDB 5FI3), CrDPAS (PDB8B27), TiDPAS2 (PDB 8B1V), CrTHAS2 (PDB 5H81).

	Cr8HGO	<i>Cr</i> GS	CrTHAS1	CrDPAS	TiDPAS2	CrTHAS2
Cr8HGO		56.63	62.88	60.67	61.50	59.03
CrGS	56.63		55.22	47.67	49.59	50.54
CrTHAS1	62.88	55.22		53.99	55.92	54.72
Cr DPAS	60.67	47.67	53.99		86.30	51.34
TiDPAS2	61.50	49.59	55.92	86.30		51.88
CrTHAS2	59.03	50.34	54.71	51.34	51.88	

The structures of *Cr*DPAS and *Ti*DPAS2 lacked density at the expected site of the catalytic zinc (Figure 23C and Figure 24C). Comparative structural and sequence analyses of CADs which co-purified with both these ions revealed two otherwise conserved residues typically involved in coordinating the catalytic zinc ion that differed in *Cr*DPAS and *Ti*DPAS2, (*Cr*DPAS and *Ti*DPAS2 Met74 instead of His, and Ser168 instead of Cys; Figure 29) likely leading to the loss of this ion in these structures. Notably, the four Cys residues that coordinate the structural zinc ion were conserved between all structures (*Ti*DPAS2 Cys105, Cys108, Cys111 and Cys 119; Figure 30). This observation suggests that despite the lack of density in this region of the *Cr*DPAS structure, the ion is likely conserved.

Figure 28. MUSCLE amino acid alignment of solved structures of CADs from Apocynaceae and their respective PDB accessions. Secondary structure features represented as follows: β strands as yellow arrows, α helices as black lines, and loops as red lines. Residues coordinating the catalytic zinc coloured in red, residues coordinating the structural zinc in blue and residues involved in the proton relay coloured in green. Figure made using 2dSS ^[60].

Figure 29. Catalytic zinc coordination in CADs from Apocynaceae. 2Fo-Fc density map contoured to 1.0 σ and shown as mesh. **A.** *Cr*DPAS (PDB 8B27), **B.** *Ti*DPAS2 (PDB 8B1V), **C.** *Cr*8HGO (PDB 6K3G), **D.** *Cr*GS (PDB 8A3N), **E.** *Cr*THAS1 (PDB 5FI3), **F.** *Cr*THAS2 (PDB 5H81).

Figure 30. Structural zinc coordination in CADs from Apocynaceae. 2Fo-Fc density map contoured to 1.0 σ and shown as mesh. **A.** *Ti*DPAS2 (PDB 8B1V), **B.** *Cr*8HGO (PDB 6K3G), **C.** *Cr*GS (PDB 8A3N), **D.** *Cr*THAS1 (PDB 5FI3), **E.** *Cr*THAS2 (PDB 5H81).

CADs form a proton relay during catalysis comprised of a system of hydrogen bonds between highly conserved residues and the ribose ring of the cofactor and the substrate. This is observed in *Cr*8HGO His55 and Ser52 which binds to the O3' and the O2' of the cofactor, respectively (Figure 31A and B) ^[5, 11]. However, in *Cr*GS, the inert Phe53 occupies the position that typically binds to O2' of the NADP⁺ (corresponding to *Cr*8HGO Ser52; Figure 31C and D), resulting in a 2.10 Å repositioning of the cofactor compared to the *Cr*8HGO structure (Figure 32A). This leads to *Cr*GS Glu54 (corresponding to *Cr*8HGO His55) being too distal to form a hydrogen bond with O3'. Instead, this cofactor position binds to the carbonyl of *Cr*GS Asn52 (corresponding to *Cr*8HGO His51). Similar changes in cofactor binding the cofactor were also observed in the sequences of the closely related 1,2-iminium catalysts *Cr*THAS1 and *Cr*THAS2 (Figure 28).

Despite the addition of excess NADP⁺ in both the crystallisation and cryoprotectant solutions, there was insufficient electron density to model the cofactor in the structures of *Cr*DPAS and *Ti*DPAS2. Therefore, NADPH was docked into the active site of *Ti*DPAS2 using

Figure 31. Cofactor binding in *Cr*8HGO and *Cr*GS. NADP+ bound to *Cr*8HGO (PDB 6K3G; **A**) and *Cr*GS (PDB 8A3N; **C**) structures. Hydrogen bonds represented by red dashed line. Cartoon representation of NADP⁺ and catalytic zinc binding in *Cr*8HGO (**B**) and *Cr*GS (**D**).

Figure 32. Comparison of cofactor positioning between *Cr*8HGO (PDB 6K3G) and either *Cr*GS (**A**) or *Ti*DPAS2 (**B**). Grey dashed lines represent hydrogen bonds between cofactor and enzyme.

AutoDock Vina ^[38] to better understand the position of the cofactor relative to the substrate (Figure 33). Subsequent comparison of the cofactor binding between *Cr*8HGO and *Ti*DPAS2 revealed notable differences in the structures, including the lack of binding between any *Ti*DPAS2 residue and the O3' of the cofactor. Notably, *Ti*DPAS2 Thr54 (corresponding to *Cr*8HGO Ser52) was observed to bind with O2' of the ribose ring and was situated 4.11 Å from the reduction site (C19) of the substrate precondylocarpine acetate, suggesting a possible role of this residue in catalysis. However, these changes only yielded a 0.22 Å movement of the cofactor between the *Cr*8HGO and *Ti*DPAS2 structures (Figure 32B).

The comparative structural and sequence analyses of characterised CADs from Apocynaceae reveals differences in otherwise highly conserved residues that are typically involved in catalysis. Namely, differences were observed between residues in positions that typically coordinate the catalytic zinc ion in the 1,4-iminium reducing *Cr*DPAS and *Ti*DPAS2 and the aldehyde-reducing *Cr*8HGO. In addition, atypical residues were observed in positions that coordinate the cofactor in *Cr*DPAS, *Ti*DPAS2 and *Cr*GS, compared to the aldehyde-reducing *Cr*8HGO. These findings suggest that these residues may be involved in enabling the atypical reduction chemistries of *Cr*DPAS, *Ti*DPAS2 and *Cr*GS, and will form the basis of further biochemical study of these enzymes detailed in this chapter.

Figure 33. Docking of NADPH cofactor in *Ti*DPAS2. A. Active site of precondylocarpine acetate-bound *Ti*DPAS2 docked with NADPH. Red dashed lines indicate hydrogen bonds, black line represents the distance of hydride transfer from cofactor to C19 of the substrate.
B. Chemical representation of NADPH and precondylocarpine acetate binding in *Ti*DPAS2.

2.2.8 CrDPAS Mutagenesis Study on the Reduction of Precondylocarpine Acetate

Comparative structural analyses of *Cr*DPAS and *Ti*DPAS2 with other CADs from Apocynaceae revealed differences in otherwise highly conserved residues involved in catalysis. Specifically, residues involved in the proton relay (*Cr*DPAS His53 and Thr54) and coordination of the catalytic zinc (*Cr*DPAS Met74 and Ser168; Figure 34). To elucidate the functional implications of these differences, we performed site-directed mutagenesis on *Cr*DPAS to introduce residues found in the corresponding position in either aldehyde-reducing (e.g. *Cr*8HGO) or 1,2-iminium reducing (e.g. *Cr*GS) CADs. The *in vitro* activities of the resultant mutant proteins were tested with the substrate precondylocarpine acetate and cofactor NADPH and the products formed were detected using UPLC-MS (Figure 35).

The catalytic zinc ion typically acts as a Lewis acid during CAD-based catalysis though was absent in the structures of *Cr*DPAS and *Ti*DPAS2 (Figure 23C and Figure 24C). Mutagenesis of the positions that typically coordinate this ion resulted in either the reduced (*Cr*DPAS

Figure 34. *Cr*DPAS active site residues targeted by site-directed mutagenesis. The residues corresponding to residues in *Cr*8HGO or *Cr*GS involved in the coordination of the catalytic zinc (Met74 and Ser168) and the proton relay (His53 and Thr54) shown as sticks.

Met74His) or increased (*Cr*DPAS Ser168Cys) formation of the doubly-reduced product vincadifformine (Figure 35). Furthermore, the double mutant *Cr*DPAS Met74His Ser168Cys displayed comparable activity to *Cr*DPAS Met74His (Figure 35). These findings suggest that reintroducing residues that typically coordinate the catalytic zinc in *Cr*DPAS does not influence the reduction of precondylocarpine acetate, though may affect the reduction of dehydrosecodine.

CAD-catalysed reductions typically require a proton relay system formed by a network of hydrogen bonds between the enzyme, cofactor, and substrate (Figure 13) ^[8]. As detailed in section 2.2.7, *TiD*PAS2 Thr54 was found to form a hydrogen bond with the iminium moiety of the substrate precondylocarpine acetate and the O2' of NADPH (Figure 33), suggesting its role in catalysis. Additionally, it was hypothesised that *TiD*PAS2 His53 may bind to the O3' of the cofactor and act as a base donor during catalysis. Therefore to assess the catalytic role of these residues, we performed site-directed mutagenesis on the corresponding positions in *CrD*PAS and tested the *in vitro* activity of the resulting proteins with precondylocarpine acetate and NADPH (Figure 35). These assays found that Ala replacement of either residue (*CrD*PAS Thr54Ala or His53Ala) resulted in comparable product profiles as wild-type enzyme, suggesting these residues do not have a catalytic role. However, the *CrD*PAS Thr54Phe mutant (the observed corresponding residue in *Cr*GS) abolished enzyme activity, likely due to steric hindrance of the substrate.

These findings demonstrate that residues in positions that typically coordinate the catalytic zinc affect the *Cr*DPAS-catalysed reduction of dehydrosecodine, though have no discernible

Figure 35. *In vitro* reactions of *Cr*DPAS mutants with precondylocarpine acetate. **A.** DPAScatalysed reduction of precondylocarpine acetate and dehydrosecodine. **B.** UPLC-MS chromatograms of *Cr*DPAS activity assays. EIC m/z 337.05-340.05. **C.** Peak areas of angryline and vincadifformine products from *Cr*DPAS mutant assays. *n*=3, bars show standard deviation.

effect on the reduction of precondylocarpine acetate. Furthermore, the reduction of precondylocarpine acetate was not affected by mutagenesis of residues in positions form the proton relay in aldehyde-reducing CADs (i.e. *Cr*8HGO). These results suggest that neither the loss of residues able to coordinate the catalytic zinc or those that typically form the proton relay are required for the *Cr*DPAS-catalysed 1,4-reduction of precondylocarpine acetate.

2.2.9 Mechanism of *Cr*DPAS-Catalysed 1,4-Iminium Reduction of Precondylocarpine Acetate and Dehydrosecodine

By combining our findings from isotopic labelling studies, structural analysis and sitedirected mutagenesis, we propose the mechanism underlying the *Cr*DPAS-catalysed 1,4iminium reduction of precondylocarpine acetate and dehydrosecodine (Figure 36). The cofactor NADPH and the substrate bind in the active site aided by hydrogen bonding such as the observed interaction between the residue Thr54 and the iminium moiety. *Cr*DPAS lacks the catalytic zinc which typically acts as a Lewis acid to stabilise the aldehyde of the substrate in ADH-catalysed reductions. However, we suggest the inherent reactivity of the unsaturated iminium of the substrate precondylocarpine acetate negates this requirement. Instead, a hydride transfer from the NADPH cofactor to C19 of the substrate results in a 1,4-reduction, forming dihydroprecondylocarpine acetate. We propose that either Thr54 or a water molecule within the active site act as a proton donor, resulting in the subsequent desacetoxylation and formation of the unstable intermediate dehydrosecodine. A second NADPH subsequently binds and transfers a hydride to C15 of the substrate, leading to a further 1,4-iminium reduction. The resulting secodine then leaves the enzyme active site and spontaneously cyclises to form vincadifformine.

Figure 36. Proposed mechanism of CrDPAS-catalysed reduction of precondylocarpine acetate.

2.2.10 CrDPAS Mutagenesis Study on the Reduction of Strictosidine Aglycone

In addition to its activity with the substrate precondylocarpine acetate, DPAS orthologues from *C. roseus* and *T. iboga* were found to catalyse the 1,4-reduction of the α , β -unsaturated aldehyde vallesiachotamine to form 19,20-dihydrovallesiachotamine (Figure 38A). The reduction likely occurs by a hydride transfer from the NADPH cofactor to C19 of the substrate, mirroring the reduction of precondylocarpine acetate (Figure 36). To understand the structural basis of this reaction, vallesiachotamine was docked into the *Cr*DPAS active site using AutoDock Vina ^[38]. *Cr*DPAS Thr54 was revealed to form a hydrogen bond with the substrate, suggesting its potential role in catalysis (Figure 37). Furthermore, the aldehyde of vallesiachotamine physically clashed with the position typically occupied by the catalytic zinc ion in ADHs, though is absent in *Cr*DPAS (Figure 23C).

Figure 37. Computational docking of vallesiachotamine and NADPH in *Cr*DPAS substrate pocket using AutoDock Vina ^[38].

To probe the role of the two atypical *Cr*DPAS residues in positions that usually coordinate the catalytic zinc, we performed site-directed mutagenesis and tested the activity of the resulting mutant proteins *in vitro* with substrate strictosidine aglycone (generated using the substrate strictosidine in a coupled assay with *Cr*SGD) and cofactor NADPH. Restoring one of the two positions to residues that typically coordinate the catalytic zinc (i.e. *Cr*DPAS Met74His or Ser168Cys) did not affect the formation of 19,20-dihydrovallesiachotamine detected using UPLC-MS (Figure 38B). However, the *Cr*DPAS Met74His Ser168Cys double mutant abolished the production of 19,20-dihydrovallesiachotamine and instead formed tetrahydroalstonine, likely through the 1,2-iminium reduction of the protectalydroalstonine (Figure 38A) ^[15, 16]. These findings suggest that the absence of the catalytic zinc ion is required for the *Cr*DPAS-catalysed 1,4-reduction of vallesiachotamine

Figure 38. Site-directed mutagenesis of *Cr*DPAS on formation of 19,20dihydrovallesiachotamine. **A.** Proposed pathway of 19,20-dihydrovallesiachotamine and tetrahydroalstonine formation. **B.** UPLC-MS chromatograms of *in vitro* reactions of *Cr*DPAS mutants, *Cr*SGD, NADPH and substrate strictosidine. EIC *m/z* 353.185-353.225.

and reintroduction of residues that typically coordinate this ion introduced 1,2-iminium reduction activity. However, the restoration of the catalytic zinc ion could not be validated despite multiple attempts to crystallise *Cr*DPAS Met74His Ser168Cys.

As detailed in section 2.2.7, *Cr*DPAS and TiDPAS2 had an atypical pattern of residues involved in binding the cofactor, including those which form a proton relay during catalysis in aldehyde-reducing CADs (i.e. *Cr*8HGO, Figure 33 and Figure 34). To explore the catalytic role of this atypical binding pattern, we conducted site-directed mutagenesis on *Cr*DPAS

and observed that although His53Ala had comparable activity to the wild-type enzyme, Thr54Ala and Thr54Phe mutants resulted in reduced product formation (Figure 38B). These findings suggest that while His53 does not have a catalytic role in this reaction, Thr54 is involved in the reduction of vallesiachotamine, likely by the formation of a hydrogen bond with the substrate as observed in the substrate docking analysis (Figure 37).

2.2.11 Mechanism of CrDPAS-Catalysed 1,4-Reduction of Vallesiachotamine

Using the results of the structural and mutagenesis studies of *Cr*DPAS we propose the mechanistic basis of the 1,4-reduction of the α/β -unsaturated aldehyde vallesiachotamine (Figure 39). Strictosidine aglycone can spontaneously rearrange to form various structural isomers, though it is not known whether this rearrangement occurs within the enzyme active site. However, vallesiachotamine binding within the *Cr*DPAS active site is aided by the formation of hydrogen bonds with various residues such as Thr54 and the lack of steric hindrance as a result of the loss of the catalytic zinc ion (Figure 37). Hydride transfer from the NAPDH cofactor to C19 of the substrate results in a 1,4-reduction of the unsaturated aldehyde. The hydrogen bond between *Cr*DPAS Thr54 and the aldehyde stabilise the reaction intermediate, enabling the spontaneous rearrangement of the double bond to form 19,20-dihydrovallesiachotamine.

Figure 39. Proposed mechanism of the CrDPAS-catalysed 1,4-reduction of vallesiachotamine.

2.2.12 *Cr*GS and *Cr*THAS Mutagenesis Study on the Reduction of Strictosidine Aglycone *Cr*GS catalyses the 1,2-iminium reduction of the structural rearrangement of substrate strictosidine aglycone named 4,21-dehydrogeissoschizine to form geissoschizine (Figure 41) ^[14]. Interestingly, tetrahydroalstonine was also observed to form as a minor product in

Figure 40. Computational docking of 4,21-dehydrogeissoschizine in *Cr*GS with cofactor NADP⁺. The catalytic zinc ion is coloured in red, the co-crystallised cofactor NADP⁺ in white, and the docked substrate 4,21-dehydrogeissoschizine in grey.

*Cr*GS *in vitro* reactions demonstrating enzyme promiscuity. To understand the structural basis of this reduction, we docked 4,21-dehydrogeissoschizine into the active site of *C*rGS using AutoDock Vina ^[38]. This resulted in a substrate pose in which the site of reduction (C21) was 6.0 Å from the hydride donor (Figure 40). Although no hydrogen bonds were observed between the enzyme and substrate, a water molecule was positioned 5.0 Å and 5.6 Å from the catalytic zinc ion and the charged iminium of the substrate, respectively. We therefore hypothesised that this water molecule may coordinate the catalytic zinc during catalysis and form a hydrogen bond with the substrate's iminium moiety to aid orientation within the enzyme pocket.

To understand the mechanism of *Cr*GS-based catalysis, we compared its active site with the aldehyde-reducing *Cr*8HGO and the 1,4-iminium-reducing *Cr*DPAS. As detailed in Section 2.2.7, we observed differences in residues that coordinate the catalytic zinc and form the proton relay between the substrate and cofactor during catalysis. We subsequently performed site-directed mutagenesis on these residues and tested the *in vitro* activity of these resulting mutants in the presence of *Cr*SGD, cofactor NADPH, and the substrate strictosidine (Figure 41). The residue *Cr*GS Phe53 was in a position that typically contributes to the proton relay during catalysis corresponding to *Cr*8HGO Ser52 or *Cr*DPAS Thr54, though lacks the necessary hydroxyl-containing side-chain, (Figure 31C and D) ^[2]. Introducing a hydroxyl group at this position (Phe53Thr) thereby reinstating residues

Figure 41. LC-MS chromatograms of *in vitro* coupled reactions of *Cr*GS and mutants with substrate strictosidine, *Cr*SGD and cofactor NADPH. These mutants probe the role of residues involved in coordination of the catalytic zinc and the proton relay. EIC m/z 353.185-353.225.

required to form the catalytic proton relay abolished *Cr*GS activity. These results suggest that the loss of the proton relay system typically observed in aldehyde-reducing CADs is required for the *Cr*GS-catalysed 1,2-iminium reduction of 4,21-dehydrogeissoschizine.

Mutagenesis study of the *Cr*DPAS-catalysed reduction of strictosidine aglycone revealed that the reaction requires residues that are unable to coordinate the catalytic zinc ion (section 2.2.10, Figure 38). Therefore to probe the role of this ion in the *Cr*GS-catalysed reduction of strictosidine aglycone, we mutated these positions to the corresponding residues observed in *Cr*DPAS (*Cr*GS His73Met and Cys168Ser). This abolished activity with the substrate, suggesting that the *Cr*GS catalysed 1,2-iminium reduction of strictosidine aglycone requires the coordination of the catalytic zinc ion.

The mechanism of the closely-related 1,2-iminium-reducing CAD *Cr*THAS1 was previously proposed to occur through a proton relay between the cofactor, the residue Tyr56 and the substrate pro-tetrahydroalstonine ^[15]. However, *Cr*THAS Tyr56 corresponds to *Cr*GS Phe53 which lacks the hydroxyl group required to form the proton relay. To address this mechanistic ambiguity, we generated *Cr*THAS Tyr56Phe and the corresponding *Cr*GS Phe53Tyr mutants and tested their *in vitro* activity with the substrate strictosidine, NADPH and enzyme *Cr*SGD (Figure 42). We detected comparable reaction products using UPLC-MS between the mutants and their wild-type counterparts. This suggests that this residue and thereby the formation of a proton relay is not involved in either the *Cr*GS- or *Cr*THAS- catalysed 1,2-iminium reductions of strictosidine aglycone.

Figure 42. UPLC-MS chromatograms of *Cr*GS and *Cr*GS Phe53Tyr mutant, and the corresponding *Cr*THAS and *Cr*THAS Tyr56Phe mutant *in vitro* reactions with substrate strictosidine, *Cr*SGD and cofactor NADPH. EIC *m/z* 353.185-353.225.

2.2.13 Mechanism of *Cr*GS-Catalysed 1,2-Iminium Reduction of 4,21-Dehydrogeissoschizine

Findings from the comparative structural investigation and site-directed mutagenesis of *Cr*GS enable us to propose the mechanism of the 1,2-iminium reduction of 4,21dehydrogeissoschizine (Figure 43). The pattern of *Cr*GS residues that bind the ribose ring of the cofactor is atypical to those observed in aldehyde-reducing CADs such as *Cr*8HGO, enabling the repositioning of NADPH within the active site. The resulting steric hindrance imposed by the cofactor in addition to residues such as *Cr*GS Phe53 aid substrate orientation within the active site. Furthermore, we postulate that the binding of 4,21dehydrogeissoschizine may be facilitated by a water molecule that coordinates the catalytic zinc in the fourth position. Instead of being displaced upon substrate binding as proposed in typical CAD-catalysed aldehyde reduction, this water forms a hydrogen bond with the iminium moiety of the substrate. These alterations in the enzyme active site enable 4,21dehydrogeissoschizine to be orientated in a position conducive to hydride addition from the cofactor to C21 of the substrate. This results in a 1,2-iminium reduction to form geissoschizine.

Figure 43. Proposed catalytic mechanism of *Cr*GS catalysed 1,2-iminium reduction of 4,21dehydrogeissoschizine to form geissoschizine.

2.3 Discussion

2.3.1 Elucidation of *CrDPAS* and *TiDPAS2* Structures Reveals Basis of 1,4-Reductions DPAS orthologous from *C. roseus* and *T. iboga* are thus far the only ADHs reported to catalyse the 1,4-reduction of an iminium moiety or an α/β -unsaturated aldehyde. The results of isotopic labelling presented in this chapter demonstrate that these enzymes catalyse the 1,4-iminium reduction of the substrate precondylocarpine acetate and dehydrosecodine (Figure 19A). Though the cyclisation of the resulting secodine into vincadifformine was shown by ECD occur outside the enzyme active site (Figure 20). Furthermore, we report that DPAS orthologues from *C. roseus* and *T. iboga* catalyse the 1,4-reduction of the α , β -unsaturated aldehyde vallesiachotamine (Figure 21, Appendix IV) – the first report of this chemistry by an ADH.

To understand the structural basis of these reductions, the structures of *Cr*DPAS and *Ti*DPAS2 were solved by X-ray crystallography. Surprisingly, there was a lack of density corresponding to catalytic zinc ion in both structures (Figure 23C and Figure 24C). The catalytic zinc is highly conserved in ADHs, with only one previous report of its loss in a prokaryote ^[39, 40]. Closer inspection revealed that both of these orthologues lack residues that are able to coordinate the ion (Figure 29). In addition to the elucidation of *apo-Cr*DPAS and *apo-Ti*DPAS2 structures, the structures of *Ti*DPAS2 bound to substrates stemmadenine acetate and precondylocarpine acetate were solved (Figure 25 and Figure 26), which were used in conjunction with substrate and cofactor docking studies to identify residues that may be involved in catalysis (Figure 33 and Figure 37).

Findings from comparative structural analysis led us to identify differences in otherwise highly conserved active site residue and subsequently perform site-directed mutagenesis of to probe their catalytic role. These results suggest that the loss of residues that typically coordinate the catalytic zinc ion and the atypical pattern of cofactor binding residues observed in *CrDPAS* are not required for the 1,4-reduction of precondylocarpine acetate (Figure 35). In addition, mutagenesis of *CrDPAS* identified that the loss of coordination of the catalytic zinc ion and the residue Thr54 are required for the 1,4-reduction of the substrate vallesiachotamine, likely due to steric hindrance (Figure 38). These findings enable us to propose the mechanistic basis of these 1,4-reductions (Figure 36 and Figure 39) and expand the chemical repertoire of this class of enzymes.

2.3.2 Reduction of α,β-unsaturated Aldehydes in Plant Specialised Metabolism

The DPAS-catalysed formation of 19,20-dihydrovallesiachotamine is the first report of a 1,4-reduction of an α , β -unsaturated aldehyde by an ADH. Phylogenetic comparison of DPAS orthologues to other previously characterised CADs identified Vomilenine Reductase 2 (VR2) orthologues in *Rauwolfia tetraphylla* and *Rauwolfia serpentina* (70.9% and 71.6% nucleic acid sequence identity to *Cr*DPAS respectively; Figure 44) ^[27]. VR2 reduces the substrate vomilenine through an unknown mechanism to form the MIA 19,20- α (*S*)-dihydrovomilenine. Sequence analysis of the VR2 orthologues identified atypical residues in positions that coordinate the catalytic zinc, mirroring observations in *Cr*DPAS and *Ti*DPAS2 (Figure 23C and Figure 24C). These similarities in sequence identity and motifs enable us to propose suggest that VR2 catalyses the 1,4-reduction of the α , β -unsaturated aldehyde of the substrate vomilenine in an analogous mechanism as described for *Cr*DPAS (Figure 46). If supported by future isotopic labelling experiments, this finding would suggest that this reduction mechanism arose in Apocynaceae and was maintained in *C. roseus, T. iboga, R. tetraphylla* and *R. serpentina*, giving insights into the evolution of these atypical CADs.

Tree scale: 0.1

Figure 44. Tree of maximum likelihood of previously characterised plant CADs. Reduction chemistries and residues involved in the coordination of the castalytic zinc and forming the proton relay are shown. Residue numbering based on *Cr*8HGO, stars indicate proteins with structures solved in either previous work (line) or in this thesis (filled).

Figure 46. Proposed mechanism of *Rauwolfia* VR2 catalysed 1,4-reduction of α , β -unsaturated aldehyde vomilenine.

In addition to the ADHs DPAS and VR, the 1,4-reduction of an α , β -unsaturated aldehyde in plant specialised metabolism has been reported to be catalysed by the SDR *C. roseus* iridoid synthase (*Cr*ISY) in iridoid biosynthesis (Figure 45D) ^[41]. ADHs and SDRs are distantly related enzyme families resulting in the conservation of several structural features important for catalysis such as the cofactor binding Rossmann fold (Figure 45A and C) ^[42, 43]. Notably, the hydroxyl group of *Cr*ISY Tyr178 was found to provide the enolate hydrogen during the

Figure 45. Enzyme-catalysed reductions of α , β -unsaturated aldehydes in plant specialised metabolism. **A.** Rossmann-fold of *Ti*DPAS2 bound to NADP⁺. **B.** DPAS and VR catalysed 1,4-reduction of vallesiachotamine and vomilenine. **C.** Rossmann-fold of *Cr*ISY bound to NADP⁺ (PDB 5DCY). **D.** *Cr*ISY catalysed 1,4-reduction of 8-oxogeranial.

catalysis of 8-oxogeranial (Figure 47) ^[44], fulfilling a similar catalytic role to *Cr*DPAS Thr54 in the reduction of vallesiachotamine (Figure 39). These findings suggest that the 1,4reduction of α , β -unsaturated aldehydes have emerged in SDRs and ADHs by convergent evolution aided by the conserved cofactor-binding Rossmann fold.

Figure 47. Mechanism of *Cr*ISY catalysed reduction of 8-oxogeranial to form 8-oxocitronellyl enol which spontaneously cyclises to form *cis-trans*-nepetalactol. Figure adapted from Hu *et al.*, ^[44].

2.3.3 Mechanism of *Cr*GS-Catalysed 1,2-Iminium Reduction of 4,21-Dehydrogeissoschizine

Several CADs perform the 1,2-reduction of an iminium moiety in MIA biosynthesis, including the *Cr*GS catalysed-reduction of 4,21-dehydrogeissoschizine (Figure 14). To understand the structural basis of this reduction chemistry, we *Cr*GS and the aldehyde-reducing *Cr*8HGO and observed an atypical pattern of residues which were predicted to prevent the formation of the proton relay during catalysis and result in the repositioning of NADPH within the active site (Figure 31). Reintroduction of residues in *Cr*GS to those able to form the proton relay abolished formation of geissoschizine, suggesting that the loss of this otherwise conserved catalytic feature is required for 1,2-iminium reduction (Figure 41). We additionally propose that a water molecule coordinates both the catalytic zinc and 4,21-dehydrogeissoschizine during catalysis to enable the 1,2-reduction of the iminium moiety (Figure 43).

2.4 Conclusions

CADs involved in MIA biosynthesis have neofunctionalised to accept non-aromatic substrates and to catalyse the atypical 1,2- or 1,4-reduction of an iminium moiety or the 1,4-reduction of an α , β -unsaturated aldehyde. This chapter investigates the structural and mechanistic basis of these reactions in this otherwise highly conserved family of MDRs.

*Cr*DPAS is shown through isotopic labelling and the subsequent structural characterisation to catalyse the 1,4-iminium reduction of the substrates precondylocarpine acetate and dehydrosecodine. Furthermore, we report that DPAS orthologues from *C. roseus* and *T. iboga* catalyse the 1,4-reduction of the α , β -unsaturated aldehyde vallesiachotamine. These are the first reports of these chemistries to be catalysed by an ADH, expanding the chemical repertoire of this enzyme family. Structural elucidation of *Cr*DPAS and *Ti*DPAS2 identified changes in otherwise highly conserved residues within the enzyme active site – namely, the loss of coordination of the catalytic zinc ion, and atypical residues involved in cofactor binding. In conjunction with site-directed mutagenesis, these findings enable us to propose the mechanisms of the DPAS-catalysed 1,4-reduction of precondylocarpine acetate, dehydrosecodine and vallesiachotamine.

Furthermore, a comparison of the structures of the 1,2-iminium-reducing *Cr*GS with the aldehyde-reducing *Cr*8HGO reveals key differences between the enzyme's active sites. Findings of site-directed mutagenesis suggest that the formation of geissoschizine requires the repositioning of the cofactor and the resulting loss of the typical proton relay. These findings enable us to propose the mechanism for the *Cr*GS-catalysed 1,2-iminium reduction of 4,21-dehydrogeissoschizine and provide the basis of 1,2-reductions catalysed by CADs in MIA biosynthesis.

The work presented in this chapter highlights the catalytic plasticity of this otherwise highly conserved class of enzyme within MIA biosynthesis and demonstrates their potential applications in bioengineering and enzyme discovery efforts.

The results in this chapter have been published in Langley *et al.,* ^[21].

2.5 Methods and Materials

2.5.1 Chemicals and molecular biology reagents

All solvents used for extractions, chemical synthesis and preparative HPLC were HPLC grade, and solvents used for UPLC/MS were MS grade. All solvents were purchased from Sigma Aldrich. Carbenicillin, kanamycin sulfate, isopropyl β-D-thiogalactoside (IPTG) salts were purchased from Sigma. Synthetic genes were purchased from IDT. All gene amplifications and mutations were performed using Platinum II Superfi DNA Polymerase (Thermo Fisher). Constructs were transformed into vectors using In-Fusion kit (ClonTech Takara) and colony PCR was performed using Phire II mastermix (Thermo Fisher) according to manufacturer's instructions. PCR product purification was performed using Zymoclean Gel DNA Recovery kit (Zymo). Plasmid purification was performed using the Wizard Miniprep kit (Promega). Strictosidine, precondylocarpine acetate, stemmadenine acetate, vincadifformine, 19-E-geissoschizine and angryline, tetrahydroalstonine were enzymatically prepared and purified as previously described ^[16, 19, 22, 45].

2.5.2 Cloning and mutagenesis

Cloning of *Cr*DPAS, *Ti*DPAS1, *Ti*DPAS2, *Cr*GS and *Cr*THAS has been previously reported ^[14, 16, 19, 22]. Full-length *Cr*DPAS, *Ti*DPAS2, GS and THAS were amplified by PCR from the codon optimized synthetic genes listed in Table 3 using corresponding primers listed in Table 2. DPAS, GS and THAS mutants were generated by overlap extension PCR as previously reported ^[31]. PCR products were purified from 1% agarose gel and ligated into the BamHI and KPNI restriction sites of pOPINK vectors for small-scale expression of *Cr*GS and *Cr*GS mutants. All other ADHs were cloned into the pOPINF vector. pOPINF and pOPINK were a gift from Ray Owens (Addgene plasmid #26042 and #41143 ^[46]). Constructs were ligated into vectors using the In-Fusion kit (Clontech Takara).

Table 2. Primer sequences used for gene amplification and site-directed mutagenesis.Cloning overhangs are underlined. Mutated codons are in bold.

Primers for full length gene amplification		
CrDPAS_Fwd	AAGTTCTGTTTCAGGGCCCGATGGCAGGTAAAAGCGCAGAAGAAG	
CrDPAS_Rev	ATGGTCTAGAAAGCTTTACAGTTCGCTAGGCGGTGTCAG	
TiDPAS1_Fwd	AAGTTCTGTTTCAGGGCCCGATGGCAGTTAAGTCACCAGAAG	
TiDPAS1_Rev	ATGGTCTAGAAAGCTTTACTCAGGGGGGCGTAAGGGTGTTA	
TiDPAS2_Fwd	AAGTTCTGTTTCAGGGCCCGATGGCGGGCAAATCCCCCGAAG	
TiDPAS2_Rev	ATGGTCTAGAAAGCTTTACGGTTCTGGAGGCGGAGTCAAAG	
CrGS_Fwd	AAGTTCTGTTTCAGGGCCCGATGGCTGGTGAAACCACCAAAC	
CrGS_Rev	ATGGTCTAGAAAGCTTTATTCTTCGAATTTCAGGGTGTTAC	
CrTHAS_Fwd	AAGTTCTGTTTCAGGGCCCGGCAATGGCTTCAAAGTCACCTTCTG	
CrTHAS_Rev	ATGGTCTAGAAAGCTTTAATTTGATTTCAGAGTGTTC	
Primers for mutagenesis		
CrDPAS_M74H_Fwd	TATCCGCTGGTTCCTGGT CAT GAAATTGTTGGTATTGCAAC	
CrDPAS_M74H_Rev	ACCAGGAACCAGCGGATAGCTCAG	
CrDPAS_T54F_Fwd	GTATTGCGGCATTTGTCAT TTC GATCTGGCAAGCATTAAAAAC	
CrDPAS_T54F_Rev	ATGACAAATGCCGCAATACAGAATTTTG	
CrDPAS_S168C_Fwd	GGTGCTCCGCTGCTG TGT GCAGGTATTACCAGCTTTAG	
CrDPAS_S168C_Rev	CAGCAGCGGAGCACCGCCTGC	
CrDPAS_T54A_Fwd	TATTGCGGCATTTGTCATGCCAAGCATTAAAAAC	
CrDPAS_T54A_Rev	ATGACAAATGCCGCAATACAGAATTTTG	
CrDPAS_H53A_Fwd	TGTATTGCGGCATTTGT GCT ACCGATCTGGCAAGCATT	
CrDPAS_H53A_Rev	ACAAATGCCGCAATACAGAATTTTGA	

CrGS_H73M_Fwd	TACCCGTACGTTTTCGGT ATG GAAACCGCTGGTGAAGTTGT
CrGS_H73M_Rev	ACCGAAAACGTACGGGTAACGGGT
CrGS_F53T_Fwd	GTACTCTGGTGTTTGCAAC ACC GACATGGAAATGGTTCGTAAC
CrGS_F53T_Rev	GTTGCAAACACCAGAGTACAGAACACGG
CrGS_C168S_Fwd	GGTGTTGCTCTGCTGAGCGCTGGTGTTGTTGTTTACTC
CrGS_C168S_Rev	CAGCAGAGCAACACCTTTGTC
CrGS_F53Y_Fwd	TACTCTGGTGTTTGCAAC TAC GACATGGAAATGGTTCGT
CrGS_F53Y_Rev	GTTGCAAACACCAGAGTACAGAACACGG
CrTHAS_Y55F_Fwd	GTGGGACTTGCCAA TTT GACAGGGAAATGAG
CrTHAS_Y55F_Rev	TTGGCAAGTCCCACAGTATAATAC

 Table 3. Full length nucleotide sequences of genes.

Codon	ATGGCAGGTAAAAGCGCAGAAGAAGAACATCCGATTAAAGCATATGGTTGGG
optimised	CAGTTAAAGATCGTACCACCGGTATTCTGAGCCCGTTTAAATTCAGCCGTCGTG
<i>Cr</i> DPAS	CAACCGGTGATGATGATGTTCGTATCAAAATTCTGTATTGCGGCATTTGTCATA
	CCGATCTGGCAAGCATTAAAAACGAATATGAGTTTCTGAGCTATCCGCTGGTTC
	CTGGTATGGAAATTGTTGGTATTGCAACCGAAGTTGGTAAAGATGTGACCAAA
	GTTAAAGTGGGTGAAAAAGTTGCACTGAGCGCATATCTGGGTTGTTGTGGTAA
	ATGTTATAGCTGCGTGAATGAGCTGGAAAACTATTGTCCGGAAGTGATTATTG
	GTTATGGCACCCCGTATCATGATGGCACCATTTGTTATGGTGGTCTGAGCAATG
	AAACCGTTGCAAATCAGAGCTTTGTTCTGCGTTTTCCGGAACGTCTGAGTCCGG
	CAGGCGGTGCTCCGCTGCTGAGCGCAGGTATTACCAGCTTTAGCGCAATGCGT
	AATAGCGGTATTGATAAACCGGGTCTGCATGTTGGTGTTGTTGGTTTAGGTGGT
	CTGGGTCATCTGGCCGTTAAATTTGCAAAAGCATTTGGTCTGAAAGTGACCGTT
	ATTAGCACCACCGAGCAAAAAAGATGATGCAATTAATGGCCTGGGTGCAGA
	TGGTTTTCTGCTGAGCCGTGATGACGAGCAGATGAAAGCAGCAATTGGCACCC
	TGGATGCCATTATTGATACCCTGGCAGTTGTTCATCCGATTGCACCGCTGCTGG
	ATCTGCTGCGTAGCCAGGGTAAATTTCTGCTGCTGGGTGCACCGAGCCAGAGC
	CTGGAACTGCCTCCGATTCCTCTGCTGAGTGGTGGTAAAAGCATTATTGGTAGC
	GCAGCAGGTAATGTTAAACAGACCCAAGAAATGCTGGATTTTGCAGCCGAACA
	TGATATTACCGCCAACGTTGAAATTATCCCGATCGAATACATTAACACCGCAAT
	GGAACGCCTGGATAAAGGTGATGTGCGTTATCGTTTTGTGGTGGATATTGAAA
	ATACCCTGACACCGCCTAGCGAACTGTAA

Codon optimised <i>Ti</i> DPAS2	ATGGCGGGCAAATCCCCCGAAGAAGAGCACCCGGTAAAAGCCTATGGCTGGG CAGTGAAAGACCGCACCACGGGTATTCTGTCTCCATTCAAGTTCTCACGCCGGG CAACAGGTGATAATGACATTCGCATTAAAATTCTTTACTGCGGGATTTGCCATA CTGACTTGACATCAGTGAAAAACGAATACGAGTTCCTTTCATACCCCTTAGTACC GGGTATGGAGATCGTTGGTATCGCTACTGAAGTGGGAAGTAAGGTTACGAAA ATCAAGGTTGGGGAGAAAGTGGCGGTGGCCGCGTACTTGGGGACTTACGAAA ATCAAGGTTGGGGAGAAAGTGGCGGTGGCCGCGTACTTGGGGACTTATGG GATACGGTACTCCATATCACGACGACGATCACTGGCGCGCGC
Codon optimised <i>Cr</i> GS	ATGGCTGGTGAAACCACCACAACTGGACCTGTCTGTTAAAGCTGTTGGTTG
Codon optimised <i>Cr</i> THAS	ATGGCAATGGCTTCAAAGTCACCTTCTGAAGAAGTATATCCAGTGAAGGCATTT GGTTTGGCTGCTAAGGATTCTTCTGGGCTTTTCTCTCCATTCAACTTCTCAAGAA GGGCCACAGGGGAACACGATGTGCAGCTCAAAGTATTATACTGTGGGACTTGC

CAATATGACAGGGAAATGAGCAAAAACAAATTTGGATTTACAAGCTATCCTTAT
GTTTTAGGGCATGAAATTGTGGGTGAGGTAACTGAAGTTGGCAGCAAGGTGC
AGAAATTCAAAGTCGGGGACAAAGTGGGCGTAGCAAGCATAATTGAAACTTGT
GGCAAATGTGAAATGTGTACAAATGAAGTTGAAAATTACTGTCCAGAAGCAGG
ATCAATAGACAGCAATTACGGGGCATGTTCAAATATAGCAGTGATAAACGAGA
ATTTTGTCATCCGTTGGCCTGAAAATCTTCCTTTGGATTCTGGTGTTCCTCTTCTA
TGTGCAGGAATCACGGCTTATAGTCCCATGAAACGTTATGGACTTGATAAACCT
GGAAAACGTATCGGCATAGCCGGTCTAGGAGGACTTGGACATGTAGCTCTTAG
ATTTGCCAAAGCTTTTGGGGGCTAAGGTGACAGTGATTAGTTCTTCACTTAAGAA
AAAACGTGAAGCCTTTGAGAAATTCGGAGCAGATTCTTTCT
TCCAGAAGAAATGCAGGGTGCAGCAGGAACATTGGATGGGATCATAGACACT
ATACCAGGGAATCACTCTTTGAGCCACTCCTTGCTTTATTGAAGCCTCTTGGGA
AGCTTATCATTTTAGGTGCACCAGAAATGCCCTTTGAGGTTCCCGCTCCTTCCCT
GCTTATGGGTGGAAAAGTAATGGCTGCCAGTACTGCTGGGAGTATGAAGGAA
ATACAAGAGATGATTGAATTTGCAGCAGAACACAACATAGTAGCAGATGTGGA
GGTTATCTCTATTGACTATGTGAACACTGCAATGGAGCGCCTTGATAACTCTGA
TGTGAGATATCGTTTCGTGATTGATATAGGGAACACTCTGAAATCAAATTAA
GCTGGATTGAGAAAGGAAAAGCCTGCTCCTGGCCCATTTGATGCTATTGTAAGA
TTGGCGAAAGACATAACATGATACTCGGTCACGAAGCTGTAGGTGAAGTAGTT
GAAGTAGTAGTGAGGTAAAAGATTTTAAACCTGGTGATCGCGTTGTTGTGCC
AGCTATTACCCCTGATTGGCGGACCTCTGAAGTACAAAGAGGATATCACCAGC
ACTCCGGTGGAATGCTGGCAGGCTGGAAATTTTCGAATGTAAAAGATGGTGTT
TTTGGTGAATTTTTTCATGTGAATGATGCTGATATGAATTTAGCACATCTGCCTA
AAGAAATTCCATTGGAAGCTGCAGTTATGATTCCCGATATGATGACCACTGGTT
TTCACGGAGCTGAACTGGCAGATATAGAATTAGGTGCGACGGTAGCAGTTTTG
GGTATTGGCCCAGTAGGTCTTATGGCAGTCGCTGGTGCCAAATTGCGTGGAGC
CGGAAGAATTATTGCCGTAGGCAGTAGACCAGTTTGTGTAGATGCTGCAAAAT
ACTATGGAGCTACTGATATTGTAAACTATAAAGATGGTCCTATCGAAAGTCAGA
TTATGAATCTAACTGAAGGCAAAGGTGTCGATGCTGCCATCATCGCTGGAGGA
AATGCTGACATTATGGCTACAGCAGTTAAGATTGTTAAACCTGGTGGCACCATC
GCTAATGTAAATTATTTTGGCGAAGGAGAGGGTTTTGCCTGTTCCTCGTCTTGAA
TGGGGTTGCGGCATGGCTCATAAAACTATAAAAGGCGGGCTATGCCCCGGTGG
ACGTCTAAGAATGGAAAGACTGATTGACCTTGTTTTTTATAAGCGTGTCGATCC
TTCTAAGCTCGTCACTCACGTTTTCCGGGGGATTTGACAATATTGAAAAAGCCTTT
ATGTTGATGAAAGACAAACCAAAAGACCTAATCAAACCTGTTGTAATATTAGCA
TAAAGCTTTCTAGACCAT
1

2.5.3 Protein Expression in E. coli

Constructs were transformed into chemically-competent *E. coli* Stellar cells (Clontech Takara) by heat shock at 42°C for 30 seconds and selected on LB agar containing 50µg/mL carbenicillin or kanamycin for pOPINF or pOPINK constructs respectively. Positive colonies were screened by colony PCR using primers listed in Table S1 and grown overnight at 37°C

shaking at 200 r.p.m. Plasmids were then isolated and constructs were sequence verified. Plasmids were transformed into chemically competent *E. coli* SoluBL21 cells by heat shock for 30 seconds at 42°C and selected on LB agar containing 50 µg/mL carbenicillin or kanamycin for pOPINF or pOPINK constructs respectively. For small scale protein purification, 10 mL starter cultures of LB with 50 µg/mL of the respective antibiotic and a colony of transformed construct in SoluBL21 cells were grown at 37°C 200 r.p.m. overnight. Media (100 mL 2xYT media) containing 50 µg/mL antibiotic was inoculated with 1 mL of the starter culture and grown until OD₆₀₀ of 0.6 was reached. For large scale purification, 20 mL starter cultures of LB with antibiotic and a colony of transformed construct in SoluBL21 cells were grown at 37°C 200 r.p.m. overnight. Media (1L 2xYT media) containing 50 µg/mL carbenicillin was inoculated with 10 mL of starter culture and grown until OD₆₀₀ of 0.6 was reached. Once cultures had reached the desired OD₆₀₀, cultures were transferred to 18°C 200 r.p.m shaking incubator for 30 minutes before protein expression was induced by addition of 300 µM IPTG, after which cultures were grown for an additional 16 hours.

2.5.4 CrPAS Insect Cell Expression

N-terminal His₆-tagged *Cr*PAS was expressed in Sf9 insect cells as previously described ^[22]. Cells were harvested by centrifugation and the pellets frozen at -80° C until large-scale purification.

2.5.5 Small-scale Protein Purification

Cells were harvested by centrifugation at 4000 x g for 15 minutes and re-suspended in 10 mL buffer A1 (50 mM Tris-HCl pH 8, 50 mM glycine, 500 mM NaCl, 5% glycerol, 20 mM imidazole) with addition of EDTA-free protease inhibitor cocktail (Roche Diagnostics Ltd.) and 10 mg lysozyme (Sigma). Cells were lysed at 4 °C using a sonicator (40% amplitude, 2 seconds on, 3 seconds off cycles for 2 minutes) and centrifuged at 35000 x g to remove insoluble cell debris. The supernatant was collected and filtered with 0.2 um PES syringe filter (Sartorious) and purified by addition of 150 µL washed Ni-NTA agarose beads (QIAGEN). Samples were incubated on a rocking incubator at 4 °C for 1 hour. Beads were washed by centrifuging at 1000 x g for 1 minute to remove the supernatant, and then the beads were resuspended in 10 mL of A1 Buffer. This step was performed a total of three times. Protein was eluted by resuspending the beads in 600 µL of buffer B1 (50 mM Tris-

HCl pH 8.0, 50 mM glycine, 500 mM NaCl, 5% glycerol, 500 mM imidazole) before centrifuging for $1000 \times g$ for 1 minute and then collecting the supernatant. This elution step was repeated to remove all Ni-NTA bound protein. Proteins were buffer exchanged into buffer A4 (20 mM HEPES pH 7.5, 150 mM NaCl) and concentrated using 10K Da molecular weight cut off centrifugal filter (Merck) and stored at -80 °C.

2.5.6 CrDPAS, TiDPAS2, CrGS, CrSGD, CrPAS and TbADH Large-scale Protein Purification Cells were harvested by centrifugation at $3200 \times q$ for 15 minutes and re-suspended in 50 mL buffer A1 (50 mM Tris-HCl pH 8, 50 mM glycine, 500 mM NaCl, 5% glycerol, 20 mM imidazole) with addition of EDTA-free protease inhibitor cocktail (Roche Diagnostics Ltd.) and 10 mg lysozyme (Sigma). Dithiothreitol (Sigma) (final concentration of 0.05 mM) was additionally added to all buffers in purification of CrDPAS and TiDPAS2 for crystallisation to limit the formation of disulfide-bridges that may result in protein misfolding. Cells were lysed at 4 °C using a cell disruptor at 30 KPSI and centrifuged (35000 x g) to remove insoluble cell debris. The supernatant was collected and filtered with 0.2 µm PES syringe filter (Sartorious) and purified using an AKTA Pure FPLC (Cytiva). Sample was applied at 2 mL/min onto a His-Trap HP 5mL column (Cytiva) and washed with 5 column volumes (CV) of buffer A1 before being eluted with 5 CV of buffer B1. Protein was detected and collected using the UV 280 nm signal and then further purified on a Superdex Hiload 16/60 S200 gel filtration column (Cytiva) at a flow rate of 1 mL/min using buffer A4. Proteins were finally buffer exchanged into buffer A4 and concentrated using 10K Da molecular weight cut off centrifugal filter (Merck) before being snap frozen in liquid nitrogen and stored at -80 °C. For the crystallisation of CrDPAS and TiDPAS2, protein after gel filtration was incubated on a rocker overnight at 4°C with 3C protease to cleave the 6xHis-tag. Proteins were then passed through a 1mL HisTrap column (Cytiva) to remove the cleaved tag. Proteins were then buffer exchanged into buffer A4 (20 mM HEPES pH 7.5, 150 mM NaCl) containing 0.05 mM tris(2-carboxyethyl)phosphine (Sigma) and concentrated using 10K Da molecular weight cut off centrifugal filter (Merck) and stored at -80 °C.

2.5.7 Synthesis of NADPD

Deuterated pro-*R*-NADP*D* was produced *in vitro* as previously described ^[47] with minor modifications. A 20 mL reaction mixture containing 2 mM NADP⁺, 4 mM d₈-isopropanol, 1

mM semicarbazide and 5 μ M *Tb*ADH in 50 mM ammonium bicarbonate buffer at pH 7.5 was incubated at 30 °C. The progression of the reaction was monitored by a spectrophotometer at 340 nm. When no significant increase in absorbance was observed (approximately 3 hours), 300 μ L of Ni-NTA agarose beads (Qiagen) was added and the sample incubated rocking at room temperature for 30 minutes. The reaction was centrifuged to remove the Ni-NTA beads bound to *Tb*ADH, and the supernatant was filtered through a 45 μ m glass filter and lyophilized to remove the unreacted d₈-isopropanol, the acetone that forms during the reaction and the buffer. The residue, containing primarily NADPD, was stored at –20 °C until use.

2.5.8 In vitro Enzyme Assays

Enzymatic assays with precondylocarpine acetate were performed in 50 mM HEPES buffer (pH 7.5) with 50 μ M precondylocarpine acetate in MeOH (not exceeding 5% of the reaction volume), 250 μ M NADPH cofactor (Sigma) and 150 nM enzyme to a final reaction volume of 100 μ L. Reactions were incubated for 30 minutes at 30 °C and shaking at 60 r.p.m. before being quenched with 1 volume of 70% MeOH with 0.1% HCO₂H.

Enzymatic assays with strictosidine aglycone were performed in 50 mM HEPES buffer (pH 7.5), 100 μ M strictosidine and 1 mM SGD to a final reaction volume of 100 μ L. Assays were incubated for 30 minutes at 30 °C and shaking at 60 r.p.m before 500 nM of ADH enzyme and 250 μ M NADPH was added. As control, the reactions were performed without the addition of ADH enzyme. Reactions were incubated for a further 30 minutes at 30 °C shaking at 60 r.p.m. before being quenched with 1 volume of 70% MeOH with 0.1% HCO₂H.

All enzymatic assays were centrifuged at 14000 x g for 15 minutes and the supernatant analysed by UPLC-MS.

2.5.9 UPLC-MS Analysis

All assays were analysed using a Thermo Scientific Vanquish UPLC coupled to a Thermo Q Exactive Plus orbitrap MS. For assays using precondylocarpine acetate, chromatographic separation was performed using a Phenomenex Kinetex C18 2.6 μ m (2.1 x 100 mm) column using water with 1% HCO₂H as mobile phase A and acetonitrile with 1% HCO₂H as mobile

72

phase B. Compounds were separated using a linear gradient of 10-30% B in 5 minutes followed by 1.5 minutes isocratic at 100% B. The column was then re-equilibrated at 10% B for 1.5 minutes. The column was heated to 40 °C and flow rate was set to 0.6 mL/min. For assays using strictosidine aglycone, separation was carried out using a Waters Acquity BEH C18 1.7 μ m (2.1 x 50 mm) using 0.1% NH₄OH in water as mobile phase A and acetonitrile as mobile phase B. Compounds were separated using a linear gradient of 10-90% B in 9 minutes followed by 2 minutes isocratic at 90% B. The column was reequilibrated at 10% B for 3 minutes. The column was heated to 50 °C and flow rate was set to 0.4 mL/min. MS detection was performed in positive ESI under the following conditions: spray voltage was set to 3.5 kV ~ 67.4 μ A, capillary temperature set to 275 °C, vaporizer temperature 475 °C, sheath gas flow rate 65, sweep gas flow rate 3, aux gas flow rate 15, S-lens RF level to 55 V. Scan range was set to 200 - 1000 *m/z* and resolution at 17500.

2.5.10 Production and Isolation of *d*-angryline and *d*₂-vincadifformine

d-angryline was produced enzymatically from stemmadenine acetate using the same protocol previously described for the synthesis of angryline but replacing NADPH with NADPD ^[32]. Briefly, 0.25 mg of stemmadenine acetate, 40 μ M flavin adenine dinucleotide (FAD) and 5 μ g of *Cr*PAS were combined in a total volume of 500 μ L in 50 mM TRIS-HCl buffer pH 8.5 and incubated at 37 °C to form precondylocarpine acetate (reaction progress was monitored by LC-MS, *m/z* 395.19). After 2 hours, 1 mg of NADPD and 9 μ g of *Cr*DPAS were added to the reaction and incubated for 20 minutes at 37 °C to obtain *d*-angryline (*m/z* 338.19). Multiple reactions were prepared to obtain sufficient product for NMR characterization. After completion, the reactions were snap frozen in liquid nitrogen and stored at –80 °C.

 d_2 -vincadifformine was also produced enzymatically, but in this case NADPD was generated directly in the reaction mixture using an alcohol dehydrogenase from *E. coli* (Merck product 49854). Multiple 500 µL reactions were prepared to obtain sufficient product for NMR characterization. Each reaction contained 400 µM NADP⁺, 0.89 µg d_8 -isopropanol, 1 µg of *Tb*ADH, 10 µg stemmadenine acetate, 0.8 µM *Cr*PAS and 0.8 µM *Ti*DPAS1 in 50 mM HEPES buffer pH 7.5. The reactions were incubated at 30 °C for 1 hour, snap frozen in liquid nitrogen and stored at –80 °C until purification of the final product. *d*-angryline and *d*₂-vincadifformine were purified by semi-preparative HPLC on an Agilent 1260 Infinity II HPLC system. The reactions were thawed and 500 µL of 90:9:1 MeOH:H₂O: HCO₂H was added to the deuterated samples. The samples were filtered through 0.2 µm PTFE disc filters (Sartorius) to remove the precipitated enzymes and injected onto a Phenomenex Kinetex XB-C18 5 µm (250 x 10 mm) column. Chromatographic separation was performed using 0.1% HCO₂H in water as mobile phase A and acetonitrile as mobile phase B. A linear gradient from 10% B to 40% B in 15 minutes was used for chromatographic separation of the compounds followed by a wash at 40% B for 5 minutes and a re-equilibration step to 10% B for 5 minutes. Flow rate was 6 mL/min. Elution of *d*-angryline and *d*₂-vincadifformine was monitored at two wavelengths, 330 and 254 nm. Fractions containing the compounds of interest were collected, dried under reduced pressure and stored at –80 °C until further analysis.

2.5.11 Production and Isolation of 19,20-dihydrovallesiachotamine

19,20-dihydrovallesiachotamine was produced enzymatically from 100 µM strictosidine reacted with 100 μ M CrSGD in 50 mM HEPEs buffer pH 7.5 in a 100 mL reaction at 30°C. After 90 minutes, 500 nM of CrDPAS and 250 µM NADPH was added and the reaction monitored. After 2 hours a further 500 nM CrDPAS was added to a final concentration of 1 μ M and left for a further 3 hours until the reaction reached completion. The sample was snap frozen in liquid nitrogen and stored at -80 °C. For purification, the sample was thawed on ice and filtered through a 0.2 µm PTFE disc filter (Sartorius) to remove the precipitated enzymes and then passed through a Supelco DSC-18 column (MilliporeSigma) and eluted with methanol. Eluent was dried down in a rotovap and resuspended in 1.5 mL methanol. The product was purified on an Agilent 1290 Infinity II semi-preparative HPLC system using a Waters XBridge BEH C18 5 μ m (10 x 250mm) column and using 0.1% NH₄OH in water as mobile phase A and acetonitrile as mobile phase B. Compounds were separated using a linear gradient of 10-65% B in 25 minutes followed by 10 minutes column re-equilibration at 10% B. Flow rate was set to 7mL/min. Compound was detected by measuring UV 290 nm and 254 nm signal. Fractions containing the compound of interest were collected and dried down using a rotovap and stored at -20 °C until NMR analysis.
2.5.12 NMR of *d*-angryline, *d*-vincadifformine and 19,20-dihydrovallesiachotamine

For *d*-angryline, NMR spectra were measured on a 400 MHz Bruker Advance III HD spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany). NMR spectra for 19,20dihydrovallesiachotamine, (–)-vincadifformine and d_2 -(±)-vincadifformine were measured on a 700 MHz Bruker Advance III HD spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany). For spectrometer control and data processing Bruker TopSpin ver. 3.6.1 was used. MeOH- d_3 was used as a solvent and all NMR spectra were referenced to the residual solvent signals at δ H 3.31 and δ C 49.0, respectively.

2.5.13 ECD Measurement and Spectral Calculations of Vincadifformine

ECD spectra were measured at 25 °C on a JASCO J-810 spectropolarimeter (JASCO cooperation, Tokyo, Japan) using a 350 μ L cell. Spectrometer control and data processing was accomplished using JASCO spectra manager II.

Based on the structure determined from NMR analysis a molecular model was created in GaussView ver.6 (Semichem Inc., Shawnee, Kansas, USA) and optimized using the semiempirical method PM6 in Gaussian (Gaussian Inc., Wallingford, Connecticut, USA). The resulting structure was used for conformer variation with the GMMX processor of the Gaussian program package. Resulting structures were DFT-optimized with Gaussian ver.16 (APFD/6-31G(d)). A cut-off level of 4 kcal/mol was used to select conformers which were subjected to another DFT optimization on a higher level (APFD/6-311G+(2d,p)). All structures up to a deviation of 2.5 kcal/mol from the lowest energy conformer were used to determine the ECD-frequencies in a TD-SCF calculation on the same level as the former DFT optimization. The ECD curve was calculated from the Boltzmann-weighed contributions of all conformers with a cut-off level of two percent. Experimentally measured ECD data and calculated data were compared using SpecDis ver.1.71 ^[48].

2.5.14 Protein Crystallisation

Protein sequences were analysed for disordered regions using XstalPred web server ^[49]. Purified *Cr*DPAS and *Ti*DPAS2 were crystallised by sitting-drop vapour diffusion on MRC2 96-well crystallisation plates (SwissSci) with 0.3 μL protein and 0.3 μL precipitant solution drops dispensed by Oryx8 robot (Douglas Instruments). *Cr*DPAS was crystallised using JCSG screen (Jena Biosciences) with 1.26 M ammonium sulfate, 100 mM TRIS buffer pH 8.5 and 200mM lithium sulfate. Crystallisation condition with additional 1 mM NADP⁺ and 25% ethylene glycol was used as cryoprotectant.

TiDPAS2 was initially screened using PEG/Salt screen (Jena Biosciences) before condition optimization. Apo-*TiDPAS2* was crystallised in 17% w/v PEG 3350, 200 mM ammonium chloride and 0.75 mM angryline (no electron density corresponding to angryline was observed in the structure). 17% w/v PEG 3350, 220 mM ammonium chloride, 1 mM NADP⁺, 1 mM angryline and 25% ethylene glycol was used as cryoprotectant. Stemmadenine acetate-bound *TiDPAS2* was crystallised in 23% w/v PEG 3350, 250 mM sodium sulfate and 0.75 mM stemmadenine acetate, 23% w/v PEG 3350, 200 mM sodium sulfate, 1 mM NADP⁺, 1 mM stemmadenine acetate and 25% ethylene glycol was used as cryoprotectant. Precondylocarpine acetate-bound *TiDPAS2* was crystallised in 23% w/v PEG 3350, 200 mM sodium sulfate, 1 mM sodium sulfate and 0.75 mM precondylocarpine acetate. 23% w/v PEG 3350, 200 mM sodium sulfate, 1 mM sodium sulfate and 0.75 mM precondylocarpine acetate. 23% w/v PEG 3350, 200 mM sodium sulfate and sodium sulfate and 0.75 mM precondylocarpine acetate. 23% w/v PEG 3350, 200 mM sodium sulfate and 0.75 mM precondylocarpine acetate. 23% w/v PEG 3350, 200 mM sodium sulfate and 0.75 mM precondylocarpine acetate. 23% w/v PEG 3350, 200 mM sodium sulfate and 0.75 mM precondylocarpine acetate. 23% w/v PEG 3350, 200 mM sodium sulfate and 0.75 mM precondylocarpine acetate. 23% w/v PEG 3350, 200 mM sodium sulfate and 0.75 mM precondylocarpine acetate. 23% w/v PEG 3350, 200 mM sodium sulfate, 1 mM NADP⁺, 1 mM precondylocarpine acetate and 25% ethylene glycol was used as cryoprotectant.

All crystals were soaked in the corresponding cryoprotectant before flash-cooling in liquid nitrogen.

2.5.15 X-ray Data Collection, Processing and Structure Solution

X-ray data sets for *Cr*DPAS and *Ti*DPAS2 structures were recorded on the 10SA (PX II) beamline at the Paul Scherrer Institute (Villigen, Switzerland) at wavelength of 1.0 Å using a Dectris Eiger3 16M detector with the crystals maintained at 100K by a cryocooler. Diffraction data were integrated using XDS ^[50] and scaled and merged using AIMLESS ^[51]; data collection statistics are summarized in Appendix V. Structure's solution was automatically obtained by molecular replacement using the structure of tetrahydroalstonine synthase from *C. roseus* (PDB accession code 5FI3) as template with which *Cr*DPAS and *Ti*DPAS2 share 54% and 56% amino acid identity respectively. In all cases the map was of sufficient quality to enable 90% of the residues expected for a homodimer to be automatically fitted using Phenix autobuild ^[52, 53]. The models were finalized by manual rebuilding in COOT ^[54] and refined using in Phenix refine.

All structures are in the PDB database under the following accessions: 8B27 (*Cr*DPAS), 8B26 (apo-*Ti*DPAS2), 8B1V (precondylocarpine acetate-bound *Ti*DPAS2), 8B25 (stemmadenine acetate-bound *Ti*DPAS2). The model statistics are reported in Appendix V.

2.5.16 Docking simulations

Ligands were docked into the active site of *Ti*DPAS and *Cr*GS using AutoDock Vina on the Webina webserver using default parameters ^[38, 55]. Coordinates of ligands were generated by PDBQTConvert. When assessing the results, we selected ligand orientations in which the 4-pro-*R* hydride of NADPH was in close proximity to the carbon being reduced; this orientation was not always the lowest possible energy solution. Results were visualised using PyMOL.

2.5.17 Phylogenetic analysis

Nucleic acid sequences of ADH genes were aligned using MUSCLE v5^[56]. A maximum likelihood phylogenetic tree was constructed using IQTree^[57] using a best-fit substitution model followed by tree reconstruction using 1000 bootstrap alignments and the remaining parameters used default settings. Figures were made using iTOL version 6.5.2^[58].

Table 4. Genbank accession for	sequences used to	construct tree of	maximum likelihood.
--------------------------------	-------------------	-------------------	---------------------

Gene Name	Genbank accession
Arabidopsis thaliana cinnamyl alcohol dehydrogenase 1 (CAD1)	AT1G72680
Arabidopsis thaliana cinnamyl alcohol dehydrogenase 2 (CAD2)	AT2G21730
Arabidopsis thaliana cinnamyl alcohol dehydrogenase 3 (CAD3)	AT2G21890
Arabidopsis thaliana cinnamyl alcohol dehydrogenase 4 (CAD4)	AT3G19450
Arabidopsis thaliana cinnamyl alcohol dehydrogenase 5 (CAD5)	AT4G34230
Arabidopsis thaliana cinnamyl alcohol dehydrogenase 6 (CAD6)	AT4G37970
Arabidopsis thaliana cinnamyl alcohol dehydrogenase 7 (CAD7)	AT4G37980
Arabidopsis thaliana cinnamyl alcohol dehydrogenase 8 (CAD8)	AT4G37990
Arabidopsis thaliana cinnamyl alcohol dehydrogenase 9 (CAD9)	AT4G39330
Populus tremuloides sinapyl alcohol dehydrogenase (SAD)	AF273256.1

Camptotheca accuminata 8-hydroxygeraniol oxidase (8HGO)	AY342355.1
Ocimum basilcum geraniol dehydrogenase (GEDH)	AY879284.1
Rauwolfia serpentina cinnamyl alcohol dehydrogenase (CAD)	KT369739.1
Catharanthus roseus 8-hydrogeraniol dehydrogenas (8HGO)	KF561458.1
Strychnos speciosa Wieland-Gumlich aldehyde synthase (WS)	OM304303.1
Strychnos nux-vomica Wieland-Gumlich aldehyde synthase (WS)	OM304294.1
Catharanthus roseus geissoschizine synthase (GS)	MF770507.1
Cinchona pubescens dihydrocorinantheine aldehyde synthase (DCS)	MW456554
Catharanthus roseus tabersonine 3- reductase (T3R)	KP122966.1
Catharanthus roseus tetrahydroalstonine synthase (THAS)	KM524258.1
Catharanthus roseus heteroyohimbine synthase (HYS)	KU865325.1
Rauwolfia serpentina vomilenine reductase 2 (VR2)	KT369740.1
Rauwolfia tetraphylla vomilenine reductase 2 (VR2)	KT369741.1
<i>Tabernanthe iboga</i> dihydroprecondylocarpine acetate synthase 1 (DPAS1)	MK840855.1
<i>Tabernanthe iboga</i> dihydroprecondylocarpine acetate synthase 2 (DPAS2)	MK840856.1
Catharanthus roseus dihydroprecondylocarpine acetate synthase (DPAS)	KU865331.1

2.6 References

[1] O. Danielsson, H. Jörnvall, Proc National Acad Sci 1992, 89, 9247–9251.

[2] D.-M. Guo, J.-H. Ran, X.-Q. Wang, J Mol Evol 2010, 71, 202–218.

[3] S.-J. Kim, M.-R. Kim, D. L. Bedgar, S. G. A. Moinuddin, C. L. Cardenas, L. B. Davin, C. Kang, N. G. Lewis, *Proc National Acad Sci* 2004, *101*, 1455–1460.

[4] J. Strommer, *Plant J* 2011, *66*, 128–142.

[5] B. Mee, D. Kelleher, J. Frias, R. Malone, K. F. Tipton, G. T. M. Henehan, H. J. Windle, *Febs J* 2005, *272*, 1255–1264.

[6] H. Jörnvall, M. Landreh, L. J. Östberg, *Chem-biol Interact* 2015, 234, 75–79.

[7] D. S. Auld, T. Bergman, Cell Mol Life Sci 2008, 65, 3961.

[8] B. Youn, R. Camacho, S. G. A. Moinuddin, C. Lee, L. B. Davin, N. G. Lewis, C. Kang, Org Biomol Chem 2006, 4, 1687–1697.

[9] T. D. Hurley, W. F. Bosron, J. A. Hamilton, L. M. Amzel, *Proc National Acad Sci* 1991, *88*, 8149–8153.

[10] B. V. Plapp, S. Ramaswamy, *Biochemistry-us* 2012, *51*, 4035–4048.

[11] B. V. Plapp, B. R. Savarimuthu, D. J. Ferraro, J. K. Rubach, E. N. Brown, S. Ramaswamy, *Biochemistry-us* 2017, *56*, 3632–3646.

[12] S. R. Guntupalli, Z. Li, L. Chang, B. V. Plapp, R. Subramanian, *Biochemistry-us* 2021, *60*, 663–677.

[13] B. V. Plapp, H. A. Charlier, S. Ramaswamy, Arch Biochem Biophys 2016, 591, 35–42.

[14] E. C. Tatsis, I. Carqueijeiro, T. D. D. Bernonville, J. Franke, T.-T. T. Dang, A. Oudin, A. Lanoue, F. Lafontaine, A. K. Stavrinides, M. Clastre, V. Courdavault, S. E. O'connor, *Nat Commun* 2017, *8*, 316.

[15] A. Stavrinides, E. C. Tatsis, L. Caputi, E. Foureau, C. E. M. Stevenson, D. M. Lawson, V. Courdavault, S. E. O'Connor, *Nat Commun* 2016, *7*, 12116.

[16] A. Stavrinides, E. C. Tatsis, E. Foureau, L. Caputi, F. Kellner, V. Courdavault, S. E. O'Connor, *Chem Biol* 2015, *22*, 336–41.

[17] A. Awadasseid, W. Li, Z. Liu, C. Qiao, J. Pang, G. Zhang, Y. Luo, *Int J Biol Macromol* 2020, *162*, 1076–1085.

[18] K. Miettinen, L. Dong, N. Navrot, T. Schneider, V. Burlat, J. Pollier, L. Woittiez, S. V. D. Krol, R. Lugan, T. Ilc, R. Verpoorte, K. M. Oksman-Caldentey, E. Martinoia, H. Bouwmeester, A. Goossens, J. Memelink, D. Werck-Reichhart, *Nat Commun* 2014, *5*, 3606.

[19] S. C. Farrow, M. O. Kamileen, L. Caputi, K. Bussey, J. E. A. Mundy, R. C. McAtee, C. R. J. Stephenson, S. E. O'Connor, *J Am Chem Soc* 2019, *141*, 12979–12983.

[20] B. Hong, D. Grzech, L. Caputi, P. Sonawane, C. E. R. López, M. O. Kamileen, N. J. H. Lozada, V. Grabe, S. E. O'Connor, *Nature* 2022, 1–6.

[21] C. Langley, E. Tatsis, B. Hong, Y. Nakamura, C. Paetz, C. E. M. Stevenson, J. Basquin, D. M. Lawson, L. Caputi, S. E. O'Connor, *Angew. Chem. Int. Ed.* 2022, *61*, e202210934.

[22] L. Caputi, J. Franke, S. C. Farrow, K. Chung, R. M. E. Payne, T.-D. Nguyen, T.-T. T. Dang, I. S. T. Carqueijeiro, K. Koudounas, T. D. de Bernonville, B. Ameyaw, D. M. Jones, I. J. C. Vieira, V. Courdavault, S. E. O'Connor, *Science* 2018, *360*, 1235–1239.

[23] M. O. Kamileen, M. D. DeMars, B. Hong, Y. Nakamura, C. Paetz, B. R. Lichman, P. D. Sonawane, L. Caputi, S. E. O'Connor, *J Am Chem Soc* 2022, DOI 10.1021/jacs.2c08107.

[24] A. Edge, Y. Qu, M. L. A. E. Easson, A. M. K. Thamm, K. H. Kim, V. D. Luca, *Planta* 2018, 247, 155–169.

[25] Y. Qu, M. L. A. E. Easson, J. Froese, R. Simionescu, T. Hudlicky, V. DeLuca, *Proc National Acad Sci* 2015, *112*, 6224–6229.

[26] Y. Qu, M. E. A. M. Easson, R. Simionescu, J. Hajicek, A. M. K. Thamm, V. Salim, V. D. Luca, *Proc National Acad Sci* 2018, *115*, 3180–3185.

[27] M. Geissler, M. Burghard, J. Volk, A. Staniek, H. Warzecha, *Planta* 2016, 243, 813–824.

[28] C. Li, J. C. Wood, A. H. Vu, J. P. Hamilton, C. E. R. Lopez, R. M. E. Payne, D. A. S. Guerrero, K. Gase, K. Yamamoto, B. Vaillancourt, L. Caputi, S. E. O'Connor, C. R. Buell, *Nat Chem Biol* 2023, 1–11.

[29] F. Trenti, K. Yamamoto, B. Hong, C. Paetz, Y. Nakamura, S. E. O'Connor, Org Lett 2021, 23, 1793–1797.

[30] R. Krithika, P. L. Srivastava, B. Rani, S. P. Kolet, M. Chopade, M. Soniya, H. V. Thulasiram, *Sci Rep-uk* 2015, *5*, 1–6.

[31] A. S. Sandholu, S. P. Mujawar, R. Krithika, H. V. Thulasiram, K. Kulkarni, *Proteins Struct Funct Bioinform* 2020, *88*, prot.25891.

[32] L. Caputi, J. Franke, K. Bussey, S. C. Farrow, I. J. C. Vieira, C. E. M. Stevenson, D. M. Lawson, S. E. O'Connor, *Nat Chem Biol* 2020, *16*, 383–386.

[33] P. Yao, Z. Xu, S. Yu, Q. Wu, D. Zhu, Adv Synth Catal 2019, 361, 556–561.

[34] P. Stockinger, S. Roth, M. Müller, J. Pleiss, *Chembiochem* 2020, *21*, 2689–2695.

[35] S. L. Montgomery, A. Pushpanath, R. S. Heath, J. R. Marshall, U. Klemstein, J. L. Galman, D. Woodlock, S. Bisagni, C. J. Taylor, J. Mangas-Sanchez, J. I. Ramsden, B. Dominguez, N. J. Turner, *Sci. Adv.* 2020, *6*, eaay9320.

[36] K. T. D. D. Silva, G. N. Smith, K. E. H. Warren, J Chem Soc D Chem Commun 1971, 0, 905–907.

[37] M. F. Bartlett, D. F. Dickel, W. I. Taylor, J. Am. Chem. Soc. 1958, 80, 126–136.

[38] O. Trott, A. J. Olson, J Comput Chem 2010, 31, 455–461.

[39] A. Vitale, F. Rosso, A. Barbarisi, T. Labella, S. D'Auria, Gene 2010, 461, 26–31.

[40] A. Vitale, N. Thorne, S. Lovell, K. P. Battaile, X. Hu, M. Shen, S. D'Auria, D. S. Auld, *Plos One* 2013, *8*, e63828.

[41] T.-D. Nguyen, S. E. O'Connor, Acs Chem Biol 2020, 15, 1780–1787.

[42] H. Jörnvall, J. Hedlund, T. Bergman, Y. Kallberg, E. Cederlund, B. Persson, in *Chemico-Biological Interactions*, Elsevier, 2013, pp. 91–96.

[43] B. Persson, J. Hedlund, H. Jörnvall, Cell Mol Life Sci 2008, 65, 3879–3894.

[44] Y. Hu, W. Liu, S. R. Malwal, Y. Zheng, X. Feng, T.-P. Ko, C.-C. Chen, Z. Xu, M. Liu, X. Han, J. Gao, E. Oldfield, R.-T. Guo, *Angewandte Chemie Int Ed* 2015, *54*, 15478–15482.

[45] M. Jarret, V. Turpin, A. Tap, J. Gallard, C. Kouklovsky, E. Poupon, G. Vincent, L. Evanno, *Angewandte Chemie Int Ed* 2019, *58*, 9861–9865.

[46] N. S. Berrow, D. Alderton, S. Sainsbury, J. Nettleship, R. Assenberg, N. Rahman, D. I. Stuart, R. J. Owens, *Nucleic Acids Res* 2007, *35*, e45–e45.

[47] S. S. Jeong, J. E. Gready, Anal Biochem 1994, 221, 273–277.

[48] T. Bruhn, A. Schaumlöffel, Y. Hemberger, G. Bringmann, Chirality 2013, 25, 243–249.

[49] L. Slabinski, L. Jaroszewski, L. Rychlewski, I. A. Wilson, S. A. Lesley, A. Godzik, *Bioinformatics* 2007, *23*, 3403–3405.

[50] W. Kabsch, Acta Crystallogr Sect D Biological Crystallogr 2010, 66, 125–132.

[51] P. R. Evans, G. N. Murshudov, Acta Crystallogr Sect D Biological Crystallogr 2013, 69, 1204–1214.

[52] D. Liebschner, P. V. Afonine, M. L. Baker, G. Bunkóczi, V. B. Chen, T. I. Croll, B. Hintze, L.-W. Hung, S. Jain, A. J. McCoy, N. W. Moriarty, R. D. Oeffner, B. K. Poon, M. G. Prisant, R.

J. Read, J. S. Richardson, D. C. Richardson, M. D. Sammito, O. V. Sobolev, D. H. Stockwell, T. C. Terwilliger, A. G. Urzhumtsev, L. L. Videau, C. J. Williams, P. D. Adams, *Acta Crystallogr Sect D* 2019, *75*, 861–877.

[53] N. Stein, J Appl Crystallogr 2008, 41, 641–643.

[54] P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, *Acta Crystallogr Sect D Biological Crystallogr* 2010, *66*, 486–501.

[55] Y. Kochnev, E. Hellemann, K. C. Cassidy, J. D. Durrant, *Bioinformatics* 2020, *36*, btaa579.

[56] R. C. Edgar, *Biorxiv* 2021, 2021.06.20.449169.

[57] J. Trifinopoulos, L.-T. Nguyen, A. von Haeseler, B. Q. Minh, *Nucleic Acids Res* 2016, 44, W232–W235.

[58] I. Letunic, P. Bork, Nucleic Acids Res 2021, 49, gkab301-.

[59] I. W. Davis, A. Leaver-Fay, V. B. Chen, J. N. Block, G. J. Kapral, X. Wang, L. W. Murray, W. B. Arendall, J. Snoeyink, J. S. Richardson, D. C. Richardson, *Nucleic Acids Res* 2007, *35*, W375–W383.

[60] D. P. Lotun, C. Cochard, F. R. J. Vieira, J. S. Bernardes, *Biorxiv* 2019, 649426.

[61] S. Zhao, R. B. Andrade, J Org Chem 2017, 82, 521–531.

[62] M. E. Kuehne, U. K. Bandarage, A. Hammach, Y.-L. Li, T. Wang, *J Org Chem* 1998, *63*, 2172–2183.

Chapter 3. The Emergence of Atypical CADs as Drivers of MIA Chemical Diversity

3.1. Introduction

3.1.1. MIA Chemical Diversity in Gentianales

MIAs are a diverse class of compounds which derive from the central precursor molecule strictosidine ^[1]. These compounds are primarily found in the Gentianales order of plants including the Apocynaceae, Gelsemiaceae, Loganiaceae and Rubiaceae families, as well as the Nyssaceae family in the Cornales order ^[2]. Phylogenetic analysis has led to the emergence of STR, the enzyme that catalyses the condensation of tryptamine and secologanin, as being the evolutionary driver of MIA biosynthesis (Figure 48) ^[3]. In many

Figure 48. CAD-catalysed reductions of strictosidine aglycone in *C. roseus*. 1,4- or 1,2- reduction of an iminium moiety coloured in purple or blue, respectively.

MIA biosynthetic pathways, the resulting strictosidine is subsequently deglycosylated by the enzyme SGD to form strictosidine aglycone ^[4–6]. This compound has the propensity to crosslink with proteins, suggesting its defensive role in plants, acting as a protective mechanism against herbivore attack ^[7].

Beyond its defensive functions, strictosidine aglycone is a chemically versatile molecule that can reversibly rearrange to various structural isomers, each possessing a charged iminium moiety. However, to prevent excessive and detrimental protein crosslinking, a mechanism for neutralising the aglycone is imperative within the plant. This neutralisation is achieved through the reduction of the iminium moiety of strictosidine aglycone to form a less reactive compound - often catalysed by members of the CAD subfamily of enzymes (Figure 48) ^[4, 8–10]. This atypical reduction by various CADs with different structural isomers of strictosidine aglycone gives rise a diverse range of MIA scaffold-types. Therefore, understanding the evolution of the CADs that catalyse reductions within MIA biosynthesis can reveal greater insights into the chemical diversity of these specialised metabolites within Gentianales.

3.1.2. Gene Duplication and Neofunctionalisation in Plant-Specialised Metabolism

The advancement of sequencing technologies over the past 15 years has significantly expanded access to genomic and transcriptomic data to an ever-increasing number of plant species, accelerating the discovery of biosynthetic genes ^[11]. The extended read lengths facilitated by these technologies have resulted in the chromosome-length assembly of several plant genomes. This allows comparative genomic analyses and the identification of BGCs which in turn reveal insights into the evolution of biosynthetic genes involved in specialised metabolism.

A gene is understood to evolve by undergoing gradual mutagenesis. This can result in a change of expression, the partial or complete loss of function, or the gain of a new function in a process known as neofunctionalisation ^[12, 13]. Such changes influence the selection pressure exerted on a gene, thereby guiding whether it is maintained or lost from the genome through the process of natural selection ^[14]. Whilst most genes arise from whole genome or whole chromosome duplication events ^[15], those involved in PNP biosynthesis

were found to often emerge from the lineage-specific expansion of their respective gene families. These smaller-scale duplication events are often driven by mobile sequences of DNA, known as transposable elements (TEs). These are capable of duplicating and/or relocating genes to form tandem duplication clusters ^[16], and are thought to mediate the formation of BGCs ^[17–19].

The genomic analyses of species which produce MIAs has identified examples of both BGCs and tandem duplication clusters involved in this specialised metabolic pathway ^[3, 6, 20–22]. Notably, the genome of *C. roseus* was previously assembled, however, technical limitations such as the shorter read lengths and a lack of closely related genomic comparisons prevented a more comprehensive analysis of genes encoding MIA biosynthesis including the CAD subfamily ^[22]. The growing repository and quality of genomic information available in recent years, including the recent chromosome-length assembly of the *C. roseus* genome ^[6] therefore provide the basis for understanding of the expansion and neofunctionalisation of this gene family and its contribution to the chemical diversity of MIAs in Gentianales.

3.1.3. CADs in MIA Biosynthesis

Exploring the evolution of a gene family that acts within MIA biosynthesis can provide insights into the divergence of these specialised metabolites. Much of the chemical diversity within MIAs is generated by the reduction of the various structural isomers of strictosidine aglycone. This reaction has been reported to be catalysed by several CAD enzymes ^[4, 8, 9, 23] and an SDR ^[24]. Notably, the CADs that reduce strictosidine aglycone catalyse either a highly unusual 1,2-reduction of an iminium moiety or the 1,4-reduction of an α , β -unsaturated aldehyde (Figure 48).

CADs are a subfamily of ADH enzymes that are prevalent in plants due to their functional role of reversibly reducing the aldehyde group of aromatic substrates in monolignol biosynthesis ^[25, 26]. In MIA biosynthesis, some CADs have been found to catalyse the atypical 1,2-reduction of an iminium moiety or the 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehyde, the mechanistic basis of which is outlined in Chapter 2 of this thesis. These chemistries are attributed to specific alterations of critical residues within the catalytic pocket, enabling the sequence-based prediction of CADs likely to catalyse atypical

reductions. Consequently, an updated analysis of this enzyme family holds significant insights into the emergence of CADs that catalyse atypical reactions and whether this has contributed to the extensive chemical diversity of MIAs.

3.1.4. Chapter Overview

The CAD subfamily of genes encodes enzymes which catalyses atypical reduction reactions in MIA biosynthesis to generate much of the observed chemical diversity within this group of specialised metabolites. To understand the evolution of this gene family and its role in MIA biosynthesis, work in this chapter examines their genomic organisation, phylogenetic relationships, and expression patterns in *C. roseus*. Furthermore, we build on mechanistic findings detailed in Chapter 2 to explore the expansion and neofunctionalisation of CADs within Gentianales. We show that the presence of genes predicted to confer atypical reduction chemistries correlate with the species' production of MIAs. These findings highlight the neofunctionalisation of CADs as a crucial requisite for the diversification of MIAs in Gentianales and shed light on the evolution of these PNPs.

3.2. Results

3.2.1. Genomic organisation of CADs in C. roseus

The recent assembly of the chromosome-length *C. roseus* genome has opened up new avenues for investigating the genomic organisation of CADs within this species ^[6]. In this context, the CAD *Cr*DPAS was subjected to a BLAST search against the *C. roseus* genome and the high sequence identity coding DNA sequences were retrieved. These were validated based on the identification of highly conserved residues involved in coordinating the structural zinc, resulting in the identification of 47 CADs (Appendix VI Table 20). These sequences ranged from 900-1377 coding base pairs (BP), though their gene sizes ranged from 1627-7273 BP. CADs were dispersed across 6 out of the 8 chromosomes of the *C. roseus* genome, with only one sequence unable to be scaffolded (Figure 49).

The reduction chemistry of each CAD was predicted based on residues involved in the coordination of the catalytic zinc and the proton relay as outlined in Chapter 2 of this thesis.

Figure 49. Genomic organisation of CADs in *C. roseus*. Genes coloured by predicted reduction types as typical aldehyde-reducing (red), 1,2-iminium reducing (blue), 1,4-iminium/ α , β -unsaturated aldehyde reducing (purple) and Redox1-like 1,2-iminium reducing (orange). Figure made using MG2C ^[41].

aldehyde (e.g. *Cr*8HGO), the 1,2-reduction of an iminium moiety reductions (e.g. *Cr*GS), or the 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehyde (e.g. *Cr*DPAS). In addition, *Cr*RedOx1 is postulated to catalyse the 1,2-reduction of an iminium moiety ^[27], though unlike other CADs characterised to perform this chemistry, it was observed to have a Gly residue in the third position that typically coordinates the catalytic zinc ion instead of a Cys residue, so was classified as a distinct class. Remarkably, of the 47 CADs identified, 19 were predicted to catalyse typical reductions of an aldehyde, 19 to perform the 1,2reduction of an iminium moiety, and 9 to catalyse the 1,4-reduction of iminium moiety or an α , β -unsaturated aldehyde (Appendix VI Table 20). It was noted that despite the gene structure of typical CADs varying between 4-10 exons, all the predicted atypical CADs had between 4-6 exons (Appendix VI Figure 96).

Analysis of the genomic positioning of CAD genes in *C. roseus* revealed several physical clusters, particularly of those predicted to encode enzymes which catalyse atypical reduction reactions (Figure 49). Further analysis of the cluster on chromosome 1 containing *Cr*GS and *Cr*GS2 found that the exons of these genes shared a 50.7% nucleotide identity, suggesting their evolution by a recent tandem duplication event. However, the intron sequences of these genes were found to be similar to corresponding regions of *Cr*THAS4 homologues (30.2-39.9% nucleotide similarity to *Cr*01G032410, *Cr*01G032420, *Cr*01G032430 and *Cr*01G033080). Despite being located on chromosome 6 and 1, respectively, these genes encode CADs known to catalyse the reduction of different structural isomers of strictosidine aglycone (Figure 50). These observations therefore suggest that *Cr*GS and *Cr*THAS4 likely emerged by a TE-mediated chromosomal movement followed by subsequent neofunctionalisation to generate different MIA scaffolds.

In contrast, *Cr*DPAS and *Cr*ADH9 were found to differ in gene structure (Appendix VI Table 20) and chromosome location (Figure 49), despite their high exon nucleotide identity (82.5%). *Cr*DPAS catalyses the 1,4-reduction of the substrate precondylocarpine acetate *in vitro*, whilst no product was observed in comparable reactions containing *Cr*ADH9 (Appendix VI Figure 97). These results suggest that these genes may have emerged as dispersed duplicates and have since neofunctionalised to accept different substrates ^[15], further expanding the chemical diversity of MIAs through catalysing atypical reduction reactions.

88

Figure 50. 1,2-iminium reductions of strictosidine aglycone rearrangements catalysed by *Cr*GS, *Cr*GS2 and *Cr*THAS1-4.

3.2.2. Phylogeny of CADs in *C. roseus*

To further understand the expansion and the evolutionary relationships between members of the CAD gene family *C. roseus*, phylogenetic analysis was performed (Figure 51). Notably, each atypical class of CAD was found to have a monophyletic origin with a sister clade that contained typical CADs. This finding suggests that CADs underwent several divergence and subsequent neofunctionalisation events, each from an ancestral gene encoding an enzyme that catalysed the reduction of aldehyde. Some of these atypical classes of CADs were observed to have undergone further divergence to form distinct subclades.

The class of CADs identified or predicted to catalyse the 1,2-reduction of an iminium moiety could be further classified into three subclades (Figure 52). Subclade I and II contained genes known to encode CADs which reduce structural rearrangements of strictosidine aglycone. This included *Cr*GS and *Cr*GS2, both of which form geissoschizine in the first committed step of vinblastine biosynthesis ^[28], and *Cr*THAS2 and *Cr*THAS3 which form tetrahydroalstonine ^[4, 9]. The uncharacterised *Cr*01G033080 was also identified to belong

Figure 51. Maximum likelihood phylogenetic tree of CADs in *C. roseus*. Genes coloured by predicted reduction chemistries as either typical aldehyde (red), 1,2-iminium (blue), 1,4-iminium/ α , β -unsaturated aldehyde (purple), Redox1-like (orange) or unknown atypical (green) reductions based on residues involved in coordinating the catalytic zinc and the proton relay. Figure made using iTol ^[65].

to subclade II, suggesting it may also act on strictosidine aglycone. Subclade III contained genes which encode CADs that reduce strictosidine aglycone including *Cr*THAS orthologues and *Cr*HYS which form tetrahydroalstonine and heteroyohimbine, respectively ^[9], as well as *Cr*T3R which acts on aspidosperma-type MIAs in vindoline biosynthesis ^[28, 29]. The closely related uncharacterised *Cr*01G014020, *Cr*01G014040, *Cr*01G014080, and *Cr*01G014090 may therefore also act on aspidosperma-type substrates.

Figure 52. Maximum likelihood phylogenetic tree of 1,2-iminum reducing CADs in *C. roseus.* Characterised enzymes in bold with inset of catalysed reduction, tree visualised using iTol ^[65].

*Cr*Redox1 and *Cr*05G033170 were observed to have an atypical residue in the third position involved in coordinating the catalytic zinc - namely, a Gly residue instead of the typical Cys. This observation is reflected in their large branch lengths (Figure 51). *Cr*RedOx1 catalyses the 1,2-reduction of an iminium moiety, though is distinct from other CADs that perform this chemistry ^[27]. This finding suggests that this atypical chemistry has emerged through convergent evolution in *C. roseus*.

CADs with sequence patterns known to confer the 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehydes (as observed in *Cr*DPAS) formed a separate phylogenetic clade (Figure 51). Our analysis identified uncharacterised genes belonging to this clade such as *Cr*ADH104, *Cr*ADH39 and *Cr*ADH20. These findings suggests that these CADs may also encode enzymes capable of catalysing similar 1,4-reductions and are therefore interesting candidates for future gene discovery efforts.

3.2.3. Cell-Specific Expression Patterns of CADs in C. roseus

Recent advancements in single-cell transcriptomics have provided valuable insights into the cell-type-specific expression of genes within *C. roseus* leaf tissue ^[6]. Analysis of the genes

involved in MIA biosynthesis revealed they had enriched expression in 3 different cell types. Namely, genes encoding enzymes that act on iridoid and early secoiridoid biosynthesis were found to have enriched expressed in IPAP cells, those involved in early MIA biosynthesis were higher in epidermal cells, and late-stage MIA/bisindole biosynthesis genes were prominent in idioblast cells. This observation suggests that spatial localisation contributes to the generation of MIAs and may therefore facilitate the discovery of biosynthetic genes.

To understand the cell-specific expression pattern of CADs in *C. roseus,* we mapped the genes identified from the genome to the single-cell transcriptome, identifying 38 contigs (Appendix VI Table 21). In cases where several genome contigs mapped to the same single cell transcriptome contig, the highest identity hit was used. Among these sequences, 6 lacked expression data and were excluded from further analysis. The expression patterns of the remaining 32 CADs were analysed using hierarchical clustering (Figure 53).

Group VI of the hierarchical clustering contained genes enriched in epidermal cells based markers, including genes involved in MIA biosynthesis (Figure 53)^[6]. This included CADs

Figure 53. Hierarchical clustered heatmap of cell-type-specific expression patterns of CADs in *C. roseus* leaves. FPKM values normalised by z-score. Figure made using Clustergrammer ^[67].

that catalyse the 1,2-reduction of an iminium moiety such as *Cr*GS^[8] and *Cr*HYS^[9]. This group also contains genes known or predicted to encode enzymes which catalyse the 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehyde such as *Cr*DPAS^[23] and the uncharacterised *Cr*ADH9 and *Cr*ADH104. These findings suggest the potential role of these uncharacterised genes in late iridoid or early MIA biosynthesis.

Group IV of the hierarchical clustering comprised of genes with an enriched expression in a cell cluster determined by cell type markers to represent idioblast cells ^[6]. Idioblast cells were found to have enriched expression of genes involved in the final stages of MIA biosynthesis (Figure 53) ^[6, 30]. Namely, *Cr*THAS1 and *Cr*THAS2, which were initially characterised to reduce the substrate strictosidine aglycone ^[4], though have since been shown to catalyse the production of the bis-indole MIA α ,3'4'-anhydrovinblastine ^[6]. This observation highlights the role of cell-localised gene expression and substrate availability in metabolite production. Furthermore, our analysis identified 4 further CADs enriched in idioblast cells that have sequence motifs that confer the ability to catalyse a 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehyde (*Cr*ADH39, *Cr*ADH20 and *Cr*133495), or the uncharacterised atypical *Cr*123686. Notably, it is hypothesised that one of the remaining unknown steps of vinblastine biosynthesis occurs through the 1,4-reduction of the anhydrovinblastine iminium intermediate (Figure 8) ^[31]. These findings therefore suggest the potential role of these uncharacterised CADS in late-stage MIA biosynthesis.

3.2.4. Phylogenetic Evolution of CADs in Gentianales

CADs have been reported to catalyse a range of atypical reduction reactions to generate MIA chemical diversity in an array of species across the order of Gentianales, as detailed in section 2.1.3. To explore the divergence and expansion of this enzyme family we therefore retrieved the sequences of 555 CADs from publicly available and in-house generated transcriptomes of 12 MIA-producing and 12 non-producing species within the Gentianales order, the closely orders Solanales and Lamiales, and the more distant Brassicales order. These sequences were validated as CADs based on the identification of highly conserved residues responsible for coordinating the structural zinc ion, and the reduction chemistry was subsequently predicted based on sequence motifs outlined in Chapter 2 of this thesis. This categorised each CAD as performing a typical aldehyde reduction, a 1,2-iminium

Figure 54. Maximum likelihood phylogenetic tree of CADs in the order Gentianales. Branches coloured by predicted activity as typical (red), 1,2-iminium reducing (blue), *Cr*Redox1-like (orange) or 1,4-iminium or $-\alpha,\beta$ -unsaturated aldehyde reducing (purple). 1,2-iminium reducing clade not observed in *C. roseus* denoted with a star. Figure made using iTol ^[65].

reduction or a 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehyde. Sequences which had a Gly residue in instead of a Cys in the typical third position that is responsible for coordinating the catalytic zinc ion were termed *Cr*RedOx1-like.

Phylogenetic analysis of these sequences revealed that each atypical class of genes had a monophyletic origin within Gentianales with a sister clade containing typical CADs (Figure 54). This observation suggests that these classes of atypical CADs each emerged once in Gentianales from a typical ancestral CAD, as observed in *C. roseus* (section 3.2.2). Notably, the occurrence of CADs predicted to catalyse the 1,2-reduction of an iminium moiety within a given species correlated with its ability to produce MIAs (Figure 55). This suggests that the emergence of this atypical class occurred early in the divergence of Gentianales and is a necessary requisite for MIA biosynthesis. Examples of CADs predicted to catalyse *Cr*Redox1-like reductions or 1,4-reductions of an iminium moiety or an α , β -unsaturated aldehyde appear solely in species within Apocynaceae, suggesting these emerged much later.

Figure 55. Maximum likelihood phylogenetic tree of species in the order Gentianales. Filled boxes indicate MIA production and the presence of predicted atypical reduction chemistries of CADs such as 1,2-iminium reducing, RedOx1-like, and 1,4-iminium/ α , β -unsaturated aldehyde reducing. Circle size represents bootstrap value. Figure made using iTol ^[65].

Our cross-species phylogenetic analysis further revealed genes from *Rhazya stricta* and *Amsonia hubritchii* which shared a pattern of active site residues observed in CADs known to catalyse the 1,2-reduction of an iminium moiety such as *Cr*GS and detailed in section 2.2.13. However, these sequences were phylogenetically distinct and instead were more related to typical CADs (Figure 54). If upon further characterisation these sequences were found to catalyse a 1,2-iminium reduction, it would support that this atypical reduction has evolved multiple times in Apocynaceae through convergent evolution.

3.2.5. Genomic Synteny between C. roseus and O. pumila

Comparative genomics enables the identification of homologous regions of genomic organisation across species to facilitate an understanding of the evolutionary relationships of these genes, particularly in the context of biosynthetic pathways ^[3]. The genome

assemblies of *C. roseus* and *Ophiorrhiza pumila* have shed light on the evolution of MIA biosynthesis ^[3, 6]. These species both produce MIAs from the central precursor molecule strictosidine (Figure 56), though originate from the Apocynaceae and Rubiaceae families, respectively. Whilst MIA production in *C. roseus* goes through the deglycosylated strictosidine, *O. pumila* produces the MIA camptothecin through the hydrolysis and subsequent spontaneous coupling of the strictosidine methyl ester to form the proposed intermediate strictosamide. To understand the evolution of MIA biosynthetic pathways, we sought to compare the genomes of *C. roseus* and *O. pumila* genomes using syntenic analysis. As expected, we observed that genes involved in strictosidine biosynthesis shared genomic organisation between the species, though with the notable exceptions of the strictosidine and secologanin transporter proteins *Cr*NPF2.9 ^[5] and *Cr*SLTr ^[6] respectively (Appendix VII Table 22, Figure 57) ^[22]. However, we did not observed synteny for orthologues of *Cr*SGD, the first enzyme after the biosynthetic divergence between the species, or many genes that encode subsequent downstream enzymes (Appendix VII Table 22).

As the focus of our study pertains to the expansion and neofunctionalisation of the CAD subfamily of genes, we analysed these sequences (Appendix VII Table 22). We identified 6

Figure 56. Biosynthetic pathway of the MIAs camptothecin and geissoschizine in *O. pumila* and *C. roseus* respectively, utilising the shared precursor strictosidine.

genes (Cr04G004790, CrADH24, CrADH33, Cr08G004630 and CrADH21) which displayed synteny between the genomes and that were all predicted to catalyse the typical reduction of an aldehyde. This suggests their likely role in a conserved pathway such as lignin biosynthesis ^[26]. However, CrGS and CrGS2 were observed to share genomic organisation with Op0012230 and Op0012250, hereafter referred to as OpADH1 and OpADH2, respectively. Sequence comparison found that OpADH1 and OpADH2 shared sequence motifs known to be crucial in catalysing the 1,2-reduction of an iminium moiety including atypical residues in positions important for cofactor binding as detailed in Chapter 2 of this thesis (Appendix VII Figure 98). The genomic synteny of CADs that likely catalyse the 1,2reduction of an iminium moiety between C. roseus and O. pumila supports their monophyletic emergence and their subsequent conservation across plant families within Gentianales. Furthermore, OpADH2 was found to co-express with other MIA biosynthetic genes in *O. pumila* (Appendix VII Figure 99) and was enriched in MIA-accumulating tissues (Appendix VII Figure 100). These findings suggest that OpADH2 may function in MIA biosynthesis in O. pumila by likely catalysing the 1,2-reduction of an iminium moiety, and further highlights the emergence of CADs which catalyse atypical reductions as key drivers of the diversification of these PNPs.

Figure 57. Syntenic analysis of *C. roseus* and *O. pumila* genomes. Genes involved in MIA biosynthesis (green) and CADs (red) are highlighted and mapped on to the corresponding chromosome of each species. Figure made using Circos ^[70].

3.3. Discussion

3.3.1. Emergence of CADs that Catalyse Atypical Reductions in *C. roseus*

The CAD lineage of genes has significantly expanded to 47 sequences *C*. roseus (Appendix VI Table 20) compared to the 9 observed in the model species *Arabidopsis thaliana* ^[32]. Using the mechanistic insights detailed in Chapter 2, we predicted that 19 of these genes encoded CADs that likely catalyse the 1,2-reduction of an iminium moiety, and 8 likely perform the 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehyde. Notably, 1 CAD sequence was observed to have a novel pattern of catalytic residues, preventing the prediction of its catalytic activity, suggesting a potential further expansion of the catalytic repertoire of this enzyme family. The chromosome-length genome assembly of *C. roseus* enabled the identification of several physical clusters of CAD genes (Figure 49). Many of these clusters contained both CADs predicted to perform typical reduction, and those predicted to perform atypical reductions. These findings suggest that some of these atypical CADs in *C. roseus* emerged by tandem duplication from an ancestral aldehyde-reducing CAD, before being subsequently neofunctionalised to catalyse atypical reductions, resulting in the diversification of MIAs (Figure 52).

To further elucidate the potential biosynthetic roles of these uncharacterised CADs in *C. roseus*, we analysed their cell type specific expression patterns. Many characterised CADs such as *Cr*GS, *Cr*RedOx1, *Cr*DPAS and *Cr*T3R were found to be enriched in epidermal cells, alongside the uncharacterised *Cr*ADH9 and *Cr*ADH104 suggesting their potential role in MIA biosynthesis (Figure 53) ^[6, 30]. Genes encoding enzymes known to catalyse the late stages of MIA biosynthesis including *Cr*THAS1 and *Cr*THAS2 had enriched expression in idioblast cells in *C. roseus* leaves (Figure 53) ^[6, 30]. The uncharacterised *Cr*ADH39 and *Cr*ADH20 - both predicted to catalyse the 1,4-reduction of an iminium moiety – were also observed to have enriched expression in this cell type. Notably, vinblastine is suggested to form through the 1,4-reduction of the bisindole coupling iminium ^[31], suggesting the potential role of these CADs in the currently unknown steps of MIA biosynthesis.

3.3.2. Emergence of Atypical CADs in Gentianales Correlates with MIA Chemical Diversity

MIA biosynthesis is mostly limited to species within the Gentianales order of plants (Figure 55), with many of these pathways including steps catalysed by CADs performing atypical reduction reactions such as the 1,2- or 1,4-reduction of an iminium moiety ^[10, 33, 34]. Yet, the expansion and neofunctionalisation of this gene family remained poorly understood. Therefore we performed a cross-species phylogenetic analysis and observed a monophyletic emergence of each atypical class of CAD, each likely diverging from a typical aldehyde-reducing ancestral enzyme (Figure 54). Furthermore, our findings reveal that CAD sequences predicted to encode enzymes which catalyse either *Cr*RedOx1-like 1,2-iminium reduction or a 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehyde were only observed in MIA-producing species within the Apocynaceae family (Figure 54). This suggests that these classes of CADs that catalyse atypical reduction chemistries likely emerged after the family's divergence from Rubiaceae. Meanwhile CADs which were predicted to catalyse the 1,2-reduction activity of an iminium moiety were present in species across Gentianales (Figure 55).

To further explore the emergence CADs which perform atypical chemistries, we identified syntenic regions encoding CADs predicted to catalyse the 1,2-reduction of an iminium moiety between the genomes of *C. roseus* and *O. pumila* (Figure 98). These findings suggest that these genes emerged before the divergence of the divergence of the Apocynaceae and Rubiaceae families approximately 96 million years ago ^[35] and were subsequently conserved in these species. Furthermore, we identified the syntenic *Op*ADH2 was co-expressed with other MIA biosynthetic genes (Appendix VII Figure 99), suggesting its likely role in MIA biosynthesis. Remarkably, our phylogenetic analysis identified that the occurrence of CADs predicted encode enzymes which catalyse the 1,2-reduction of an iminium moiety to correlate with a species' ability to produce MIAs (Figure 55). Examples of enzymes from this class of CADs are known to act on early MIA biosynthetic intermediates such as strictosidine aglycone, thereby generating chemical diversity (Figure 48) ^[4, 8, 9, 36]. These findings therefore suggest that the emergence and maintenance of these atypical CADs is a crucial requisite for MIA biosynthesis, driving the chemical diversity of these PNPs.

3.4. Conclusions

This chapter investigates the diversification of the catalytic repertoire of the CAD family of enzymes from performing the reduction of an aldehyde, to the 1,2-reduction of an iminium moiety or the 1,4-reduction of an iminium moiety or an α , β -unsaturated aldehyde in MIA biosynthesis. Building on the results of mechanistic investigations detailed in Chapter 2, we use phylogenetic and genomic analyses of this gene family in *C. roseus* to show that each class of atypical CAD likely independently evolved from an ancestral sequence encoding a typical aldehyde-reducing enzyme. The subsequent expansion of this gene lineage through tandem duplication and neofunctionalisation enabled the diversification of the reduction chemistries catalysed by CADs in MIA biosynthesis.

The findings described in *C. roseus* were mirrored in a cross-species phylogenetic analysis surveying the order of Gentianales. Furthermore, the identification of syntenic regions between the *C. roseus* and *O. pumila* genomes encoding CADs which catalyse atypical reductions further supports there monophyletic emergence. Additionally, we show that the presence of CADs that are predicted to catalyse the 1,2-reduction of an iminium moiety correlates to a species' ability to produce MIAs. These results therefore highlight the emergence and retention of CADs which catalyse atypical reduction chemistries as necessary evolutionary drivers of the chemical diversity of MIAs in Gentianales.

3.5. Methods and Materials

3.5.1. CAD Sequence Collection and Analysis

The sequences of CADs were retrieved from transcriptomes and genomes using a BLAST search of the full-length coding sequence of *Cr*DPAS. Information about transcriptomes and genomes accessed is detailed in Table 5. Sequences were analysed using Geneious Prime and aligned using MUSCLE ^[37] using a maximum of 40 cycles. Putative CADs were verified by the presence of the four Cys residues involved in coordinating the structural zinc as detailed in Chapter 2 of this thesis. Their predicted reduction chemistry was determined by the analysis of residues in positions known to be important for the coordination of the catalytic zinc and the proton relay (see Chapter 2 for more details). Splign ^[38] was used to detect intron and exon regions of CADs in *C. roseus*. Intron and exon sequence similarity was determined by aligning sequences using MUSCLE ^[37]. The sequence alignment figure was made using ESpript 3.0 ^[39].

The full-length sequence of each CAD in the *C. roseus* genome was blasted against the *C. roseus* leaf single-cell transcriptome (both reported in ^[6]) to find the corresponding contig. Contigs with a <90% sequence identity to their corresponding genome contig were used for further analysis. For single-cell transcriptome contigs matching more than one genome contig, the highest identity match was taken for further analysis. The genomic positioning of genes in *C. roseus* and *O pumila* was manually collected using the software JBrowse2 ^[40] and visualised using MG2C V2.1 ^[41].

Order	Family	Species	Transcriptome	MIA-
				producer
Brassicales	Brassicaceae	Arabidopsis thaliana	TAIR BLAST 2.9.0 [42]	×
Lamales	Lamiaceae	Lamium album	In house	×
Solanales	Solanaceae	Nicotiana benthamiana	NbenBase V1.0 ^[43]	×
		Solanum lycopersicum	SolGenomics Tomato genome ITAG Release 2.4 ^[44]	×

Gentianales	Loganiaceae	Strychnos nux-	In house	√ ^[10]
		vomica		
	Gentianaceae	Exacum affine	1000 Plants (KPUM) ^[45]	×
		Gentiana acaulis	1000 Plants (ECTD) ^[45]	×
	Gelsemiaceae	Gelsemium	Published ^[21]	✓ ^[21]
		sempervirens		
	Rubiaceae	Cinchona pubescens	Published ^[46]	√ ^[47]
		Coffea canephora	Coffee Genome Hub ^{[48,} ^{49]}	×
		Galium boreale	1000 Plants (WQRD) [45]	×
		Mitragyna speciosa	In house	√ ^[50]
		Ophiorhizza pumila	Published ^[3]	✓ ^[51]
		Uncaria guianensis	In house	✓ [52]
	Apocynaceae	Allamanda	1000 Plants (MGVU) ^[45]	×
		cathartica		
		Amsonia hubritchii	PhytoMetaSyn ^[53]	✓ [54]
		Apocynum	1000 Plants (JCLQ,	×
		androsaemifolium	UFQC) ^[45]	
		Ascelpia curassavica	1000 Plants (DSUV) ^[45]	×
		Catharanthus ovalis	PhytoMetaSyn [53]	✓ [55]
		Catharanthus roseus	Published ^[6]	✔ [28,56]
		Rhazya stricta	In house	✓ ^[57]
		Rauwolfia serpentina	PhytoMetaSyn [53]	✔ [58,59]
		Tabernaemontana	In house	√ ^[60]
		elegans		
		Tabernanthe iboga	In house	√ [61, 62]
		Vinca minor	In house	√ ^[63]
		Wrightia natalensis	1000 Plants (EDEQ) ^[44]	×

3.5.2. CAD Phylogenetic Analysis

The nucleotide sequences for CADs extracted from *C. roseus* genome (Table 20), as well as transcriptomes and genomes of other plant species (Table 5) were aligned using MUSCLE v5^[37] using a maximum 40 cycle iterations. Maximum-likelihood phylogenetic trees of the resulting alignments were generated using the iQ-TREE web server ^[64] using a best-fit substitution model. Bootstrap analysis was performed with 1000 iterations and a 0.99 minimum correlation coefficient. SH-aLRT was used to test for single branches (1000 replicates). Trees were searched using 0.5 perturbation strength and 100 tree stopping rule. All phylogenetic trees were visualised using iTol ^[65].

3.5.3. Chemicals and molecular biology reagents

All solvents used for extractions, chemical synthesis and preparative HPLC were HPLC grade, and solvents used for UPLC/MS were MS grade. All solvents were purchased from Sigma Aldrich. Carbenicillin and isopropyl β-D-thiogalactoside (IPTG) salts were purchased from Sigma. All gene amplifications were performed using Platinum II Superfi DNA Polymerase (Thermo Fisher). Constructs were transformed into vectors using In-Fusion kit (ClonTech Takara) and colony PCR was performed using Phire II mastermix (Thermo Fisher) according to manufacturer's instructions. PCR product purification was performed using the Wizard Miniprep kit (Promega). Precondylocarpine acetate and angryline were enzymatically prepared and purified as previously described ^[56].

3.5.4. CrDPAS and CrADH9 Cloning and Protein Expression in E. coli

Cloning of *Cr*DPAS has been previously reported ^[57] and *Cr*ADH9 sequence was identified from the *C. roseus* transcriptome. Both sequences were codon optimised for expression in *E. coli* (Table 6) and amplified using corresponding primers listed in Table 7. PCR products were purified from 1% agarose gel and cloned into pOPINF vector (Addgene plasmid #26042 ^[66]) using the In-Fusion kit (Clontech Takara). Constructs were transformed into chemically-competent *E. coli* Stellar cells (Clontech Takara) by heat shock at 42°C for 30 seconds and selected on LB agar containing 50µg/mL carbenicillin. Positive colonies were screened by colony PCR using primers listed in Table 7 and grown overnight at 37°C shaking at 200 r.p.m. Plasmids were then isolated and constructs were sequence verified. Plasmids were transformed into chemically competent *E. coli* SoluBL21 cells by heat shock for 30 seconds at 42°C and selected on LB agar containing 50 μ g/mL carbenicillin. 10 mL starter cultures of LB with 50 μ g/mL of the respective antibiotic and a colony of transformed construct in SoluBL21 cells were grown at 37°C 200 r.p.m. overnight. Media (100 mL 2xYT media) containing 50 μ g/mL antibiotic was inoculated with 1 mL of the starter culture and grown until OD₆₀₀ of 0.6 was reached. Once cultures had reached the desired OD₆₀₀, cultures were transferred to 18°C 200 r.p.m shaking incubator for 30 minutes before protein expression was induced by addition of 300 μ M IPTG, after which cultures were grown for an additional 16 hours.

Codon optimised <i>Cr</i> DPAS	ATGGCAGGTAAAAGCGCAGAAGAAGAAGAACATCCGATTAAAGCATATGGTTGGGC AGTTAAAGATCGTACCACCGGTATTCTGAGCCCGTTTAAATTCAGCCGTCGTGCA ACCGGTGATGATGATGTTCGTATCAAAATTCTGTATTGCGGCATTTGTCATACCG ATCTGGCAAGCATTAAAAACGAATATGAGTTTCTGAGCTATCCGCTGGTTCCTGG TATGGAAATTGTTGGTATTGCAACCGAAGTTGGTAAAGATGTGACCAAAGTTAA AGTGGGTGAAAAAGTTGCACTGAGCGCATATCTGGGTTGTTGTGGTAAATGTTA TAGCTGCGTGAATGAGCTGGAAAACTATTGTCCGGAAGTGATTATTGGTTATGG CACCCCGTATCATGATGGCACCATTTGTTATGGTGGTCTGAGCAATGAAACCGTT GCAAATCAGAGCTTTGTTCTGCGTTTTCCGGAACGTCTGAGCAATGAAACCGTT GCCGCTGCTGAGCGCAGGTATTACCAGCTTTAGCGCAATGCGAAAGCGGT ATTGATAAACCGGGTCTGCATGTTGGTGTTGTTGGTTTAGGTGGTCTGGGTCAGCGCAGG ACCCGGTGAAAAAGATGATGCAATTGATGGCCTGGAGCCGTTATAGCGGT TGGCCGTTAAATTTGCAAAAGCATTTGGTCTGAAAGTGACCGTTATTAGCACCAC ACCGAGCAAAAAAGATGATGCAATTGAAAGCAGCAATTGGCACCGTGGATGCCATGT GAGCCGTGATGACGAGCAGATGAAAGCAGCAATTGGCACCCTGGATCGCGTAGC CAGGGTAAAATTTCTGCTGCTGGAGCGAAGCAGCAATTGGCACCCTGGATGCCATTAT TGATACCCTGGCAGTTGTTCATCCGATTGCACCGAGCCAGAGCCTGGATGCCATTAT TGATACCCTGGCAGTTGTTCATCCGATTGCACCGCAGAGCCTGGAACTGCCTCCG ATTCCTCTGCTGGAGTGGTAAAAGCATTATTGGTAGCGCAGAGGTAATGTTA AACAGACCCAAGAAATGCTGGATTTTGCACCGCAACATGAACTGCCTCCG ATTCCTCTGCTGAGTGGTGAAAAGCATTATTGGTAGCGCAGCAGGAAATGTTA AACAGACCCAAGAAATGCTGGATTTTACCACCGCAACATGATATTACCGCCAACGT TGAAATTATCCCGATCGAATACATTAACACCGCAAATGGAACGCCTGGAATGTTA AACAGACCCCAAGAAATGCTGGATTTAACACCGCAAATGACACCGCAACGCCTGGATAAAGGT GATGTGCGTTATCGTTTTGTGGTGGGATATTGAAAATACCCTGACACCGCCTAGCG
	AACTGTAA
Codon optimised <i>Cr</i> ADH9	ATGGCTCGTAAATCTCCGGAAGACGAACACCCGGTTAAAGCTTACGGTTGGGCT GTTAAAGACGGTACCACCGGTATCCTGTCTCCGTTCAAATTCTCTATCCGTGCTAC CGGTGACAACGACGTTCGTATCAAAATCCTGTACTGCGGTGTTTGCCGTACCGAC CTGGCTGCTACCAAAAACGCTTTCGGTTTCCTGTCTTACCCGCTGGTTCCGGGTTC TCGTGAAATCGTTGGTATCGTTTCTGAAATCGGTAAAAACGTTAAAAAAGTTAAA

Table 6. Full length nucleotide sequences of CrDPAS and CrADH9 genes.

CTTGCGTTAACGAAGTTGAAAACTTCTGCCCGAAACTGATCATCCCGTACGGTAC
CCCGTACCACGACGGTACCATCTGCTACGGTGGTTTCTCTAACGAAACCGTTCGT
GACGAACGTTTCGTTTTCCGTTTCCCGGAAAACCTGTCTCTGCCGGGTGGTGCTC
CGCTGGTTTCTGCTGGTGTTACCACCTACGGTGCTCTGCGTAACAACGGTCTGGA
CAAACCGGGTCTGCACGTTGGTGTTGTTGGTCTGGGTGGTCTGGGTCACCTGGC
TGTTAAATTCGCTAAAGCTCTGGGTGTTAAAGTTACCGTTATCTCTACCAACCCGT
CTAAAGAACACGACGCTATCAACGGTTTCGGTGCTGACGCTTTCATCCTGACCCA
CCACGAAGAACAGATGAAAGCTGCTATGGGTACCCTGGACGGTATCCTGTACAC
CGTTCCGGTTGTTCACGCTATCGCTCCGCTGCTGTCTCTGCTGGGTTCTCAGGGTA
AATTCGTTCTGATCGGTGCTCCGTCTCAGCTGCTGGAAGTTCCGCCGATCCAGCT
GCTGTTCGGTGGTAAATCTATCATCGGTTCTGCTGCTGGTAACGTTAAACAGATC
CAGGAAATGCTGGAATTCGCTGCTAAACACGACATCATCGCTAACGTTGAAATCA
TCCAGATGGACTACATCAACACCGCTATGGAACGTCTGGACAAAGGTGACGTTC
GTTACCGTTTCGTTATCGACATCGAAAACTCTCTGACCCTGCCGTCTGAAGTTTAA

Table 7. Primer sequences used in for gene amplification. Cloning overhangs are underlined.

CrDPAS_Fwd	AAGTTCTGTTTCAGGGCCCGATGGCAGGTAAAAGCGCAGAAGAAG
CrDPAS_Rev	ATGGTCTAGAAAGCTTTACAGTTCGCTAGGCGGTGTCAG
CrADH9_Fwd	AAGTTCTGTTTCAGGGCCCGGCTCGTAAATCTCCGGAAG
CrADH9_Rev	ATGGTCTAGAAAGCTTTAAACTTCAGACGGCAGGGTCAG

3.5.5. Protein Purification

Cells were harvested by centrifugation at 4000 x *g* for 15 minutes and re-suspended in 10 mL buffer A1 (50 mM Tris-HCl pH 8, 50 mM glycine, 500 mM NaCl, 5% glycerol, 20 mM imidazole) with addition of EDTA-free protease inhibitor cocktail (Roche Diagnostics Ltd.) and 10 mg lysozyme (Sigma). Cells were lysed at 4 °C using a sonicator (40% amplitude, 2 seconds on, 3 seconds off cycles for 2 minutes) and centrifuged at 35000 x *g* to remove insoluble cell debris. The supernatant was collected and filtered with 0.2 um PES syringe filter (Sartorious) and purified by addition of 150 μ L washed Ni-NTA agarose beads (QIAGEN). Samples were incubated on a rocking incubator at 4 °C for 1 hour. Beads were washed by centrifuging at 1000 x *g* for 1 minute to remove the supernatant, and then the beads were resuspended in 10 mL of A1 Buffer. This step was performed a total of three times. Protein was eluted by resuspending the beads in 600 μ L of buffer B1 (50 mM Tris-HCl pH 8.0, 50 mM glycine, 500 mM NaCl, 5% glycerol, 500 mM imidazole) before centrifuging for 1000 x *g* for 1 minute and then collecting the supernatant. This elution step

was repeated to remove all Ni-NTA bound protein. Proteins were buffer exchanged into buffer A4 (20 mM HEPES pH 7.5, 150 mM NaCl) and concentrated using 10K Da molecular weight cut off centrifugal filter (Merck) and stored at –80 °C.

3.5.6. In vitro Enzyme Assays

Enzymatic assays with precondylocarpine acetate were performed in 50 mM HEPES buffer (pH 7.5) with 50 μ M precondylocarpine acetate in MeOH (not exceeding 5% of the reaction volume), 250 μ M NADPH cofactor (Sigma) and 150 nM enzyme to a final reaction volume of 100 μ L. Reactions were incubated for 30 minutes at 30 °C and shaking at 60 r.p.m. before being quenched with 1 volume of 70% MeOH with 0.1% HCO₂H. All enzymatic assays were centrifuged at 14000 x *g* for 15 minutes and the supernatant analysed by UPLC-MS.

3.5.7. UPLC-MS Analysis

All assays were analysed using a Thermo Scientific Vanquish UPLC coupled to a Thermo Q Exactive Plus orbitrap MS. Chromatographic separation was performed using a Phenomenex Kinetex C18 2.6 μ m (2.1 x 100 mm) column using water with 1% HCO₂H as mobile phase A and acetonitrile with 1% HCO₂H as mobile phase B. Compounds were separated using a linear gradient of 10-30% B in 5 minutes followed by 1.5 minutes isocratic at 100% B. The column was then re-equilibrated at 10% B for 1.5 minutes. The column was heated to 40 °C and flow rate was set to 0.6 mL/min. MS detection was performed in positive ESI under the following conditions: spray voltage was set to 3.5 kV ~ 67.4 μ A, capillary temperature set to 275 °C, vaporizer temperature 475 °C, sheath gas flow rate 65, sweep gas flow rate 3, aux gas flow rate 15, S-lens RF level to 55 V. Scan range was set to 200 - 1000 *m/z* and resolution at 17500.

3.5.8. Gene Expression and Metabolite Level Analysis

FPKMs from *C. roseus* ^[6] and *O. pumila* transcriptomes, as well as the O. *pumila* metabolite accumulation levels ^[3] were previously reported. Each dataset was normalised by z-score and clustered into a hierarchical heat map using Clustergrammer ^[67] using correlation distances and average linkage types.

3.5.9. Synteny Analysis between C. roseus and O. pumila Genomes

Synteny analysis between the genomes of *C. roseus* and *O. pumila* was performed using TBTOOLS software and MCScanX^[68, 69]. The peptide sequences of the coding regions from each genome were extracted and blast searched against one another using BlastXML. The number of hits and the number of alignments for the blast search was set to 5 and using an E-value cut-off of 1e-5. Text Merger for MCScanX was used to correctly format the genome .GFF file for MCScanX using GftGff2SmiGxt mode. MCScanX Wrapper was then run using the blast search result and the formatted .GFF file to identify collinearity between the genomes. The resulting collinearity files was used to identify gene pairs using Merger for MCScanX and the resulted plotted using Circos^[70].

3.6. References

[1] A. E. Mohammed, Z. H. Abdul-Hameed, M. O. Alotaibi, N. O. Bawakid, T. R. Sobahi, A. Abdel-Lateff, W. M. Alarif, *Molecules* 2021, *26*, 488.

[2] S. E. O'Connor, J. J. Maresh, Nat Prod Rep 2006, 23, 532.

[3] A. Rai, H. Hirakawa, R. Nakabayashi, S. Kikuchi, K. Hayashi, M. Rai, H. Tsugawa, T. Nakaya, T. Mori, H. Nagasaki, R. Fukushi, Y. Kusuya, H. Takahashi, H. Uchiyama, A. Toyoda, S. Hikosaka, E. Goto, K. Saito, M. Yamazaki, *Nat Commun* 2021, *12*, 405.

[4] A. Stavrinides, E. C. Tatsis, E. Foureau, L. Caputi, F. Kellner, V. Courdavault, S. E. O'Connor, *Chem Biol* 2015, *22*, 336–41.

[5] R. M. E. Payne, D. Xu, E. Foureau, M. I. S. T. Carqueijeiro, A. Oudin, T. D. de Bernonville, V. Novak, M. Burow, C.-E. Olsen, D. M. Jones, E. C. Tatsis, A. Pendle, B. A. Halkier, F. Geu-Flores, V. Courdavault, H. H. Nour-Eldin, S. E. O'Connor, *Nat Plants* 2017, *3*, 16208.

[6] C. Li, J. C. Wood, A. H. Vu, J. P. Hamilton, C. E. R. Lopez, R. M. E. Payne, D. A. S. Guerrero, K. Gase, K. Yamamoto, B. Vaillancourt, L. Caputi, S. E. O'Connor, C. R. Buell, *Nat Chem Biol* 2023, 1–11.

[7] G. Guirimand, V. Courdavault, A. Lanoue, S. Mahroug, A. Guihur, N. Blanc, N. Giglioli-Guivarc'h, B. St-Pierre, V. Burlat, *Bmc Plant Biol* 2010, *10*, 182.

[8] E. C. Tatsis, I. Carqueijeiro, T. D. D. Bernonville, J. Franke, T.-T. T. Dang, A. Oudin, A. Lanoue, F. Lafontaine, A. K. Stavrinides, M. Clastre, V. Courdavault, S. E. O'connor, *Nat Commun* 2017, *8*, 316.

[9] A. Stavrinides, E. C. Tatsis, L. Caputi, E. Foureau, C. E. M. Stevenson, D. M. Lawson, V. Courdavault, S. E. O'Connor, *Nat Commun* 2016, *7*, 12116.

[10] B. Hong, D. Grzech, L. Caputi, P. Sonawane, C. E. R. López, M. O. Kamileen, N. J. H. Lozada, V. Grabe, S. E. O'Connor, *Nature* 2022, 1–6.

[11] J. Kim, C. R. Buell, *Plant Physiol* 2015, *169*, 1532–1539.

[12] B. R. Lichman, G. T. Godden, C. R. Buell, Curr Opin Plant Biol 2020, 55, 74–83.

[13] Z. Xu, X. Pu, R. Gao, O. C. Demurtas, S. J. Fleck, M. Richter, C. He, A. Ji, W. Sun, J. Kong, K. Hu, F. Ren, J. Song, Z. Wang, T. Gao, C. Xiong, H. Yu, T. Xin, V. A. Albert, G. Giuliano, S. Chen, J. Song, *Bmc Biol* 2020, *18*, 63.

[14] J. A. Birchler, H. Yang, *Plant Cell* 2022, 34, 2466–2474.

[15] N. Panchy, M. Lehti-Shiu, S.-H. Shiu, *Plant Physiol* 2016, 171, 2294–2316.

[16] K. V. Krasileva, Curr Opin Plant Biol 2019, 48, 18–25.

[17] S. J. Smit, B. R. Lichman, Nat Prod Rep 2022, 39, 1465–1482.

[18] G. Polturak, Z. Liu, A. Osbourn, Curr Opin Green Sustain Chem 2021, 33, 100568.

[19] P. Fan, P. Wang, Y.-R. Lou, B. J. Leong, B. M. Moore, C. A. Schenck, R. Combs, P. Cao, F. Brandizzi, S.-H. Shiu, R. L. Last, *Elife* 2020, *9*, e56717.

[20] D. Zhao, J. P. Hamilton, G. M. Pham, E. Crisovan, K. Wiegert-Rininger, B. Vaillancourt, D. DellaPenna, C. R. Buell, *Gigascience* 2017, *6*, 1–7.

[21] J. Franke, J. Kim, J. P. Hamilton, D. Zhao, G. M. Pham, K. Wiegert-Rininger, E. Crisovan, L. Newton, B. Vaillancourt, E. Tatsis, C. R. Buell, S. E. O'Connor, *Chembiochem* 2019, *20*, 83–87.

[22] F. Kellner, J. Kim, B. J. Clavijo, J. P. Hamilton, K. L. Childs, B. Vaillancourt, J. Cepela, M. Habermann, B. Steuernagel, L. Clissold, K. Mclay, C. R. Buell, S. E. O'Connor, *Plant J* 2015, *82*, 680–692.

[23] C. Langley, E. Tatsis, B. Hong, Y. Nakamura, C. Paetz, C. E. M. Stevenson, J. Basquin, D. M. Lawson, L. Caputi, S. E. O'Connor, *Angew. Chem. Int. Ed.* 2022, *61*, e202210934.

[24] A. K. Stavrinides, E. C. Tatsis, T.-T. Dang, L. Caputi, C. E. M. Stevenson, D. M. Lawson, B. Schneider, S. E. O'Connor, *Chembiochem* 2018, *19*, 940–948.

[25] S. de Vries, J. M. R. Fürst-Jansen, I. Irisarri, A. D. Ashok, T. Ischebeck, K. Feussner, I. N. Abreu, M. Petersen, I. Feussner, J. de Vries, *The Plant Journal* 2021, DOI 10.1111/tpj.15387.

[26] D.-M. Guo, J.-H. Ran, X.-Q. Wang, J Mol Evol 2010, 71, 202–218.

[27] Y. Qu, M. E. A. M. Easson, R. Simionescu, J. Hajicek, A. M. K. Thamm, V. Salim, V. D. Luca, *Proc National Acad Sci* 2018, *115*, 3180–3185.

[28] Y. Qu, M. L. A. E. Easson, J. Froese, R. Simionescu, T. Hudlicky, V. DeLuca, *Proc National Acad Sci* 2015, *112*, 6224–6229.

[29] A. Edge, Y. Qu, M. L. A. E. Easson, A. M. K. Thamm, K. H. Kim, V. D. Luca, *Planta* 2018, 247, 155–169.

[30] K. Yamamoto, K. Takahashi, L. Caputi, H. Mizuno, C. E. Rodriguez-Lopez, T. Iwasaki, K. Ishizaki, H. Fukaki, M. Ohnishi, M. Yamazaki, T. Masujima, S. E. O'Connor, T. Mimura, *New Phytol* 2019, *224*, nph.16138.

[31] N. Langlois, P. Potier, J. Chem. Soc., Chem. Commun. 1979, 0, 582–584.

[32] S.-J. Kim, M.-R. Kim, D. L. Bedgar, S. G. A. Moinuddin, C. L. Cardenas, L. B. Davin, C. Kang, N. G. Lewis, *Proc National Acad Sci* 2004, *101*, 1455–1460.

[33] F. Trenti, K. Yamamoto, B. Hong, C. Paetz, Y. Nakamura, S. E. O'Connor, *Org Lett* 2021, *23*, 1793–1797.

[34] M. Geissler, M. Burghard, J. Volk, A. Staniek, H. Warzecha, *Planta* 2016, 243, 813–824.

[35] N. Wikström, K. Kainulainen, S. G. Razafimandimbison, J. E. E. Smedmark, B. Bremer, *PLoS ONE* 2015, *10*, e0126690.

[36] Y. Qu, A. M. K. Thamm, M. Czerwinski, S. Masada, K. H. Kim, G. Jones, P. Liang, V. D. Luca, *Planta* 2018, *247*, 625–634.

[37] R. C. Edgar, *Biorxiv* 2021, 2021.06.20.449169.

[38] Y. Kapustin, A. Souvorov, T. Tatusova, D. Lipman, *Biol Direct* 2008, *3*, 20.

[39] X. Robert, P. Gouet, Nucleic Acids Res 2014, 42, W320–W324.

[40] C. Diesh, G. J. Stevens, P. Xie, T. D. J. Martinez, E. A. Hershberg, A. Leung, E. Guo, S. Dider, J. Zhang, C. Bridge, G. Hogue, A. Duncan, M. Morgan, T. Flores, B. N. Bimber, R. Haw, S. Cain, R. M. Buels, L. D. Stein, I. H. Holmes, *Biorxiv* 2022, 2022.07.28.501447.

[41] J. Chao, Z. Li, Y. Sun, O. O. Aluko, X. Wu, Q. Wang, G. Liu, *Mol Hortic* 2021, 1, 16.

[42] T. Z. Berardini, L. Reiser, D. Li, Y. Mezheritsky, R. Muller, E. Strait, E. Huala, *Genesis* 2015, *53*, 474–485.

[43] K. Kurotani, H. Hirakawa, K. Shirasawa, Y. Tanizawa, Y. Nakamura, S. Isobe, M. Notaguchi, *Plant Cell Physiol* 2023, *64*, 248–257.

[44] N. Fernandez-Pozo, N. Menda, J. D. Edwards, S. Saha, I. Y. Tecle, S. R. Strickler, A. Bombarely, T. Fisher-York, A. Pujar, H. Foerster, A. Yan, L. A. Mueller, *Nucleic Acids Res* 2015, *43*, D1036–D1041.

[45] J. H. Leebens-Mack, M. S. Barker, E. J. Carpenter, M. K. Deyholos, M. A. Gitzendanner, S. W. Graham, I. Grosse, Z. Li, M. Melkonian, S. Mirarab, M. Porsch, M. Quint, S. A. Rensing, D. E. Soltis, P. S. Soltis, D. W. Stevenson, K. K. Ullrich, N. J. Wickett, L. DeGironimo, P. P. Edger, I. E. Jordon-Thaden, S. Joya, T. Liu, B. Melkonian, N. W. Miles, L. Pokorny, C. Quigley, P. Thomas, J. C. Villarreal, M. M. Augustin, M. D. Barrett, R. S. Baucom, D. J. Beerling, R. M. Benstein, E. Biffin, S. F. Brockington, D. O. Burge, J. N. Burris, K. P. Burris, V. Burtet-Sarramegna, A. L. Caicedo, S. B. Cannon, Z. Çebi, Y. Chang, C. Chater, J. M. Cheeseman, T. Chen, N. D. Clarke, H. Clayton, S. Covshoff, B. J. Crandall-Stotler, H. Cross, C. W. dePamphilis, J. P. Der, R. Determann, R. C. Dickson, V. S. D. Stilio, S. Ellis, E. Fast, N. Feja, K. J. Field, D. A. Filatov, P. M. Finnegan, S. K. Floyd, B. Fogliani, N. García, G. Gâteblé, G. T. Godden, F. (Qi Y. Goh, S. Greiner, A. Harkess, J. M. Heaney, K. E. Helliwell, K. Heyduk, J. M. Hibberd, R. G. J. Hodel, P. M. Hollingsworth, M. T. J. Johnson, R. Jost, B. Joyce, M. V. Kapralov, E. Kazamia, E. A. Kellogg, M. A. Koch, M. V. Konrat, K. Könyves, T. M. Kutchan, V. Lam, A. Larsson, A. R. Leitch, R. Lentz, F.-W. Li, A. J. Lowe, M. Ludwig, P. S. Manos, E. Mavrodiev, M. K. McCormick, M. McKain, T. McLellan, J. R. McNeal, R. E. Miller, M. N. Nelson, Y. Peng, P. Ralph, D. Real,
C. W. Riggins, M. Ruhsam, R. F. Sage, A. K. Sakai, M. Scascitella, E. E. Schilling, E.-M. Schlösser, H. Sederoff, S. Servick, E. B. Sessa, A. J. Shaw, S. W. Shaw, E. M. Sigel, C. Skema, A. G. Smith, A. Smithson, C. N. Stewart, J. R. Stinchcombe, P. Szövényi, J. A. Tate, H. Tiebel, D. Trapnell, M. Villegente, C.-N. Wang, S. G. Weller, M. Wenzel, S. Weststrand, J. H. Westwood, D. F. Whigham, S. Wu, A. S. Wulff, Y. Yang, D. Zhu, C. Zhuang, J. Zuidof, M. W. Chase, J. C. Pires, C. J. Rothfels, J. Yu, C. Chen, L. Chen, S. Cheng, J. Li, R. Li, X. Li, H. Lu, Y. Ou, X. Sun, X. Tan, J. Tang, Z. Tian, F. Wang, J. Wang, X. Wei, X. Xu, Z. Yan, F. Yang, X. Zhong, F. Zhou, Y. Zhu, Y. Zhang, S. Ayyampalayam, T. J. Barkman, N. Nguyen, N. Matasci, D. R. Nelson, E. Sayyari, E. K. Wafula, R. L. Walls, T. Warnow, H. An, N. Arrigo, A. E. Baniaga, S. Galuska, S. A. Jorgensen, T. I. Kidder, H. Kong, P. Lu-Irving, H. E. Marx, X. Qi, C. R. Reardon, B. L. Sutherland, G. P. Tiley, S. R. Welles, R. Yu, S. Zhan, L. Gramzow, G. Theißen, G. K.-S. Wong, *Nature* 2019, *574*, 679–685.

[46] N. A. Canales, O. A. Pérez-Escobar, R. F. Powell, M. Töpel, C. Kidner, M. Nesbitt, C. Maldonado, C. J. Barnes, N. Rønsted, N. A. S. Przelomska, I. J. Leitch, A. Antonelli, *Gigabyte* 2022, *2022*, 1–16.

[47] A. Murauer, M. Ganzera, J Chromatogr A 2018, 1554, 117–122.

[48] A. Dereeper, S. Bocs, M. Rouard, V. Guignon, S. Ravel, C. Tranchant-Dubreuil, V. Poncet, O. Garsmeur, P. Lashermes, G. Droc, *Nucleic Acids Res* 2015, *43*, D1028–D1035.

[49] F. Denoeud, L. Carretero-Paulet, A. Dereeper, G. Droc, R. Guyot, M. Pietrella, C. Zheng, A. Alberti, F. Anthony, G. Aprea, J.-M. Aury, P. Bento, M. Bernard, S. Bocs, C. Campa, A. Cenci, M.-C. Combes, D. Crouzillat, C. D. Silva, L. Daddiego, F. D. Bellis, S. Dussert, O. Garsmeur, T. Gayraud, V. Guignon, K. Jahn, V. Jamilloux, T. Joët, K. Labadie, T. Lan, J. Leclercq, M. Lepelley, T. Leroy, L.-T. Li, P. Librado, L. Lopez, A. Muñoz, B. Noel, A. Pallavicini, G. Perrotta, V. Poncet, D. Pot, Priyono, M. Rigoreau, M. Rouard, J. Rozas, C. Tranchant-Dubreuil, R. VanBuren, Q. Zhang, A. C. Andrade, X. Argout, B. Bertrand, A. de Kochko, G. Graziosi, R. J. Henry, Jayarama, R. Ming, C. Nagai, S. Rounsley, D. Sankoff, G. Giuliano, V. A. Albert, P. Wincker, P. Lashermes, *Science* 2014, *345*, 1181–1184.

[50] R. Veeramohan, A. I. Zamani, K. A. Azizan, H.-H. Goh, W. M. Aizat, M. F. A. Razak, N. S. M. Yusof, S. M. Mansor, S. N. Baharum, C. L. Ng, *Plos One* 2023, *18*, e0283147.

[51] M. Yang, Q. Wang, Y. Liu, X. Hao, C. Wang, Y. Liang, J. Chen, Y. Xiao, G. Kai, *Bmc Biol* 2021, *19*, 122.

[52] A. A. Lopes, B. Chioca, B. Musquiari, E. J. Crevelin, S. de C. França, M. F. das G. F. da Silva, A. M. S. Pereira, *Sci Rep-uk* 2019, *9*, 11349.

[53] M. Xiao, Y. Zhang, X. Chen, E. J. Lee, C. J. S. Barber, R. Chakrabarty, I. Desgagné-Penix,
T. M. Haslam, Y. B. Kim, E. Liu, G. MacNevin, S. Masada-Atsumi, D. W. Reed, J. M. Stout, P. Zerbe, Y. Zhang, J. Bohlmann, P. S. Covello, V. D. Luca, J. E. Page, D. K. Ro, V. J. J. Martin, P. J. Facchini, C. W. Sensen, *J Biotechnol* 2013, *166*, 122–134.

[54] D. Williams, Y. Qu, R. Simionescu, V. D. Luca, *Plant J* 2019, *99*, 626–636.

[55] N. Langlois, R. Z. Andriamialisoa, N. Neuss, Helv. Chim. Acta 1980, 63, 793-805.

[56] L. Caputi, J. Franke, S. C. Farrow, K. Chung, R. M. E. Payne, T.-D. Nguyen, T.-T. T. Dang, I. S. T. Carqueijeiro, K. Koudounas, T. D. de Bernonville, B. Ameyaw, D. M. Jones, I. J. C. Vieira, V. Courdavault, S. E. O'Connor, *Science* 2018, *360*, 1235–1239.

[57] A. Albeshri, N. A. Baeshen, T. A. Bouback, A. A. Aljaddawi, *Plants* 2021, 10, 2508.

[58] T.-T. T. Dang, J. Franke, I. Soares, T. Carqueijeiro, C. Langley, V. Courdavault, S. E. O'connor, *Nat Chem Biol* 2018, *14*, 760–763.

[59] B. Wiens, V. D. Luca, *Phytochemistry* 2016, *132*, 5–15.

[60] A. Paterna, S. E. Gomes, P. M. Borralho, S. Mulhovo, C. M. P. Rodrigues, M.-J. U. Ferreira, *J Nat Prod* 2016, *79*, 2624–2634.

[61] S. C. Farrow, M. O. Kamileen, L. Caputi, K. Bussey, J. E. A. Mundy, R. C. McAtee, C. R. J. Stephenson, S. E. O'Connor, *J Am Chem Soc* 2019, *141*, 12979–12983.

[62] M. O. Kamileen, M. D. DeMars, B. Hong, Y. Nakamura, C. Paetz, B. R. Lichman, P. D. Sonawane, L. Caputi, S. E. O'Connor, *J Am Chem Soc* 2022, DOI 10.1021/jacs.2c08107.

[63] S. Abouzeid, T. Hijazin, L. Lewerenz, R. Hänsch, D. Selmar, *Phytochemistry* 2019, *168*, 112110.

[64] J. Trifinopoulos, L.-T. Nguyen, A. von Haeseler, B. Q. Minh, *Nucleic Acids Res* 2016, 44, W232–W235.

[65] I. Letunic, P. Bork, Nucleic Acids Res 2021, 49, gkab301-.

[66] N. S. Berrow, D. Alderton, S. Sainsbury, J. Nettleship, R. Assenberg, N. Rahman, D. I. Stuart, R. J. Owens, *Nucleic Acids Res* 2007, *35*, e45–e45.

[67] N. F. Fernandez, G. W. Gundersen, A. Rahman, M. L. Grimes, K. Rikova, P. Hornbeck, A. Ma'ayan, *Sci Data* 2017, *4*, 170151.

[68] Y. Wang, H. Tang, J. D. DeBarry, X. Tan, J. Li, X. Wang, T. Lee, H. Jin, B. Marler, H. Guo, J. C. Kissinger, A. H. Paterson, *Nucleic Acids Res* 2012, *40*, e49–e49.

[69] C. Chen, H. Chen, Y. Zhang, H. R. Thomas, M. H. Frank, Y. He, R. Xia, *Mol Plant* 2020, *13*, 1194–1202.

[70] M. Krzywinski, J. Schein, İ. Birol, J. Connors, R. Gascoyne, D. Horsman, S. J. Jones, M. A. Marra, *Genome Res* 2009, *19*, 1639–1645.

Chapter 4. The Role of Protein-Protein Interactions in MIA Biosynthesis

4.1. Introduction

4.1.1. Protein-Protein Interactions in MIA Biosynthesis

Extensive research has sought to elucidate the biochemistry and physiology of vinblastine biosynthesis in *C. roseus* ^[1–10]. This complex pathway occurs over three different cell types ^[4, 11–14], with some steps localised within specific subcellular compartments ^[15–17] (Figure 58). Moreover, biosynthesis of this PNP involves the generation of unstable intermediates that can be catalysed by several competing enzymes to produce different products, thereby acting as metabolic branch points (Figure 59). Given the complexity and the presence of labile intermediates, protein-protein interactions have been speculated to help physically organise and/or facilitate MIA biosynthesis ^[2, 16]. Biosynthetic protein complexes have been previously identified at two metabolic branch points within *C. roseus* MIA biosynthesis: the formation of strictosidine aglycone and the generation of dehydrosecodine.

The *Cr*STR catalyses the first committed step of MIA biosynthesis production to generate the central precursory molecule strictosidine from which over 2000 MIAs derive ^[18]. The subsequent deglycosylation of strictosidine, catalysed by *Cr*SGD, generates the highly

Figure 58. Cellular and subcellular localisation of elucidated steps of vinblastine biosynthesis in *C. roseus.* Iridoid and early secoiridoid biosynthesis predominantly occurs in internal phloem associated parenchyma (IPAP) cells, late secoiridoid and early MIA biosynthesis occurs in epidermal cells, and late MIA biosynthetic steps occur in idioblast cells. Steps with unstable intermediates indicated by red arrows. Figure made using BioRender.

reactive aglycone (Figure 59A). Reductases such as CADs and an SDR act on the structural rearrangements of strictosidine aglycone to produce a range of MIAs ^[9, 16, 19–21]. Previous studies found that *Cr*SGD forms protein-protein complexes with the downstream enzymes *Cr*THAS and *Cr*HYS, as evidenced by bimolecular fluorescence complementation (BiFC) imaging and affinity-pulldown studies ^[16, 19]. This suggests protein-protein complexes may have a role in controlling the metabolic flux at this branch point.

Protein-protein complexes have also been reported at the metabolic branch point of the generation of the highly unstable intermediate dehydrosecodine. As detailed in Chapter 2 of this thesis, the CAD *Cr*DPAS catalyses the reduction of substrate precondylocarpine acetate to form dehydrosecodine, which is subsequently cyclised by the cyclase enzymes

(Figure 59B). Specifically, the enzyme *Cr*TS generates the aspidosperma-type alkaloid tabersonine, which undergoes 7 additional enzymatic steps to form vindoline, and the enzyme *Cr*CS generates the iboga-type alkaloid catharanthine. Vindoline and catharanthine are hypothesised to be the precursors for bis-indole alkaloids including vinblastine. Enzyme-enzyme complexes between *Cr*DPAS and either *Cr*TS or *Cr*CS were observed using BiFC imaging ^[2], suggesting that these interactions may regulate the metabolic flux of dehydrosecodine and thereby the subsequent downstream MIAs. Interestingly, orthologues of DPAS and the cyclase enzymes have been identified in the closely related MIA-producing species *T. iboga*, though these were not tested for the formation of homologous protein-protein complexes ^[22, 23]. Studying this metabolic branch point could therefore provide valuable insights into the functional relevance and conservation of protein-protein interactions within MIA biosynthesis.

These previous reports prompted us to investigate the extent of protein-protein complexes in MIA biosynthesis in *C. roseus*. Our studies aimed to validate the interaction between *Cr*DPAS and the cyclase enzymes and to understand the structural basis of this interaction. Furthermore, we utilised the orthologous enzymes from *T. iboga* to study whether these proteins complexes are conserved in closely related species, and to explore the formation of inter-pathway interactions between MIA and phenylpropanoid biosynthetic enzymes.

4.1.2. Methods Used to Detect Protein-protein Interactions

This chapter discusses various methods used to detect and study protein-protein interactions in MIA biosynthesis, taking into account the diversity of strength and temporal stability of these interactions. A summary of the methods used is provided below.

To identify novel interaction partners for a specific protein of interest (referred to as the bait protein), higher-throughput approaches are often employed. One commonly used technique is the affinity-purification coupled with mass-spectrometry (AP-MS). In this method, the bait protein is fused with a purification tag and exposed to a mixture of potential interacting proteins (Figure 60A). The bait protein is subsequently purified using affinity chromatography based on the specific tag along with any interacting proteins and the composition of the sample is identified using proteomic analysis ^[24]. Stringent washing

Figure 60. Overview of methods used to detect protein-protein interactions discussed in this chapter. A. Protein complex co-purification using affinity purification of tagged bait protein.
B. *In vivo* proximity tagging using promiscuous biotin ligase TurboID and subsequent streptavidin-affinity purification of biotinylated proteins. C. Split-luciferase complementation assay to detect pairwise protein-protein interactions by luminescence. D. Differential scanning fluorimetry of protein thermal stability. Figure made using Biorender.

steps are typically applied during the purification process to reduce false-positive identifications of interacting proteins. However, these may result in the loss of weak or transient interactions, making this method more suitable for detecting stronger protein complexes.

Proximity tagging is an alternative method that can be particularly useful in detecting weak and or transient protein complexes *in vivo* (Figure 60B) ^[25, 26]. In this technique, the bait protein is fused with a promiscuous biotin ligase enzyme known as BirA, though other variants such as TurboID have since been developed ^[27, 28]. This fusion protein is then transiently or stably expressed in the plant. Upon addition of biotin, BirA catalyses the formation of biotinoyl-AMP, which covalently bonds to nearby primary amine groups such as lysine side chains. Due to the short half-life of biotinoyl-AMP, only primary amines within approximately 8 Å of the BirA protein are labelled. The biotin-labelled proteins in the sample are then extracted and enriched using streptavidin-affinity purification and subsequently identified by proteomic analysis ^[29]. This technique captures the *in vivo* interactions before further processing of the sample, enabling the detection of protein complexes that may not be observable using co-purification techniques.

After identification using high-throughput screening methods, protein complexes are validated using various biophysical techniques. Among these, fragment complementation assays are commonly employed to test pairwise protein-protein interactions due to their development for use in a variety of organisms and utilisation of various reporter proteins including fluorophores (e.g. BiFC), luciferases (e.g. split-luciferase), or antibiotic resistance (e.g. yeast two-hybrid). As detailed in section 4.1, protein complexes in MIA biosynthesis were previously detected using BiFC. This method requires each protein of interest to be fused to a fluorophore fragment. Upon formation of a protein complex, the fusion proteins irreversibly reconstitute to form a functional fluorophore reporter protein. However, the irreversible nature of the fluorophore reconstitution can lead to false-positive results, prompting the validation of protein-protein complexes using alternative techniques.

Split-luciferase is a fragment complementation assay, which like BiFC, requires each protein of interest to be fused with a non-functional luciferase protein fragment. However, unlike BiFC, the fragments can reversibly reconstitute to form a functional luciferase enzyme (Figure 60C) ^[30]. These fusion constructs are transiently expressed in the leaves of the host plant *N. benthamiana* to mitigate common plant-derived protein expression issues such as mislocalisation and misfolding. After several days, the substrate D-luciferin is added and oxidised by the reconstituted luciferase enzyme, forming light as a reaction by-product. The

formation of the protein-protein complex is therefore detected by measuring light emittance using a luminometer or a cooled charge-coupled device (CCD) camera.

The formation of protein-protein complexes is driven by the formation of hydrogen bonds, disulphide bridges and/or electrostatic forces between the partner proteins. These bonds contribute to increased thermal stability (T°m), enabling the measurement of protein complexes through differential scanning fluorimetry (DSF; Figure 60D) ^[31]. DSF uses a fluorescent dye reporter molecule, typically SYPRO Orange, which is quenched by water when initially incubated with the protein/proteins of interest. However, heating the sample causes protein secondary structure motifs to unfold, enabling the dye to bind to hydrophobic regions and thereby leading to fluorophore emission (T_m). Further increased temperatures induces protein aggregation, causing the dye to dissociate and return to its quenched state. Observing an increased T_m in a heterogeneous mixture of proteins compared to a homogeneous solution thus validates the formation of a protein complex and can provides insights into the stoichiometric ratio of the monomers.

4.1.3. Chapter Overview

In this chapter, we use a split-luciferase assay to investigate the pairwise interactions among 17 enzymes involved in vinblastine biosynthesis in *C. roseus*. Our findings revealed a complex network of interactions, shedding light on the intricate interplay among these enzymes. We validate the previously reported interaction between the enzyme *CrDPAS* and cyclase enzymes *CrTS* and *CrCS* and explore the conservation of this interaction across enzyme families. Furthermore, we use site-directed mutagenesis to engineer the interaction between *CrDPAS* and the cyclase enzymes. Additionally, we uncover interpathway interactions between MIA and phenylpropanoid biosynthetic pathways and provide evidence that suggest these protein-protein interactions may have a functional role in lignin biosynthesis in *C. roseus*.

4.2. Results

4.2.1. Interaction Network of *C. roseus* MIA Biosynthetic Proteins using Split-Luciferase Single-cell transcriptomic analysis of *C. roseus* leaves previously demonstrated that a group of 19 consecutive MIA biosynthetic enzymes had enriched expression in epidermal cells. These enzymes included *CrLAMT*, *CrSLS*, *CrTDC*, *CrSTR*, *CrSGD*, *CrGS*, *CrGO*, *CrRedOx1*, *CrRedOx2*, *CrSAT*, *CrPAS*, *CrDPAS*, *CrTS*, *CrCS*, *CrCorS*, *CrT16H2*, *Cr16OMT*, *CrT3O* and *CrT3R* (Figure 61) ^[4]. With the exceptions of *CrSTR* and *CrSGD*, all of these enzymes were found to be localised in the cytosol or anchored to the cytosolic face of the endoplasmic reticulum membrane, implying that they are physically accessible to each other (Appendix VIII; Table 23). The co-localisation of these proteins in the same cell type is consistent with a model in which some or all of these biosynthetic enzymes interact with one another. Therefore, to gain insight into the extent of protein-protein interactions among these MIA biosynthetic enzymes, we tested the pairwise interactions of these 17 enzymes by transiently expressing proteins pairs in the heterologous host *N. benthamiana* using a split-luciferase system (Figure 61; Appendix IX). These assays revealed a complex network of protein-protein interactions, with certain enzymes (i.e. *CrTS*, *CrCS*, and *CrT3R*) interacting with many MIA

Figure 61. Pairwise testing of protein-protein interactions of *C. roseus* MIA biosynthetic enzymes enriched in epidermal cells using a split-luciferase assay. Green indicates interaction detected, red indicates no interaction detected, N/A refers to protein pairs not tested for interactions due to inaccessibility of luciferase fragment caused by each protein anchoring within the endoplasmic reticulum membrane.

proteins, while others (i.e. *Cr*SLS, *Cr*TDC, and *Cr*PAS) were observed to only interact with a few enzymes. Notably, the split-luciferase assay confirmed the interaction of the CAD *Cr*DPAS with the cyclase enzymes *Cr*TS, *Cr*CS, and *Cr*CorS, as previously demonstrated using BiFC imaging ^[2]. However, in contrast to prior reports, the split-luciferase assay did not detect the self-interaction of *Cr*16OMT ^[19]. These results give insights into the complex network of protein-protein interactions between MIA biosynthetic enzymes from *C. roseus* and provide the foundation for future study into their role in organising specialised metabolism within the cell.

4.2.2. Conservation of the ADH-Cyclase Protein-Protein Interaction

The intermediate dehydrosecodine is a metabolic branch point capable of forming both iboga- and aspidosperma-type MIA scaffolds. This chemical diversity is generated by the DPAS orthologues (*Cr*DPAS, *Ti*DPAS1 or *Ti*DPAS2) which catalyse the reduction of the substrate precondylocarpine acetate. The resulting dehydrosecodine is then cyclised by various cyclase enzymes in *C. roseus* (*Cr*TS, *Cr*CS or *Cr*CorS) and *T. iboga* (*Ti*TabS or *Ti*CorS; Figure 62) ^[2, 22, 23, 32]. DPAS is a member of the CAD subfamily of ADHs whilst the cyclase

Figure 62. Proposed mechanism of tabersonine, (+)-catharanthine, and (-)-coronaridine formation from the intermediate dehydrosecodine.

enzymes are members of the α/β hydrolase superfamily, though these enzymes have undergone neofunctionalisation to act in MIA biosynthesis as detailed in Chapter 2.

The instability of dehydrosecodine raised speculation that DPAS and the cyclase enzymes formed protein-protein complexes, which were subsequently observed using BiFC imaging ^[2] and a split-luciferase assay (Figure 61). To gain insights into the conservation of this interaction, we expressed pairs of other ADHs and α/β hydrolase proteins in the heterologous host *N. benthamiana* and tested their pairwise interactions using a split-luciferase assay (Figure 63; Appendix X). Interestingly, despite their diverse functional roles, species of origin, and sequence identities (Appendix X Table 24 and Table 25), interactions

Figure 63. Protein-protein interactions between ADHs and α/β hydrolases. Coloured circles represent characterised enzyme function. Trees of maximum likelihood of CAD-like ADHs (**A**) and α/β hydrolases (**B**). Trees visualised using iTol ^[54], genes in bold tested for interactions. **C.** Pairwise interactions between CAD-like ADHs and α/β hydrolases by split-luciferase in heterologous host *N. benthamiana*.

between ADHs and α/β hydrolase enzymes were largely conserved. For instance, *Arabidopsis thaliana* CAD4, known for its role in lignin biosynthesis ^[34], interacted with *C. roseus* cyclase enzymes that participate in MIA biosynthesis ^[32]. The interactions between MIA and phenylpropanoid biosynthetic enzymes is expanded on in section 4.2.7. Furthermore, this interaction was conserved between *T. iboga* DPAS (*Ti*DPAS1 and *Ti*DPAS2) and cyclase (*Ti*TabS and *Ti*CorS) orthologues, suggesting its functional role in other MIA producing species. However, some ADHs exhibited interaction specificity, such as *Cr*GS which interacted with cyclase enzymes from both *C. roseus* and *T. iboga*, but not with more distantly related α/β hydrolases. Notably, *Cr*DPAS interacted with the cyclase enzymes *Cr*TS, *Cr*CS, *Cr*CorS, and *Ti*TabS, but did not interact with *Ti*CorS, as expanded on in section 4.2.3.

These findings highlight the conservation of protein-protein interactions between the ADH and α/β hydrolase families of enzymes. The conservation of these interactions across diverse plant species provides valuable insights into the evolution of protein complexes, and the potential metabolic interplay between plant biosynthetic pathways.

4.2.3. Engineering the CrDPAS-Cyclase Interaction

Our findings using a split-luciferase assay revealed that *CrDPAS* interacted with cyclase enzymes *CrCS*, *CrTS*, *CrCorS*, and *Ti*TabS, but not with the closely related *Ti*CorS (Figure 64A-D). We hypothesised that the loss of interaction between *CrDPAS* and *Ti*CorS was attributed to residue changes on the surface of the cyclase enzymes. To this end, we utilised the previously solved structures of *CrCS*, *CrTS* and *Ti*CorS ^[32], and generated homology models of *CrCorS* and *Ti*TabS. By comparison of the enzyme surfaces, we identified 5 residues conserved in all interacting cyclase enzymes but lost in *Ti*CorS. However the corresponding *CrC*orS and *Ti*CorS mutants did not confer the desired loss or introduction of interaction with *CrDPAS* (Appendix XI Figure 130E-H). Expanding our search, we identified all the differing surface residues between *CrCorS* and *Ti*CorS, regardless of their conservation in the remaining cyclase enzymes. This led to the generation of 4-residue mutants of *CrCorS* and *Ti*CorS. When we tested these mutants against *CrDPAS* using a split luciferase assay, we observed the engineered loss and introduction of a protein-protein interaction respectively (Appendix XI Figure 130I-L).

Figure 64. Engineering *Cr*DPAS-cyclase interaction. Representative images of splitluciferase interaction between *Cr*DPAS and wild-type *Ti*CorS (**A**), *Cr*CorS (**B**), *Cr*TS (**C**), and *Cr*CS (**D**), and corresponding mutants *Ti*CorS Ile222Asn (**E**), *Cr*CorS Asn224Ile (**F**), *Cr*TS Asn219Ile (**G**), and *Cr*CS Tyr213Ile (**H**). –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein and empty cLuc fragment, N.C. 2 represents cLuc-tagged protein and empty nLuc fragment, N.C. 3 represents nLuc and cLuc fragment negative controls. False colouring on images represents measured luminescence counts per second (cps). **I.** Surface view of *Ti*CorS monomer structure (PDB 6RJ8 ^[32]) with inset showing Ile222 residue.

Subsequently, we generated single mutants based on this 4-residue mutant and identified *Cr*CorS Asn224IIe and the corresponding *Ti*CorS IIe222Asn as the crucial residue responsible for the loss or introduction of cyclase interaction with *Cr*DPAS (Figure 64E and F; Appendix XI). Furthermore, introduction of the corresponding point mutation to *Cr*TS or *Cr*CS (Asn219IIe and Tyr213IIe respectively) abolished interaction with *Cr*DPAS (Figure 64G and H). This suggests that the polar Asn, in contrast to the hydrophobic and less reactive IIe,

interacts with another polar or charged residue on the surface of *Cr*DPAS, thereby facilitating the protein-protein interaction.

These findings provide the foundation for comprehending the structural basis of the interaction between *Cr*DPAS and the cyclase enzymes. Future work to understand the metabolic effect of introducing or disrupting these enzyme-enzyme will contribute to our understanding of the metabolic role of protein-protein interactions in MIA biosynthesis.

4.2.4. AP-MS Analysis of CrDPAS and CrTS

AP-MS is a widely used technique to validate protein complexes observed using other methods and to identify novel interacting partners. In the context of our study, we sought to validate the complex observed between *CrDPAS* and the cyclase enzymes using BiFC^[2] and split-luciferase assays (Figure 61). To achieve this, we introduced 6X-His fusion tags to *CrDPAS* and *CrTS* proteins and added these to protein extracts from *C. roseus* leaves. Samples were subsequently purified using affinity chromatography and the resulting fractions were analysed by proteomics (Appendix XII Table 26). Surprisingly, our analysis did not reveal any MIA biosynthetic proteins that co-purified with *CrDPAS* or *CrTS*. This suggests that these interactions were too weak and/or transient to detected, or require additional factors or conditions not present in this study. Despite not detecting direct interactions with MIA biosynthetic proteins, these findings provide valuable information about the stability and strength of the *CrDPAS*-cyclase complex.

4.2.5. Differential Scanning Fluorimetry Analysis of CrDPAS-Cyclase Complex

The increased T°m of a mixture of proteins compared to their individual components has been established as an indirect measure of the formation of protein complexes. Building upon results of the protein complex between *Cr*DPAS and the cyclase enzymes *Cr*TS and *Cr*CS using split-luciferase (Figure 61) and BiFC ^[2] assays, we further investigated these interactions using DSF. To this end, we tested the T°_m using various stoichiometric ratios of partner proteins (Figure 65), as well as measuring the effect of cofactors and/or the substrate precondylocarpine acetate, and a range of buffer conditions (Appendix XIII, Table 27 and Figure 131). Despite these extensive efforts, the measured T°_m remained largely

Figure 65. T°m of *Cr*DPAS and *Cr*TS individually and at 1:1, 1:2 and 1:5 stoichiometric ratios. Fluoresence measured at 490 nm/580 nm Ex/ Em. Bars depict standard deviation (n = 3).

unaffected in all tested conditions. These results suggest that either the protein complex between *Cr*DPAS and the cyclase enzymes did not form under the conditions tested or was too weak to be detected using DSF. The absence of observable changes in T°m suggests that alternative factors or conditions such as the presence of chaperone-like proteins or plant-specific post-translational modifications may be critical for stabilising this protein complex. Therefore, while these assays did not provide evidence of a protein-protein complex between *Cr*DPAS and the cyclase enzymes, these findings offer valuable insights into the dynamic nature of these interactions.

4.2.6. In vivo Proximity Tagging of CrDPAS

Proximity tagging is a technique used to identify proteins that are in the physical vicinity of a bait protein (Figure 66A) ^[26, 33]. It involves the transient or stable expression of the bait protein fused to a promiscuous biotin ligase in the plant of interest, followed by the application of biotin. Proteins physically close to the biotin ligase are biotinylated, facilitating their subsequent purification by streptavidin affinity chromatography and identification using proteomics. Thus, these tagged proteins are inferred to interact with the bait protein *in vivo*. Proximity tagging has proven particularly useful for identifying weak and/or temporal protein complexes that are often not detected using alternative copurification techniques such as AP-MS.

Figure 66. *In vivo* proximity labelling of *Cr*DPAS in C. roseus. **A.** Schematic of *in vivo* proximity labelling by transient expression of *Cr*DPAS-TurbolD fusion protein in *C. roseus* followed by subsequent addition of biotin. Figure made using BioRender. Bright field (**B.** and **D.**) and 500±10 nm/530±20 nm Ex/Em filtered (**C.** and **E.**) images of *C. roseus* leaves transiently expressing YFP-TurbolD or empty vector (E.V.) constructs respectively. **F.** Volcano plot of proteins enriched in DPAS-TurbolD pull-down compared to YFP-TurbolD control.

To utilise this technique, we developed an agrobacterium-mediated transformation protocol for *C. roseus* leaves to transiently overexpress the bait protein *Cr*DPAS fused with the biotin ligase TurboID. As a control, we also overexpressed a YFP-TurboID fusion construct to account for any non-specific protein binding (Figure 66B and C). Following biotin feeding and subsequent streptavidin affinity purification, the results of proteomic analysis revealed the *Cr*DPAS-TurboID specific enrichment of enzymes involved in MIA biosynthesis such as *Cr*SLS (Figure 66F; Appendix XIV). However, an interaction between *Cr*DPAS and *Cr*SLS was not observed when these proteins were tested using a splitluciferase assay (Figure 61). Additionally, the cyclase enzymes *Cr*TS or *Cr*CS were not enriched in the *Cr*DPAS-TurboID sample, contrasting previous findings from BiFC and splitluciferase assays (Figure 61) ^[2]. These results demonstrate the development and implementation of proximity tagging in *C. roseus* to identify proteins in close physical

proximity to a bait protein *in vivo*. However, complementary *in vitro* and *in vivo* biophysical methods are required to observe and validate the formation of protein-protein complexes between enzymes involved in MIA biosynthesis.

4.2.7. Interactions between MIA and Phenylpropanoid Biosynthetic Enzymes

In addition to the enrichment of MIA biosynthetic enzymes in CrDPAS proximity tagging studies (as detailed in 4.2.6), the technique also identified several enzymes involved in phenylpropanoid biosynthesis, namely ferulate-5-hydroxylase (F5H), p-coumaroyl ester 3hydroxylase (C3'H) and cinnamate-4-hydroxylase (C4H; Appendix XIV). The phenylpropanoid pathway is highly conserved across land plants and produces various phenolics including lignin and flavonoids (Figure 67A)^[34]. Notably, the final enzymatic step of lignin biosynthesis is catalysed by CAD, a member of the same enzyme family as CrDPAS as detailed in Chapter 3 of this thesis. Protein-protein interactions have been widely reported within the phenylpropanoid pathway, including interactions involving CAD ^[35–45]. Given the conserved interactions between ADHs and α/β -hydrolases (Figure 63), along with the results of CrDPAS proximity tagging, we speculated whether MIA biosynthetic enzymes may interact with phenylpropanoid enzymes. To investigate this hypothesis, we tested for interactions between C. roseus enzymes that are involved in phenylpropanoid or MIA biosynthesis using a split-luciferase assay (Figure 67B; Appendix XV). Our results revealed many inter-pathway interactions between MIA and phenylpropanoid biosynthesis, suggesting metabolic cross-talk between primary and specialised metabolic pathways.

Protein-protein interactions between consecutive enzymes in a biosynthetic pathway can improve metabolic flux through co-localisation and/or reducing the diffusion of reaction intermediates. For example, the formation of a protein complex between the phenylpropanoid biosynthetic enzymes in *Populus trichocarpa*, cinnamoyl-CoA reductase (*Pt*CCR) and *Pt*CAD, increased the metabolic flux towards lignin formation ^[39]. To explore whether orthologous interactions occur in *C. roseus*, we conducted pairwise testing of *Cr*CCR using a split-luciferase assay. Surprisingly, we did not detect an interaction between *Cr*CCR and either *Cr*CAD (Figure 68A-B) or *Cr*DPAS (Figure 68C-D), however we did observe interactions between *Cr*CCR and the MIA biosynthetic enzyme *Cr*GS (Figure 68E-F).

Figure 67. Inter-pathway protein-protein interactions between *C. roseus* MIA and phenylpropanoid biosynthetic enzymes. **A.** Pathway of MIA and phenylpropanoid biosynthesis from the central intermediate chorismate. **B.** Pairwise interactions between phenylpropanoid and MIA biosynthetic enzymes by split-luciferase in heterologous host *N. benthamiana*. N/A refers to protein pairs not tested for interactions due to inaccessibility of luciferase fragment due to membrane localisation.

To investigate the metabolic role of these inter-pathway interactions, we first determined that only *Cr*CAD displayed activity against the product of *Cr*CCR, cinnamaldehyde, *in vitro* (Figure 68G). This suggests that neither *Cr*GS nor *Cr*DPAS catalyse the final enzymatic step of lignin biosynthesis. We therefore hypothesised whether the formation of *Cr*GS-*Cr*CCR

Figure 68. Metabolic crosstalk between phenylpropanoid and MIA biosynthesis in *C. roseus*. Representative images of split luciferase interaction between *Cr*CCR and either *Cr*CAD (**A-B**), *Cr*DPAS (**C-D**), and *Cr*GS (**E-F**). –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents the N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein and cLuc fragment, N.C. 2 represents cLuc-tagged protein and nLuc fragment, N.C. 3 represents nLuc and cLuc fragment negative controls. False colouring represents measured luminescence counts per second (cps). **G.** LC-MS TIC of *in vitro* reactions of *Cr*CAD, *Cr*DPAS and *Cr*GS reacted with substrate cinnamaldehyde and cofactor NADPH. **H.** Extracted lignin content of *C. roseus* leaves transiently overexpressing either empty vector (EV), CAD, DPAS or GS. A²⁸⁰ nm values normalised by sample fresh dry weight. *n* = 6 biological replicates, bars represent standard error, p value of a paired t-test.

protein complexes may disrupt lignin biosynthesis in *C. roseus*. To investigate this, we transiently overexpressed either *Cr*CAD, *Cr*DPAS or *Cr*GS in *C. roseus* leaves and measured the extracted lignin content (Figure 68H). We observed that overexpression of *Cr*GS significantly reduced the extracted lignin content, while plants overexpressing *Cr*CAD or *Cr*DPAS exhibited comparable results to the empty vector control. These results suggest that the formation of *Cr*GS-*Cr*CCR complexes hinders the metabolic flux to lignin formation through the formation of inter-pathway enzyme-enzyme interactions. Our results shed light on the physical coordination of primary and specialised metabolic biosynthetic enzymes in *C. roseus* and reveals the role of interactions between these proteins in modulating metabolic output.

4.2.8. Probing Protein-Protein Interactions in Pseudo-Scaffold MIA Biosynthesis

The elucidation of biosynthetic pathways in several MIA-producing species across Gentianales has identified some orthologous enzymes to those described in *C. roseus*. For instance, the pseudo-scaffold of tabersonine (Ψ -tabersonine) is generated in the closely related species *T. iboga* by recycling the upstream biosynthetic enzymes. Namely, *Cr*PAS or the closely related TiPAS1-3, *TiD*PAS1 or *TiD*PAS2, and *Ti*CorS (Figure 69A). Interestingly, the combination of *Cr*PAS, *TiD*PAS1 and *Ti*CorS formed less reaction side-products in *in vitro* reactions to produce Ψ -tabersonine ^[23], thus provoking speculation of the role of proteinprotein interactions. Therefore, to investigate this hypothesis, we tested the pairwise interactions of these enzymes using a split luciferase assay. Our findings detected that only *Cr*PAS interacted with *TiD*PAS1 and *Ti*CorS (Figure 69B; Appendix XVI), correlating with the results of *in vitro* reactions. These results suggest that protein-protein interactions play a significant role in Ψ -tabersonine biosynthesis in *T. iboga*. Furthermore, these findings reveal that orthologous protein complexes to those identified in *C. roseus* may be conserved across other MIA-producing species, raising questions about their evolution.

Figure 69. Biosynthesis of Ψ -tabersonine in *T. iboga.* **A.** Biosynthesis of Ψ -tabersonine. Figure adapted from Kamileen *et al.*, ^[23]. **B.** Pairwise interactions between Ψ -tabersonine biosynthetic enzymes tested by split-luciferase in heterologous host *N. benthamiana*.

4.3. Discussion

4.3.1. Establishment of a *C. roseus* MIA Biosynthetic Protein-Protein Interaction Network

The network of pairwise protein-protein interactions among 17 enzymes involved in vinblastine biosynthesis in *C. roseus*, all of which have enriched expression in epidermal cells ^[4] and are accessible to the cytoplasm (Table 23), was mapped using a split-luciferase assay (Figure 61). Interestingly, interactions were observed between various MIA biosynthetic enzymes, including those acting in distal parts of the pathway. Notably, *CrDPAS* was observed to interact with the downstream cyclase enzymes *Cr*TS and *Cr*CS (Figure 62), thus corroborating earlier BiFC results ^[2]. However, this interaction was not detected using other biophysical methods including AP-MS (Table 26) or DSF (Figure 65). These findings suggests that the interactions formed between these enzymes are either too weak and/or transient to be detected using these methods, or they may necessitate other conditions or factors such as post-translational modifications. Interestingly, the interactions between the CADs and α/β -hydrolases protein families (to which DPAS and the cyclase enzymes respectively belong) were revealed to be largely conserved despite their species origins and metabolic function (Figure 63). These results shed light on the evolution and conservation of a protein-protein interaction between two enzyme families.

4.3.2. Engineering MIA Enzyme-Enzyme Interactions

Protein-protein interactions between DPAS and the cyclase enzymes has been speculated to influence the metabolic flux of the intermediary molecule, dehydrosecodine. Building upon the observation that CrDPAS interacted with the cyclase enzymes *CrCS*, *CrTS*, *CrCorS* and *Ti*TabS, but not with *Ti*CorS (Figure 63C), we explored the basis of this interactions through comparative structural analysis. This led to the design of non-interacting cyclase *Ti*CorS (Figure 64A), and interacting cyclase *CrC*orS (Figure 64B) mutants, culminating in the identification of a single surface residue responsible for the interaction with *Cr*DPAS (Figure 64C-H). Future experiments will endeavour to determine the metabolic role of these mutant cyclase enzymes on the *in vivo* and *in vitro* production of MIAs.

4.3.3. Inter-pathway Interactions and Metabolic Crosstalk between MIA and Phenylpropanoid Biosynthesis in *C. roseus*

In vivo proximity tagging revealed that CrDPAS was physically close to both MIA and phenylpropanoid biosynthetic enzymes (Figure 66). Interactions between phenylpropanoid biosynthetic enzymes have been widely reported, including the lignin biosynthetic enzymes *Pt*CCR and *Pt*CAD (Figure 67A) ^[35–39, 46]. Given that many specialised metabolic pathways are proposed to have evolved from primary metabolism ^[47, 48], we speculated whether the interactions of CrDPAS had been conserved from CrCAD despite their functional divergence. To explore this, we tested the pairwise interactions between C. roseus MIA and phenylpropanoid biosynthetic enzymes (Figure 67B). Our findings revealed many interpathway interactions between proteins acting with these primary and specialised metabolic pathways, including the interaction between CrCCR and CrGS (Figure 67B). Furthermore, the reduction of lignin content in *C. roseus* leaves transiently overexpressing *Cr*GS suggests a functional role of these inter-pathway interactions in altering metabolic output within a cell (Figure 68H). These results provide insight into how the formation of protein-protein complexes can physically organise primary and specialised biosynthetic enzymes within a cell. Furthermore, these interactions may provide a mechanism enabling plants to rapidly alter their metabolism to cope with various abiotic and biotic stresses.

4.3.4. Potential Role of Protein-Protein Interactions in Wider MIA Biosynthesis

Whilst the majority of work presented in this chapter focused on enzymes derived from *C. roseus*, we also present preliminary findings of enzyme-enzyme interactions in the closely related species *T. iboga*. Ψ -tabersonine is accessed by recycling the activities of upstream biosynthetic enzymes *Cr*PAS, *Ti*DPAS1 and *Ti*CorS, highlighting the role of metabolic plasticity in generating chemical diversity (Figure 69A) ^[23]. We observed that these enzymes interacted with one another when tested for pairwise interactions using a split-luciferase assay (Figure 69B). These results suggest the functional role of protein-protein interactions in Ψ -tabersonine biosynthesis in *T. iboga*. Furthermore, these findings support that some of the protein-protein interactions identified in *C. roseus* may be conserved in the MIA biosynthetic pathways of other closely related species.

4.4. Conclusions

The mapping of the protein-protein interactions of a selection of MIA biosynthetic enzymes from *C. roseus* provides valuable insights into the organisation of complex pathways within the cell. The pairwise testing of proteins from the ADH and the α/β -hydrolases families, suggests this interaction is largely conserved, though some exhibited more specificity, such as *Cr*DPAS. However, the lack of detection using *in vitro* biophysical methods including AP-MS and DSF highlights the weak and/or transient nature of these interactions. By employing structural comparison and site-directed mutagenesis, a crucial surface residue is identified to be responsible for introducing or abolishing interaction between the cyclase enzymes and *Cr*DPAS. These results suggest the potential for metabolic tuning at this bifurcation point.

Moreover, the discovery of inter-pathway interactions between enzymes from MIA and phenylpropanoid biosynthesis suggests the role of protein complexes in organising multiple metabolic pathways within the cell. Notably, the formation of *Cr*GS-*Cr*CCR protein complexes was associated with reduced lignin content in *C. roseus* leaves, indicating these interactions play a metabolic role within the plant. These results therefore not only hold promise for bioengineering applications in MIA biosynthesis, but are offer important insights into the broader organisation and evolution of metabolic pathways within a cell.

4.5. Methods and Materials

4.5.1. Chemicals and molecular biology reagents

All solvents used for extractions were HPLC grade and solvents used for UPLC/MS were MS grade. All solvents were purchased from Sigma Aldrich. Carbenicillin, kanamycin sulfate, gentamicin sulfate, rifampicin and isopropyl β-D-1-thiogalactopyranoside (IPTG) salts, cinnamaldehydes and cinnamyl alcohol were purchased from Sigma. D-luciferin was purchased from Promega. Synthetic genes were purchased from GeneWiz. All gene amplifications and mutations were performed using Platinum II Superfi DNA Polymerase (Thermo Fisher). Constructs were transformed into vectors using the In-Fusion kit (ClonTech Takara) and colony PCR was performed using Phire II mastermix (Thermo Fisher) according to the manufacturer's instructions. PCR product purification was performed using the Zymoclean Gel DNA Recovery kit (Zymo). Plasmid purification was performed using the Wizard Miniprep kit (Promega).

4.5.2. Cloning and mutagenesis

*Cr*CorS, *Cr*HID5, *Cr*CSE, *Cr*CAD, and *Cr*2141 were previously identified from the *C. roseus* transcriptome and amplified from cDNA (Table 8). *Cr*C4H, *Cr*C3H, *Cr*CAD, and *Cr*CCR were identified from the *C. roseus* transcriptome based on sequence similarity based on previously characterised orthologs from *A. thaliana* and amplified from cDNA (Table 8). TurboID and linker sequence was based on work from Arora *et al.*, ^[26]. TurboID, *Ps*CXE1, *Gm*HIDH, *Cr*CorS M1 and *Ti*CorS M1 synthetic genes were ordered from GeneWiz (Table 8). The remaining MIA biosynthetic genes were amplified from the cDNA of their respective organism based on previously published sequences (Table 9).

Full-length genes were amplified using Platinum II Superfi DNA Polymerase (Thermo Fisher) and the corresponding primers to have the correct overhangs for pCambia, pCambia nLuc, pCambia cLuc, pHREAC, and pOPINF vectors (Table 10). cLuc Fwd and nLuc Rev primers were used to amplify constructs with the correct overhangs for the pCambia vector. *Cr*CorS, *Ti*CorS, *Cr*CS and *Cr*TS mutants were generated by overlap extension PCR as previously reported ^[32] using corresponding primers in Table 10. For protein purification, *Cr*CAD and *Cr*DPAS were cloned into pOPINF and *Cr*GS was cloned into pOPINK vectors respectively. PCR products were purified from 1% agarose gel. pOPINF and pOPINK constructs were ligated using *HindIII* and *KpnI* restriction sites, pCambia nLuc using *KpnI* and *SalI* sites, pCambia cLuc using *KpnI* and *PstI* sites, pCambia using *KpnI* and *PstI* sites, and pHREAC using *Bsal* sites. Constructs were ligated into pCambia and pOPINF vectors using the In-Fusion kit (Clontech Takara). Constructs were ligated into pHREAC using the Bsai-HFv2 Golden Gate enzyme mix (New England BioLabs) as per the manufacturer's instructions. pOPINF was a gift from Ray Owens (Addgene plasmid # 26042^[49]) and pCambia nLuc and cLuc were both gifts from Richard Dixon.

In-Fusion and Golden Gate assembly products were transformed into *Escherichia coli* TOP10 cells (ThermoFisher) by heat shock at 42 °C for 30 seconds before incubating on ice for 2 minutes. Cells were then plated on LB agar containing the respective antibiotics (100 µg/mL carbenicillin for pOPINF transformants, 100 µg/mL kanamycin for pCambia and pHREAC transformants) and grown overnight at 37 °C. Colonies were screened by colony PCR using vector-specific sequencing primers (Table 10) and positive colonies were grown overnight in 10 mL liquid LB supplemented with the appropriate antibiotic at 37 °C shaking at 200 r.p.m. Plasmid DNA was isolated using the Wizard Miniprep kit (Promega) and sequenced.

Table 8. Full-length nucleotide sequences of unpublished and synthetic genes used in thischapter.

C. roseus	ATGGCTTCCCAAACTCCAACCTCAGATGAGACTCTTTTCGATCTTTCTCCATAC
CorS	ATCAGAATCTTCAAAGATGGAAGAGTAGAAAGACTCCATAATACTCCTTATG
	TTCCCCCATCACTTAATGATCCAGAAACCGGCGTCTCTTGGAAAGACGTCCCA
	ATTTCATCAAAAGTTTCGGCTAGAATTTACCTTCCAAAAATCAGTGACCAGCA
	GGAAAATGAAGAAAAACTCCCAATTTTTGTTTATTTCCATGGGGCTGGCT
	GTCTAGAATCTGCATTCAGATCATTTTTCCACACTTTTATCAAACACTTTGTAT
	CCGAAGCCAAAGCCATTGGGGTTTCGGTTGAATACAGACTCGCCCCGGAAC
	ACCCTTTACCCGCAGCTTATGAAGATTGCTGGGAAGCCCTTCAATGGGTCGC
	TTCTCACGTTCGTCTCGACAATTCAAGCCTCAAGAGATCTATGGACAAGGAT
	CCATGGATAATCAACTATGGCGATTTCGATAGACTCTATTTGGGGGGGTGATA
	GTCCCGGTGGCAATATTGTTCACAACGTACTTCTCAGAGCTGGAAAAGAGAA
	ATTGAATGGGGGGAGTGAAAATTTTGGGGGCAATTCAGTATTACCCATATTTC
	CTGATCCGGACGAGCTCGAAACAGAGTGATTATATGGAGAATGACTACAGG
	TGTTACTGGAAATTGGCTTATCCAAATGCTCCTGGTGGAACTGATAACCCAA
	TGATAAACCCCACAGTTGAGAATGCTCCTGATTTGGCCGGATATGGTTGCTC

	CAGGCTGCTGATTTCAATGGTTGCTGATGAGACTAGAGATATAACTCTGCTT TTTATTGAGGCATTGAAGAAGAGCGGATGGAAAGGGCAATTGGATGTGGCT GATTTTGAAGCAGAGTTTTTTGACCTTTTCCAAACACAAACAGAGGTGGGCA AGAACATGATTAGACGCTTAACGTCTTTCATCAAA
<i>C. roseus</i> HID5	ATGGCCTCCTCAGATGAGATTGCTATTGATATTTCTCCAGACATCATCCTCTA TAAATCCGGTAAGGTGGTAAGAGATTTTGTCCGACCATATGTTCCGCCATCA CTTGAAGATCCAACCACCGGTGTCTCTACTAAAGACGTCCCAATCTCAGCGG AAGTTTCTGCTAGAATCTACCTTCCAAAGCTTGACACAGATGCACAAAAGTTC CCCATCTTGGTCTACTTCCACGGTGGAGGCTTCTGTTTGGTATCCGCCTTCGA TTCTTTATACAGCACTTACTTAAAATCCTTAGCCTCAGAAGCCAAAACAATTA TAATTTCAGTCGAATTCCGCCTCGCTCCTGAGAACCCTTTACCGGTAGGTTAC GAAGATTGTTGGACTGCCCTTCAATGGGTAGCTTCACATGCCGTAGTAATT CCCTGTCCTGT
<i>C. roseus</i> CSE	ATGCCTTCAGAAGCAGCGCCGCCGGCTCAGGCAACAACGCCGCCGAATTTCT GGGGAGATATGCCGGAAGAAGAATACTATTCATCACAAGGAGTTCGAAACA AAAAATCCTATTTCGAAACACCAGATGGAAAACTATTCACTCAATCATTTCTT CCGTTAGATCCACAACAACCGATCAAAGGAACGGTATATATGAGCCATGGAT ACGGGTCGGATACAGGTTGGCTATTTCAAAAGGAACGGTATATATGAGCCATGGAA TTGGGGATACGCAGTGTTCGCGGCGGATCTACTTGGGCATGGCCGATCAGA AGGGATCCGATGTTATCTTGGAGATATGAATAAAATTGCTGCTGCTTCTTTGT ATTTTTCAAGAGTGTGAGGAATAGCGATGAATATAAGGAATTGCCGGCGTT TTTGTTTGGAGAATCAATGGGTGGACTTGCTACTTGCCCGCCTCTTTTTCAAT CGGAGCCAAATACTTGGACTGGATTGATTTTCTCTGCCCCTCTTTTTGTCATTC CTGAACCCATGAAGCCCTCCAAGGCAAGG
<i>C. roseus</i> CAD	ATGGGGAGCTTGGAAGAAGCAGAGAGAAAGACAATAATGGGATGGGCAGC AACTGATCCTTCAGGACAACTTTCCCCCTACTCCTACTCCCTCAGAAACACAG

TATTCATCAGACCAAGAATCACCTCGGCATGTCCAATTACCCCATGGTTCCTG GGCACGAAGTGGTGGGGGGGGGGGGGGGGGGGGGCAAGTGCCAATGTGGAGCAAG TTCAGAGTTGGTGGTGGCGGTGGGGGGGGGGGGGGAAAGAGCAAG TTCAGAGTCATGGCGAAGCAGAAGCAGAAGATGAGGGCAATACTGCAACAAAAAGATT TGGACCACAGAGCAGAAGCAGAAGCATGCCCACCACACAGAGGGGGAATTG GTAGTCCAGAGCAAGTGGGCTGTGACCAGAAGATGGGCAATACCCAAGGGGGAA TGGATCCAGAGCAAGTTGGGCGTAAAGCAAGAGGGGGCAATACCCAAGGGGGAAGGGAGGCATAT TGGATCAGAGCAAGTGGGGCTTGGGCGCTGACGACATGGGGGCAAAATAGCCAAAGCAAGGGGGCGCTGACAGGGCATAATGGGAGGGCACAAGGGAGGCACATAGGGAGGCTGCAGGGCGCTGACGCATACTTGGTAGGCAGCCCAAGGGGGGAAAGA TGCACGGAGGCCTGGGGGGCGCGCGCGCGCGCGCACACTTGGTGGCGGCTGAGGAAAGTTGACATTATGACACAGGTCCGATGGCAGGAAGAGAAGAAGA TGCACGGAGGCCATATTTACCATTGGCAGCTTGCAAGGGGAAAGA TGCACGGAGGCCATAATTACAGGAAACTTACCTACGGTGGGGAAAGGA GAAGGAAGTCAATAACAGGAAACTTACTTGCAAAGGAAGG		GTCCTGAAGATGTTTATATCAGGGTTATATGCTGCGGAGTTTGCCATACCGA
GGCACGAAGTGGTAGGTGGAAGTGGTGGAGGTGGGATCCAATGTGAGCAAG TTCAGAGTTGGTGAGCGTTGGAAGCATGGGAGTAGGCATAATCGTTGGATCCTGCCAG AACTGCAGATCATGCGAAGCAGAGATAGAGCAATACTGGCAACAAAAAGTT TGGACATACAATGATGGTGTATACAGACGGCAATCCCATCCAGGAGGATTG CTAGTGCCATGGTCGTTGACCAGAAGTTTGTGGGAAAATACCAGAGGGGA TGGACTCCAGGTGCTGACGCCTAACGGGGACAAGTGGACAAGTGGACAAGGAGGCATAT TAGGACTTGGTGGTGTGGGCATAAGGGAGAAAGTGGACTAAAGAGGAGGCATAT TAGGACTGGGGGGTGACGCTATACTTGGGCATAAGAGAGAG		TATTCATCAGACCAAGAATCACCTCGGCATGTCCAATTACCCCATGGTTCCTG
TTCAGAGTTGGTGAGCGTGTTGGAGTAGGCATAATCGTTGGATCCTGCCAG AACTGCAGATCATGCGAAGCAGAGCAGAGATAGAGCAATACTGCAACAAAAAGATT TGGACATACAATGATGTGTATAACAGACGGCAATCCCACTCAAGGTGGATTTG CTAGTGCCATGGTCGTGGCCTTGACCAGAAGTTGTGAGAGTGAAAATACCAGAGGGGA TGGACTACAAGTAGCACCCTTACTCTGTGCTGGGGTGACAGTGATAA GTCCATTGAGCCATTTTGGGCATAGGGAGTGAAAATAGCCAAAGCAATGG GGCATCATGTAACGGTCATAAGTCTTCTAGATAAGAAGAAGAGAGGAGGAAGCT TGGACCACCTGGGCGCTGACGCATACTTGGTCAGCTCGAATGAGAGGAAGAAGA TGCAGGAGCCCCAGATTCACTTGATACGGCTGATGAGGAAAGA TGCAGGAGCCCCAGATTCACTTGGTCAACGCCTGATGGGAAGAAGT GACCACCTGGGCGCTGACGCATACTTGGTAACACGCAAAGAAGGAAG		GGCACGAAGTGGTAGGTGAAGTGGTGGAGGTGGGATCCAATGTGAGCAAG
AACTGCAGATCATGCGAAGCAGAGATAGAGCAATACTGCAACAAAAAGATT TGGACATACAATGATGTGTATACAGACGGCAATCCCACTCAAGGTGGATTTG CTAGTGCCATGGTCGTTGACCAGAAGTTTGTAGTGAAAATACCAGAGGGTA TGGATCCAGAGCAATTGGGCGTAAGCACCCTTACTGTGCTGGGGGTGACAGTGATA GTCCATTGAGCCATTTTGGGCTAAAGCAAAGTGGACTAAGAGGAGGAGCATAT TAGGACTTGGTGGTGTTGGGCATAAGGCAGAAGAGAGGAGGACATT GGACCACCTGGGCGCTGAACGCATACTGGTCAGGCTCTGATGAGGGAAGA TGCAGGAGGCTGGCAGATTCACTTGGTCAGGTCTGATGAGGGAAGA TGCAGGAGGCTGCCAGATTCACTTGGTCAGGTCGCGAGGAGGAGGCT CATGCTGGAGCCCATATTTATCATTGTTGAAAGTTGATGGAAGAGGGGGAAGA GAAGGAAG		TTCAGAGTTGGTGAGCGTGTTGGAGTAGGCATAATCGTTGGATCCTGCCAG
TGGACATACAATGATGTGTATATACAGACGGCAATCCCACTCAAGGTGGATTTG CTAGTGCCATGGTCGTTGACCAGAAGTTGTAGTGAAAATACCAGAGGGGA TGGACCATGCCAGGTGTGACCACCCTTACTCTGTGCTGGGGTGACAGTGTAA GTCCATTGAGCCATTTTGGGCTAAAGCAAAGTGGACTAAGAGAGAG		AACTGCAGATCATGCGAAGCAGAGATAGAGCAATACTGCAACAAAAAGATT
C. roseus ATGGCCGGAAAATCACCAGAAGTTACGGGAGAAGTTACGAGAGGAGAAGAAGAGAGAAATCACCAGAGGAGAAGTAGGGGGCACCATGGGGGCTGAAGGCAGAGAGGAGGAGAGAGA		
C. roseus ATGGCCGGAAAATCACCACGAAGTAGCACGATTATAGGAAGAGAGAG		
GTCCATTGAGCCATTTTGGGCTAAAGCAAGCGAAGGGGGCTAAGAGGAGGGATAT TAGGACTTGGTGTTGGGCATATGGGAGTGAAAATAGCCAAAGGAGGAGAGTT TGGACCACCTGGGCGCTACGGCATATGGGAGTGAAAATAGCCAAAGCAATGG GGCATCATGTAACGGTCATAAGTTCTTCAGATAAGAAGAGAGAG		
C. roseus ATGGCCGGAAAATCACCAGGAGGTGCAAAATGGGAGTGAAAATAGCCAAAGCAATGG GCCATCATGTAACGGTCATAAGTTCTTCAGATAAGAAGAGAGAG		
GGCATCATGTAACGGTCATAAGTTCTTCAGATAAGAGAGAG		
GGCATCATG TACGGTCATAAGTTCTTCAGATAAGAAGAGAGAGGAAGGA		
TGGACCACCTGGGCGCTGACGCATACTTGGTTACATTATGACACAGCTTCTGTTTTT CAGGAGGCTGCAGATTCACTTGATTACATTATGACACAGGTTCGTGTTTT CATCCTCTGGAGCCATATTTATCATTGTAAAGTTGATGGAAAGTTGATTTGATGGAAAGTTGATTTACACTCCAATGGTTATGCTAG GAAGGAAGTCAATAACAGGAAGCTTTTATAGGTAGCATAAAAGAGACAGAA GAAGGAAGTCAATAACAGGAAGCTTTTATAGGTAGCATAAAAGAGACAGAA GAAGTACTTGAGTTCTGCAAGGAAAATAACCTAACTTCCCAAATTGAAGTAG TGAAAATGGATTATATCAACAAGGCTTTTGAAAGACTTGAAAAGAATGATGT CAGATATAGGTTTGTTGTGGACGTTGCCGGCAGCAACCTTCTTGTTGACCAC TAA C. roseus ATGGCCGGAAAATCACCAGAAGAGGAGCACCCAGTCAAGACCTATGGATTG GCTGCTCATGATTCATCTGGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGC AACTCTTGAGGATGATGTGAGGTTCAAGGTGGCGACAAGCTATGGTGGATTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGTGGGGGTATTTCGACCTATCCTCTTGT ACTGACCTTCATTTCGCTAAGAATGAGTGGGGGAAGTTACAGAGGCCGGCGAAAGTTA CAAGGACATGAAATCGTAGGGGAACTTACAGAGGCTGGCGGCGACAAGTTA CAAGGACATGAAATCGTAGGGGAACATTACAGAGGCTGGCGGCGACAAGTTA CAAGGTCAACAGGTGGAGATGAACGATGGTGGTGGTGGTGGTGGTGGTGGTGGTGGCGGCACAATAGGAGGAGGAGGAGACCAAT GGTGCTAACCTATGCAAGGTCGAAAGACGATGGTTGGTGGTGGCGGCGACAAAGTAGGGGGACCATTGGCGAGACGATTGGCCAAGGGAGCCACATAGGAGAGAGGAGGCCAAGGGGGAGGACCAATGGGGGCAAGAAAGA		GGCATCATGTAACGGTCATAAGTTCTTCAGATAAGAAGAGAGAG
TGCAGGAGGCTGCAGATTCACTTGATTACATTATTGACACAGTTCCTGTTTTT CATGCTCTCTGGAGCCATATTTATCATTGTTGAAAGTTGATGGAAAGTTGATGGGAGATTATTAACCAGCCTTTGCAATTATCACTCCCAAATGGATAGAGAGAG		TGGACCACCTGGGCGCTGACGCATACTTGGTCAGCTCTGATGAGGGAAAGA
CATCCTCTGGAGCCATATTTATCATTGTTGAAAGTTGATGGAAAGTTGATGATHTT GATGGGAGTTATTAACCAGCCTTTGCAATTATACGTCAATGGTTATGCTAG GAAGGAAGTCAATAACAGGAAGCTTTATAGGTAGCATAAAAGAAGACAGAA GAAGTACTTGAGTTCTGCAAGGAAGCTTTTGAAAGCTTGCAAAATGAATAGATGT TGAAAATGGATTATATCAACAAGGCTTTTGAAAGACTTGAAAAGAATGATGT CAGATATAGGTTTGTTGTGGACGTTGCCGGCAGCAACCTTCTTGTTGACCAC TAA C. roseus ATGGCCGGAAAATCACCAGAAGAGGAGGCACCCAGTCAAGACCTATGGATTG GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGCC AACTCTTGAGGATGATGTGAGGTTCAAGGTGGCTATATTGTGGGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGTGGGGTATTTCGACCATAGGGCGAAAGTTA CCAGGACATGAAATCGTCAGGGGAAGTTACAGGGCGGCGAAAGTTA CCAGGACATGAAATCGTAGGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA CCAGGACATGAAATCGTAGGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA CCAGGACATGAAATCGTAGGGGGAAGTTGGAGGTCGGCGGCAAAAGT GCCGCACTTGTGATAATTGTCGTGCAGACTGTGGAGCGCCCCATAGCTTGGATGATG GCCGCACTTGTGATAATTGTCGTGCAGATCTTGAGAACCATTTGTCCCAAAAT GGTGCTAACCTATGCAAGGTCCAAACGTTGATGGAACGATTACCTATGGAGGC TATTCCAATGAGATGGTATGCAATGAACACTTTGTTCGTTC		TGCAGGAGGCTGCAGATTCACTTGATTACATTATTGACACAGTTCCTGTTTTT
GATGGGAGTTATTAACCAGCCTTTGCAATTTATCACTCCAATGGTTATGCTAG GAAGGAAGTCAATAACAGGAAGCTTTATAGGTAGCATAAAAGAAGAACAGAA GAAGTACTTGAGTTCTGCAAGGAAAATAACCTAACTTCCCAAATTGAAGTAG TGAAAATGGATTATATCAACAAGGCTTTTGAAAGACTTGAAAAGAATGATGT CAGATATAGGTTTGTTGTGGACGTTGCCGGCAGCAACCTTCTGTTGACCAC TAA <i>C. roseus</i> ATGGCCGGAAAATCACCAGAAGAGGAGCACCCAGTCAAGACCTATGGATTG GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGC AACTCTTGAGGATGATGTGAGGTTCAAGGTGCTATATTGTGGGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGGTGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA CAAAGGTCAAGGTTGGAGATCAAAGTTGGTGTTGGCTGCTTGGTTGG		CATCCTCTGGAGCCATATTTATCATTGTTGAAAGTTGATGGAAAGTTGATTTT
GAAGGAAGTCAATAACAGGAAGCTTTATAGGTAGCATAAAAGAGACAGAA GAAGTACTTGAGTTCTGCAAGGAAAATAACCTAACTTCCCAAATTGAAGTAG TGAAAATGGATTATATCAACAAGGCTTTTGAAAGACTTGAAAAGAATGATGT CAGATATAGGTTTGTTGTGGACGTTGCCGGCAGCAACCTTCTTGTTGACCAC TAA <i>C. roseus</i> ATGGCCGGAAAATCACCAGAAGAGGAGCACCCAGTCAAGACCTATGGATTG GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGC AACTCTTGAGGATGATGTGAGGTTCAAGGTGCTATATTGTGGGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGGTGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGCTTGGTTGG		GATGGGAGTTATTAACCAGCCTTTGCAATTTATCACTCCAATGGTTATGCTAG
GAAGTACTTGAGTTCTGCAAGGAAAATAACCTAACTTCCCAAATTGAAGTAGTGAAAATGGATTATATCAACAAGGCTTTTGAAAGACTTGAAAAGAATGATGTCAGATATAGGTTTGTTGTGGGACGTTGCCGGCAGCAACCTTCTGTTGACCACTAAC. roseus2141GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGCAACTCTTGAGGATGATGTAGGGGTTCAAGGTGCTATATTGTGGGATTTGTCATACTGACCTTCATTTCGCTAAGAATGAGGGGCAAATTGTGGGGATTTGTGGCACAAGTTAACTGACCTTCATTTCGCTAAGAATGAGGGGAGTATTTGGACCTATCCTCTTGTACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCAAAGTTACAAAGGTCAAGGTTGGAGATAAAGTTGGCTGTGGCGCGCGC		GAAGGAAGTCAATAACAGGAAGCTTTATAGGTAGCATAAAAGAGACAGAA
TGAAAATGGATTATATATCAACAAGGCTTTTGAAAAGACTTGAAAAGAATGATGT CAGATATAGGTTTGTTGTGGGACGTTGCCGGCAGCAACCTTCTGTTGACCAC TAA C. roseus ATGGCCGGAAAATCACCAGAAGAGGAGGAGCACCCAGTCAAGACCTATGGATTG 2141 GCTGCTCATGATTCATCTGGGGTTTTATCTCCCGTTCAAATTCTCCAGGAGGGC AACTCTTGAGGATGATGTGAGGTTCAAGGTGCTATATTGTGGGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGTGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCGAAAGTTA CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTGGCTGCTTGGTTGG		GAAGTACTTGAGTTCTGCAAGGAAAATAACCTAACTTCCCAAATTGAAGTAG
CAGATATAGGTTTGTTGTGGACGTTGCCGGCAGCAACCTTCTGTTGACCAC TAA C. roseus 2141 ATGGCCGGAAAATCACCAGAAGAGGAGGAGCACCCAGTCAAGACCTATGGATTG GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGC AACTCTTGAGGATGATGTGAGGTTCAAGGTGCTATATTGTGGGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGGGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCGAAAGTTA CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGCTTGGTTGG		TGAAAATGGATTATATCAACAAGGCTTTTGAAAGACTTGAAAAGAATGATGT
TAAC. roseusATGGCCGGAAAATCACCAGAAGAGGAGCACCCAGTCAAGACCTATGGATTG GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGC AACTCTTGAGGATGATGTGAGGTTCAAGGTGCTATATTGTGGGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGTGGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGCTTGGTTGG		CAGATATAGGTTTGTTGTGGACGTTGCCGGCAGCAACCTTCTTGTTGACCAC
C. roseus 2141 ATGGCCGGAAAATCACCAGAAGAGGAGCACCCAGTCAAGACCTATGGATTG GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGC AACTCTTGAGGATGATGTGAGGTTCAAGGTGGCTATATTGTGGGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGTGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGCTTGGTTGG		ТАА
C. roseus ATGGCCGGAAAATCACCAGAAGAGGAGCACCCCAGTCAAGACCTATGGATTG 2141 GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGC AACTCTTGAGGATGATGTGAGGTTCAAGGTGGGGTATTTCGGCGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGTGGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGGCGGCGGCAAAGTTA CAAAGGTCAAGGTTGGAGAATAAAGTTGGTGTTGGCTGGC		
2141 GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGC AACTCTTGAGGATGATGTGAGGTTCAAGGTGCTATATTGTGGGGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGTGGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAGGGGGAAGTTACAGAGGGTCGGCGGCAAAGTTA CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGCTTGGTTGG	C. roseus	AIGGCCGGAAAAICACCAGAAGAGGGGGGGCACCCAGICAAGACCIAIGGAIIG
AACTCTTGAGGATGATGTGAGGTTCAAGGTGCTATATTGTGGGGATTTGTCAT ACTGACCTTCATTTCGCTAAGAATGAGTGGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAAGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGCTTGGTTGG	2141	GCTGCTCATGATTCATCTGGGGTTTTATCTCCGTTCAAATTCTCCAGGAGGGC
ACTGACCTTCATTTCGCTAAGAATGAGTGGGGTATTTCGACCTATCCTCTTGT ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGGCT		AACTCTTGAGGATGATGTGAGGTTCAAGGTGCTATATTGTGGGATTTGTCAT
ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGCTTGGTTGG		ACTGACCTTCATTTCGCTAAGAATGAGTGGGGTATTTCGACCTATCCTCTTGT
CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGCTTGGTTGG		ACCAGGACATGAAATCGTAGGGGAAGTTACAGAGGTCGGCGGCAAAGTTA
GCCGCACTTGTGATAATTGTCGTGCAGATCTTGAGAACTATTGTCCCAAAATGGTGCTAACCTATGCAAGTCCAAACGTTGATGGAACGATTACCTATGGAGGCTATTCCAATGAGATGGTATGCAATGAACACTTTATTGTTCGTTTCCCAGAGAACCTACCACTTGATGGTGGGGCACCATTGCTTTGTGCCGGTATTACTGTGTACAGTCCAATGAAATACTATGGCTTTGCCAAACCCGGGAGCCACATAGCTGTTAATGGTCTTGGTGGACTTGGCCATGTGGCTGTTAAGTTTGCAAAGGCCATGGGAGCAAAAGTGACAGTTATAAGTACATCTGAGGGCAAGAAAGA		CAAAGGTCAAGGTTGGAGATAAAGTTGGTGTTGGCTGCTTGGTTGG
GGTGCTAACCTATGCAAGTCCAAACGTTGATGGAACGATTACCTATGGAGGCTATTCCAATGAGATGGTATGCAATGAACACTTTATTGTTCGTTTCCCAGAGAACCTACCACTTGATGGTGGGGCACCATTGCTTTGTGCCGGTATTACTGTGTACAGTCCAATGAAATACTATGGCTTTGCCAAACCCGGGAGCCACATAGCTGTTAATGGTCTTGGTGGACTTGGCCATGTGGCTGTTAAGTTTGCAAAGGCCATGGGAGCAAAAGTGACAGTTATAAGTACATCTGAGGGCAAGAAAGA		GCCGCACTTGTGATAATTGTCGTGCAGATCTTGAGAACTATTGTCCCAAAAT
TATTCCAATGAGATGGTATGCAATGAACACTTTATTGTTCGTTTCCCAGAGAACCTACCACTTGATGGTGGGGCACCATTGCTTTGTGCCGGTATTACTGTGTACAGTCCAATGAAATACTATGGCTTTGCCAAACCCGGGAGCCACATAGCTGTTAATGGTCTTGGTGGACTTGGCCATGTGGCTGTTAAGTTTGCAAAGGCCATGGGAGCAAAAGTGACAGTTATAAGTACATCTGAGGGCAAGAAAGA		GGTGCTAACCTATGCAAGTCCAAACGTTGATGGAACGATTACCTATGGAGGC
CCTACCACTTGATGGTGGGGCACCATTGCTTTGTGCCGGTATTACTGTGTAC AGTCCAATGAAATACTATGGCTTTGCCAAACCCGGGAGCCACATAGCTGTTA ATGGTCTTGGTGGACTTGGCCATGTGGCTGTTAAGTTTGCAAAGGCCATGG GAGCAAAAGTGACAGTTATAAGTACATCTGAGGGCAAGAAAGA		TATTCCAATGAGATGGTATGCAATGAACACTTTATTGTTCGTTTCCCAGAGAA
AGTCCAATGAAATACTATGGCTTTGCCAAACCCGGGAGCCACATAGCTGTTA ATGGTCTTGGTGGACTTGGCCATGTGGCTGTTAAGTTTGCAAAGGCCATGG GAGCAAAAGTGACAGTTATAAGTACATCTGAGGGCAAGAAAGA		CCTACCACTTGATGGTGGGGGCACCATTGCTTTGTGCCGGTATTACTGTGTAC
ATGGTCTTGGTGGACTTGGCCATGTGGCTGTTAAGTTTGCAAAGGCCATGG GAGCAAAAGTGACAGTTATAAGTACATCTGAGGGCAAGAAAGA		AGTCCAATGAAATACTATGGCTTTGCCAAACCCGGGAGCCACATAGCTGTTA
GAGCAAAAGTGACAGTTATAAGTACATCTGAGGGCAAGAAAGA		ATGGTCTTGGTGGACTTGGCCATGTGGCTGTTAAGTTTGCAAAGGCCATGG
TCAATCGTTTGGGTGCAGATGCATTTTTGTTGAGCAGTAATCCAGAAGCACT GCAGGCTGCAACAGGCACATTTGATGGCATACTTAATACTATTTCTGCTAAG CACGCTATTATCCCATTGCTTGGTCTACTAAAGTCTCATGGCAAGCTTGTTCT TCTTGGGGCACCCCCGGAACCACTTGATCTTCACTCTGCTCCTTTGCTTATGG GGAGGAAGATGGTTGCTGGAAGTAGCATTGGAGGATTGAAGGAGACCCAA GAGATGCTTGATTTTGCCGGAAAGCATAACATTACTGCAGATATAGAACTCA TTTCCGCGGACAATATCAACACAGCTTTGGAGCGTCTGGCCAAGGGTGATGT TAGATATCGCTTTGTCCTTGACGTTGCAAAGACCTTGAAAGCTCCTTAA		GAGCAAAAGTGACAGTTATAAGTACATCTGAGGGCAAGAAAGA
GCAGGCTGCAACAGGCACATTTGATGGCATACTTAATACTATTTCTGCTAAG CACGCTATTATCCCATTGCTTGGTCTACTAAAGTCTCATGGCAAGCTTGTTCT TCTTGGGGCACCCCCGGAACCACTTGATCTTCACTCTGCTCCTTTGCTTATGG GGAGGAAGATGGTTGCTGGAAGTAGCATTGGAGGATTGAAGGAGACCCAA GAGATGCTTGATTTTGCCGGAAAGCATAACATTACTGCAGATATAGAACTCA TTTCCGCGGACAATATCAACACAGCTTTGGAGCGTCTGGCCAAGGGTGATGT TAGATATCGCTTTGTCCTTGACGTTGCAAAGACCTTGAAAGCTCCTTAA		TCAATCGTTTGGGTGCAGATGCATTTTTGTTGAGCAGTAATCCAGAAGCACT
CACGCTATTATCCCATTGCTTGGTCTACTAAAGTCTCATGGCAAGCTTGTTCT TCTTGGGGCACCCCCGGAACCACTTGATCTTCACTCTGCTCCTTTGCTTATGG GGAGGAAGATGGTTGCTGGAAGTAGCATTGGAGGATTGAAGGAGACCCAA GAGATGCTTGATTTTGCCGGAAAGCATAACATTACTGCAGATATAGAACTCA TTTCCGCGGACAATATCAACACAGCTTTGGAGCGTCTGGCCAAGGGTGATGT TAGATATCGCTTTGTCCTTGACGTTGCAAAGACCTTGAAAGCTCCTTAA		GCAGGCTGCAACAGGCACATTTGATGGCATACTTAATACTATTTCTGCTAAG
TCTTGGGGCACCCCCGGAACCACTTGATCTTCACTCTGCTCCTTTGCTTATGG GGAGGAAGATGGTTGCTGGAAGTAGCATTGGAGGATTGAAGGAGACCCAA GAGATGCTTGATTTTGCCGGAAAGCATAACATTACTGCAGATATAGAACTCA TTTCCGCGGACAATATCAACACAGCTTTGGAGCGTCTGGCCAAGGGTGATGT TAGATATCGCTTTGTCCTTGACGTTGCAAAGACCTTGAAAGCTCCTTAA		
GGAGGAAGATGGTTGCTGGAAGTAGCATTGGAGGATTGAAGGAGACCCAA GAGATGCTTGATTTTGCCGGAAAGCATAACATTACTGCAGATATAGAACTCA TTTCCGCGGACAATATCAACACAGCTTTGGAGCGTCTGGCCAAGGGTGATGT TAGATATCGCTTTGTCCTTGACGTTGCAAAGACCTTGAAAGCTCCTTAA		TCTTGGGGCACCCCCGGAACCACTTGATCTTCACTCTGCTCCTTTGCTTATGG
GAGATGCTTGATTTTGCCGGAAAGCATAACATTACTGCAGATATAGAACTCA TTTCCGCGGACAATATCAACACAGCTTTGGAGCGTCTGGCCAAGGGTGATGT TAGATATCGCTTTGTCCTTGACGTTGCAAAGACCTTGAAAGCTCCTTAA		GGAGGAAGATGGTTGCTGGAAGTAGCATTGGAGGATTGAAGGAGACCCAA
TTTCCGCGGACAATATCAACACAGCTTTGGAGCGTCTGGCCAAGGGTGATGT TAGATATCGCTTTGTCCTTGACGTTGCAAAGACCTTGAAAGCTCCTTAA		
TAGATATCGCTTTGTCCTTGACGTTGCAAGACCTTGAAAGCTCCTTAA		
TAGATATEGETTIGTEETTGAEGTTGEAAGACETTGAAGCTEETTAA		
C. roseus ATGCCGTCAGATTCCGGCAGAGTCGTCTGTGTTACCGGTGCCGCCGGTTACA	C. roseus	ATGCCGTCAGATTCCGGCAGAGTCGTCTGTGTTACCGGTGCCGCCGGTTACA
CCR TCGCTTCATGGATTGTCAAACTTCTTCTTGAAAAAGGCTACACCGTCAGAGG	CCR	TCGCTTCATGGATTGTCAAACTTCTTCTTGAAAAAGGCTACACCGTCAGAGG
AACTGTTAGAAATCCAGATGATCCAAAGAACAATCATTTAAGGGAATTAGAA		AACTGTTAGAAATCCAGATGATCCAAAGAACAATCATTTAAGGGAATTAGAA
GGAGCAAAGGAAAGATTAACACTGTGTAAAGCTGATCTACTTGATTATCAGA		GGAGCAAAGGAAAGATTAACACTGTGTAAAGCTGATCTACTTGATTATCAGA
GTTTAAGACAAGCAATCGACGGCTGTGATGGAGTTTTCCACACTGCTTCACC		GTTTAAGACAAGCAATCGACGGCTGTGATGGAGTTTTCCACACTGCTTCACC

	AGTTACCGATGACCCAGAACAAATGGTGGAGCCAGCAGTGATTGGGACAAA GAATGTAATCAATGCCGCTGCCGAAGCTAAGGTCCGCCGTGTGGTTTTCACC TCGTCAATTGGTGCTGTTCATATGGATCCAAACAGGCATCCTGATAAAGTCG TTGATGAGACTTGCTGGAGTGATCTTGATTTCTGCAAGAACACTAAGAATTG GTATTGCTACGGGAAGGCAGTGGCGGAACAAACGGCATGGGAAGAAGCCA AAGCTAAAGGAGTGGACCTTGTGGTGATCACCCCTGTTTTGGTATTAGGGCC ATTGCTACAAAACACAGTGAATGCNAGNGTTCTTCACATACTAAAGTATTTG ACTGGCTCGGCAAAGACATATGCCAATTCAGTACAAGCATATGTGCATGTTA AAGATGTTGCATTGGCACATATACTTCATTTGAGACTCCTTCTGGCTTCCGGA AGATACCTTTGTGCCGAAAGTGTGCTTCATCGAGGCGAAGTAGTTGAAATTC TGGCTAAATTTTTTCCGGAGTATCCTATCC
<i>С. roseus</i> СЗН	ATGAACATTTCTTCCCCACTACCGCCAACTCTCCACCACTTCTCCCCTCCTATG GCCCTTCTTTCTCTATTGCTCCTCACGTTTATTTTTTCTCTTTCTCGCTTACTACC TTTACCAAAAATTCCGATTCAAACTTCCACCCGGTCCCGCCGTTACCCATC GTCGGAAACCTCTACGACGTTAAACCGGTGGGGTCCCGACGTTACCCATC GTCGGAAACCTTATGGACCGATTATATCGGTTTGGTTT

C. roseus	ATGGATCTTCTCCTCTTAGAGAAGACCCTTTTGGGTCTATTTGCGGCCATCAT
C411	
	AAGAAGIIIIGCACACICAGGGGGIIGAAIIIGGCICCCGIACIAGAAAIGI
	TGTGTTTGATATCTTCACAGGAAAAGGACAGGACATGGTTTTTACCGTTTAT
	GGTGAACATTGGAGGAAAATGAGAAGAATCATGACTGTCCCGTTTTTACTA
	ATAAAGTAGTTCAACAGTATAGATATGGATGGGAAGAAGAGGCAGCCCGTG
	TTGTTGAGGATGTGAAGAAAAATCCTGAATCTGCAACTAATGGGATTGTATT
	GAGGAGAAGGTTACAACTTATGATGTACAATAACATGTACAGGATTATGTTT
	GATAGAAGGTTTGAGAGTGAGGATGATCCTCTTTTTGTTAAACTTAAGGCCT
	TGAATGGTGAAAGGAGTAGATTGGCCCAGAGCTTTGAGTACAATTATGGCG
	ATTTCATTCCAATTTTGAGGCCTTTCTTGAGAGGTTATTTGAGGATCTGTAAG
	GAGGTTAAGGAGAGACGATTGCAGCTTTTCAAGGATTACTTCGTCGACGAA
	AGGAAGAAGTTGGGGAGTACAAAAAGCATGGATAACAACAGCTTGAAATG
	TGCCATTGATCATATCCTAGAAGCTCAGCAAAAGGGAGAGATCAACGAGGA
	TAATGTCCTTTACATTGTTGAAAACATCAATGTTGCTGCCATCGAGACAACAC
	TATGGTCCATTGAGTGGGGAATTGCAGAATTGGTGAACCACCCTGAAATCCA
	GAAGAAGCTACGAGACGAGCTTGATACTGTGCTAGGACCCGGCGTGCAGAT
	CACTGAACCGGATACTTACAAGTTACCATACCTTCAGGCAGTGATCAAGGAG
	ACACTTCGTCTCAGAATGGCGATTCCCCTTTTGGTGCCTCACATGAACCTACA
	CGATGCCAAGCTTGGTGGCTATGACATTCCAGCGGAGAGCAAAATACTGGT
	GAATGCCTGGTTTTTAGCCAACAATCCGGAGCATTGGAAGAAGCCTGAAGA
	GTTCAGACCGGAAAGGTTCTTGGAAGAGGAATCGAAAGTTGAGGCTAATGG
	ΑΤΤΑΤΤΟΤΑGCATTGCCAATTCTTGGCATTACTATAGGACGTTTGGTTCAGAA
	GOTOGACAATTCAGTTGCACATTTGAAGCACTCTACTATTGTACTCAAGCC
C. roseus	ATGGCTTCCCAAACTCCAACCTCAGATGAGACTCTTTTCGATCTTTCTCCATAC
CorS Int	ATCAGAATCTTCAAAAACGGAAAGGTAGAAAGACTCCATAATACTCCTTATG
M1	TTCCCCCATCACTTAATGATCCAGAAACCGGCGTCTCTTGGAAAGACGTCCCA
	ATTTCATCAAAAGTTTCGGCTAGAATTTACCTTCCAAAAATCAGTGACCAGCA
	GAAGAATGAAGAAAAACTCCCAATTTTTGTTTATTTCCATGGGGCTGGCT
	GTCTAGAATCTGCATTCAGATCATTTTTCCACACTTTTATCAAACACTTTGTAT
	CCGAAGCCAAAGCCATTGGGGTTTCGGTTGAATACAGACTCGCCCCGGAAC
	ACCCTTTACCCGCAGCTTATGAAGATTGCTGGGAAGCCCTTCAATGGGTCGC
	TTCTCACGTTCGTCTCGACAATTCAAGCCTCAAGAGATCTATGGACAAGGAT
	CCATGGATAATCAACTATGGCGATCTCGATAGACTCTATTTGGGGGGGTGATA
	GTCCCGGTGGCAATATTGTTCACAACGTACTTCTCAGAGCTGGAAAAGAGAA
	ATTGAATGGGGGGGGTGAAAATTTTGGGGGGCAATTCAGTATTACCCATATTTC
	CTGATCCGGACGAGCTCGAAACAGAGTGATTATATGGAGAATGACTACAGG
	TGTTACTGGAAATTGGCTTATCCAAATGCTCCTGGTGGAACTGATAACCCAA
	TGATAAACCCCACAGTTGAGAATGCTCCTGATTTGGCCGGATATGGTTGCTC

	TTTCTTGAGGCATTGAAGAAGAGCGGATGGAAAGGGCAATTGGATGTGGCT GATTTTGAAGCAGAGTTTTTTGACCTTTTCCAAACACAAACAGAGGTGGGCA AGAACATGATTAGACGCTTAACGTCTTTCATCAAA
T. iboga CorS Int M1	ATGGCTAATTCAACTGCAAACTCTGATGAGATTGTTTTCGATCTTCATCCATA CATCAGAGTCTTTAAAGATGGCAGAGTAGAAAGACTTCACGACACCCCATAT GTTCCGCCATCACTTGAAGATCCAGCCACCGGTGTATCCTGGAAAGACGTCC CAATTTCATCCGACGTTTCAGCTAGAGTCTACCTCCCGAAGATCAGCGAAGC GGAAGAAAAAAAGCTCCCCCATTTTCGTCTATTTCCATGGTGCAGGCTTCTGTC TGGAATCAGCCTTCAAATCATTTTCCATACTTATGTTAAGCACGTTGTTGCC GAAACCAAAGCTGTCGGAGTTTCGGTTGAGTACAGACTCGCCCCGAGCAC CCTTTACCTGCGGCTTATGAAGATTGCTGGACTGCCCTTCAGTGGGGTGGCTT CCCATGTTGGTCTTGACAACTCCAGCCTCAAGAATGCTATTGATAAAGAGCC TTGGATAATCAACCATGGCGACTTCAATAAGCTTTACTTGGGTGGTGACAGT CCTGGTGGAAATATTGTGCACAACGTACTGATTAGAGCTGGTAAGGAGAGC TTGCATGGCGGAGTGAAAATCCGGGGTGCAATTCTTTATTACCCATATTTCTT GATCAGGACAAGCAAAAGACAGAGTGATTATATGGAGATTGACTATAGAGG CTACTGGAAGTTGGCTTATCATCGGCGCGCACTGACAACCCAATG ATAAACCCTGTAGCTAAGAATGCTCCTGATTTGGCCGGATATGGATGTTCGA GGCTGCTTGTTTCCATGGTTCCGAGAGACCAGAGATATAACCCTTCTAC ATGAGGCATTGAAGAAGACAGAGTGGATGAAATTGGAAGTTGGACAGT CTACGAAGCACAAGAAGAGAGTGGGTGGAAAGGTGAATTGGAAGTGGGTGA ATTGAGGCATTGAAGAAGACGGGTGGAAAGGTGAATTAACCCTTCTCAC ATTGAGGCATTGAAGAAGAGAGGTGGATGGAAATGGAAGTGGGTGA CTACCGAAGCACATTCTTTGGTCCTGGACAAGGTGAATTGGAAGTGGGTGA CTACGAAGCACATTCCATGGTTCCAGAGACCAGAGATATAACCCTTCTCAC ATTGAGGCATTGAAGAAGAGTGGGTGGAAAGGTGAATTGGAAGTGGGTGA CTACGAAGCACATTCCTTGATTTGTCCACCAAAGGAGAGAAGTGGGTGA ACTTGGATCAAACGTTCAAGGAGTGGATTCAACAAAGGAGAGAGA
C. roseus DPAS- GGGGS- TurboID- FLAG	ATGGCCGGAAAATCAGCAGAAGAAGAAGAACATCCCATTAAGGCTTACGGATGG GCTGTTAAAGATAGAACAACTGGGATTCTTTCTCCCTTCAAATTTTCCAGAAG GGCAACAGGTGATGATGATGATGTCCGAATTAAGATACTCTACTGTGGAATTGT CACACTGATCTTGCCTCAATCAAGAACGAATACGAGGTTGTACTTATCTTATCCTCTT GTGCCCGGGATGGAGATCGTTGGAATAGCAATACGAAGGTTGGAAAAGATGT CACAAAAGTGAAAGTTGGCGAAAAAGTAGCATTATCAGCCTATTTAGGATGT TGTGGCAAATGCTATAGTTGTGTAAATGAACTCGAGAATTATTGTCCGGAAG TAATCATAGGTTATGGCACCCCATACCATGACGGAACAATTTGCTATGGGGG CCTTTCAAACGAAACTGTCGCAAATCAAAGTTTTGTTCTTCGTTTTCCTGAAA GACTTTCTCCAGCTGGCGGAGCTCCTTTGCTTAGCGCCGGAATTACTTCGTTT AGTGCAATGAGAAATAGCGGCATCGACAAACCTGGATTACACGTGGGAGTC GTCGGTCTCGGCGGAATTAGGTCATCTGCTGTAAAATTTGCTAAGGCTTTTG GTCTTAAAGTAACTGTTATTAGCACCACTCCCAGCAAGAAGGATGATGCTAT AAATGGTCTTGGTGCTGATGGATTCTTACTCAGCCGCGATGATGAACAATG AAGGCTGCTATTGGAACCTTGGATGCAATTATTGATACACTGGCGGTGTTC ATCCCATAGCACCATTGCTTGAGAGCACACTGCAGGAAATTTTGTTA CTTGGGGCGCCATCTCAATCACTTGGATGCACTATTGATACACTGGCGGTGTTC ATCCCATAGCACCATTGCTTGAGAGTCCACCTATTCCTTTATTATCAGG TGGGAAATCTATCAATGGAAGTGCAGCCGGAAATGTGAAGCAAACTCAAGA AATGCTTGATTTGGAACCTTGGATGCCACCTATTCCTTTATTATCAGG TGGGAAATCTATCAATGGAAGTGCAGCGGAAATGTGAAGCAAACTCAAGA AATGCTTGATTTGCAGCGGAGCATGATATAACTGCAAATGTTAAGAGTACAAATG TAGGAGGCGCCATCTAAAATACTGCAAATGGAAACTTTAGACAAGGGCGATGTT AGATACCGATTTGTAGTTGACATCGAAAATACCTTGACACAGGGCGATGTT AGATACCGATTGTAGAATGCAACAATACTGTGACCCTCTCCGTCAGAGTT AGGAGGCGGTGGATCGAAAGACAATACTGTGCCTCTGGAAGCTAATGGCGACGATGATCGCTCT CCTGGCTAATGGCGAGCTGAAAGACAATACTGTGGCCACCTTGGAGAAACCCTGGG CATGTCCAAGGCCGCTATCCATAGACAAGCAAATCCTGGGCGAAAACCCTGGG CATGTCCAGGGCCGCTATCCAAAGACAATACTGTGGCCACCTGGGAGAAACCCTGGG CATGTCCAAGGCCGCTATCAACAAGCACATTCAGGCGAACGTTGGGAGAAACCCTGGG

	CGTGGACGTGTTCACCGTGCCCGGAAAGGGCTACTCTCTGCCCGAGCCTATC
	CCGCTGCTGAACGCTAAACAGATTCTGGGACAGCTGGACGGCGGGAGCGTG
	GCAGTCCTGCCTGTGGTCGACTCCACCAATCAGTACCTGCTGGATCGAATCG
	GCGAGCTGAAGAGTGGGGATGCTTGCATTGCAGAATATCAGCAGGCAG
	AGAGGAAGCAGAGGGAGGAAATGGTTCTCTCCTTTTGGAGCTAACCTGTAC
	CTGAGTATGTTTTGGCGCCTGAAGCGGGGGCCAGCAGCAATCGGCCTGGGC
	CCGGTCATCGGAATTGTCATGGCAGAAGCGCTGCGAAAGCTGGGAGCAGAC
	AAGGTGCGAGTCAAATGGCCCAATGACCTGTATCTGCAGGATAGAAAGCTG
	GCAGGCATCCTGGTGGAGCTGGCCGGAATAACAGGCGATGCTGCACAGATC
	GGTCAATCAGGGCTGGATCACACTGCAGGAAGCAGGGATTAACCTGGACAG
YFP-	ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTC
GGGGS-	GAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGG
TurbolD-	CGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACC
FLAG	GGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCTTCGGCTACGGCG
12,10	
	GTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTCTTCAAGGAC
	GCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAAC
	GGALGIGITLALLGIGLLLGGAAAGGGLIALILIUGLLGAGLLIAILLLG
	GAGCIGAAGAGIGGGGAIGCIIGCAIIGCAGAAIAICAGCAGGCAG
	GAGIAIGIIIIGGCGCCIGAAGCGGGGACCAGCAGCAAICGGCCIGGGCCC
	GGTCATCGGAATIGTCATGGCAGAAGCGCTGCGAAAGCTGGGAGCAGACA
	AGGTGCGAGTCAAATGGCCCAATGACCTGTATCTGCAGGATAGAAAGCTGG
	CAGGCATCCTGGTGGAGCTGGCCGGAATAACAGGCGATGCTGCACAGATCG
	TCATTGGCGCCGGGATTAACGTGGCTATGAGGCGCGTGGAGGAAAGCGTG
	GTCAATCAGGGCTGGATCACACTGCAGGAAGCAGGGATTAACCTGGACAGG
	AATACTCTGGCCGCTACGCTGATCCGAGAGCTGCGGGCAGCCCTGGAACTG

TTCGAGCAGGAAGGCCTGGCTCCATATCTGCCACGGTGGGAGAAGCTGGAT AACTTCATCAATAGACCCGTGAAGCTGATCATTGGGGACAAAGAGATTTTCG GGATTAGCCGGGGGATTGATAAACAGGGAGCCCTGCTGCTGGAACAGGAC GGAGTTATCAAACCCTGGATGGGCGGAGAAATCAGTCTGCGGTCTGCCGAA AAGGACTACAAAGACGATGACGATAAA

Table 9. GenBank accessions of previously deposited sequences used in this chapter.

Gene Name	Organism	GenBank Accession
LAMT	Catharanthus roseus	EU057974
SLS	Catharanthus roseus	KF415117
TDC	Catharanthus roseus	X67662
STR	Catharanthus roseus	X53602
SGD	Catharanthus roseus	AF112888
GS	Catharanthus roseus	MF770507
GO	Catharanthus roseus	MF770508
RedOx1	Catharanthus roseus	MF770509
RedOx2	Catharanthus roseus	MF770510
SAT	Catharanthus roseus	MF770511
PAS	Catharanthus roseus	MH213134
DPAS	Catharanthus roseus	KU865331
TS	Catharanthus roseus	MF770513
CS	Catharanthus roseus	MF770512
T16H2	Catharanthus roseus	JF742645
160MT	Catharanthus roseus	EF444544
Т3О	Catharanthus roseus	KP122967
T3R	Catharanthus roseus	KP122966
THAS	Catharanthus roseus	KM524258
PAS1	Tabernanthe iboga	MK840850
PAS2	Tabernanthe iboga	MK840851
PAS3	Tabernanthe iboga	MK840852
DPAS1	Tabernanthe iboga	MK840855

DPAS2	Tabernanthe iboga	MK840856
TabS	Tabernanthe iboga	MK840853
CorS	Tabernanthe iboga	MK840854
NS2	Strychnos nux-vomica	OM304292
CXE1	Papaver somniferum	JQ659006
HIDH	Glycine max	AB154415
CAD	Arabidopsis thaliana	AY302081

Table 10. Primer sequences used for gene amplification and site-directed mutagenesis.Cloning overhangs are underlined. Mutated codons are in bold.

Primers for pCambia vectors		
CrLAMT_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGTTGCCACAATTGATT	
CrLAMT_nLuc_Rev	ACGAGATCTGGTCGAAATTTCCCTTGCGTTTCAAGACAA	
CrLAMT_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGTTGCCACAATTGATT	
CrLAMT_cLuc_Rev	TACGAACGAAAGCTCAATTTCCCTTGCGTTTCAAGACAA	
<i>Cr</i> SLS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGAGATGGATATGGATA	
CrSLS_nLuc_Rev	ACGAGATCTGGTCGAAGCTCTCAAGCTTCTTGTAGATG	
<i>Cr</i> TDC_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGGCAGCATTGATTCA	
<i>Cr</i> TDC_nLuc_Rev	ACGAGATCTGGTCGAAAGCTTCTTTGAGCAAATCATCG	
<i>Cr</i> TDC_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGGCAGCATTGATTCA	
CrTDC_cLuc_Rev	TACGAACGAAAGCTCAAGCTTCTTTGAGCAAATCATCGG	
<i>Cr</i> GS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCCGGAGAAACAACCAAA	
<i>Cr</i> GS_nLuc_Rev	ACGAGATCTGGTCGAATTCCTCAAATTTCAATGTATTTC	
<i>Cr</i> GS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCCGGAGAAACAACC	
CrGS_cLuc_Rev	TACGAACGAAAGCTCA	
<i>Cr</i> GO_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGAGTTTTCTTCTCCTCA	
CrGO_nLuc_Rev	ACGAGATCTGGTCGAAATCGTTAACAAGATGAGGAACCA	
<i>Cr</i> RedOx1_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCTGATCGCGTGAAGAC	
CrRedOx1_nLuc_Rev	ACGAGATCTGGTCGAAGACAGCTACTGTTGCATTCCC	
CrRedOx1_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCTGATCGCGTGAAGAC	
CrRedOx1_cLuc_Rev	TACGAACGAAAGCTCAGACAGCTACTGTTGCAT	
<i>Cr</i> RedOx2_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGAAAAGCAAGTTGAGATCCC	

CrRedOx2_nLuc_Rev	ACGAGATCTGGTCGAACAAGTCTCCATCCCAAAGCTC
<i>Cr</i> RedOx2_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGAAAAGCAAGTTGAGATCCC
CrRedOx2_cLuc_Rev	TACGAACGAAAGCTCACAAGTCTCCATCCCAAAGCT
<i>Cr</i> SAT_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCACCCCAGATGCA
<i>Cr</i> SAT_nLuc_Rev	ACGAGATCTGGTCGAAATTGCTAAAATCAGTGTCCAGAA
<i>Cr</i> SAT_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCACCCCAGATGCA
CrSAT_cLuc_Rev	TACGAACGAAAGCTCAATTGCTAAAATCAGTGTCCAGA
CrPAS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGATAAAAAAGTCCCAATAG
CrPAS_nLuc_Rev	ACGAGATCTGGTCGAAAAGTTCGACTTGTAAATGGAGAG
CrPAS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGATAAAAAAAGTCCCAATA
CrPAS_cLuc_Rev	TACGAACGAAAGCTCAAAGTTCGACTTGTAAATGGAGA
<i>Cr</i> DPAS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCCGGAAAATCAGCAGA
<i>Cr</i> DPAS_nLuc_Rev	ACGAGATCTGGTCGAATAACTCTGACGGAGGAGTCAAG
CrDPAS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCCGGAAAATCAGCAGA
CrDPAS_cLuc_Rev	TACGAACGAAAGCTCATAACTCTGACGGAGGAGTCAA
<i>Cr</i> TS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGGTTCCTCAGATGAGACTA
<i>Cr</i> TS_nLuc_Rev	ACGAGATCTGGTCGAACTTGATGAAAGAAGCTAAACGTC
<i>Cr</i> TS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGGTTCCTCAGATGAG
<i>Cr</i> TS_cLuc_Rev	TACGAACGAAAGCTCACTTGATGAAAGAAGCTAAACGTC
<i>Cr</i> CS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGATGAGACTATTTGGGAT
<i>Cr</i> CS_nLuc_Rev	ACGAGATCTGGTCGAATTTGATGAAAGATGCTAAACGTC
<i>Cr</i> CS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGATGAGACTATTTGGGAT
CrCS_cLuc_Rev	TACGAACGAAAGCTCATTTGATGAAAGATGCTAAACGTC
<i>Cr</i> CorS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCTTCCCAAACTCCAA
CrCorS_nLuc_Rev	ACGAGATCTGGTCGAATTTGATGAAAGACGTTAAGCGTC
<i>Cr</i> CorS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCTTCCCAAACTCCAA
CrCorS_cLuc_Rev	TACGAACGAAAGCTCATTTGATGAAAGACGTTAAGCGTC
<i>Cr</i> T16H2_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGAGTTGTATTATTTTCCACCTTT GCCTTCC
CrT16H2_nLuc_Rev	ACGAGATCTGGTCGAAATATTTACCTTTGAGAGAAGAAGCAGA ATAAGGAAATG
Cr16OMT_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGATGTTCAATCTGAGG
Cr16OMT_nLuc_Rev	ACGAGATCTGGTCGAAAGGATAAACCTCAATGAGACTCC

Cr16OMT_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGATGTTCAATCTGAG
Cr16OMT_cLuc_Rev	TACGAACGAAAGCTCAAGGATAAACCTCAATGAGACTC
<i>Cr</i> T3O_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGAGTTTCATGAATCT
<i>Cr</i> T3O_nLuc_Rev	ACGAGATCTGGTCGAATGCATAGGACGTAGCGATT
<i>Cr</i> T3R_nLuc_Fwd	CGGGGGACGAGCTCGTTATGTCTAGTGAAATGGCT
CrT3R_nLuc_Rev	ACGAGATCTGGTCGAAGGGTGATTTGAAAGTGTTTCCA
CrT3R_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGTCTAGTGAAATGGCT
CrT3R_cLuc_Rev	TACGAACGAAAGCTCAGGGTGATTTGAAAGTGTTTCCAA
<i>Cr</i> CAD_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGGGAGCTTGGAAGAAGCA
<i>Cr</i> CAD_nLuc_Rev	ACGAGATCTGGTCGAAGTGGTCAACAAGAAGGTTGCT
<i>Cr</i> CAD_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGGGAGCTTGGAAGAA
CrCAD_cLuc_Rev	TACGAACGAAAGCTCAGTGGTCAACAAGAAGGTTGCT
Cr2141_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCCGGAAAATCACCAGAA
Cr2141_nLuc_Rev	ACGAGATCTGGTCGAAAGGAGCTTTCAAGGTCTTTGCA
Cr2141_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCCGGAAAATCACCAGA
Cr2141_cLuc_Rev	TACGAACGAAAGCTCAAGGAGCTTTCAAGGTCTTTGCA
CrADH9_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCTGGAAAATCACCAGA
CrADH9_nLuc_Rev	ACGAGATCTGGTCGAAAGGAGTTAGAGTGTTCCCAATAT
CrADH9_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCTGGAAAATCACCAGAA
CrADH9_cLuc_Rev	TACGAACGAAAGCTCAAGGAGTTAGAGTGTTCCCAATAT
<i>Cr</i> THAS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCAATGGCTTCAAAGTCA
<i>Cr</i> THAS_nLuc_Rev	ACGAGATCTGGTCGAAATTTGATTTCAGAGTGTTCCCTA
<i>Cr</i> THAS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCAATGGCTTCAAAGT
CrTHAS_cLuc_Rev	TACGAACGAAAGCTCAATTTGATTTCAGAGTGTTCCCTA
<i>Cr</i> HID5_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCCTCCTCAGATGAGATT
CrHID5_nLuc_Rev	ACGAGATCTGGTCGAACTTTATAAAAGAGGCTATTCGAT
<i>Cr</i> HID5_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCCTCCTCAGATGAGATT
CrHID5_cLuc_Rev	TACGAACGAAAGCTCACTTTATAAAAGAGGCTATTCGA
<i>Cr</i> CSE_nLuc_Fwd	CGGGGGACGAGCTCGTTATGCCTTCAGAAGCAGCGC
<i>Cr</i> CSE_nLuc_Rev	ACGAGATCTGGTCGAACTTTCTGGGACCGTATTTTTGA
<i>Cr</i> CSE_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGCCTTCAGAAGCAGC
CrCSE_cLuc_Rev	TACGAACGAAAGCTCACTTTCTGGGACCGTATTTTTGA

<i>Cr</i> CCR_nLuc_Fwd	CGGGGGACGAGCTCGTTATGCCGTCAGATTCCGGCA	
<i>Cr</i> CCR_nLuc_Rev	ACGAGATCTGGTCGAAAGAGCGGATTATTGTGAGGGGT	
<i>Cr</i> CCR_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGCCGTCAGATTCCGGCA	
CrCCR_cLuc_Rev	TACGAACGAAAGCTCAAGAGCGGATTATTGTGAGGGGT	
<i>Cr</i> C4H_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGATCTTCTCCTCTTAGAGA	
<i>Cr</i> C4H_nLuc_Rev	ACGAGATCTGGTCGAAAAAGTCCTGGGCTTGAGTACAA	
<i>Cr</i> C3H_nLuc_Fwd	CGGGGGACGAGCTCGTTATGAACATTTCTTCCCCACTA	
<i>Cr</i> C3H_nLuc_Rev	ACGAGATCTGGTCGAATATATCCACAGGCACACGTTTG	
<i>Ti</i> PAS1_nLuc_Fwd	CGGGGGACGAGCTCGTTATGTATACTACTGAAGTTC	
<i>Ti</i> PAS1_nLuc_Rev	ACGAGATCTGGTCGAAAAGTTCGTCTTTGGAAGCAAGAG	
<i>Ti</i> PAS1_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGTATACTACTGAAGTTC	
<i>Ti</i> PAS1_cLuc_Rev	TACGAACGAAAGCTCAAAGTTCGTCTTTGGAAGCAAGAG	
<i>Ti</i> PAS2_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGTTGAAGTCTCTAAAGTTCT	
<i>Ti</i> PAS2_nLuc_Rev	ACGAGATCTGGTCGAACGATGATTCGTCTTGTGAAGTGA	
<i>Ti</i> PAS2_cLuc_Fwd	ACGCGTCCCGGGGCGTTGTGAAGTCTCTAAAGTTCT	
<i>Ti</i> PAS2_cLuc_Rev	TACGAACGAAAGCTCACGATGATTCGTCTTGTGAAGTGA	
<i>Ti</i> PAS3_nLuc_Fwd	CGGGGGACGAGCTCGTTATGTTAGCAGAAGTCTCC	
<i>Ti</i> PAS3_nLuc_Rev	ACGAGATCTGGTCGAACAATTCATCATGTAAAGTTAGAG	
<i>Ti</i> PAS3_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGTTAGCAGAAGTCTCC	
<i>Ti</i> PAS3_cLuc_Rev	TACGAACGAAAGCTCACAATTCATCATGTAAAGTTAGAG	
<i>Ti</i> DPAS1_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCTGTAAAATCACCTGAA	
<i>Ti</i> DPAS1_nLuc_Rev	ACGAGATCTGGTCGAATTCCGGTGGAGTTAGTGTGTT	
TiDPAS1_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCTGTAAAATCACCTGA	
TiDPAS1_cLuc_Rev	TACGAACGAAAGCTCATTCCGGTGGAGTTAGTGTGTT	
<i>Ti</i> DPAS2_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCAGGAAAATCACCAGAA	
<i>Ti</i> DPAS2_nLuc_Rev	ACGAGATCTGGTCGAACGGTTCTGGCGGAGGAGTTAA	
TiDPAS2_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCAGGAAAATCACCAGAA	
TiDPAS2_cLuc_Rev	TACGAACGAAAGCTCACGGTTCTGGCGGAGGAGTTAA	
<i>Ti</i> TabS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCTTCTTCAACTGAAAG	
<i>Ti</i> TabS_nLuc_Rev	ACGAGATCTGGTCGAACTCCTTGTTGATGAAAGACGTTA	
<i>Ti</i> TabS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCTTCTTCAACTGAAAGCT	
<i>Ti</i> TabS_cLuc_Rev	TACGAACGAAAGCTCACTCCTTGTTGATGAAAGACGTTA	
<i>Ti</i> CorS_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCTAATTCAACTGCAAACT	
---------------------------	---	--
<i>Ti</i> CorS_nLuc_Rev	ACGAGATCTGGTCGAACTCCTTGTTGATGAAATCGCTT	
<i>Ti</i> CorS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCTAATTCAACTGCAAA	
<i>Ti</i> CorS_cLuc_Rev	TACGAACGAAAGCTCACTCCTTGTTGATGAAATCGCT	
AtCAD4_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGGAAGTGTAGAAGCAG	
AtCAD4_nLuc_Rev	ACGAGATCTGGTCGAAGTTTGTAGTTGTTGCAGC	
AtCAD4_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGGAAGTGTAGAAGCAG	
AtCAD4_cLuc_Rev	TACGAACGAAAGCTCAGTTTGTAGTTGTTGCAGC	
AtCHIL_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGGAACAGAGATGGTCATG	
AtCHIL_nLuc_Rev	ACGAGATCTGGTCGAAGGTTAAAACTGCGGAGATTGAATC	
AtCHS_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGTGATGGCTGGTGCTTC	
AtCHS_cLuc_Rev	TACGAACGAAAGCTCAGAGAGGAACGCTGTGCAAG	
<i>Snv</i> NS2_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGAAGTTGCGAATGCG	
<i>Snv</i> NS2_nLuc_Rev	ACGAGATCTGGTCGAAAACCACTTTCTCAGCTATCTCTAC	
<i>Snv</i> NS2_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGAAGTTGCGAATGCG	
SnvNS2_cLuc_Rev	TACGAACGAAAGCTCAAACCACTTTCTCAGCTATCTCTAC	
PsCXE1_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCAGATCCTTATGAATTCCTAAT	
PsCXE1_nLuc_Rev	ACGAGATCTGGTCGAAGTATATAAATTCGTCGTTTAAAATAAAA	
PsCXE1_cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCAGATCCTTATGAATTCCTAAT	
PsCXE1_cLuc_Rev	TACGAACGAAAGCTCAGTATATAAATTCGTCGTTTAAAATAAAA TGT	
GmHIDH_nLuc_Fwd	CGGGGGACGAGCTCGTTATGGCGAAGGAGATAGTGA	
GmHIDH _nLuc_Rev	ACGAGATCTGGTCGAAAAACCAGAAAAGAAGCCAAGCGT	
GmHIDH _cLuc_Fwd	ACGCGTCCCGGGGCGTTATGGCGAAGGAGATAGTGA	
GmHIDH _cLuc_Rev	TACGAACGAAAGCTCAAACCAGAAAAGAAGCCAAGCGT	
Primers for pOPIN vectors		
CrDPAS_pOPINF_Fwd	AAGTTCTGTTTCAGGGCCCGATGGCAGGTAAAAGCGCAGAAG AAG	
CrDPAS_pOPINF_Rev	ATGGTCTAGAAAGCTTTACAGTTCGCTAGGCGGTGTCAG	
CrCAD_pOPINF_Fwd	AAGTTCTGTTTCAGGGCCCGATGGGGAGCTTGGAAGAAG	
CrCAD_pOPINF_Rev	ATGGTCTAGAAAGCTTTAGTGGTCAACAAGAAGGTTG	
CrTS_pOPINF_Fwd	AAGTTCTGTTTCAGGGCCCGATGGGTTCCTCAGATGAGACTATT	

CrTS_pOPINF_Rev	ATGGTCTAGAAAGCTTTACTTGATGAAAGAAGCTAAACGTCTG AG
CrCS_pOPINF_Fwd	AAGTTCTGTTTCAGGGC ATGA
CrCS_pOPINF_Rev	ATGGTCTAGAAAGCTTTACTCATGTTTGATGAAAGATGCTAA ACG
CrGS_pOPINK_Fwd	AAGTTCTGTTTCAGGGCCCGATGGCTGGTGAAACCACCAAAC
CrGS_pOPINK_Rev	ATGGTCTAGAAAGCTTTATTCTTCGAATTTCAGGGTGTTAC
Primers for pHREAC vect	or
CrDPAS_TurboID_Fwd	<u>GGCTACGGTCTCTAAAA</u> ATGGCCGGAAAATCAGCAGAAGAAG
CrDPAS_TurboID_Rev	<u>GGCTACGGTCTCGAGCGCTA</u> TTTATCGTCATCGTCTTTG
YFP_TurboID_Fwd	<u>GGCTACGGTCTCTAAAA</u> ATGGTGAGCAAG
YFP_TurboID_Rev	<u>GGCTACGGTCTCGAGCGCTA</u> TTTATCGTCATC
Primers for mutagenesis	
CrCorS_Asn32Asp_Fwd	GTAGAAAGACTCCAT GAT ACTCCTTATGTTCC
CrCorS_Asn32Asp_Rev	ATGGAGTCTTTCTACTCTTCCATCTTTG
CrCorS_Ser216Lys_Fwd	AAACAGAGTGATTATATGGAGAATGACTAC
CrCorS_Ser216Lys_Rev	ATAATCACTCTG TTT TTTGCTCGTCCGGATCAGGA
CrCorS_Asn224Ile_Fwd	AAACAGAGTGATTATATGGAG ATA GACTACAGGTGT
CrCorS_Asn224Ile_Rev	CTCCATATAATCACTCTGTTTCGAGC
CrCorS_Glu301His_Fwd	TGGCTGATTTTGAAGCA CAC TTTTTTGACCTTTTCCA
CrCorS_Glu301His_Rev	TGCTTCAAAATCAGCCACATCCAATTGCCCT
<i>Ti</i> CorS_Asp32Asn_Fwd	GTAGAAAGACTTCAC AAT ACCCCATATGTT
TiCorS_Asp32Asn_Rev	GTGAAGTCTTTCTACCTTGCCG
<i>Ti</i> CorS_Lys214Ser_Fwd	AGACAGAGTGATTATATGGAGATTGAC
TiCorS_Lys214Ser_Rev	ATAATCACTCTGTCT GGA GCTTGTCCTGA
<i>Ti</i> CorS_Ile222Asn_Fwd	AGACAGAGTGATTATATGGAG AAC GACTATAGAGGCT
TiCorS_Ile222Asn_Rev	CTCCATATAATCACTCTGTCTTTTGCTTG
<i>Ti</i> CorS_His299Glu_Fwd	GGTGACTACGAAGCA GAA TTCTTTGATTTGT
<i>Ti</i> CorS_His299Glu_Rev	TGCTTCGTAGTCACCCACTTCCA
CrTS_Asn219Ile_Fwd	ACAGAGTGATTATATGGAG ATA GAGTATAGATCTTACT
CrTS_Asn219Ile_Rev	CCATATAATCACTCTGTTTTGAACTCGTCCTGATTA
CrCS_Tyr213Ile_Fwd	AAACTTAGTGATGATTTTGAG ATA AACTACACATGTTACTGGA
CrTS_Tyr213lle_Rev	AATCATCACTAAGTTTCGTGCTGGTTGGGATAATGAA

4.5.3. Plant growth

Nicotiana benthamiana plants used in transient overexpression experiments were grown for 3-4 weeks in a greenhouse with a 16-hour light/ 8-hour dark light cycle at 22 °C and 60% relative humidity. Plants were transferred to a York chamber with the same light and humidity conditions 24 hours before *Agrobacterium* infiltration. *Catharanthus roseus* cultivar "Sunstorm Apricot" seeds were obtained from Syngenta (2012). *C. roseus* plants used in transient overexpression experiments were grown for 4-5 weeks in a York chamber with a 16-hour light/ 8-hour dark light cycle at 21-28 °C and 60% relative humidity until agrobacterium-mediated transformation. *C. roseus* plants were grown in the lab using the same light source and under the same light cycle after infiltration. Plants used in all experiments were watered periodically as required.

4.5.4. Transient Overexpression in N. benthamiana

Constructs cloned into pCambia were transformed into Agrobacterium tumefaciens GV3101 cells (GoldBio) by electroporation and recovered in 1mL LB for 3 hours at 28 °C. Cells were plated on LB agar containing 30 μ g/mL kanamycin, 30 μ g/mL gentamicin and 20 µg/mL rifampicin and grown at 28 °C for 2 days. A single colony was grown in 10 mL LB containing 30 μg/mL kanamycin, 30 μg/mL gentamicin and 20 μg/mL rifampicin at 28 °C overnight shaking at 200 r.p.m. Cells were harvested by centrifugation at 4000 x g for 10 minutes and the pellet was gently resuspended in infiltration buffer (10 mM MES, 10 mM MgCl₂, pH 5.6, 200 μ M acetosyringone) to OD₆₀₀ = 0.6. Resuspended cultures were incubated gently shaking in the dark for 3 hours before being mixed 1:1 with the remaining strain so each strain was at a final concentration of OD₆₀₀ = 0.3. Strains were infiltration in each quadrant of the abaxial side of the 3-4 week-old N. benthamiana leaf. Leaves from the 2nd fully expanded leaf pair were infiltrated. Four leaves from four different plants were infiltrated for each combination, and two independent repeats were carried out for each combination to reduce plant-to-plant and batch-to-batch effects. Four leaves were infiltrated with the A. thaliana chalcone isomerase-like AtCHIL-nLuc and A. thaliana chalcone synthase AtCHS-cLuc constructs in each batch as a positive control.

4.5.5. Split-luciferase Complementation Assays

N. benthamiana leaves overexpressing nLuc or cLuc constructs were imaged 3 days post infiltration in a NightShade LB 985 (Berthold Technologies). Leaves were sprayed with 0.5 mM solution of d-luciferin and incubated in the dark for 5 minutes before being imaged on their abaxial side. Images were exposed for 0.1 seconds and luminescence emission was exposed for 20 seconds with 8 x 8 pixel binning. Up to four leaves of the same combination were imaged per experiment until three leaves gave the same result, and each experiment was repeated an independent time. The previously published *At*CHIL-nLuc and *At*CHS-cLuc combination was used as a positive control in each experimental batch of plants (Figure 70) ^[50]

Figure 70. Representative image of split-luciferase positive control *At*CHIL and *At*CHS in N. benthamiana. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c-represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents *At*CHIL-nLuc construct and cLuc fragment, N.C. 2 represents AtCHS-cLuc construct and nLuc fragment, N.C. 3 represents nLuc and cLuc fragment negative controls. Luminescence measured by counts per second (cps) and represented by false colour.

4.5.6. Transient Overexpression in C. roseus

Constructs cloned into pCambia were transformed into Agrobacterium tumefaciens GV3101 cells (GoldBio) by electroporation and recovered in 1mL LB for 3 hours at 28 °C. Cells were plated on LB agar containing 30 µg/mL kanamycin, 30 µg/mL gentamicin and 20 µg/mL rifampicin and grown at 28 °C for 2 days. A single colony was grown in 10 mL LB containing 30 µg/mL kanamycin, 30 µg/mL gentamicin and 20 µg/mL rifampicin at 28 °C overnight shaking at 200 r.p.m. 50 µL of overnight culture was transferred to 100 mL LB containing 30 µg/mL kanamycin, 30 µg/mL gentamicin and 20 µg/mL rifampicin and grown

at 28 °C overnight shaking at 200 r.p.m. Cells were harvested by centrifugation at 4000 x g for 10 minutes and the pellet was gently resuspended in infiltration buffer (10 mM MES, 10 mM MgCl2, pH 5.6, 200 μ M acetosyringone) to OD₆₀₀ = 0.8. Resuspended cultures were incubated gently shaking in the dark for 3 hours. 50 mL of resuspended culture was placed in a glass beaker with 0.002% v/v Silwet L-77 (UPL Germany). 4 1 cm holes were made into each corner of both leaves of the first fully expanded leaf pair of 4-5 week *C. roseus* plants using a hole puncher. A plastic cover placed over the plant pots to prevent soil fall out. Plants were submerged in resuspended cultures and placed in a desiccator. Plants were vacuum infiltrated at 30 mBar for 5 minutes before the vacuum was rapidly released and returned to room pressure. This was repeated for a total of five rounds. Plants were removed from the resuspension culture and left in the dark overnight before being returned to the normal growth light cycle. Maximal fluorophore signal was observed in the first fully expanded leaf pair 5 days post infiltration.

4.5.7. TurboID Proximity-labelling in C. roseus

C. roseus plants 5 d.p.i expressing TurboID constructs were submerged in a glass beaker containing a 50 mL solution of 50 μ M biotin. Biotin was fed by vacuum infiltration of plants at 30 mBar for 5 minutes before the vacuum was rapidly released and returned to room pressure. This was repeated for a total of five rounds. Plants were returned to normal growth conditions and harvested at various time points. Excessive labelling time may result in aspecific tagging. Sufficient biotin labelling was observed after 3 hours, therefore tissue from the first fully expanded leaf pair was collected after 3 hours and snap-frozen in liquid nitrogen. Tissue was stored at -80 °C until protein extraction.

Harvested tissue was crushed to a fine powder in a liquid nitrogen-cooled mortar and pestle and then resuspended in protein buffer (25 mM Tris-HCl and 20 mM NaCl pH 8.0) at 1g fresh tissue weight per 1 mL protein buffer. Samples were incubated gently rocking for an hour at 4 °C. Samples were centrifuged at 3500 x g for 15 minutes and the supernatant was removed. The supernatant was then centrifuged at 17000 x g for 20 minutes. Protein was quantified using Pierce Rapid Gold BCA Protein Assay Kit (Thermo Fisher) according to the manufacturer's instructions on 96-well clear flat-bottomed plates (Sigma-Aldrich) and absorbance was measured using a CLARIOstar plate reader (BMG Labtech). Protein extracts were normalised to 12 mg and made up to a final volume of 1 mL in protein buffer. 100 μ L of Streptavidin Dynabeads (Thermo Fisher) per sample were washed in 1 mL PBS buffer gently by pipetting. Samples were then placed on the DynaMag SampleRack (Thermo Fisher) for 3 minutes to separate the beads and the supernatant removed. This washing process was repeated a further 2 times. 1 mL of the normalised sample was added to 100 μ L of washed beads and samples were incubated gently rocking at room temperature for 30 minutes. Samples were placed on the DynaMag SampleRack for 3 minutes to separate the beads were resuspended in 1 mL of PBS. This washing step was repeated a further 2 times. Proteins were eluted from DynaBeads with 50 μ L 2X Lamelli buffer (Thermo Fisher) containing 25 mM biotin and placed on the DynaMag SampleRack for 3 minutes to denature the proteins. Protein samples were then frozen at -20 °C before being analysed by proteomics. Protein quantity was estimated by running samples on SDS-PAGE (Thermo Fisher) and staining the gel using the Pierce Silver Stain kit (Thermo Fisher) according to the manufacturer's instructions (Figure 71).

Figure 71. SDS-PAGE of DPAS-TurboID, YFP-TurboID and pHREAC empty vector (EV) streptavidin pull-down assays. Samples taken at 2, 3 and 4 hour post biotin feeding time points. Gel developed using ProteoSilver staining.

4.5.8. Heterologous Expression and Protein Purification from *E. coli*

*Cr*DPAS, *Cr*CAD *Cr*TS and *Cr*CS constructs cloned into pOPINF plasmid and *Cr*GS construct cloned into pOPINK plasmid. Plasmids were transformed into *E. coli* BL21 (DE3) (ThermoFisher) cells by heat shock at 42 °C for 30 seconds. Cells were plated on LB agar

containing 100 μ g/mL carbenicillin plates and grown overnight at 37 °C. A single colony was then picked and grown in 10 mL 2x YT media containing 100 μ g/mL carbenicillin at 37 °C shaking at 200 r.p.m. overnight.

For CrDPAS, CrTS and CrCS protein expression, 1 mL of the overnight culture was added to 1L 2xYT media containing 100 µg/mL carbenicillin and grown at 37 °C shaking at 200 r.p.m. until OD₆₀₀ = 0.6-0.8. Cultures were then transferred to an 18 °C incubator shaking at 200 r.p.m for 30 minutes before protein production was induced with 0.2 mM IPTG and incubated overnight (16-18h). Cells were harvested by centrifugation at 3200 x g for 15 minutes and re-suspended in 50 mL buffer A1 (50 mM Tris-HCl pH 8, 50 mM glycine, 500 mM NaCl, 5% glycerol, 20 mM imidazole) with the addition of EDTA-free protease inhibitor cocktail (Roche Diagnostics Ltd.) and 10 mg lysozyme (Sigma). Cells were lysed on ice using a sonicator (40% amplitude, 2 seconds on, 3 seconds off cycles for 3 minutes) and centrifuged (35000 x g) to remove insoluble cell debris. The supernatant was collected and filtered with a 0.2 μ m PES syringe filter (Sartorius) and purified using an AKTA Pure FPLC (Cytiva). The sample was applied at 2 mL/min onto a His-Trap High-Performance 5mL column (Cytiva) and washed with 5 column volumes (CV) of buffer A1 before being eluted with 5 CV of buffer B1 (50 mM Tris-HCl pH 8.0, 50 mM glycine, 500 mM NaCl, 5% glycerol, 500 mM imidazole). Protein was detected and collected using the UV 280 nm signal and then further purified on a Superdex Hiload 16/60 S200 gel filtration column (Cytiva) at a flow rate of 1 mL/min using buffer A4 (20 mM HEPES pH 7.5, 150 mM NaCl). Proteins were finally buffer exchanged into buffer A4 and concentrated using a 10K Da molecular weight cut-off centrifugal filter (Merck) before being snap frozen in liquid nitrogen and stored at -80 °C.

For *Cr*CAD and *Cr*GS protein expression, 1 mL of the overnight culture was added to 100 mL 2xYT media containing 100 μ g/mL carbenicillin and grown at 37 °C shaking at 200 r.p.m. until OD₆₀₀ = 0.6-0.8. Cultures were then transferred to an 18 °C incubator shaking at 200 r.p.m for 30 minutes before protein production was induced with 0.2 mM IPTG and incubated overnight (16-18h). Cells were harvested by centrifugation at 4000 x g for 15 minutes and re-suspended in 10 mL buffer A1 (50 mM Tris-HCl pH 8, 50 mM glycine, 500 mM NaCl, 5% glycerol, 20 mM imidazole) with the addition of EDTA-free protease inhibitor cocktail (Roche Diagnostics Ltd.) and 10 mg lysozyme (Sigma). Cells were lysed at 4 °C using

a sonicator (40% amplitude, 2 seconds on, 3 seconds off cycles for 1.5 minutes) and centrifuged at 35000 x g to remove insoluble cell debris. The supernatant was collected and filtered with a 0.2 um PES syringe filter (Sartorius) and purified by the addition of 150 μ L washed Ni-NTA agarose beads (QIAGEN). Samples were incubated on a rocking incubator at 4 °C for 1 hour. Beads were washed by centrifuging at 1000 x g for 1 minute to remove the supernatant, and then the beads were resuspended in 10 mL of A1 Buffer. This step was performed a total of three times. Protein was eluted by resuspending the beads in 600 μ L of buffer B1 (50 mM Tris-HCl pH 8.0, 50 mM glycine, 500 mM NaCl, 5% glycerol, 500 mM imidazole) before centrifuging for 1000 x g for 1 minute and then collecting the supernatant. This elution step was repeated to remove all Ni-NTA-bound proteins. Proteins were buffer exchanged into buffer A4 (20 mM HEPES pH 7.5, 150 mM NaCl) and concentrated using a 10K Da molecular weight cut-off centrifugal filter (Merck) and stored at -80 °C.

4.5.9. *In vitro* Enzyme Assays

Enzymatic assays with cinnamyl aldehyde were performed in 50 mM HEPES buffer (pH 7.5) with 50 μ M substrate, 250 μ M NADPH cofactor (Sigma) and 500 nM enzyme to a final reaction volume of 100 μ L. Reactions were incubated for 30 minutes at 30°C and shaken at 60 r.p.m. before being quenched with 1 volume of 70% MeOH with 0.1% HCO₂H.

4.5.10. UPLC-MS Analysis

All assays were analysed using a Thermo Scientific Vanquish UPLC coupled to a Thermo Q Exactive Plus orbitrap MS. For assays using precondylocarpine acetate, chromatographic separation was performed using a Phenomenex Kinetex C18 2.6 μ m (2.1 x 100 mm) column using water with 1% HCO₂H as mobile phase A and acetonitrile with 1% HCO₂H as mobile phase B. Compounds were separated using a linear gradient of 10-30% B in 5 minutes followed by 1.5 minutes isocratic at 100% B. The column was then reequilibrated at 10% B for 1.5 minutes. The column was heated to 40°C and the flow rate was set to 0.6 mL/min. For assays using strictosidine aglycone, separation was carried out using a Waters Acquity BEH C18 1.7 μ m (2.1 x 50 mm) using 0.1% NH₄OH in water as mobile phase A and acetonitrile as mobile phase B. Compounds were separated using a linear gradient of 10-90% B in 9 minutes followed by 2 minutes isocratic at 90% B. The column was re-equilibrated at 10% B for 3 minutes. The column was heated to 50°C and the flow rate was set to 0.4 mL/min. MS detection was performed in positive ESI under the following conditions: spray voltage was set to 3.5 kV ~ 67.4 μ A, capillary temperature set to 275°C, vaporizer temperature 475°C, sheath gas flow rate 65, sweep gas flow rate 3, aux gas flow rate 15, S-lens RF level to 55 V. Scan range was set to 200 - 1000 *m/z* and resolution at 17500.

4.5.11. Complex Affinity Co-Purification

5g of C. roseus leaf tissue was snap-frozen in liquid nitrogen and ground using a mortar and pestle until it formed a fine powder. The powder was added to 10 mL A1 buffer with the addition of EDTA-free protease inhibitor cocktail (Roche Diagnostics Ltd.) and 10 mg lysozyme (Sigma) and incubated gently rocking at 4 °C for 2 hours. Protein extracts were centrifuged at 1000 x g for 1 minute to remove insoluble cell debris and 1mg of 6X-Histagged purified CrDPAS or CrTS was added to the supernatant. The samples were incubated gently rocking at 4 °C for 2 hours. Ni-NTA beads (QIAGEN) were washed by centrifuging at 1000 x g for 1 minute to remove the supernatant, and then the beads were resuspended in 10 mL of A1 Buffer. This step was performed a total of three times. 200 µL washed Ni-NTA agarose beads were added to each sample and incubated on a rocking incubator at 4 °C for 1 hour. Samples were centrifuged at 1000 x g for 1 minute to remove the supernatant, and then the beads were resuspended in 10 mL of A1 Buffer. This step was performed a total of three times. Protein was eluted by resuspending the beads in 600 µL of buffer B1 (50 mM Tris-HCl pH 8.0, 50 mM glycine, 500 mM NaCl, 5% glycerol, 500 mM imidazole) before centrifuging for 1000 x g for 1 minute and then collecting the supernatant. This elution step was repeated to remove all Ni-NTA-bound proteins. Protein samples were snap frozen and stored at -20 °C until analysed by proteomics.

4.5.12. Thermal Stability Assays

Protein was resuspended to the desired concentrations in DI water and stored on ice until use. A 50X stock solution SYPRO Orange Dye (Thermo Fisher) was prepared by diluting 2.5 μ L into 250 μ L of DI water and kept in the dark until use. 12.5 μ L of each buffer solution

was added to the desired wells of a clear 96-well PCR plate (Thermo Fisher). JBScreen Thermofluor FUNDAMENT HTS buffer solutions (Jena Bioscience) were used to analyse the optimal pH and salt concentration of buffers for protein melt curves. For analysis of the effect of substrate and cofactor, 50 mM HEPES (pH 8.0) buffer was used and samples were carried out in triplicate. 10 μ L of resuspended protein and 2.5 μ L of the 50X stock solution of SYPRO Orange Dye was added to each well to a final volume of 25 μ L. Plates were sealed using a PCR Plate Sealing Film (BioRad) and centrifuged at 300 x g for 1 minute. Melt temperature analysis was performed using a CFX96 Touch Real-Time PCR system (BioRad) measuring 490 nm/ 580 nm Ex/Em wavelengths. Starting temperature was set to 10 °C to 95 °C in 0.5 °C increments for 10 seconds. Melt curves analysis was performed using CFX Maestro software (BioRad).

4.5.13. Co-purification and TurboID Sample Proteomics

For proteomics, samples were dissolved in 6 M guanidine HCl, 50 mM Tris-HCl (pH 8.0), 3 mM DTT and heated at 37 °C for 1 hour. 50 mM NH₄HCO₃ and 1 mM CaCl₂ was added until guanidine HCl concentration was reduced below 1 M. Trypsin protease was added and incubated at 37 °C overnight and the reaction stopped by freezing at -20 °C. Peptides were identified based on the *C. roseus* transcriptome.

4.5.14. C. roseus Lignin Extraction and Quantification

5 mg of leaf tissue was harvested from the first fully expanded leaf pair of *C. roseus* plants 5 d.p.i. Tissue was sliced into 1 mm strips using a blade and placed in 2 mL glass UPLC vials. The lignin extraction and quantification method was based on the acetyl-bromide-based protocol previously published by Chang *et al.*, ^[51]. Briefly, to extract the cell wall residue, 1 mL DI water was added to each sample and heated to 98 °C for 30 minutes in a water bath. The water was removed from each sample and discarded, and 1 mL of 100% ethanol was added, and samples were heated to 76 °C for 30 minutes. Ethanol was removed and 1 mL chloroform was added and heated to 59 °C for 30 minutes. Acetone was removed and 1 mL acetone was added and heated to 54 °C for 30 minutes. Acetone was removed and samples were dried in a GeneVac at 40 °c under 30 mBar for approximately 4 hours until completely dry. Cell wall residue was dissolved in 0.1 mL 25% acetyl bromide in acetic acid and 4 μ L 60% perchloric acid was added. Samples were incubated at 70 °C for 30 minutes shaking at 850 r.p.m. until completely dissolved. Samples were then centrifuged at 21300 x g for 15 minutes and the supernatant separated from the pellet. 0.2 mL 2M NaOH and 0.5 mL acetic acid was added to the supernatant. The pellet was washed with 0.5 mL acetic acid. The pellet wash was combined with the supernatant and a further 1.2 mL acetic acid was added to a final sample volume of 2 mL. Samples were incubated for 20 minutes at room temperature. Extracted lignin was measured by A_{280nm} value using a Nanodrop and values normalised by the sample fresh weight.

4.5.15. Phylogenetic Analysis

Nucleic acid sequences of ADH and α/β -hydrolase genes were aligned using MUSCLE5 ^[52]. Sequences used for ADH alignment are shown in Figure 63A described in Table 8 and Table 9, and sequences used for α/β -hydrolases alignment are shown in Figure 63B described in Table 8 and Table 11. Maximum likelihood phylogenetic trees were constructed using IQTree using a best-fit substitution model followed by tree reconstruction using 1000 bootstrap alignments and the remaining parameters used default settings ^[53]. Tree visualisation and figures were made using iTOL version 6.5.2 ^[54].

Gene Name	Genbank accession
Arabidopsis thaliana Caffeoyl shikimate esterase (CSE)	NP_175685
Arabidopsis thaliana Carboxylesterase 10 (CXE10)	AT3G05120
Arabidopsis thaliana Carboxylesterase 12 (CXE12)	AT3G48690
Arabidopsis thaliana Carboxylesterase 14 (CXE14)	AT3G63010
Arabidopsis thaliana Carboxylesterase 15 (CXE15)	AT5G06570
Arabidopsis thaliana Carboxylesterase 19 (CXE19)	AT5G27320
Arabidopsis thaliana Carboxylesterase 20 (CXE20)	AT5G62180
Capsicum annuum Esterase (PepEST)	AAF77578
Catharanthus roseus Tabersonine synthase (TS)	MF770513
Catharanthus roseus Catharanthine synthase (CS)	MF770512

Table 11. Genbank accessions for sequences used to construct the tree of maximumlikelihood in Figure 6B.

Glycine max 2-hydroxyisoflavanone dehydratase (HIDH)	NP_001389 539
Nicotiana tabacum Carboxylesterase 15 (HSR203J)	XP_016474 715
Oryza sativa Gibberellin insensitive dwarf 1 (GID1)	BAE45340
Papaver somniferum Carboxylesterase 1 (CXE1)	AFB74618
Pisum sativum HSR203J homolog (E86)	BAA85654
Rauwolfia serpentina Polyneuridine aldehyde esterase (PNAE)	AF178576
Solanum pennellii Acylsugar acyl hydrolase 1 (ASH1)	KT282359
Solanum pennellii Acylsugar acyl hydrolase 2 (ASH2)	KT282360
Solanum pennellii Acylsugar acyl hydrolase 3 (ASH3)	KT282361
Strychnos nux-vomica Norfluorocurarine synthase 1 (NS1)	OM304291
Strychnos nux-vomica Norfluorocurarine synthase 2 (NS2)	OM304292
Tabernanthe iboga Tabersonine synthase (TabS)	MK840853
Tabernanthe iboga Coronaridine synthase (CorS)	MK840854
Tulipa gesneriana Tuliposide A-converting enzyme 1 (TCEA1)	I4DST8
Tulipa gesneriana Tuliposide A-converting enzyme 2 (TCEA2)	I4DST9

4.6. References

[1] Y. Qu, M. L. A. E. Easson, J. Froese, R. Simionescu, T. Hudlicky, V. DeLuca, *Proc National Acad Sci* 2015, *112*, 6224–6229.

[2] L. Caputi, J. Franke, S. C. Farrow, K. Chung, R. M. E. Payne, T.-D. Nguyen, T.-T. T. Dang, I. S. T. Carqueijeiro, K. Koudounas, T. D. de Bernonville, B. Ameyaw, D. M. Jones, I. J. C. Vieira, V. Courdavault, S. E. O'Connor, *Science* 2018, *360*, 1235–1239.

[3] Y. Qu, M. E. A. M. Easson, R. Simionescu, J. Hajicek, A. M. K. Thamm, V. Salim, V. D. Luca, *Proc National Acad Sci* 2018, *115*, 3180–3185.

[4] C. Li, J. C. Wood, A. H. Vu, J. P. Hamilton, C. E. R. Lopez, R. M. E. Payne, D. A. S. Guerrero, K. Gase, K. Yamamoto, B. Vaillancourt, L. Caputi, S. E. O'Connor, C. R. Buell, *Nat Chem Biol* 2023, 1–11.

[5] B. St-Pierre, V. D. Luca, *Plant Physiol* 1995, *109*, 131–139.

[6] S. Besseau, F. Kellner, A. Lanoue, A. M. K. Thamm, V. Salim, B. Schneider, F. Geu-Flores,
R. Höfer, G. Guirimand, A. Guihur, A. Oudin, G. Glevarec, E. Foureau, N. Papon, M. Clastre,
N. Giglioli-Guivarc'h, B. St-Pierre, D. Werck-Reichhart, V. Burlat, V. D. Luca, S. E. O'Connor,
V. Courdavault, *Plant Physiol* 2013, *163*, 1792–803.

[7] J. G. M. Eng, M. Shahsavarani, D. P. Smith, J. Hájíček, V. D. Luca, Y. Qu, Nat Commun 2022, 13, 3335.

[8] A. Edge, Y. Qu, M. L. A. E. Easson, A. M. K. Thamm, K. H. Kim, V. D. Luca, *Planta* 2018, 247, 155–169.

[9] E. C. Tatsis, I. Carqueijeiro, T. D. D. Bernonville, J. Franke, T.-T. T. Dang, A. Oudin, A. Lanoue, F. Lafontaine, A. K. Stavrinides, M. Clastre, V. Courdavault, S. E. O'connor, *Nat Commun* 2017, *8*, 316.

[10] V. Deluca, J. Balsevich, R. T. Tyler, W. G. Kurz, Plant Cell Rep 1987, 6, 458–61.

[11] K. Yamamoto, K. Takahashi, L. Caputi, H. Mizuno, C. E. Rodriguez-Lopez, T. Iwasaki, K. Ishizaki, H. Fukaki, M. Ohnishi, M. Yamazaki, T. Masujima, S. E. O'Connor, T. Mimura, *New Phytol* 2019, *224*, nph.16138.

[12] G. Guirimand, A. Guihur, P. Poutrain, F. Hericourt, S. Mahroug, B. St-Pierre, V. Burlat, V. Courdavault, *J Plant Physiol* 2011, *168*, 549–557.

[13] G. Guirimand, A. Guihur, O. Ginis, P. Poutrain, F. Hericourt, A. Oudin, A. Lanoue, B. St-Pierre, V. Burlat, V. Courdavault, *Febs J* 2011, *278*, 749–763.

[14] S. Mahroug, V. Courdavault, M. Thiersault, B. St-Pierre, V. Burlat, *Planta* 2006, 223, 1191–1200.

[15] G. Guirimand, V. Courdavault, A. Lanoue, S. Mahroug, A. Guihur, N. Blanc, N. Giglioli-Guivarc'h, B. St-Pierre, V. Burlat, *Bmc Plant Biol* 2010, *10*, 182.

[16] A. Stavrinides, E. C. Tatsis, E. Foureau, L. Caputi, F. Kellner, V. Courdavault, S. E. O'Connor, *Chem Biol* 2015, *22*, 336–41.

[17] R. M. E. Payne, D. Xu, E. Foureau, M. I. S. T. Carqueijeiro, A. Oudin, T. D. de Bernonville, V. Novak, M. Burow, C.-E. Olsen, D. M. Jones, E. C. Tatsis, A. Pendle, B. A. Halkier, F. Geu-Flores, V. Courdavault, H. H. Nour-Eldin, S. E. O'Connor, *Nat Plants* 2017, *3*, 16208.

[18] A. Rai, H. Hirakawa, R. Nakabayashi, S. Kikuchi, K. Hayashi, M. Rai, H. Tsugawa, T. Nakaya, T. Mori, H. Nagasaki, R. Fukushi, Y. Kusuya, H. Takahashi, H. Uchiyama, A. Toyoda, S. Hikosaka, E. Goto, K. Saito, M. Yamazaki, *Nat Commun* 2021, *12*, 405.

[19] A. Stavrinides, E. C. Tatsis, L. Caputi, E. Foureau, C. E. M. Stevenson, D. M. Lawson, V. Courdavault, S. E. O'Connor, *Nat Commun* 2016, *7*, 12116.

[20] A. K. Stavrinides, E. C. Tatsis, T.-T. Dang, L. Caputi, C. E. M. Stevenson, D. M. Lawson, B. Schneider, S. E. O'Connor, *Chembiochem* 2018, *19*, 940–948.

[21] C. Langley, E. Tatsis, B. Hong, Y. Nakamura, C. Paetz, C. E. M. Stevenson, J. Basquin, D. M. Lawson, L. Caputi, S. E. O'Connor, *Angew. Chem. Int. Ed.* 2022, *61*, e202210934.

[22] S. C. Farrow, M. O. Kamileen, L. Caputi, K. Bussey, J. E. A. Mundy, R. C. McAtee, C. R. J. Stephenson, S. E. O'Connor, *J Am Chem Soc* 2019, *141*, 12979–12983.

[23] M. O. Kamileen, M. D. DeMars, B. Hong, Y. Nakamura, C. Paetz, B. R. Lichman, P. D. Sonawane, L. Caputi, S. E. O'Connor, *J Am Chem Soc* 2022, DOI 10.1021/jacs.2c08107.

[24] J. H. Morris, G. M. Knudsen, E. Verschueren, J. R. Johnson, P. Cimermancic, A. L. Greninger, A. R. Pico, *Nat. Protoc.* 2014, *9*, 2539–2554.

[25] A. Mair, S. L. Xu, T. C. Branon, A. Y. Ting, D. C. Bergmann, Elife 2019, 8, e47864.

[26] D. Arora, N. B. Abel, C. Liu, P. van Damme, K. Yperman, D. Eeckhout, L. D. Vu, J. Wang, A. Tornkvist, F. Impens, B. Korbei, J. van Leene, A. Goossens, G. de Jaeger, T. Ott, P. N. Moschou, D. van Damme, *Plant Cell* 2020, *32*, 3388–3407.

[27] K. Kido, S. Yamanaka, S. Nakano, K. Motani, S. Shinohara, A. Nozawa, H. Kosako, S. Ito, T. Sawasaki, *Elife* 2020, *9*, e54983.

[28] K. F. Cho, T. C. Branon, S. Rajeev, T. Svinkina, N. D. Udeshi, T. Thoudam, C. Kwak, H. W. Rhee, I. K. Lee, S. A. Carr, A. Y. Ting, *Proc National Acad Sci* 2020, *117*, 12143–12154.

[29] M. Fairhead, M. Howarth, Methods Mol. Biol. 2014, 1266, 171–184.

[30] T. Azad, A. Tashakor, S. Hosseinkhani, Anal. Bioanal. Chem. 2014, 406, 5541–5560.

[31] K. Gao, R. Oerlemans, M. R. Groves, *Biophys. Rev.* 2020, 12, 85–104.

[32] L. Caputi, J. Franke, K. Bussey, S. C. Farrow, I. J. C. Vieira, C. E. M. Stevenson, D. M. Lawson, S. E. O'Connor, *Nat Chem Biol* 2020, *16*, 383–386.

[33] T. C. Branon, J. A. Bosch, A. D. Sanchez, N. D. Udeshi, T. Svinkina, S. A. Carr, J. L. Feldman, N. Perrimon, A. Y. Ting, *Nat Biotechnol* 2018, *36*, 880–887.

[34] S. de Vries, J. M. R. Fürst-Jansen, I. Irisarri, A. D. Ashok, T. Ischebeck, K. Feussner, I. N. Abreu, M. Petersen, I. Feussner, J. de Vries, *The Plant Journal* 2021, DOI 10.1111/tpj.15387.

[35] C.-Y. Lin, Y. Sun, J. Song, H.-C. Chen, R. Shi, C. Yang, J. Liu, S. Tunlaya-Anukit, B. Liu, P. L. Loziuk, C. M. Williams, D. C. Muddiman, Y.-C. J. Lin, R. R. Sederoff, J. P. Wang, V. L. Chiang, *Front Plant Sci* 2021, *12*, 727932.

[36] J. P. Wang, B. Liu, Y. Sun, V. L. Chiang, R. R. Sederoff, Front Plant Sci 2019, 9, 1942.

[37] H.-C. Chen, Q. Li, C. M. Shuford, J. Liu, D. C. Muddiman, R. R. Sederoff, V. L. Chiang, *Proc National Acad Sci* 2011, *108*, 21253–21258.

[38] M. Gou, X. Ran, D. W. Martin, C.-J. Liu, Nat Plants 2018, 4, 299–310.

[39] X. Yan, J. Liu, H. Kim, B. Liu, X. Huang, Z. Yang, Y. J. Lin, H. Chen, C. Yang, J. P. Wang, D. C. Muddiman, J. Ralph, R. R. Sederoff, Q. Li, V. L. Chiang, *New Phytol* 2019, *222*, 244–260.

[40] M. Dastmalchi, *The Plant Journal* 2021, DOI 10.1111/tpj.15446.

[41] T. Nakayama, S. Takahashi, T. Waki, n.d.

[42] T. Nakayama, S. Takahashi, T. Waki, Front Plant Sci 2019, 10, 821.

[43] J. I. Watkinson, P. A. Bowerman, K. C. Crosby, S. B. Hildreth, R. F. Helm, B. S. J. Winkel, *Peerj* 2018, *2018*, e5598.

[44] T. Waki, D. C. Yoo, N. Fujino, R. Mameda, K. Denessiouk, S. Yamashita, R. Motohashi, T. Akashi, T. Aoki, S. I. Ayabe, S. Takahashi, T. Nakayama, *Biochem Bioph Res Co* 2016, *469*, 546–551.

[45] N. Fujino, N. Tenma, T. Waki, K. Ito, Y. Komatsuzaki, K. Sugiyama, T. Yamazaki, S. Yoshida, M. Hatayama, S. Yamashita, Y. Tanaka, R. Motohashi, K. Denessiouk, S. Takahashi, T. Nakayama, *Plant J* 2018, *94*, 372–392.

[46] J.-E. Bassard, L. Richert, J. Geerinck, H. Renault, F. Duval, P. Ullmann, M. Schmitt, E. Meyer, J. Mutterer, W. Boerjan, G. D. Jaeger, Y. Mely, A. Goossens, D. Werck-Reichhart, *Plant Cell* 2012, *24*, 4465–4482.

[47] H. A. Maeda, Front Plant Sci 2019, 10, 881.

[48] P. L. Cruz, I. Carqueijeiro, K. Koudounas, D. P. Bomzan, E. A. Stander, C. Abdallah, N. Kulagina, A. Oudin, A. Lanoue, N. Giglioli-Guivarc'h, D. A. Nagegowda, N. Papon, S. Besseau, M. Clastre, V. Courdavault, *Protoplasma* 2023, *260*, 607–624.

[49] N. S. Berrow, D. Alderton, S. Sainsbury, J. Nettleship, R. Assenberg, N. Rahman, D. I. Stuart, R. J. Owens, *Nucleic Acids Res* 2007, *35*, e45–e45.

[50] Z. Ban, H. Qin, A. J. Mitchell, B. Liu, F. Zhang, J. K. Weng, R. A. Dixon, G. Wang, *Proc National Acad Sci* 2018, *115*, E5223–E5232.

[51] X. F. Chang, R. Chandra, T. Berleth, R. P. Beatson, *J Agr Food Chem* 2008, *56*, 6825–6834.

[52] R. C. Edgar, *Biorxiv* 2021, 2021.06.20.449169.

[53] J. Trifinopoulos, L.-T. Nguyen, A. von Haeseler, B. Q. Minh, *Nucleic Acids Res* 2016, 44, W232–W235.

[54] I. Letunic, P. Bork, Nucleic Acids Res 2021, 49, gkab301-.

[55] S. S. Sahu, C. D. Loaiza, R. Kaundal, *Aob Plants* 2019, *12*, plz068.

[56] X. Robert, P. Gouet, *Nucleic Acids Res* 2014, *42*, W320–W324.

Chapter 5. Conclusions and Future Perspectives

5.1. The Structural and Mechanistic Basis of Atypical CAD-Catalysed Reductions in MIA Biosynthesis

Members of the CAD family of enzymes catalyse several atypical reduction reactions in MIA biosynthesis such as the 1,2-reduction of the iminium moiety of the substrate strictosidine aglycone ^[1]. In addition, findings in Chapter 2 demonstrate that the CAD *Cr*DPAS catalyses the 1,4-iminium reduction of the substrates precondylocarpine acetate and dehydrosecodine, and the 1,4-reduction of an α , β -unsaturated aldehyde vallesiachotamine - the first reports of these chemistries to be catalysed by an ADH enzyme.

To uncover the mechanistic basis of these reductions, we elucidated the structures of the 1,4-iminium reducing *Cr*DPAS and *Ti*DPAS2 and compared their active sites with other closely related CADs known to act in MIA biosynthesis including the 1,2-iminium reducing *Cr*GS and aldehyde reducing *Cr*8HGO. Our study identified key differences known to be involved in catalysis. Namely, *Cr*DPAS and *Ti*DPAS2 had atypical residues in positions that typically coordinate the catalytic zinc, resulting in the loss of this ion, whilst *Cr*GS had residues that resulted in atypical binding and positioning of the cofactor. The findings from structural analyses in conjunction with mutational studies of *Cr*DPAS and *Cr*GS enable us to propose the mechanistic basis of these reduction reactions. Current engineering efforts to improve the substrate promiscuity of enzymatic imine reductases have had limited success ^[2]. It is therefore hoped that the discovery of ADHs capable of catalysing the reduction of an iminium moiety ^[3–5] may aid future bioengineering efforts.

5.2. Phylogenetic Study Reveals the Neofunctionalisation of CADs as Drivers of MIA Chemical Diversity

Building on our understanding of CAD sequence motifs important in catalysing atypical reductions in MIA biosynthesis, Chapter 3 explores the phylogenetic relationship of this gene family in *C. roseus*. Genomic analysis reveals that the CAD gene family has undergone more recent expansion in *C. roseus*, with several instances of physical clusters of these genes in the *C. roseus* genome that likely arose through several tandem duplication events. In addition, phylogenetic and sequence analyses suggest that each class of atypical

reduction chemistry had a monophyletic branch of corresponding CAD genes and a sister clade of aldehyde-reducing CADs. These findings suggest that each atypical class of this gene family emerged once from a typical-CAD ancestral genes, before being neofunctionalised to catalyse either the 1,2- or 1,4-reduction of an iminium moiety.

Furthermore, we expanded our analysis across the order of Gentianales to reveal that CADs with a similar pattern of atypical residues required for the 1,2-reduction of an iminium moiety were exclusively found in species known to produce MIAs. CADs that catalyse this atypical reduction often act on different structural isomers of the early biosynthetic intermediate strictosidine aglycone to form a diverse range of MIA scaffolds ^[1, 6, 7]. The role of atypical CADs in the generation of chemical diversity therefore supports the neofunctionalisation and maintenance of these genes as key evolutionary drivers of MIA biosynthesis.

5.3. Protein-Protein Interactions in MIA Biosynthesis and Beyond

The large number of biosynthetic enzymes and the presence of unstable intermediates have led to speculation regarding the role of protein-protein interactions in MIA biosynthesis. Several protein complexes between MIA biosynthetic enzymes have been previously reported ^[7, 8], however, a more comprehensive study was required to understand the extent of these interactions. To this end, Chapter 4 reports the pairwise testing of 17 biosynthetic enzymes involved in vinblastine biosynthesis which are colocalised in the same cell-type in *C. roseus* using a split-luciferase assay ^[9]. These findings revealed an extensive network of protein-protein interactions between these enzymes, suggesting their potential metabolic role in MIA biosynthesis.

We focussed our study on characterising the interaction between *Cr*DPAS and the downstream cyclase enzymes *Cr*TS and *Cr*CS due to the potential metabolic role of this complex on the flux of the unstable intermediary compound, dehydrosecodine ^[8]. However, whilst interactions between these proteins was observed using a split-luciferase assay, it was not detected using other *in vitro* biophysical methods such as AP-MS or DSF, highlighting the weak and/or dynamic nature of these interactions. To probe the structural basis of this interaction, we identified a single surface residue on the cyclase enzymes

through mutational studies which selectively engineered the interaction between these proteins. These results form the basis for future engineering efforts to understand the metabolic effect of protein-protein interaction between these MIA biosynthetic enzymes.

In addition, we present findings that support the formation of inter-pathway protein complexes between enzymes that act within specialised metabolism (MIA biosynthesis) and primary metabolism (phenylpropanoid biosynthesis). Phenylpropanoid biosynthesis is an ancient pathway ^[10] comprising of enzymes that in many cases, have subsequently undergone neofunctionalisation and been co-opted to act in specialised metabolism ^[11], including MIA biosynthesis ^[12]. The observation of these inter-pathway interactions may be a result of conservation from their ancestral primary metabolic predecessors. Furthermore, we postulate that these interactions have a functional role in reducing lignin biosynthesis in *C. roseus* leaves. These preliminary findings suggest that inter-pathway protein-protein interactions may act as a mechanism to modify the metabolic output of a cell, enabling cross-talk between primary and specialised metabolism within the plant.

5.4. Future Directions: Biochemical and Biophysical Insights into MIA Biosynthesis and Beyond

MIAs are a structurally diverse group of PNPs of great biological and pharmaceutical importance, including the anti-cancer compound vinblastine from *C. roseus* ^[13]. This doctoral thesis explores the biochemical and biophysical characterisation of enzymes participating in MIA biosynthesis, with the aim of further unravelling the intricacies of this pathway.

Work in this thesis explores the remarkable divergence of reduction chemistries catalysed by members of the CAD enzyme subfamily in MIA biosynthesis. These atypical reduction reactions, which are unreported outside the context of MIA biosynthesis, were found to have arisen from deviations in otherwise highly conserved residues within the enzyme's active site. These alterations facilitated their neofunctionalisation to perform either the 1,2-reduction of an iminium moiety, or the 1,4-reduction of either an iminium moiety or an α , β -unsaturated aldehyde. This discovery highlights the remarkable catalytic plasticity of these enzymes and underscores their potential utility in bioengineering efforts of enzymatic catalysts of challenging imine reductions ^[2].

Furthermore, comprehensive phylogenetic and genomic analysis of the CAD gene family revealed their role as key evolutionary drivers of MIA chemical diversity in Gentianales. The identification of sequence motifs important in catalysis enabled us to identify the emergence of atypical class of CADs after the divergence of Gentianales and correlate our findings with the presence of MIAs in these species. Additionally, this work identified uncharacterised CADs with the potential to catalyse other atypical reductions, offering promising leads for the discovery of additional MIA biosynthetic genes.

Lastly, this thesis delves into characterising the biophysical interactions among biosynthetic proteins involved in vinblastine biosynthesis within *C. roseus*. In this context, the structural basis of the interaction between *Cr*DPAS and the downstream cyclase enzymes *Cr*TS and *Cr*CS was elucidated. This finding suggests enzyme-enzyme interactions may exert an effect on the metabolic flux of their biosynthetic intermediary molecule, although further *in vivo* and *in vitro* experimentation is required to test this hypothesis. Additionally, we reveal inter-pathway interactions between enzymes within MIA and phenylpropanoid biosynthesis in *C. roseus*. The full extent of inter-pathway interactions between MIA biosynthetic enzymes and proteins acting in other pathways and their potential metabolic role in sight into the evolution of these protein complexes and reveal the potential organisational principles governing multiple metabolic pathways within the cell.

5.5. References

[1] A. Stavrinides, E. C. Tatsis, L. Caputi, E. Foureau, C. E. M. Stevenson, D. M. Lawson, V. Courdavault, S. E. O'Connor, *Nat Commun* 2016, *7*, 12116.

[2] P. Stockinger, S. Roth, M. Müller, J. Pleiss, Chembiochem 2020, 21, 2689–2695.

[3] S.-J. Kim, M.-R. Kim, D. L. Bedgar, S. G. A. Moinuddin, C. L. Cardenas, L. B. Davin, C. Kang, N. G. Lewis, *Proc National Acad Sci* 2004, *101*, 1455–1460.

[4] B. Youn, R. Camacho, S. G. A. Moinuddin, C. Lee, L. B. Davin, N. G. Lewis, C. Kang, *Org Biomol Chem* 2006, *4*, 1687–1697.

[5] C. Langley, E. Tatsis, B. Hong, Y. Nakamura, C. Paetz, C. E. M. Stevenson, J. Basquin, D. M. Lawson, L. Caputi, S. E. O'Connor, *Angew. Chem. Int. Ed.* 2022, *61*, e202210934.

[6] E. C. Tatsis, I. Carqueijeiro, T. D. D. Bernonville, J. Franke, T.-T. T. Dang, A. Oudin, A. Lanoue, F. Lafontaine, A. K. Stavrinides, M. Clastre, V. Courdavault, S. E. O'connor, *Nat Commun* 2017, *8*, 316.

[7] A. Stavrinides, E. C. Tatsis, E. Foureau, L. Caputi, F. Kellner, V. Courdavault, S. E. O'Connor, *Chem Biol* 2015, *22*, 336–41.

[8] L. Caputi, J. Franke, S. C. Farrow, K. Chung, R. M. E. Payne, T.-D. Nguyen, T.-T. T. Dang, I. S. T. Carqueijeiro, K. Koudounas, T. D. de Bernonville, B. Ameyaw, D. M. Jones, I. J. C. Vieira, V. Courdavault, S. E. O'Connor, *Science* 2018, *360*, 1235–1239.

[9] C. Li, J. C. Wood, A. H. Vu, J. P. Hamilton, C. E. R. Lopez, R. M. E. Payne, D. A. S. Guerrero, K. Gase, K. Yamamoto, B. Vaillancourt, L. Caputi, S. E. O'Connor, C. R. Buell, *Nat Chem Biol* 2023, 1–11.

[10] S. de Vries, J. M. R. Fürst-Jansen, I. Irisarri, A. D. Ashok, T. Ischebeck, K. Feussner, I. N. Abreu, M. Petersen, I. Feussner, J. de Vries, *The Plant Journal* 2021, DOI 10.1111/tpj.15387.

[11] H. A. Maeda, Front Plant Sci 2019, 10, 881.

[12] P. L. Cruz, I. Carqueijeiro, K. Koudounas, D. P. Bomzan, E. A. Stander, C. Abdallah, N. Kulagina, A. Oudin, A. Lanoue, N. Giglioli-Guivarc'h, D. A. Nagegowda, N. Papon, S. Besseau, M. Clastre, V. Courdavault, *Protoplasma* 2023, *260*, 607–624.

[13] S. E. O'Connor, J. J. Maresh, *Nat Prod Rep* 2006, *23*, 532.

Appendices

Appendix I. NMR Characterisation of *d*-angryline

Table 12. Comparison of ¹H NMR data between angryline and d-angryline. Multiplicity abbreviations: s, singlet; d, doublet; m, multiplet; bs, broad singlet; bd, broad doublet; dd, doublet of doublets; bdd, broad doublet of doublets; ddd, doublet of doublets.

angryline ¹H 600 MHz, MeOH-*d*₃, 25 °C d-angryline ¹H 400MHz, MeOH-d₃, 25 °C

	angryline ^[6]	d-angryline
Position	¹ H (600 MHz, MeOH-d ₃)	¹ H (400 MHz, MeOH- <i>d</i> ₃)
3	4.05 (m, 1H)	4.04 (m, 1H)
	3.76 (m, 1H)	3.82 (m,1H)
5	4.06 (m, 1H)	4.07 (m, 1H)
	3.88 (m, 1H)	3.85 (m, 1H)
6	2.66 (m, 1H)	2.69 (m, 1H)
	2.51 (m, 1H)	2.54 (m, 1H)
9	7.49 (d, 7.5, 1H)	7.50 (d, 7.5, 1H)
10	7.06 (dd, 7.6, 7.6, 1H)	7.07 (td, 7.5, 0.9, 1H).
11	7.33 (dd, 7.8, 7.8, 1H)	7.35 (td, 7.8, 1.1, 1H)
12	7.10 (d, 7.6, 1H)	7.12 (d, 7.9, 1H),
14	2.82 (m, 1H)	2.85 (m, 1H)
	2.66 (m, 1H)	2.69 (m, 1H)
15	5.66 (s, 1H)	5.68 (s, 1H)
17	4.41 (dd, 15.0, 2.0, 1H) 4.06 (m, 1H)	4.44 (dd, 15.0, 2.2, 1H)
		4.07 (m, 1H)
18	0.78 (t, 7.3, 3H)	0.78 (t, 7.4, 3H).
19	1.43 (m, 2H)	1.46 (m, 1.36H)
21	5.11 (s, 1H)	5.12 (s, 1H)
CO ₂ Me	3.78 (s, 3H)	3.81 (s, 3H)

Figure 72. Comparison of ¹H spectra of angryline and *d*-angryline. Loss of signal shown at H19, indicating deuterium incorporation.

Appendix II. NMR Characterisation of (-)-vincadifformine

Table 13. ¹H NMR data for (-)-vincadifformine in MeOH-d₃. Multiplicity abbreviations: s, singlet; d, doublet; m, multiplet; bs, broad singlet; bd, broad doublet; dd, doublet of doublets; bdd, broad doublet of doublets; ddd, doublet of doublets.

(-)-vincadifformine ¹H 700 MHz, MeOH-d₃, 25 °C

pos.	δ_{H}	mult.	J _{HH}	δ_{c}
1	9.16	bs	-	-
2	-	-	-	169.1
3a	2.45	ddd	10.9/10.9/3.0	51.4
3b	3.11	m	-	51.4
4	-	-	-	-
5a	2.59	ddd	11.3/8.5/4.8	52.5
5b	2.91	m	-	52.5
6a	1.64	ddd	11.3/4.8/1.2	46.6
6b	1.99	ddd	11.3/11.3/6.6	46.6
7	-	-	-	57.0
8	-	-	-	138.9
9	7.20	bd	7.2	121.8
10	6.84	bdd	7.7/7.2	121.5
11	7.09	ddd	7.7/7.7/0.9	128.5
12	6.89	bd	7.7	110.5
13	-	-	-	144.8
14a	1.54	m	-	22.8
14b	1.84	m	-	22.8
15a	1.29	ddd	13.1/13.1/4.9	33.9
15b	1.80	m	-	33.9
16	-	-	-	92.8
17a	2.28	dd	15.2/1.8	26.9
17b	2.70	d	15.2	26.9
18	0.57	t	7.3	7.3
19a	0.95	m	-	30.4
19b	0.63	m	-	30.4
20	-	-	-	39.0
21	2.51	bs	-	73.8
22	-	-	-	170.2
OMe	3.74	s	-	51.3

Figure 73. ¹H NMR data for m/z 339, (–)-vincadifformine (standard). Phase sensitive HSQC, full range in MeOH- d_3 . Shaded areas mark impurity and solvent, red: CH₂, black: CH, CH₃. NMR data of (–)-vincadifformine in chloroform-d has been previously reported ^[61, 62].

Figure 74. ¹H NMR data for m/z 339, (–)-vincadifformine (standard). Phase sensitive HSQC, aliphatic range in MeOH-*d*3. Shaded areas mark impurity and solvent, red: CH₂, black: CH, CH₃

Appendix III. NMR Characterisation of d₂-(+)-vincadifformine

Table 14. ¹H NMR data for d_2 -(±)-vincadifformine in MeOH- d_3 . Multiplicity abbreviations: s, singlet; d, doublet; m, multiplet; bs, broad signlet; bd, broad doublet; dd, doublet of doublets; bdd, broad doublet of doublets; ddd, doublet of doublet of doublets.

 d_2 -(±)-vincadifformine ¹H 700 MHz, MeOH- d_3 , 25 °C

pos.	$\delta_{_{ m H}}$	mult.	J _{HH}	δ_{c}
1	9.18	bs	-	-
2	-	-	-	169.1
3a	2.51	m**	-	51.3
3b	3.14	m	-	51.3
4	-	-	-	-
5a	2.65	ddd	11.3/9.3/4.8	52.5
5b	2.95	m	-	52.5
6a	1.69	ddd	11.3/4.8/1.2	46.6
6b	2.03	ddd	11.3/11.3/6.4	46.6
7	-	-	-	56.9
8	-	-	-	138.8
9	7.23	bd	7.3	121.8
10	6.85	bdd	7.7/7.3	121.6
11	7.1	ddd	7.7/7.7/0.8	128.5
12	6.91	bd	7.7	110.6
13	-	-	-	144.8
14a	1.56	m	-	22.4
14b	1.85	m	-	22.4
15a*	1.30	m **	-	33.2
15b*	1.79	m	-	33.2
16	-	-	-	92.8
17a	2.30	dd	15.1	26.9
17b	2.69	dd	15.2/2.9	26.9
18	0.57	d	7.3	7.1
19a*	0.94	m**	-	30.1
19b*	0.63	m**	-	30.1
20	-	-	-	38.7
21	2.59	bs	-	73.6
22	-	-	-	170.2
OMe	3.75	S	-	51.4
*as CH signal				
** overlappe	d signals J un	resolved		

Figure 75. Phase sensitive HSQC NMR data for m/z 341, d_2 -(±)-vincadifformine full range in MeOH- d_3 . Shaded areas mark impurity and solvent, red: CH₂, black: CH, CH₃

Figure 76. Phase sensitive HSQC NMR data for m/z 341, d_2 -(±)-vincadifformine, aliphatic range in MeOH- d_3 . Shaded areas mark impurity and solvent, red: CH₂, black: CH, CH₃

Appendix IV. NMR Characterisation of 19,20-dihydrovallesiachotamine

Figure 77. MS/MS spectra of 19,20-dihydrovallesiachotamine. Formula: C₂₁H₂₄N₂O₃; observed mass: 353.1854; theoretical mass: 353.1860; error 1.6988 p.p.m.

19,20-dihydrovallesiachotamine ¹H 700 MHz, MeOH-d₃, 25 °C

pos.	δ _H	mult.	J _{HH}	δ _c
1	10.4	bs	-	-
2	-	-	-	133.9
3α	4.55	bd	12.0	49.9
4	-	-	-	-
5α	3.61	ddd	13.0/12.4/3.9	52.2
5β	3.81	dd	13.0/5.4	52.2
6α	2.76	т	-	22.9
6β	2.86	т	-	22.9
7	-	-	-	108.2
8	-	-	-	127.9
9	7.39	bd	7.8	118.6
10	6.98	dd	7.8/7.2	119.8
11	7.06	dd	8.0/7.2	122.3
12	7.28	bd	8.0	112.0
13	-	-	-	138.3
14α	2.50	ddd	13.8/4.0/2.0	32.5
14β	1.60	ddd	13.8/12.0/5.0	32.5
15β	3.18	ddd	7.5/5.0/2.0	31.6
16	-	-	-	94.1
17	7.74	s	-	148.9
18	0.93	t	7.4	12.5
19a	1.82	ddt	14.0/9.6/7.4	20.8
19b	1.54	т	-	20.8
20	2.42	т	-	60.2
21	9.72	d	3.4	208.0
22	-	-	-	170.9
OMe	3.67	S	-	51.1

Figure 78. ¹H NMR data of 19,20-dihydrovallesiachotamine with water suppression, full range in MeOH- d_3

Figure 79. ¹H NMR data of 19,20-dihydrovallesiachotamine with water suppression, aldehyde range in MeOH- d_3

Figure 80. ¹H NMR data of 19,20-dihydrovallesiachotamine with water suppression, aromatic range in MeOH- d_3 . Grey bars indicate impurities.

Figure 81. ¹H NMR data of 19,20-dihydrovallesiachotamine with water suppression, aliphatic range in MeOH-*d*₃. Grey bars indicate impurities.

Figure 82. NMR data of 19,20-dihydrovallesiachotamine, phase sensitive HSQC, full range in MeOH- d_3 . Shaded areas mark impurity and solvent, red: CH₂, black: CH, CH₃

Figure 83. NMR data of 19,20-dihydrovallesiachotamine, phase sensitive HSQC, aldehyde and aromatic range in MeOH- d_3 . Shaded areas mark impurity and solvent, red: CH₂, black: CH

Figure 84. NMR data of 19,20-dihydrovallesiachotamine, phase sensitive HSQC, aliphatic range in MeOH- d_3 . Shaded areas mark impurity and solvent, red: CH₂, black: CH

Figure 85. NMR data of 19,20-dihydrovallesiachotamine, HMBC, full range in MeOH-*d*₃. Shaded areas mark impurity and solvent.

Figure 86. NMR data of 19,20-dihydrovallesiachotamine, HMBC, aldehyde and aromatic range in MeOH- d_3 . Shaded areas mark impurity and solvent.

Figure 87. NMR data of 19,20-dihydrovallesiachotamine, HMBC, aliphatic range in MeOH- d_3 . Shaded areas mark impurity and solvent.

d₃.

Figure 89. NMR data of 19,20-dihydrovallesiachotamine, ${}^{1}H{}^{-1}H$ DQF COSY with water suppression, magnitude mode processed, full range in MeOH- d_{3} .

Figure 90. NMR data of 19,20-dihydrovallesiachotamine, ${}^{1}H{}^{-1}H$ DQF COSY with water suppression, magnitude mode processed, aldehyde and aromatic range in MeOH- d_{3} .

Figure 91. NMR data of 19,20-dihydrovallesiachotamine, ${}^{1}H{}^{-1}H$ DQF COSY with water suppression, magnitude mode processed, aliphatic range in MeOH- d_{3} .

Figure 92. NMR data of 19,20-dihydrovallesiachotamine, ${}^{1}H{}^{-1}H$ ROESY with water suppression, full range in MeOH- d_{3}

Figure 93. NMR data of 19,20-dihydrovallesiachotamine, ${}^{1}H{}^{-1}H$ ROESY with water suppression, aldehyde and aromatic range in MeOH- d_{3}

Figure 94. NMR data of 19,20-dihydrovallesiachotamine, ${}^{1}H{}^{-1}H$ ROESY with water suppression, aliphatic range in MeOH- d_{3}

Figure 95. Structure of 19,20-dihydrovallesiachotamine optimized using Gaussian 16 (DFT APFD/6-311G++(2d,p), solvent MeOH). Important ROESY correlations extracted from NMR data are depicted in green.

Appendix V – X-Ray Data and Model Parameters used for Structure Solutions

Key for Solution Tables

^a $R_{\text{merge}} = \sum_{hkl} \sum_{i} |I_i(hkl) - \langle I(hkl) \rangle | / \sum_{hkl} \sum_{i} |I_i(hkl).$

^b $R_{\text{meas}} = \sum_{hkl} [N/(N - 1)]^{1/2} \times \sum_{i} |I_{i}(hkl) - \langle I(hkl) \rangle| / \sum_{hkl} \sum_{i} |I_{i}(hkl)|$, where $I_{i}(hkl)$ is the *i*th observation of reflection hkl, $\langle I(hkl) \rangle$ is the weighted average intensity for all observations *i* of reflection hkl and N is the number of observations of reflection hkl.

^c $CC_{\frac{1}{2}}$ is the correlation coefficient between symmetry equivalent intensities from random halves of the dataset.

^d The data set was split into "working" and "free" sets consisting of 95 and 5% of the data respectively. The free set was not used for refinement.

^e The R-factors R_{work} and R_{free} are calculated as follows: $R = \sum (|F_{\text{obs}} - F_{\text{calc}}|) / \sum |F_{\text{obs}}|$, where F_{obs} and F_{calc} are the observed and calculated structure factor amplitudes, respectively. ^f As calculated using MolProbity ^[59].

Paul Scherrer Institute 10SA (PX II) Wavelength (Å) 1 Resolution range (Å) 44.62 - 2.45 (2.548 - 2.45) Space Group $P 21 21 21$ Cell parameters (Å) $a = 61.019, b = 114.015, c$ Total no. of measured reflections 494135 (51201)	: =
Wavelength (Å)1Resolution range (Å) $44.62 - 2.45 (2.548 - 2.45)$ Space Group $P 21 21 21$ Cell parameters (Å) $a = 61.019, b = 114.015, c$ Total no. of measured reflections $494135 (51201)$: =
Resolution range (Å) $44.62 - 2.45 (2.548 - 2.45)$ Space Group $P 21 21 21$ Cell parameters (Å) $a = 61.019, b = 114.015, c$ Total no. of measured reflections $494135 (51201)$. =
Space Group $P \ 21 \ 21 \ 21$ Cell parameters (Å) $a = 61.019, b = 114.015, c$ Total no. of measured reflections 494135 (51201)	; =
Cell parameters (Å) $a = 61.019, b = 114.015, c$ 143.357, $\beta = 90^{\circ}$ Total no. of measured reflections494135 (51201)	: =
143.357, β = 90°Total no. of measured reflections494135 (51201)	
Total no. of measured reflections 494135 (51201)	
Unique reflections 37564 (3719)	
Multiplicity 13.2 (13.8)	
Mean $I/\sigma(I)$ 21.46 (3.10)	
Completeness (%) 98.7 (96.8)	
R _{merge} ^a 0.2154 (1.406)	
R _{meas} ^b 0.2242 (1.46)	
<i>CC</i> ^{1/2} 0.999 (0.879)	
Wilson <i>B</i> value (Å ²) 53.18	
Refinement	
Reflections used in refinement 37560 (3719)	
Reflections used for R-free 1877 (186)	
R _{work} 0.2217 (0.2772)	
R _{free} 0.2501 (0.3143)	
<i>CC</i> _{work} 0.942 (0.845)	
<i>CC</i> _{free} 0.958 (0.704)	
Protein residues 640	
Number of non-hydrogen atoms 4668	
macromolecules 4566	
ligands 43	
solvent 69	
Ramachandran plot: 98.1/1.58/0.32	
favoured/allowed/disallowed ^f (%)	
Rotamer outliers (%) 3.97	
R.m.s. bond distance deviation (Å) 0.007	
R.m.s. bond angle deviation (°) 0.98	
Clashscore 19.95	
Mean B factors: 62.93/54.82/76.91/62.91	
protein/waters/ligands/overall (Å ²)	
PDB accession code 8B27	

Table 16. Summary of X-ray data and model parameters for CrDPAS.

Table 17. Summary of X-ray data and model parameters for apo-*Ti*DPAS2.

Data collection	
Paul Scherrer Institute	10SA (PX II)
Wavelength (Å)	1
Resolution range (Å)	41.64 - 2.421 (2.508 - 2.421)
Space Group	P 21 21 21
Cell parameters (Å)	a = 74.422, b = 78.124, c =
	131.207 <i>,</i> β = 90°
Total no. of measured reflections	341639 (17075)
Unique reflections	29562 (2702)
Multiplicity	11.6 (6.3)
Mean I/σ(I)	16.49 (1.32)
Completeness (%)	98.98 (91.90)
<i>R</i> _{merge} ^a	0.08578 (0.8446)
<i>R</i> _{meas} ^b	0.0897 (0.9206)
<i>CC</i> ^½ ^c	0.999 (0.785)
Wilson <i>B</i> value (Å ²)	64.90
Refinement	
Reflections used in refinement	29531 (2700)
Reflections used for R-free	1477 (135)
R _{work}	0.2082 (0.3777)
R _{free}	0.2552 (0.4209)
CCwork	0.965 (0.812)
CCfree	0.901 (0.716)
Protein residues	716
Number of non-hydrogen atoms	5305
macromolecules	5269
ligands	2
solvent	34
Ramachandran plot:	98.87/1.13/0.00
favoured/allowed/disallowed ^f (%)	
Rotamer outliers (%)	2.43
R.m.s. bond distance deviation (Å)	0.006
R.m.s. bond angle deviation (^o)	0.95
Clashscore	5.27
Mean B factors:	71.16/57.66/62.53/71.07
protein/waters/ligands/overall (Å ²)	
PDB accession code	8B26

Table 18. Summary of X-ray data and model parameters for precondylocarpine acetate-bound *Ti*DPAS2.

Data collection	
Paul Scherrer Institute	10SA (PX II)
Wavelength (Å)	1
Resolution range (Å)	39.81 - 1.882 (1.949 - 1.882)
Space Group	P 21 21 21
Cell parameters (Å)	a = 72.888, b = 79.624, c =
	130.801, β = 90°
Total no. of measured reflections	809479 (78567)
Unique reflections	62174 (5895)
Multiplicity	13.0 (13.3)
Mean I/o(I)	14.05 (0.88)
Completeness (%)	99.49 (95.74)
<i>R</i> _{merge} ^a	0.1082 (3.23)
<i>R</i> _{meas} ^b	0.1128 (3.357)
CC ^{1/2} c	0.999 (0.463)
Wilson <i>B</i> value (Ų)	40.94
Refinement	
Reflections used in refinement	62152 (5895)
Reflections used for R-free	3104 (295)
Rwork	0.1927 (0.4735)
R _{free}	0.2216 (0.5240)
CCwork	0.972 (0.696)
CC _{free}	0.966 (0.671)
Protein residues	716
Number of non-hydrogen atoms	5601
macromolecules	5272
ligands	97
solvent	242
Ramachandran plot:	97.33/2.67/0.00
favoured/allowed/disallowed ^f (%)	
Rotamer outliers (%)	0.93
R.m.s. bond distance deviation (Å)	0.004
R.m.s. bond angle deviation (^o)	0.71
Clashscore	3.89
Mean B factors:	44.88/47.01/46.74/45.00
protein/waters/ligands/overall (Å ²)	
PDB accession code	8B1V

Table 19. Summary of X-ray data and model parameters for stemmadenine acetate-bound*TiDPAS2*.

Data collection	
Paul Scherrer Institute	10SA (PX II)
Wavelength (Å)	1
Resolution range (Å)	39.92 – 2.24 (2.32 – 2.24)
Space Group	P 21 21 21
Cell parameters (Å)	a = 73.186, b = 79.845, c =
	130.922 <i>,</i> β = 90°
Total no. of measured reflections	432608 (21387)
Unique reflections	35719 (2561)
Multiplicity	12.1 (8.4)
Mean I/σ(I)	17.69 (1.77)
Completeness (%)	94.79 (68.96)
R _{merge} ^a	0.1239 (1.273)
R _{meas} ^b	0.1294 (1.358)
<i>CC</i> ^½ ^c	0.999 (0.586)
Wilson <i>B</i> value (Å ²)	44.54
Refinement	
Reflections used in refinement	35691 (2561)
Reflections used for R-free	1786 (128)
Rwork	0.1737 (0.3245)
R _{free}	0.2199 (0.3957)
CCwork	0.972 (0.790)
CC _{free}	0.957 (0.700)
Protein residues	717
Number of non-hydrogen atoms	5530
macromolecules	5272
ligands	114
solvent	168
Ramachandran plot:	96.49/3.51/0.00
favoured/allowed/disallowed ^f (%)	
Rotamer outliers (%)	2.79
R.m.s. bond distance deviation (Å)	0.148
R.m.s. bond angle deviation (°)	4.02
Clashscore	5.86
Mean B factors:	45.79/46.44/45.13/45.78
protein/waters/ligands/overall	
(Å ²)	
PDB accession code	8B25

Appendix VI. Identification of CADs in *C. roseus*

 Table 20. Contigs encoding CADs retrieved from the C. roseus genome.

Name	Contig	CAD type	Chromo-	Direc-	Start	End	Gene	Number	Coding
			some	tion	position	position	length	of	sequence
							(bp)	exons	length (bp)
	S004610	1,4-iminium	Scaffold 09	Fwd	37214	39828	2614	5	1095
	01G014020	1,2-iminium	1	Fwd	20847005	20849541	2536	4	1077
	01G014040	1,2-iminium	1	Fwd	20982703	20985249	2546	4	1077
ADH38	01G014080	1,2-iminium	1	Fwd	21409862	21412414	2552	4	1077
	01G014090	1,2-iminium	1	Fwd	21660916	21663437	2521	5	900
ADH117	01G017410	1,4-iminium	1	Fwd	32476926	32479384	2458	5	1095
	01G017430	1,4-iminium	1	Rev	32526597	32524231	2366	5	1047
	01G027010	Typical	1	Fwd	68444118	68445956	1838	6	1236
	01G032390	1,2-iminium	1	Fwd	76798229	76803026	4797	5	1074
HYS	01G032400	1,2-iminium	1	Fwd	76817574	76820091	2517	5	1089
-	01G032410	1,2-iminium	1	Fwd	76830463	76833921	3458	5	1089
	01G032420	1,2-iminium	1	Fwd	76847844	76851152	3308	5	1089
-	01G032430	1,2-iminium	1	Fwd	76847844	76851152	3308	5	1089
-	01G033080	1,2-iminium	1	Rev	77630006	77627023	2983	5	1134
THAS3	01G033090	1,2-iminium	1	Rev	77640569	77633747	6822	5	1152
THAS1	01G033230	1,2-iminium	1	Rev	77777894	77774074	3820	5	1071
	03G009850	Typical	3	Fwd	25914923	25922196	7273	7	1299
ADH9	03G022230	1,4-iminium	3	Rev	60738581	60733835	4746	5	1098
CAD	03G026880	Typical	3	Fwd	67341888	67344419	2531	5	1086
-	04G001600	Typical	4	Rev	1533999	1531930	2069	10	1143
	04G004530	Typical	4	Fwd	3464070	3467040	2970	10	1143
-	04G004790	Typical	4	Fwd	3680824	3684319	3495	9	1140
	04G028370	Typical	4	Fwd	64596046	64598786	2740	10	1143
	05G008450	Typical	5	Rev	10372377	10366145	6232	8	1377
T3R	05G015990	1,2-iminium	5	Rev	28291913	28288757	3156	5	1056
ADH24	05G016710	Typical	5	Fwd	31655252	31659758	4506	5	1086
RedOx1	05G017150	RedOx1-like	5	Fwd	33046696	33050140	3444	5	1065
DPAS	05G017180	1,4-iminium	5	Fwd	33141553	33146215	4662	5	1098
ADH20	05G017210	1,4-iminium	5	Fwd	33221022	33223944	2922	5	1095
ADH39	05G017220	1,4-iminium	5	Rev	33262382	33259651	2731	5	1095
ADH104	05G017270	1,4-iminium	5	Fwd	33514985	33518674	3689	5	1083
ADH17	05G017590	1,2-iminium	5	Rev	35153908	35150434	3474	5	1074
	05G033170	Uncharacterised atypical ADH	5	Rev	69851825	69849971	1854	7	1170

ADH23	06G024530	Typical	6	Fwd	58741266	58743372	2106	5	1086
ADH33	06G024550	Typical	6	Fwd	58764154	58766850	2696	5	1089
8HGO	06G024560	Typical	6	Fwd	58779322	58780949	1627	4	1191
ADH18	06G024570	Typical	6	Fwd	58814190	58816678	2488	5	1092
Cr2141	06G024580	Typical	6	Fwd	58861701	58864080	2379	5	1086
ADH32	06G024590	Typical	6	Fwd	58911502	58916377	4875	5	1086
GS	06G024600	1,2-iminium	6	Rev	58929151	58927274	1877	5	1095
GS2	06G024610	1,2-iminium	6	Rev	58941541	58938474	3067	5	1089
THAS2	06G024620	1,2-iminium	6	Rev	58962346	58960348	1998	5	1116
ADH1	06G024660	Typical	6	Fwd	59100734	59104326	3592	5	1086
ADH21	08G001030	Typical	8	Rev	984953	981610	3343	6	1089
	08G004630	Typical	8	Fwd	4239805	4243545	3740	9	1194
	08G004640	Typical	8	Fwd	4256033	4258739	2706	10	1215
	08G004830	1,2-iminium	8	Rev	4461823	4458412	3411	6	1095

Figure 96. Gene structure of selected CADs from *C. roseus*. Exons coloured by predicted reduction chemistry as either typical alde-hyde reducing (red), 1,2-iminium reducing (blue), 1,4-iminium/ α , β -unsaturated aldehyde reducing (green) or RedOx1-like 1,2-iminium reducing (orange), introns coloured in grey. Homologous exons shown as dashed lines.

Figure 97 UPLC-MS chromatograms of *in vitro* reactions of *Cr*ADH9 and *Cr*DPAS with substrate precondylocarpine acetate and cofactor NADPH. EIC m/z 337.1908 ± 0.05

Table 21. Contigs of CADs identified in the *C. roseus* leaf single-cell transcriptome. Genes with low quality matches (<90% sequence similarity) are highlighted, sequences with duplicate single cell contig matches are marked by *. ⁺ denotes CADs with no recorded expression in the dataset.

Name	Genome Contig	CAD type	Chromosome	Single cell Contig	Identity (%)
	S004610	1,4-iminium	Scaffold 09	T133495	96.8
	01G014020	1,2-iminium	1	T120551*+	97.8
	01G014040	1,2-iminium	1	T120551*+	99.2
ADH38	01G014080	1,2-iminium	1	T117489+	99.5
	01G014090	1,2-iminium	1	T117489	78.0
ADH117	01G017410	1,4-iminium	1	T116009	98.5
	01G017430	1,4-iminium	1	T133495	87.1
	01G027010	Typical	1	T107879	84.9
	01G032390	1,2-iminium	1	T116105	99.5
HYS	01G032400	1,2-iminium	1	T116107*	99.2
	01G032410	1,2-iminium	1	T116107*	90.3
	01G032420	1,2-iminium	1	T116107*	89.0
	01G032430	1,2-iminium	1	T116107*	88.7
	01G033080	1,2-iminium	1	T113649	84.4
THAS3	01G033090	1,2-iminium	1	T113649	100.0
THAS1	01G033230	1,2-iminium	1	T113666	100.0
	03G009850	Typical	3	T125488	99.4
ADH9	03G022230	1,4-iminium	3	T106276	99.7
CAD	03G026880	Typical	3	T110942	100.0
	04G001600	Typical	4	T117429	100.0
	04G004530	Typical	4	T117157	100.0
	04G004790	Typical	4	T117130	100.0
	04G028370	Typical	4	T118722	100.0
	05G008450	Typical	5	T132382	93.9
T3R	05G015990	1,2-iminium	5	T124298	100.0
ADH24	05G016710	Typical	5	T129372	93.0
RedOx1	05G017150	RedOx1-like	5	T129272	100.0
DPAS	05G017180	1,4-iminium	5	T129267	100.0
ADH20	05G017210	1,4-iminium	5	T129261	100.0
ADH39	05G017220	1,4-iminium	5	T129257	100.0

ADH104	05G017270	1,4-iminium	5	T129239	91.1
ADH17	05G017590	1,2-iminium	5	T130593+	100.0
	05G033170	Uncharacterised atypical ADH	5	T123686	100.0
ADH23	06G024530	Typical	6	T113170 ⁺	100.0
ADH33	06G024550	Typical	6	T113168 ⁺	100.0
8HGO	06G024560	Typical	6	T113167	90.9
ADH18	06G024570	Typical	6	T113162	97.3
Cr2141	06G024580	Typical	6	T113160	100.0
ADH32	06G024590	Typical	6	T113155	95.0
GS	06G024600	1,2-iminium	6	T113154	100.0
GS2	06G024610	1,2-iminium	6	T113153	94.5
THAS2	06G024620	1,2-iminium	6	T113150	100.0
ADH1	06G024660	Typical	6	T113141	100.0
ADH21	08G001030	Typical	8	T127072	100.0
	08G004630	Typical	8	T128015	100.0
	08G004640	Typical	8	T128017 ⁺	100.0
	08G004830	1,2-iminium	8	T128047	93.3

Appendix VII. Genomic Synteny between C. roseus and O. pumila

Table 22. Genes encoding enzymes involved in MIA biosynthesis or CADs in *C. roseus* thathave genomic synteny with *O. pumila*.

				0.		
	С.			pum		
_	roseus		C. roseus	ila		O. pumila
Gene	chromo	C. roseus	chromosom	chro	O. pumila	chromoso
name	some	contig no.	e position	mos	contig no.	me
	no.		•	ome		position
				no.		
			5625533:	-		3988470:
G8H	Chr1	01G006750	5628506	Chr7	07_g000725	3990699
	Chro	020025780	71581858:	Chr1	11 ~0002000	36905489:
INPFZ.1	CIIIZ	020025780	71589059	1	11_g0082800	36910805
ΜΔΤΕ2	Chr3	036016570	46991099:	Chr5	05 00060800	28196827:
1417 (1 2 2	cino	000010370	46996540	cins	03_5000000	28204828
CAD	Chr3	03G026880	67341687:	Chr2	02 g0073180	39415719:
			67344673			39418861
GES	Chr3	03G031560	70762775:	Chr5	05 g0006110	3359253:
			70768219			3362648
STR	Chr3	03G032330	71668285:	Chr5	05 g0008300	4385001:
_			71672478			4387208
TDC	Chr3	3 03G032340	71677828:	Chr5	05 g0008350	4411007:
			71679666		8	4423844
7DLH	Chr3	036018360	51553563:	Chr5	05 ø0058250	26867950:
, 0 211		000010000	51556569	eme	03_50000200	26870659
ΙΔΜΤ	Chr3	036019430	54209120:	Chr5	05 ø0056110	25759985:
	CIIIS	000010400	54212389	chij	05_60030110	25763218
АЛН	Chr/	046004790	3680690:	Chr1	01 g0069870	33487543:
	CIII4	040004750	3684754	CIIII	01_60003870	33490695
SISO	Chr4	046013510	24039159:	Chr2	02 g001200	7570958:
5152	CIII4	040013310	24042147	CITZ	02_g001299	7575077
CCDDS	Chr4	046022090	67982251:	Chr7	07 0082420	38735179:
JULLE	CIII4	040032030	67984041		07_80003430	38741401
PodOv2	Chr	05000260	11150554:	Chr4	04 0012040	6938637:
neuOx2	CIIIS	00100000	11154711	CIII4	04_80012040	6945461

	Chr5	056016710	31655095:	Chr7	07 0077810	35942412:
ADH24	CIIIS	030010/10	31660003	CIII 7	07_8001/810	35945028
	ChrE	050022170	69849971:	Chr0	00 ~0004000	3072734:
АЛЦ	CIIIS	050055170	69851825	CIII9	09_80004900	3075082
GS	Chr6	066024600	58926982:	Chr7	07 0012250	6936485:
05	CIIIO	000024000	58929303	CIII 7	07_g0012230	6941694
652	Chr6	066024610	58929151:	Chr7	07 0012220	6906865:
032	CIIIO	000024010	58927274	CIII 7	07_80012220	6909134
ISV	Chr7	076007660	6958033:	Chr7	Chr7 07 g0008000	4971893:
131		070007000	6960384	CIII 7	07_g0008900	4973566
	Chr7	076012050	17312716:	Chr1	10 0010700	6067283:
FUVT		070012930	17318106	0	10_80010100	6090265
лон	Chr8	086004630	4239717:	Chr8	08 0085440	38692328:
ADIT	CIIIO	080004030	4243977		08_80085440	38697017
	Chr8	086001030	981336:	Chr1	10 g0001010	938397:
ADHZI		003001030	985217	0	10_80001310	940652

Figure 98. Amino acid sequence alignment of *Op*ADH1 and *Op*ADH2 with *C. roseus* CADs that catalyse a 1,2-reduction of an iminium moiety. Residues involved in coordinating the structural zinc ion (blue arrows), residues that coordinate the catalytic zinc ion (red arrows), and residues in positions involved in cofactor binding (green arrows) are highlighted. Figure made using ESPript 3.0 ^[38].

Figure 99. Hierarchical clustering of tissue-specific gene expression of CADs, and orthologues of *C. roseus* secoiridoid and MIA biosynthetic genes in *O. pumila*. CADs shown in bold. Figure adapted from data published by Rai *et al.*, ^[3] and made using Clustergrammer ^[66].

Figure 100. Hierarchical clustering of tissue-specific accumulation of metabolites from *O. pumila*. Metabolites predicted based on MS/MS spectral library. Figure adapted from Rai *et al.*, ^[3] and made using Clustergrammer ^[66]. Alkaloids are mostly enriched in root tissue, (clustered in groups III and V), though camptothecin accumulates in the stem tissue (clustered in group IV).

Appendix VIII. Subcellular Localisation of *C. roseus* MIA Biosynthetic Enzymes

Table 23. Experimentally or predicted subcellular localisation of *C. roseus* MIAbiosynthetic enzymes.

Enzyme	Enzyme Class (BRENDA	Experimental	Plant-mSubP
Name	number)	localisation	predicted
			localisation ^[55]
LAMT	Methyl transferase		Cytosolic
SLS	Cytochrome P450 type		Endoplasmic
	72		reticulum
TDC	Decarboxylase		Cytosolic
STR	Amine lyase	Vacuolar ^[15]	
SGD	Deglucosidase	Nuclear ^[15,16]	
GS	CAD-like ADH	Nucleocytosolic ^[9]	
GO	Cytochrome P450 type 71	Endoplasmic reticulum	
		[9]	
RedOx1	CAD-like ADH		Cytosolic
RedOx2	Aldo-keto reductase		Cytosolic
SAT	Acetyltransferase		Cell membrane
PAS	FAD-dependent	Endoplasmic reticulum,	
	berberine bridge enzyme	moving to vesicles ^[2]	
DPAS	CAD-like ADH	Nucleocytosolic [2]	
TS	α/β hydrolase	Nucleocytosolic [2]	
CS	α/β hydrolase	Nucleocytosolic [2]	
CorS	α/β hydrolase		Cytosolic
T16H2	Cytochrome P450 type 71		Endoplasmic
			reticulum
160MT	Methyl transferase		Cytosolic
Т3О	Cytochrome P450 type 71		Endoplasmic
			reticulum
T3R	CAD-like ADH		Plastid

Appendix IX. Split-Luciferase Assays of C. roseus MIA Biosynthetic Enzymes

Representative split-luciferase result of testing protein-protein interactions of *C. roseus* MIA biosynthetic enzymes in heterologous host *N. benthamiana*.

Figure 101. Representative images of pairwise interactions of *Cr*LAMT with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. AA. LAMT-LAMT; AB. SLS-LAMT; AC-D. SLS-TDC; AE-F. SLS-GS; AG. GO-LAMT; AH-I. LAMT-RedOx1; AJ-K. LAMT-RedOx2; AL-M. LAMT-SAT; AN-O. LAMT-PAS; AP-Q. LAMT-DPAS; AR-S. LAMT-TS; AT-U. LAMT-CS; AV-W. LAMT-CorS; AX. T16H2-LAMT; AY-Z. LAMT-160MT; BA. T30-LAMT; BB-C. LAMT-T3R.

Figure 102. Representative images of pairwise interactions of *Cr*SLS with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A.** SLS-LAMT; **B.** SLS-TDC; **C.** SLS-GS; **D.** SLS-RedOx1; **E.** SLS-RedOx2; **F.** SLS-SAT; **G.** SLS-PAS; **H.** SLS-DPAS; **I.** SLS-TS; **J.** SLS-CS; **K.** SLS-CorS; **L.** SLS-16OMT; **M.** SLS-T3R.

Figure 103. Representative images of pairwise interactions of *Cr*TDC with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **AA-B.** TDC-LAMT; **AC.** SLS-LAMT; **AD.** TDC-TDC; **AE-F.** TDC-GS; **AG.** GO-TDC; **AH-I.** TDC-RedOx1; **AJ-K.** TDC-RedOx2; **AL-M.** TDC-SAT; **AN-O.** TDC-PAS; **AP-Q.** TDC-DPAS; **AR-S.** TDC-TS; **AT-U.** TDC-CS; **AV-W.** TDC-CorS; **AX.** T16H2-TDC; **AY-Z.** TDC-160MT; **BA.** T3O-TDC; **BB-C.** TDC-T3R.

Figure 104. Representative images of pairwise interactions of *Cr*GS with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **AA-B.** GS-LAMT; **AC.** SLS-GS; **AD-E.** GS-TDC; **AF.** GS-GS; **AG.** GO-GS; **AH-I.** GS-RedOx1; **AJ-K.** GS-RedOx2; **AL-M.** GS-SAT; **AN-O.** GS-PAS; **AP-Q.** GS-DPAS; **AR-S.** GS-TS; **AT-U.** GS-CS; **AV-W.** GS-CorS; **AX.** T16H2-GS; **AY-Z.** GS-160MT; **BA.** T3O-GS; **BB-C.** GS-T3R.

Figure 105. Representative images of pairwise interactions of *Cr*GO with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A.** GO-LAMT; **B.** GO-TDC; **C.** GO-GS; **D.** GO-RedOx1; **E.** GO-RedOx2; **F.** GO-SAT; **G.** GO-PAS; **H.** GO-DPAS; **I.** GO-TS; **J.** GO-CS; **K.** GO-CorS; **L.** GO-16OMT; **M.** GO-T3R.

Figure 106. Representative images of pairwise interactions of *Cr*RedOx1 with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **AA-B.** RedOx1-LAMT; **AC.** SLS-RedOx1; **AD-E.** RedOx1-TDC; **AF-G.** RedOx1-GS; **AH.** GO-RedOx1; **AI.** RedOx1-RedOx1; **AJ-K.** RedOx1-RedOx2; **AL-M.** RedOx1-SAT; **AN-O.** RedOx1-PAS; **AP-Q.** RedOx1-DPAS; **AR-S.** RedOx1-TS; **AT-U.** RedOx1-CS; **AV-W.** RedOx1-CorS; **AX.** T16H2-RedOx1; **AY-Z.** RedOx1-16OMT; **BA.** T3O-RedOx1; **BB-C.** RedOx1-T3R.

Figure 107. Representative images of pairwise interactions of *Cr*RedOx2 with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. AA-B. RedOx2-LAMT; AC. SLS-RedOx2; AD-E. RedOx2-TDC; AF-G. RedOx2-GS; AH. GO-RedOx2; AI-J. RedOx1-RedOx2; AK. RedOx2-RedOx2; AL-M. RedOx2-SAT; AN-O. RedOx2-PAS; AP-Q. RedOx2-DPAS; AR-S. RedOx2-TS; AT-U. RedOx2-CS; AV-W. RedOx2-CorS; AX. T16H2-RedOx2; AY-Z. RedOx2-16OMT; BA. T3O-RedOx2; BB-C. RedOx2-T3R.

Figure 108. Representative images of pairwise interactions of *Cr*SAT with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with Cterminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **AA-B.** SAT-LAMT; **AC.** SLS-SAT; **AD-E.** SAT-TDC; **AF-G.** SAT-GS; **AH.** GO-SAT; **AI-J.** SAT-RedOx1; **AK-L.** SAT-RedOx2; **AM.** SAT-SAT; **AN-O.** SAT-PAS; **AP-Q.** SAT-DPAS; **AR-S.** SAT-TS; **AT-U.** SAT-CS; **AV-W.** SAT-CorS; **AX.** T16H2-SAT; **AY-Z.** SAT-16OMT; **BA.** T3O-SAT; **BB-C.** SAT-T3R.

Figure 109. Representative images of pairwise interactions of *Cr*PAS with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **AA-B.** PAS-LAMT; **AC.** SLS-PAS; **AD-E.** PAS-TDC; **AF-G.** PAS-GS; **AH.** GO-PAS; **AI-J.** PAS-RedOx1; **AK-L.** PAS-RedOx2; **AM-N.** PAS-SAT; **AO.** PAS-PAS; **AP-Q.** PAS-DPAS; **AR-S.** PAS-TS; **AT-U.** PAS-CS; **AV-W.** PAS-CorS; **AX.** T16H2-PAS; **AY-Z.** PAS-16OMT; **BA.** T3O-PAS; **BB-C.** PAS-T3R.

Figure 110. Representative images of pairwise interactions of *Cr*DPAS with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. AA-B. DPAS-LAMT; AC. SLS-DPAS; AD-E. DPAS-TDC; AF-G. DPAS-GS; AH. GO-DPAS; AI-J. DPAS-RedOx1; AK-L. DPAS-RedOx2; AM-N. DPAS-SAT; AO-P. DPAS-PAS; AQ. DPAS-DPAS; AR-S. DPAS-TS; AT-U. DPAS-CS; AV-W. DPAS-CorS; AX. T16H2-DPAS; AY-Z. DPAS-160MT; BA. T3O-DPAS; BB-C. DPAS-T3R.

Figure 111. Representative images of pairwise interactions of *Cr*TS with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. AA-B. TS-LAMT; AC. SLS-TS; AD-E. TS-TDC; AF-G. TS-GS; AH. GO-TS; AI-J. TS-RedOx1; AK-L. TS-RedOx2; AM-N. TS-SAT; AO-P. TS-PAS; AQ-R. TS-DPAS; AS. TS-TS; AT-U. TS-CS; AV-W. TS-CorS; AX. T16H2-TS; AY-Z. TS-16OMT; BA. T30-TS; BB-C. TS-T3R.

Figure 112. Representative images of pairwise interactions of *Cr*CS with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. AA-B. CS-LAMT; AC. SLS-CS; AD-E. CS-TDC; AF-G. CS-GS; AH. GO-CS; AI-J. CS-RedOx1; AK-L. CS-RedOx2; AM-N. CS-SAT; AO-P. CS-PAS; AQ-R. CS-DPAS; AS-T. CS-TS; AU. CS-CS; AV-W. CS-CorS; AX. T16H2-CS; AY-Z. CS-16OMT; BA. T3O-CS; BB-C. CS-T3R.

Figure 113. Representative images of pairwise interactions of *Cr*CorS with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. AA-B. CorS-LAMT; AC. SLS-CorS; AD-E. CorS-TDC; AF-G. CorS-GS; AH. GO-CorS; AI-J. CorS-RedOx1; AK-L. CorS-RedOx2; AM-N. CorS-SAT; AO-P. CorS-PAS; AQ-R. CorS-DPAS; AS-T. CorS-TS; AU-V. CorS-CS; AW. CorS-CorS; AX. T16H2-CorS; AY-Z. CorS-16OMT; BA. T3O-CorS; BB-C. CorS-T3R.

Figure 114. Representative images of pairwise interactions of *Cr*T16H2 with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A.** T16H2-LAMT; **B.** T16H2-TDC; **C.** T16H2-GS; **D.** T16H2-RedOx1; **E.** T16H2-RedOx2; **F.** T16H2-SAT; **G.** T16H2-PAS; **H.** T16H2-DPAS; **I.** T16H2-TS; **J.** T16H2-CS; **K.** T16H2-CorS; **L.** T16H2-16OMT; **M.** T16H2-T3R.

Figure 115. Representative images of pairwise interactions of *Cr*16OMT with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **AA-B.** 160MT-LAMT; **AC.** SLS-160MT; **AD-E.** 160MT-TDC; **AF-G.** 160MT-GS; **AH.** GO-160MT; **AI-J.** 160MT-RedOx1; **AK-L.** 160MT-RedOx2; **AM-N.** 160MT-SAT; **AO-P.** 160MT-PAS; **AQ-R.** 160MT-DPAS; **AS-T.** 160MT-TS; **AU-V.** 160MT-CS; **AW-X.** 160MT-CorS; **AY.** T16H2-160MT; **AZ.** 160MT-160MT; **BA.** T30-160MT; **BB-C.** 160MT-T3R.

Figure 116. Representative images of pairwise interactions of *Cr*T3O with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A.** T3O-LAMT; **B.** T3O-TDC; **C.** T3O-GS; **D.** T3O-RedOx1; **E.** T3O-RedOx2; **F.** T3O-SAT; **G.** T3O-PAS; **H.** T3O-DPAS; **I.** T3O-TS; **J.** T3O-CS; **K.** T3O-CorS; **L.** T3O-16OMT; **M.** T3O-T3R.

Figure 117. Representative images of pairwise interactions of *Cr*T3R with *C. roseus* MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **AA-B.** T3R-LAMT; **AC.** SLS-T3R; **AD-E.** T3R-TDC; **AF-G.** T3R-GS; **AH.** GO-T3R; **AI-J.** T3R-RedOx1; **AK-L.** T3R-RedOx2; **AM-N.** T3R-SAT; **AO-P.** T3R-PAS; **AQ-R.** T3R-DPAS; **AS-T.** T3R-TS; **AU-V.** T3R-CS; **AW-X.** T3R-CorS; **AY.** T16H2-T3R; **AZ-BA.** T3R-16OMT; **BB.** T3O-16OMT; **BC.** T3R-T3R.

Appendix X. Split-Luciferase Assays of CADs and α/β hydrolases

Representative split-luciferase result of testing protein-protein interactions between CADs

and α /ß-hydrolases in heterologous host *N. benthamiana*.

											•
At CAD4		70.97	49.73	51.76	52.15	53.66	54.18	53.59	51.55	49.11	50.73
CrCAD4	70.97		50.36	53.41	52.24	54.70	54.27	54.97	51.28	50.98	51.37
Cr2141	49.73	50.36		59.44	62.13	58.59	60.15	60.04	57.36	55.43	57.55
CrADH9	51.76	53.41	59.44		74.68	60.00	58.31	59.39	57.97	57.18	58.24
<i>Ti</i> DPAS1	52.15	52.24	62.13	74.68		61.19	62.28	63.83	59.29	60.55	61.20
Ti DPAS2	53.66	54.70	58.59	60.00	61.19		64.83	64.91	61.25	60.00	61.71
Cr DPAS	54.18	54.27	60.15	58.31	62.28	64.83		67.87	64.56	63.73	65.84
<i>Cr</i> RedOx1	53.59	54.97	60.04	59.39	63.83	64.91	67.87		71.36	70.14	73.39
CrGS	51.55	51.28	57.36	57.97	59.29	61.25	64.56	71.36		76.09	81.19
Cr THAS	49.11	50.98	55.43	57.18	60.55	60.00	63.73	70.14	76.09		82.04
CrT3R	50.73	51.37	57.55	58.24	61.20	61.71	65.84	73.39	81.19	82.04	

Table 24. Nucleic acid sequence identity of CADs tested for the α/β hydrolase interaction conservation.

	Cr CSE	Snv NS2	Ps CXE1	Gm HIDH	Cr HID5	CrCS	Cr CorS	<i>Cr</i> TS	Ti CorS	<i>Ti</i> TabS
<i>Cr</i> CSE		22.32	24.94	26.16	33.47	33.45	37.14	35.09	34.72	34.81
Snv NS2	22.32		28.60	28.78	30.97	33.27	33.27	32.91	32.48	31.16
Ps CXE1	24.94	28.60		39.63	43.49	43.92	44.84	45.54	43.79	44.17
Gm HIDH	26.16	28.78	39.63		54.16	52.92	53.73	55.12	54.41	54.91
Cr HID5	33.47	30.97	43.49	54.16		60.64	63.62	64.96	65.83	65.53
CrCS	33.45	33.27	43.92	52.92	60.64		81.07	80.50	72.80	72.70
Cr CorS	37.14	33.27	44.84	53.73	63.62	81.07		84.23	78.56	78.36
CrTS	35.09	32.91	45.54	55.12	64.96	80.50	84.23		76.28	78.33
Ti CorS	34.72	32.48	43.79	54.41	65.83	72.80	78.56	76.28		85.38
<i>Ti</i> TabS	34.81	31.16	44.17	54.91	65.53	72.70	78.36	78.33	85.38	

Figure 118. Representative images of pairwise interactions of *At*CAD4 with α/β -hydrolases tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *At*CAD4-*Cr*TS; **C-D.** *At*CAD4-*Cr*CS; **E-F.** *At*CAD4-*Cr*CorS.

Figure 120. Representative images of pairwise interactions of *Cr*2141 with α/β-hydrolases tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Cr*2141-*Snv*NS2; **C-D.** *Cr*2141-*Ps*CXE1; **E-F.** *Cr*2141-*Gm*HIDH; **G-H.** *Cr*2141-*Cr*HID5; **I-J.** *Cr*2141-*Ti*CorS; **K-L.** *Cr*2141-*Ti*TabS; **M-N.** *Cr*2141-*Cr*CorS; **O-P.** *Cr*2141-*Cr*TS; **Q-R.** *Cr*2141-*Cr*CS.

Figure 121. Representative images of pairwise interactions of *Cr*ADH9 with α/β -hydrolases tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Cr*ADH9-*Gm*HIDH; **C-D.** *Cr*ADH9-*Cr*HID5; **E-F.** *Cr*ADH9-*Ti*CorS; **G-H.** *Cr*ADH9-*Ti*TabS; **I-J.** *Cr*ADH9-*Cr*CorS; **K-L.** *Cr*ADH9-*Cr*TS; **M-N.** *Cr*ADH9-*Cr*CS.

Figure 122. Representative images of pairwise interactions of *Ti*DPAS1 with α/β -hydrolases tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Ti*DPAS1-*Cr*HID5; **C-D.** *Ti*DPAS1-*Ti*CorS; **E-F.** *Ti*DPAS1-*Ti*TabS; **G-H.** *Ti*DPAS1-*Cr*CorS; **I-J.** *Ti*DPAS1-*Cr*TS; **K-L.** *Ti*DPAS1-*Cr*CS.

Figure 123. Representative images of pairwise interactions of *Ti*DPAS2 with α/β-hydrolases tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Ti*DPAS2-*Cr*HID5; **C-D.** *Ti*DPAS2-*Ti*CorS; **E-F.** *Ti*DPAS2-*Ti*TabS; **G-H.** *Ti*DPAS2-*Cr*CorS; **I-J.** *Ti*DPAS2-*Cr*TS; **K-L.** *Ti*DPAS2-*Cr*CS.

Figure 125. Representative images of pairwise interactions of *Cr*RedOx1 with α/β-hydrolases tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Cr*RedOx1-*Cr*CSE; **C-D.** *Cr*RedOx1-*Snv*NS2; **E-F.** *Cr*RedOx1-*Ps*CXE1; **G-H.** *Cr*RedOx1-*Gm*HIDH; **I-J.** *Cr*RedOx1-*Cr*CIS; **K-L.** *Cr*RedOx1-*Ti*CorS; **M-N.** *Cr*RedOx1-*Ti*TabS; **O-P.** *Cr*RedOx1-*Cr*COS; **Q-R.** *Cr*RedOx1-*Cr*TS; **S-T.** *Cr*RedOx1-*Cr*CS.

Figure 126. Representative images of pairwise interactions of *Cr*GS with α/β-hydrolases tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Cr*GS-*Cr*CSE; **C-D.** *Cr*GS-*Snv*NS2; **E-F.** *Cr*GS-*Ps*CXE1; **G-H.** *Cr*GS-*Gm*HIDH; **I-J.** *Cr*GS-*Cr*HID5; **K-L.** *Cr*GS-*Ti*CorS; **M-N.** *Cr*GS-*Ti*TabS; **O-P.** *Cr*GS-*Cr*CorS; **Q-R.** *Cr*GS-*Cr*TS; **S-T.** *Cr*GS-*Cr*CS.

Figure 127. Representative images of pairwise interactions of *Cr*THAS with α/β -hydrolases tested by split-luciferase in *N. benthamiana.* –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct staggent, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Cr*THAS-*Ti*CorS; **C-D.** *Cr*THAS-*Ti*TabS; **E-F.** *Cr*THAS-*Cr*CorS; **G-H.** *Cr*THAS-*Cr*TS; **I-J.** *Cr*THAS-*Cr*CS.

Figure 128. Representative images of pairwise interactions of *Cr*T3R with α/β-hydrolases tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Cr*T3R-*Cr*CSE; **C-D.** *Cr*T3R-*Snv*NS2; **E-F.** *Cr*T3R-*Ps*CXE1; **G-H.** *Cr*T3R-*Gm*HIDH; **I-J.** *Cr*T3R-*Cr*HID5; **K-L.** *Cr*T3R-*Ti*CorS; **M-N.** *Cr*T3R-*Ti*TabS; **O-P.** *Cr*T3R-*Cr*CorS; **Q-R.** *Cr*T3R-*Cr*TS; **S-T.** *Cr*T3R-*Cr*CS.

Appendix XI. Split-Luciferase Assays of Cyclase Enzyme Interaction Engineering

		1	10		20	30		40	50
CrCS TiCorS CrCorS CrTS TiTabS	MANSTAN MASQIPI MGS MASSIES	MDETIV ISDEIVE SDETLE SDETIE SDEIIE	NDLSPYIK DLHPYIF DLSPYIF DLPPYIK DLPPYIF	LIFKDG VFKNG LFKDG VFKDG VFKDG	RVERLH VERLH RVERLH RVERLH RVERLHS	ISPYVPP; TPYVPP; TPYVPP; SPYVPP; SPYVPP;	SLNDPET SLEDPAT SLNDPET SLNDPET SLDDPAT	. GVSWKI . GVSWKI . GVSWKI GGVSWKI . GVSWKI	OVPISS OVPISS OVPISS VPISS VPISS OVPISSE
		60		70		80	90	1	100
CrCS TiCorS CrCorS CrTS TiTabS	VSARVYI VSARVYI VSARIYI VSARIYI VSARIYI	PKIS PKIS PKISD PKIN PKIS	DH <mark>EKI</mark> EAEKKKI QENE <mark>EKI</mark> NHD EKI QKEK <mark>EKI</mark>	.PIFVY .PIFVY .PIFVY .PIIVY .PIVY	VHGAGF(FHGAGF(FHGAGF(FHGAGF(FHGAGF(LESAFR LESAFK LESAFR LESAFK LESAYK	SFFHTFV SFFHTYV SFFHTFI SFFHTYV SFFHTYV	KHFVAE KHVVAE KHFVSE KHFVAE KHFAAE	KAVGVS KAVGVS Kaigvs Kaigvs Kaiavs Kaiavs
CrCS TiCorS CrCorS CrTS TiTabS	IIO IEYRLAE VEYRLAE VEYRLAE VEFRLAE VEFRLSE	PEHLLPA PEHPLPA PEHPLPA PEHHLPA	120 AAYEDCWE AAYEDCWT AAYEDCWE AAYEDCWE AAYEDCWT	13 ALQWV ALQWV ALQWV ALQWV ALQWV	O ASHVGLI ASHVGLI ASHVRLI ASHVGLI ASHVDVI	NSGIKT. NSSIKN. NSSIKR ISSIKT NSSIK	IS AIDKDPW AIDKEPW SMDKDPW CIDKDPW AIDKEPW	O IINYGDI IINYGDI IINYGDI IINYADI IINHGDI	160 PDRLYLA NKLYLG DRLYLG PDRLYLW PDKIYLW
	1 7	10	1 8 0		1 9 0	20	0	21.0	
CrCS TiCorS CrCorS CrTS TiTabS	GDSPGAN GDSPGGN GDSPGGN GDSTGAN GDSTGAN	YNN TI IVHN TI IVHN VI IVHN TI IVHN TI IVHN VI	IRAGKEN IRAGKEN IRSGKEN IRSGKEN	LKGG. LHGG. LNGG. LNGGK LNGGK	VKILGAI VKIRGAI VKILGAI VKILGAI VKIVGAI	LYYPYF LYYPYF QYYPYF LYYPYF LYYPYF	IIPTSIK LIRTS <mark>K</mark> R LIRTS <mark>S</mark> K LIRTSSK LIRTSSK	LSDDFE QSDYME QSDYME QSDYME QSDYME QSDYME	(NYTCYW DYRGYW DYRCYW Jeyrsyw Neyrayw
23	2 <u>0</u>	230	24	i ọ	250		260	270	
CrCS TiCorS CrCorS CrTS TiTabS	KLAYPNA KLAYPSA KLAYPNA KLAYPDA KLAYPSA	APGGMNN APGGTDN APGGTDN APGGNDN APGGNDN	IPMINPIA IPMINPVA IPMINPTV IPMINPTA IPMINPVA	ENAPD KNAPD ENAPD ENAPD ENAPD	LAGYGCS LAGYGCS LAGYGCS LAGYGCS LAGYGCS	SRLLVTI SRLLVSM SRLLISM SRLLISM SRLLV <u>SM</u>	VSMISTT VS VA VA VA	PDETKDI . DETRDI . DETRDI . DEARDI . DEARDI . DEARDI	NAVYIE TLLYLE TLLFIE TLLYID TLLYIE
CrCS TiCorS CrCorS CrTS TiTabS	280 ALEKSGW ALKKSGW ALKKSGW ALEKSGW AVKKSGW	290 IKGELEN IKGELEN IKGQLDN IKGELDN IKGELEN	ADFDADY GDYEAHE ADFEAEF ADFDKQY ADFEGDY	300 FELFT FDLFS FDLFQ FELFE FELFE	31 LETEMGR PENEVGR TQTEVGR METEXAR PETETGR	MMFR RI TWIKRS NMIR RI NMLR RI NKVK RI	320 ASFIK SDFINKE TSFIK ASFIK TSFINKE		

Figure 129. Amino acid sequence alignment of cyclase enzymes from *C. roseus* and *T. iboga*. Surface residues mutated in *Cr*CorS and *Ti*CorS in M1 highlighted in green, residues mutated in *Cr*CorS and *Ti*CorS in M2 highlighted in red. Figure made using ESPript 3.0 ^[56].

Figure 130. Representative images of pairwise interactions of *Cr*DPAS interaction engineering with CrCors or TiCorS tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Cr*DPAS-*Cr*CorS; **C-D.** *Cr*DPAS-*Ti*CorS; **E-F.** *Cr*DPAS-CrCorS M1; **G-H.** *Cr*DPAS-*Ti*CorS M1; **I-J.** *Cr*DPAS-*Cr*CorS M2; **K-L.** *Cr*DPAS-*Ti*CorS M2; **M.** *Cr*CorS Asn32Asp-*Cr*DPAS; **N.** *Ti*CorS Asp32Asn-CrDPAS; **O.** *Cr*CorS Ser216Lys-*Cr*DPAS; **P.** *Ti*CorS Lys214Ser-*Cr*DPAS; **Q.** *Cr*CorS Asn224Ile-*Cr*DPAS; **R.** *Ti*CorS Ile222Asn-*Cr*DPAS; **S.** *Cr*CorS Glu301His-*Cr*DPAS; **T.** *Ti*CorS His299Glu-*Cr*DPAS.

Appendix XII. AP-MS of CrDPAS and CrTS

Table 26. AP-MS results using 6X-His CrDPAS or 6X-His CrTS as bait proteins in proteinextract from C. roseus leaf tissue.

Accession		Spectrum Counts				
number	Annotated name	DPAS bait	TS bait	Blank bait		
CRO_T011212	TS	6	1108	26		
CRO_T033537	DPAS	303	0	0		
CRO_T020363	MAR-binding filament-like protein	72	35	28		
CRO_T005426	DNA-binding enhancer protein- related	63	50	12		
CRO_T005174	hydroxyproline-rich glycoprotein family protein	59	32	14		
CRO_T026844	zinc finger (CCCH-type) family protein / RNA recognition motif (RRM)-containing protein	26	12	0		
CRO_T008025	plastid transcriptionally active	22	0	0		
CRO_T011810	thioredoxin M-type	18	3	0		
CRO_T026310	GDSL-like Lipase/Acylhydrolase superfamily protein	17	3	3		
CRO_T024551	GDSL-like Lipase/Acylhydrolase superfamily protein	16	6	2		
CRO_T015760	ZIM-like	13	8	0		
CRO_T030110	nodulin-related protein	13	0	0		
CRO_T018424	Lipase/lipooxygenase, PLAT/LH2 family protein	11	0	0		
CRO_T001292	glyceraldehyde 3-phosphate dehydrogenase A subunit	10	0	0		
CRO_T026604	conserved hypothetical protein	9	0	0		
CRO_T020754	DUF1499 domain containing protein	9	0	0		
CRO_T013082	Dehydrin family protein	7	0	0		
CRO_T005451	uridylyltransferase-related	6	0	0		
CRO_T018160	hypothetical protein	6	0	0		
CRO_T003870	Pentatricopeptide repeat (PPR) superfamily protein	6	0	0		
CRO_T009576	glyceraldehyde-3-phosphate dehydrogenase B subunit	6	0	0		
CRO_T024124	Lipase/lipooxygenase, PLAT/LH2 family protein	5	0	0		

Appendix XIII. DFS of *Cr*DPAS

Table 27. Summary of *Cr*DPAS $\Delta T^{\circ}m$ compared to *Cr*DPAS control in various conditions investigating cyclase complex formation.

Complex condition	CrDPAS
	ΔT°m (°C)
2μM <i>Cr</i> DPAS + 2μM <i>Cr</i> TS + 10μM NADPH	0
2μM CrDPAS + 3μM CrTS + 10μM NADPH	1
2μM CrDPAS + 4μM CrTS + 10μM NADPH	1
2μM <i>Cr</i> DPAS + 2μM <i>Cr</i> CS + 10μM NADPH	0
2μM <i>Cr</i> DPAS + 3μM <i>Cr</i> CS + 10μM NADPH	1
2μM <i>Cr</i> DPAS + 4μM <i>Cr</i> CS + 10μM NADPH	1
2μM <i>Cr</i> DPAS + 2μM <i>Cr</i> TS + 10μM NADP ⁺	1
2μM <i>Cr</i> DPAS + 3μM <i>Cr</i> TS + 10μM NADP ⁺	1
2μM <i>Cr</i> DPAS + 4μM <i>Cr</i> TS + 10μM NADP ⁺	1
2μM <i>Cr</i> DPAS + 2μM <i>Cr</i> CS + 10μM NADP ⁺	1
2μM <i>Cr</i> DPAS + 3μM <i>Cr</i> CS + 10μM NADP ⁺	1
2μM <i>Cr</i> DPAS + 4μM <i>Cr</i> CS + 10μM NADP ⁺	0
$2\mu M$ CrDPAS + $2\mu M$ CrTS + $10\mu M$ NADP ⁺ + $10\mu M$ precondylocarpine	2
acetate	
2μM CrDPAS + 3μM CrTS + 10μM NADP ⁺ + 10μM precondylocarpine	1
acetate	
2μM CrDPAS + 4μM CrTS + 10μM NADP ⁺ + 10μM precondylocarpine	1
acetate	
2μM CrDPAS + 2μM CrCS + 10μM NADP ⁺ + 10μM precondylocarpine	0
acetate	
2 μ M CrDPAS + 3 μ M CrCS + 10 μ M NADP ⁺ + 10 μ M precondylocarpine	1
acetate	
2μM CrDPAS + 4μM CrCS + 10μM NADP ⁺ + 10μM precondylocarpine	0
acetate	

Figure 131. Effect of pH and [NaCl] on *Cr*DPAS T°m in the presence or absence of cyclase *Cr*TS or *Cr*CS added at equimolar concentrations.

Appendix XIV. CrDPAS In Vivo Proximity Tagging

Table 28. Contig matches with \geq 1.5 log fold change in peptide hits between *Cr*DPAS-TurboID protein pulldown compared to YFP-TurboID protein pulldown control. Contigs encoding known proteins involved in iridoid, MIA or phenylpropanoid biosynthesis are highlighted.

		logFC
		DPAS_TurbolD
		vs.
Contig	Description	YFP_TurboID
CRO_T112140		4 33
CRO_T139361	photosystem II reaction center protein D	
CRO_T110594	photosystem II family protein	4.07
CRO_T101917	photosystem II light harvesting complex gene 2.1	3.97
CRO_T125675	Chlorophyll A-B binding family protein	3.92
CRO_T117139	photosystem I subunit E-2	3.56
CRO_T137836	voltage dependent anion channel	3.52
CRO_T130227	Photosystem I, PsaA/PsaB protein	3.35
	CAAD domains of cyanobacterial aminoacyl-tRNA	3.24
CRO_T118278	synthetase domain containing protein	5.24
CRO_T133555	photosystem I subunit F	3.15
CRO_T125574	light harvesting complex of photosystem II	3.12
CRO_T103006	calcium sensing receptor	3.05
CRO_T133025	photosystem II subunit O-2	3.03
CRO_T103910	FtsH extracellular protease family	3.03
CRO_T106640	Tetratricopeptide repeat (TPR)-like superfamily protein	2.98
CRO_T133139	Major facilitator superfamily protein	2.95
CRO_T132223	Photosystem I, PsaA/PsaB protein	2.90
CRO_T112598	peroxin 11c	2.90
CRO_T105753	thylakoid lumen 18.3 kDa protein	2.88
CRO_T131591	3-oxo-5-alpha-steroid 4-dehydrogenase family protein	2.88
CRO_T120926	Inorganic H pyrophosphatase family protein	2.86
CRO_T122644	sulfate transmembrane transporters	2.85
CRO_T131186	ATP synthase subunit beta	2.83
CRO_T108207	NAD(P)-binding Rossmann-fold superfamily protein	2.82
CRO_T121366	Outer envelope pore protein 24, chloroplastic	2.77
CRO_T138933	BCL-2-associated athanogene	2.76
CRO_T109159	ATPase, F0 complex, subunit B/B', bacterial/chloroplast	2.74
CRO_T127711	MAR binding filament-like protein	2.67
CRO_T140657	light harvesting complex photosystem II	2.67
	Rhodanese/Cell cycle control phosphatase superfamily	2.00
CRO_T110634	protein	2.60
CRO_T130034	cytochrome P450, family 81, subfamily D, polypeptide	2.60

CRO_T108889	Rhodanese/Cell cycle control phosphatase superfamily protein	2.60
CRO T131207	cytochrome P450, family 71, subfamily B, polypeptide CYP71BT1	2.58
CRO T117548	Protein of unknown function (DUF3411)	2.57
CRO T131660	ATPase, F1 complex, gamma subunit protein	2.57
 CRO_T111279	Rhodanese/Cell cycle control phosphatase superfamily protein	2.52
CRO_T124321	Protein of unknown function DUF106, transmembrane	2.50
CRO_T110723	FtsH extracellular protease family	2.49
CRO_T113334	sugar transporter	2.49
CRO_T109968	STT7 homolog STN7	2.49
CRO_T133479	sodium/calcium exchanger family protein / calcium- binding EF hand family protein	2.43
CRO_T133143	translocon at the outer envelope membrane of chloroplasts 75-III	2.41
CRO_T121413	3-ketoacyl-CoA synthase	2.41
CRO_T101960	Auxin-responsive family protein	2.39
CRO_T104118		2.20
CRO_T121814	prohibitin	2.39
CRO_T110421	Protein TRIGALACTOSYLDIACYLGLYCEROL 4, chloroplastic	2.37
CRO T104055	sodium/calcium exchanger family protein / calcium- binding EF hand family protein	2.37
CRO T105084	synaptotagmin A	2.36
CRO T140744	Mitochondrial substrate carrier family protein	2.35
CRO T114330		2.22
CRO T114331	chlorophyll A/B binding protein	2.33
 CRO_T135151	membrane-associated progesterone binding protein MSBP	2.33
CRO_T138610	photosystem II subunit R	2.32
CRO_T115362	strictosidine synthase-like STR-like	2.32
CRO_T116728	conserved hypothetical protein	2.31
CRO_T131097	H(+)-ATPase	2.31
CRO_T105683	endomembrane-type CA-ATPase	2.30
CRO_T130288	plasma membrane intrinsic protein 1C	2.30
CRO T124780	Pheophorbide a oxygenase family protein with Rieske	2.30
CRO_T101459	thylakoid-associated phosphatase	2 29
CRO_T127515	vacuolar proton ATPase A3	2.29
CRO T139710	photosystem L subunit D-2	2.28
	SPEH/Band 7/PHB domain-containing membrane-	2.20
CRO_T137837	associated protein family	2.28
CRO_T106319	Protein of unknown function (DUF1682)	2.28
CRO_T138504	cellulose synthase like E1	2.28

	MORN (Membrane Occupation and Recognition Nexus)	2 22
CRO_T124886	repeat-containing protein	2.27
CRO_T112921	NADH:cytochrome B5 reductase	2.27
CRO_T126592	Protein kinase superfamily protein	2.27
CRO_T132921	Mitochondrial substrate carrier family protein	2.26
CRO_T110069	conserved hypothetical protein	2.26
CRO_T103367	allantoinase	2.25
CRO_T116935	peptide transporter	2.24
CRO_T117189	cytochrome B5 isoform B	2.24
CRO_T124539	Mitochondrial substrate carrier family protein	2.23
CRO_T114993	conserved hypothetical protein	2.23
CRO_T103026	signal peptide peptidase	2.23
CRO_T133576	Kunitz family trypsin and protease inhibitor protein	2.22
CRO_T135117	Remorin family protein	2.22
CRO_T134088	prohibitin	2.22
CRO_T140630	thylakoid ATP/ADP carrier	2.21
CRO_T120082	DnaJ / Sec63 Brl domains-containing protein	2.21
CRO_T124194	alpha-mannosidase	2.20
CRO_T134480	Mitochondrial ATP synthase subunit G protein	2.18
CRO_T101224	rubredoxin family protein	2.18
CRO_T118762	H(+)-ATPase	2.17
CRO_T122302	gamma carbonic anhydrase	2.17
CRO_T113675	conserved hypothetical protein	2.15
CRO_T124573	Carbohydrate-binding-like fold	2.14
CRO_T138396	trigalactosyldiacylglycerol2	2.14
CRO_T124261	copper ion binding;cobalt ion binding;zinc ion binding	2.13
CRO_T124454	DNA repair ATPase-related	2.13
CRO_T110277	calnexin	2.13
CRO_T139024	catalytics	2.12
CRO_T140929	pleiotropic drug resistance	2.12
CRO_T138994	Iridoiod oxidase IO	2.11
CRO_T139096	Protein TIC 56, chloroplastic	2.10
CRO_T121266	ferulic acid 5-hydroxylase F5H	2.10
CRO_T121397	acclimation of photosynthesis to environment	2.09
CRO_T129147		2.00
CRO_T129149	Major facilitator superfamily protein	2.09
CRO_T110600	cytochrome P450, family 71, subfamily B, polypeptide	2.08
	S-adenosyl-L-methionine-dependent methyltransferases	2.08
CRO_T116078	superfamily protein	2.00
CRO_T127029	cytochrome P450, family 82, subfamily C, polypeptide	2.08
CRO_T124635	chloroplast outer envelope protein	2.07
	S-adenosyl-L-methionine-dependent methyltransferases	2.06
CRO_T138614	superfamily protein	2.00
CRO_T137443	wall-associated kinase	2.03
CRO_T129416	strictosidine synthase-like STR-like	2.03

CRO_T127776	Outer envelope pore protein 24A, chloroplastic	2.03
CRO_T117246	FK506-binding protein 15 kD-1	2.02
CRO_T121327	AAA-type ATPase family protein	2.02
CRO_T137859	Leucine-rich repeat protein kinase family protein	2.00
CRO_T140376	ATP synthase D chain, mitochondrial	2.00
CRO_T117694	hexokinase	2.00
CRO_T100981	plant uncoupling mitochondrial protein	1.99
CRO_T131978	cytochrome P450, family 706, subfamily A, polypeptide	1.98
	SPFH/Band 7/PHB domain-containing membrane-	1 07
CRO_T131128	associated protein family	1.97
CRO_T111252	nitrate transmembrane transporters	1.97
CRO_T108532	cytochrome P450, family 77, subfamily A, polypeptide	1.96
CRO_T128640	voltage dependent anion channel	1.95
CRO_T125663	Rieske (2Fe-2S) domain-containing protein	1.95
CRO_T133061	Geraniol 8-hydroxylase G8H	1.94
CRO_T113510	multidrug resistance-associated protein	1.94
CRO_T128882	Plastid-lipid associated protein PAP / fibrillin family protein	1.94
CRO_T108517	pleiotropic drug resistance	1.93
CRO_T113501	cell elongation protein / DWARF1 / DIMINUTO (DIM)	1.93
CRO_T123749	Glycosyl hydrolase superfamily protein	1.93
CRO_T120479	B-cell receptor-associated 31-like	1.92
CRO_T105449	PDI-like 5-2	1.92
CRO_T113642	ABC2 homolog	1.91
CRO_T100235	delta subunit of Mt ATP synthase	1.90
CRO_T133734	calreticulin 1a	1.89
CRO_T129457	germin	1.89
CRO_T124651	alpha/beta-Hydrolases superfamily protein	1.89
CRO_T105640	Transmembrane proteins 14C	1.88
CRO_T124913	adenine nucleotide transporter	1.87
CRO_T123688	non-intrinsic ABC protein	1.87
CRO_T128469	transporter associated with antigen processing protein	1.87
CRO_T123657	PDI-like 1-1	1.87
CRO_T105618		
CRO_T105619		1 86
CRO_T105621		1.00
CRO_T105684	Histone superfamily protein	
CRO_T127975	Subtilisin-like serine endopeptidase family protein	1.86
CRO_T100278	ADP/ATP carrier	1.85
CRO_T110680	Ribophorin I	1.84
CRO_T108938	Leucine-rich repeat (LRR) family protein	1.83
CRO_T129178	conserved hypothetical protein	1.83
CRO_T122157	SEC12P-like 2 protein	1.83
CRO_T113597	peptide transporter	1.83
CRO_T105087	ascorbate peroxidase	1.82
CRO_T137738	Insulinase (Peptidase family M16) protein	1.81

CRO_T140881	cytochrome P450, family 81, subfamily K, polypeptide	1.80
CRO_T122648	nucleotide transporter	1.80
CRO_T126869	Ribophorin I	1.80
CRO_T127016	Subtilase family protein	1.80
CRO_T124766	gamma tonoplast intrinsic protein	1.80
CRO_T134427	Insulinase (Peptidase family M16) protein	1.79
CRO_T138838	translocon at the outer envelope membrane of chloroplasts	1.79
CRO_T105023	sterol methyltransferase	1.78
CRO_T133407	Curculin-like (mannose-binding) lectin family protein	1.78
CRO_T117787	conserved hypothetical protein	1.77
CRO_T118263	VIRB2-interacting protein	1.77
CRO_T113918	alpha/beta-Hydrolases superfamily protein	1.77
CRO_T141150	Peroxidase superfamily protein	1.77
CRO_T111277	cytochrome P450, family 71, subfamily A, polypeptide	1.76
CRO_T126954	plasma membrane intrinsic protein 2;5	1.76
CRO_T124369	Ubiquitin-specific protease family C19-related protein	1.76
CRO_T135052	conserved hypothetical protein	1.76
CRO_T109465		
CRO_T109472		1.75
CRO_T113655	Secologanin synthase SLS	
CRO_T119647	GRIM-19 protein	1.75
CRO_T131784	phospholipase C	1.75
CRO_T110794	NAD(P)-binding Rossmann-fold superfamily protein	1.74
CRO_T112631	Remorin family protein	1.74
CRO_T123311	MATE efflux family protein	1.74
CRO_T121601	Single hybrid motif superfamily protein	1.74
CRO_T134187	Protein of unknown function (DUF3754)	1.74
CRO_T101292	SPFH/Band 7/PHB domain-containing membrane- associated protein family	1.73
CRO_T106860	annexin	1.72
CRO_T138528	Outward rectifying potassium channel protein	1.71
CRO_T103125	voltage dependent anion channel	1.71
CRO_T137206	hexokinase	1.71
CRO_T102025	Major facilitator superfamily protein	1.71
CRO_T116310	autoinhibited Ca2+-ATPase	1.71
CRO_T103881	cytochrome P450, family 72, subfamily A, polypeptide	1.69
CRO_T117079	ribophorin II (RPN2) family protein	1.69
CRO_T113525	amino acid transporter	1.68
CRO_T141060	copper ion binding;cobalt ion binding;zinc ion binding	1.68
CRO_T132186	ATP synthase alpha/beta family protein	1.68
CRO_T126144	DUF1517 domain containing protein	1.67
CRO_T134124	translocase of outer membrane 20 kDa subunit	1.67
CRO_T130743	PDI-like 1-4	1.67
CRO_T134091	lysine histidine transporter	1.66

CRO_T109497	sterol methyltransferase	1.66
CRO_T103873	7-deoxyloganic acid hydroxylase 7DLH	1.66
CRO_T120100	Zn-dependent exopeptidases superfamily protein	1.65
CRO_T110779	polyol/monosaccharide transporter	1.65
CRO_T139926	receptor like protein	1.65
CRO_T132383	outer envelope protein of 80 kDa	1.64
CRO_T109875	ATP synthase subunit alpha	1.64
CRO_T130538	AAA-type ATPase family protein	1.64
CRO_T115920	Histone superfamily protein	1.62
CRO_T111337	cytochrome P450, family 71, subfamily B, polypeptide	1.62
CRO_T101250	TMPIT-like protein	1.62
CRO_T124983	cytochrome P450, family 98, subfamily A, polypeptide	1.61
CRO_T118238	Protein kinase superfamily protein	1.61
CRO_T101194	AAA-type ATPase family protein	1.61
CRO T131/67	Oligosaccharyltransferase complex/magnesium	1.61
CRO_T131407	Leucine-rich repeat transmembrane protein kinase	1 60
CRO_T111384	ATP binding cassette subfamily B1	1.60
CRO_T130116	Heat shock protein 70 (Hsp 70) family protein	1.60
CRO T107192	pectin methylesterase	1.60
	Mitochondrial import inner membrane translocase	
CRO T101280	subunit Tim17/Tim22/Tim23 family protein	1.60
CRO T113477	Early-responsive to dehydration stress protein (ERD4)	1.59
CRO_T118877	calcium ATPase	1.59
CRO_T133593	PDI-like 1-2	1.58
CRO_T116686	conserved hypothetical protein	1.58
CRO_T122630	LETM1-like protein	1.58
CRO_T122503	Cytochrome P450 superfamily protein	1.58
CRO_T117258	Auxin-responsive family protein	1.58
CRO_T127722	autoinhibited H(+)-ATPase isoform	1.57
CRO_T139269	cytochrome BC1 synthesis	1.57
	NADH-ubiquinone dehydrogenase, mitochondrial,	1 56
CRO_T113237	putative	1.50
CRO_T119412	tobamovirus multiplication 2A	1.55
CRO_T133290	Translation initiation factor 3 protein	1.55
	translocon at the inner envelope membrane of	1 54
CRO_T117377	chloroplasts	1.54
CRO_T117321	translocase of the outer mitochondrial membrane	1.53
CRO_T139711	PLAT/LH2 domain-containing lipoxygenase family protein	1.52
CRO_T124973	syntaxin of plants	1.51
CRO T101649	Late embryogenesis abundant (LEA) hydroxyproline-rich	1.50
CRO T119276	hypothetical protein	1.50
Appendix XV. Split-Luciferase Assays between *C. roseus* MIA and Phenylpropanoid Biosynthetic Enzymes

Representative split-luciferase result of testing protein-protein interactions of *C. roseus* phenylpropanoid and MIA biosynthetic enzymes in heterologous host *N. benthamiana*.

Figure 132. Representative images of pairwise interactions of *Cr*C4H with *C. roseus* lignin and MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuctagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A.** C4H-CSE; **B.** C4H-CCR; **C.** C4H-CAD; **D.** C4H-LAMT; **E.** C4H-TDC; **F.** C4H-GS; **G.** C4H-RedOx1; **H.** C4H-RedOx2; **I.** C4H-SAT; **J.** C4H-PAS; **K.** C4H-DPAS; **L.** C4H-TS; **M.** C4H-CS; **N.** C4H-CorS; **O.** C4H-16OMT; **P.** C4H-T3R.

Figure 133. Representative images of pairwise interactions of *Cr*C3H with *C. roseus* lignin and MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A.** C3H-CSE; **B.** C3H-CCR; **C.** C3H-CAD; **D.** C3H-LAMT; **E.** C3H-TDC; **F.** C3H-GS; **G.** C3H-RedOx1; **H.** C3H-RedOx2; **I.** C3H-SAT; **J.** C3H-PAS; **K.** C3H-DPAS; **L.** C3H-TS; **M.** C3H-CS; **N.** C3H-CorS; **O.** C3H-16OMT; **P.** C3H-T3R.

Figure 134. Representative images of pairwise interactions of *Cr*CSE with *C. roseus* lignin and MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. AA. C4H-CSE; AB. C3H-CSE; AC. CSE-CSE; AD-E. CSE-CCR; AF-G. CSE-CAD; AH-I. CSE-LAMT; AJ. SLS-CSE; AK-L. CSE-TDC; AM-N. CSE-GS; AO. GO-CSE; AP-Q. CSE-RedOx1; AR-S. CSE-RedOx2; AT-U. CSE-SAT; AV-W. CSE-PAS; AX-Y. CSE-DPAS; AZ-BA. CSE-TS; BB-C. CSE-CS; BD-E. CSE-CorS; BF. T16H2-CSE; BG-H. CSE-160MT; BI. T3O-CSE; BJ-K. CSE-T3R.

Figure 135. Representative images of pairwise interactions of *Cr*CCR with *C. roseus* lignin and MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. AA. C4H-CCR; AB. C3H-CCR; AC-D. CCR-CSE; AE. CCR-CCR; AF-G. CCR-CAD; AH-I. CCR-LAMT; AJ. SLS-CCR; AK-L. CCR-TDC; AM-N. CCR-GS; AO. GO-CCR; AP-Q. CCR-RedOx1; AR-S. CCR-RedOx2; AT-U. CCR-SAT; AV-W. CCR-PAS; AX-Y. CCR-DPAS; AZ-BA. CCR-TS; BB-C. CCR-CS; BD-E. CCR-CorS; BF. T16H2-CCR; BG-H. CCR-160MT; BJ. T3O-CCR; BJ-K. CCR-T3R.

Figure 136. Representative images of pairwise interactions of *Cr*CAD with *C. roseus* lignin and MIA biosynthetic enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. AA. C4H-CAD; AB. C3H-CAD; AC-D. CAD-CSE; AE-F. CAD-CCR; AG. CAD-CAD; AH-I. CAD-LAMT; AJ. SLS-CAD; AK-L. CAD-TDC; AM-N. CAD-GS; AO. GO-CAD; AP-Q. CAD-RedOx1; AR-S. CAD-RedOx2; AT-U. CAD-SAT; AV-W. CAD-PAS; AX-Y. CAD-DPAS; AZ-BA. CAD-TS; BB-C. CAD-CS; BD-E. CAD-CorS; BF. T16H2-CAD; BG-H. CAD-16OMT; BI. T3O-CAD; BJ-K. CAD-T3R.

Appendix XVI. Split-Luciferase Assays of Ψ-Tabersonine Biosynthetic Enzymes

Representative split-luciferase result of testing protein-protein interactions of enzymes involved in Ψ -tabersonine biosynthesis.

Figure 137. Representative images of pairwise interactions of *Ti*PAS1 with *C. roseus* and *T. iboga* DPAS and cyclase enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Ti*PAS1-*Ti*DPAS1; **C-D.** *Ti*PAS1-*Ti*DPAS2; **E-F.** T*i*PAS1-*Cr*DPAS2; **G-H.** *Ti*PAS1-*Ti*CorS; **I-J.** *Ti*PAS1-*Ti*DPAS1; **K-L.** *Ti*PAS1-*Cr*CorS; **M-N.** *Ti*PAS1-*Cr*TS; **O-P.** *Ti*PAS1-*Cr*CS.

Figure 138. Representative images of pairwise interactions of *Ti*PAS2 with *C. roseus* and *T. iboga* DPAS and cyclase enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Ti*PAS2-*Ti*DPAS1; **C-D.** *Ti*PAS2-*Ti*DPAS2; **E-F.** *Ti*PAS2-*Cr*DPAS2; **G-H.** *Ti*PAS2-*Ti*CorS; **I-J.** *Ti*PAS2-*Ti*TabS; **K-L.** *Ti*PAS2-*Cr*CorS; **M-N.** *Ti*PAS2-*Cr*TS; **O-P.** *Ti*PAS2-*Cr*CS.

Figure 139. Representative images of pairwise interactions of *Ti*PAS3 with *C. roseus* and *T. iboga* DPAS and cyclase enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Ti*PAS3-*Ti*DPAS1; **C-D.** *Ti*PAS3-*Ti*DPAS2; **E-F.** *Ti*PAS3-*Cr*DPAS2; **G-H.** *Ti*PAS3-*Ti*CorS; **I-J.** *Ti*PAS3-*Ti*TabS; **K-L.** *Ti*PAS3-*Cr*CorS; **M-N.** *Ti*PAS3-*Cr*TS; **O-P.** *Ti*PAS3-*Cr*CS.

Figure 140. Representative images of pairwise interactions of *Cr*PAS with *C. roseus* and *T. iboga* DPAS and cyclase enzymes tested by split-luciferase in *N. benthamiana*. –n represents constructs tagged with C-terminus nLuc luciferase fragment, c- represents constructs tagged with N-terminus cLuc luciferase fragment. N.C. 1 represents nLuc-tagged protein construct with empty cLuc fragment, N.C. 2 represents cLuc-tagged protein construct with empty nLuc fragment, N.C. 3 represents empty nLuc and empty cLuc fragment negative controls. Counts per second (cps) represented by false colour. **A-B.** *Cr*PAS-*Ti*DPAS1; **C-D.** *Cr*PAS-*Ti*DPAS2; **E-F.** CrPAS-*Ti*CorS; **G-H.** *Cr*PAS-*Ti*TabS.