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ABSTRACT
In this paper, we investigate the role of solar laser technology as a pivotal element in advancing sustainable and renewable energy. We begin
by examining its wide-ranging applications across diverse fields, including remote communication, energy storage through magnesium pro-
duction, and space exploration and communication. We address the current challenges faced by solar laser technology, which include the
necessity for miniaturization, operation at natural sunlight intensity without the need for concentrated power, and efficient energy conversion.
These improvements are essential to elevate their operational performance, beam quality, and cost-effectiveness. The promising prospects of
space-based solar-pumped lasers and their potential role in magnesium generation for a sustainable energy future highlight some of the vast
application opportunities that this novel technology could offer.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0209355

I. DEMANDS FOR SUSTAINABLE ENERGY RESOURCES

Inefficient energy harvesting has become a central concern in
the discourse on climate change due to its compounding effects
on greenhouse gas emissions and Earth’s energy balance. At the
microscopic level, inefficiencies in energy conversion processes, be
it in industrial machines, power plants, or even renewable energy
technologies, invariably result in the loss of a portion of the har-
vested energy as waste heat. When not harnessed, this heat can
directly contribute to localized warming, and when scaled globally,
it can impact climatic patterns. From a thermodynamic perspective,
inefficient systems necessitate the consumption of more primary
energy resources to achieve the desired output. For instance, first-
generation coal-fired power plants, operating at suboptimal effi-
ciencies, emit a substantially higher quantity of CO2 per unit of
electricity generated when compared to their modern, more efficient
counterparts or alternative energy sources such as wind or solar.1,2

This surplus CO2 has a direct and enhanced greenhouse effect, trap-
ping more of Earth’s outgoing infrared radiation, leading to rise in
global temperature.3

The inefficiencies in energy harvesting are not solely confined
to the extraction and conversion processes. Transmission losses in
outdated power grids, suboptimal designs of solar panels that fail
to absorb the full spectrum of sunlight, or wind turbines positioned

in less-than-ideal locales further add to the systemic inefficiencies.
When aggregated on a global scale, these cascading inefficien-
cies not only exacerbate the challenges of meeting the growing
energy demand but also contribute significantly to climate change
by increasing our carbon footprint. Addressing these inefficiencies
in harvesting and conversion is imperative for a sustainable future.
Enhanced research in materials science, thermodynamics, and engi-
neering can pave the way for breakthroughs that can mitigate the
impacts of climate change by making energy systems more efficient.
Over time, numerous insightful articles have emphasized the global
imperative to shift toward renewable energy sources.4–6 As global
populations rise and the demand for energy surges, projections
indicate an escalating energy requirement. This discourse encom-
passes the urgent search for alternatives to fossil fuels due to the
dwindling reserves of hydrocarbon-based sources, leading to height-
ened geopolitical tensions and societal disruptions.7,8 The impera-
tives of pollution management and the challenges posed by climate
change further underscore the necessity for cleaner energy solu-
tions. One prominent answer lies in harnessing solar energy, which
offers an abundant, eco-friendly, and virtually inexhaustible power
reservoir.

The sun is projected to last for another 4–5 billion years. Our
planet receives more energy from the sun in one hour than all
humankind’s energy consumption in a year. This positions solar
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energy as arguably the most substantial and harnessable renewable
energy resource available to us, making it a recommended long-
term energy alternative solution. Nonetheless, its contribution to
our energy needs remains surprisingly minimal.10 Sunlight is both
non-directional and semi-coherent. The Earth’s atmosphere reflects
about 30% of this energy into the cosmos. Moreover, the diurnal
cycle ensures that each night plunges us into total darkness, remind-
ing us of our reliance on this celestial body. In regions such as
Europe, this dependence becomes even more pronounced during
winter.9,11 This variability, coupled with seasonal changes, intro-
duces challenges in harnessing solar power, as these fluctuations can
impact the efficiency of solar energy generation (Fig. 1).

Solar-pumped lasers, an innovative intersection between
renewable energy and laser technology, have emerged as a note-
worthy development over the past decades. They are specifically
designed to tap into the vast reservoir of energy that the sun offers,
transforming it directly into coherent laser light. This unique capac-
ity to use solar power to produce laser emissions brings a potentially
sustainable solution for high-power laser applications and marks a

significant step toward green laser technology. Solar-pumped lasers
operate by using sunlight to energize the laser’s gain medium. This
sun-powered process could result in an efficient way to generate laser
emissions, bypassing the need for traditional electrical or chemical
energy sources.

In this perspective, we first highlight the potentially transfor-
mative applications of solar lasers, as shown in Fig. 2. We discuss
their promising role in (i) revolutionizing sustainable energy cycles,
such as the magnesium economy,12 (ii) boosting the efficiency of
solar energy conversion,13 and (iii) their offer for wireless energy
transmission in hard-to-reach zones in space-based solar power sys-
tems and interplanetary communication.7,14–16 Having established
their potential, we scrutinize the performance metrics and hurdles
encountered by state-of-the-art solar lasers over the past decade.
We further investigate innovative strategies aimed at overcoming
these obstacles, which could pave the way for solar lasers to achieve
their full potential. We refer the readers interested in the foundation
and evolutionary journey of solar laser technology to the following
detailed review articles and books.17–20

FIG. 1. (a) Global map of the climatological mean of surface downwelling shortwave radiation (rsds) from 1981 to 2010. (b) Global map of the range (max–min) of monthly
rsds means for the period 1981–2010. (c) Seasonal cycle of rsds in the biomes of the Northern Hemisphere for the period 1981–2010. The polygons indicate the range
from the 40th to 60th percentiles, and the lines indicate the medians. (d) Temporal change in annual mean rsds by biome. Deviations in the percentage of the long-term
(1979–2019) annual mean are shown. The red (A) represents the polar and subpolar zone; yellow (B) represents the boreal zone; blue (C) represents dry mid-latitudes;
green (D) represents temperate mid-latitudes; purple (E) represents subtropics with year-round rain; orange (F) represents subtropics with winter rain; brown (G) represents
dry tropics and subtropics; pink (H) represents tropics with summer rain; and gray (I) represents tropics with year-roundrain.9 Reproduced with permission from Brun, Earth
Syst. Sci. Data 14, 5573–5603 (2022); licensed under a Creative Commons Attribution (CC BY) license.
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FIG. 2. Graphical abstract representing the selected application of solar lasers for sustainable energy generation and optical communication. Availability of efficient solar
pumped lasers allows for sustainable driving of chemical cycles such as magnesium injection cycle (MAGIC),12 enhancing the efficiency of the solar panels,13 enabling
optical communication in exclusion and remote zones or interplanetary communication,15,16 and realization of solar-based space power at optical frequencies.7,14

II. POTENTIAL TRANSFORMATIVE APPLICATIONS
A. Magnesium economy

Solar lasers have a great potential to drive fossil-fuel-free energy
cycles for electricity generation or chemical energy storage.21–24

Magnesium has a great potential for green energy cycles as it is
the eighth most abundant material element on Earth with an esti-
mated weight of 1.8 × 1015 tonnes in the ocean and an energy
density ten times higher than hydrogen.12 However, extracting 1 kg
of magnesium requires 10 kg of coal, making the process energy-
intensive, expensive, and dependent on fossil fuels. Solar radiation
as a renewable energy source can be converted directly or indirectly
into other forms of energy, such as heat and electricity, and could
play a role in creating new fossil-fuel-free engine cycles. As shown
in 2008, solar lasers could be used to drive high-temperature chem-
ical reactions, such as the magnesium injection cycle (MAGIC), and
make it possible to convert the magnesium oxide in seawater into
magnesium.25–29 In MAGIC, the mixture of magnesium and water
is ignited at 500 ○C. During this reaction, the generated hydrogen
gas reacts with oxygen gas to generate water and magnesium oxide
and releases immense energy. The residual of the magnesium oxide
can then be irradiated by 1 kW of laser power with a 1 mm focus size,
ideally from a solar laser, for magnesium refinement and closing the
sustainability cycle. The only by-product of this reaction is hydro-
gen, which can also be cleanly burned to produce even more heat
or siphoned off for use in fuel cells. The MAGIC cycle makes the
solar-powered magnesium economy a competition of a hydrogen
economy.10 Such technology benefits directly from the availability
of high-power solar lasers with high conversion efficiency.

B. Power by light
In numerous places and scenarios, such as exclusion zones,30

mines, aircraft, and satellites, direct harnessing of electrical energy
to run electronic devices is either impractical or ill-advised.31–37

Optical power transfer, or PBL (power-by-light), is a savvy alterna-
tive in these unique scenarios. Historically, the inception of wireless
energy transmission can be traced back to Nikola Tesla’s pioneering
endeavors in the early 20th century.38 A typical PBL system com-
prises a light source, a transmission medium, and a light receiver.
The transmission medium can be categorized into two primary
options: those utilizing optical fiber links and those transmitting
optical power wirelessly through open space or the atmosphere.
The light source changes the electrical power from a safer region
into optical energy. This energy is then conveyed via the transmis-
sion medium to the light receiver, which then reconverts the optical
energy into electricity, thereby energizing the electronics within
exclusion or remote zones.

For many applications, laser power beaming stands out for
its numerous advantages over alternatives such as solar panels or
nuclear reactors. The low conversion efficiency of solar panels and
the low energy density of solar light demand for large areas of solar
panels. This equates to an excessive amount of materials and infras-
tructure. Moreover, the large-area solar collectors would block sun-
light from hitting the ground, causing potential ecological impacts
and changing the local thermal balance, making the large-scale col-
lection of solar energy on the surface of the Earth problematic.
The efficiency of solar panels is optimized for a narrowband light.
As an example, it has been demonstrated recently that the effi-
ciency of the photovoltaic power converter can be increased to 68.9%
for converting the coherent laser light at 858 nm to electricity.13

The efficiency of the single-junction photovoltaic cells is dictated
by the Shockley–Queisser limit.39 Commercially available photo-
voltaic cells typically consist of first-generation crystalline or poly-
crystalline silicon cells.40,41 Employing multijunction thin-film cells
cut the material expenses,42 and the second-generation photovoltaic
cells offer high efficiencies up to 47.6%.43 However, a significant
drawback is the rarity and toxicity of many of these components.
New materials, including organic compounds and perovskites, have
been explored but suffer lower efficiency and stability.44
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Solar lasers could enhance the transformation of solar light
into electrical energy in low-efficiency photovoltaic cells by (i) solar
lasers that convert the solar irradiation directly to a coherent beam
at the efficiency peak of the solar panels or (ii) taking advantage
of lasers’ intra-cavity power amplification to offset the converter’s
lower efficiency. This converter could be a low-efficiency transpar-
ent photovoltaic cell or a thermoelectric cell incorporated within
a metallic laser-cavity mirror with a low intra-cavity loss. By inte-
grating the laser action with a power-converting cell acting as an
absorber, power-conversion efficiencies comparable to commercial
silicon photovoltaic cells can be achieved.45,46

It has to be considered that due to safety concerns regarding
maximum exposure to the cornea and skin, lasers operating within
the 1510–1750 nm and 2100–2325 nm spectral ranges are especially
sought after.47 Yet, the hurdle in these wavelengths is the subpar
efficiency of the available photovoltaic converters. These demand
advancements in the operational wavelength and efficiency of solar
lasers and photovoltaic converters. Solar lasers have great potential
to be used in wireless power transmission systems to transmit energy
over long distances and convert solar radiation to a monochromatic
light suitable for efficiently harvesting energy. While lasers may
not transmit as effectively through Earth’s atmosphere compared to
microwaves, they provide a considerably higher energy density and
are suited for use with more compact transmitters and receivers.
This makes them a viable and sustainable option for interplane-
tary communication, as well as a potent method for long-distance
energy transmission and communication. Furthermore, solar lasers
could contribute to these endeavors by providing a sustainable
solution.16,48–50

C. Space-based solar power
In recent years, the idea of space-based solar power (SBSP) has

received considerable attention again. Here, to mitigate the effect
of atmospheric attenuation and seasonal and atmospheric changes,
solar radiation is collected and converted in space. Electromag-
netic waves link the space system to terrestrial systems containing
a receiver, convertor, and utilization. The idea of harvesting energy
in space and transporting it to the ground was suggested at the
dawn of the space age.51 The initial proposals were based on con-
verting sun-generated electricity into microwaves, which would
be power-beamed to the ground. Microwaves have the advantage
of significantly better efficiencies, sound transmission through the
atmosphere, even during periods of heavy cloud cover, and low
equipment cost. However, they require very large receiving anten-
nae on the ground, with a diameter of up to 10 km.52 In the 1970s,
scientists at the Lawrence Livermore National Laboratory suggested
using laser light instead of microwaves, which, in turn, reduced the
overall size requirements for the receiver by a thousandfold to 30 m.
Moreover, the weight of the laser satellite would be 10% of that
of a microwave system, reducing the overall cost.10,52 The laser is
then beamed to the power generation station on Earth, which con-
tains molten salt as the medium to capture and store the received
energy. Then, it is incorporated into a generator system utilizing
steam turbines and electrical generators.

Estimates hold that SBSP could generate 40 times as much
energy as generated by Earth-based solar power. A comprehensive

system analysis identifying vital system components has indi-
cated a potential economic advantage of solar-pumped lasers over
solar photovoltaic power, provided the lasers can attain efficien-
cies exceeding 1%.53 Harvesting solar energy in space and power-
beaming the collected energy to a receiver station on Earth is a very
attractive way to help solve mankind’s current energy and environ-
mental problems. Space-based solar power is clean, sustainable, and
always available, independent of the time of day and the weather.
Its transportation to anywhere in the world is much easier than fos-
sil energy. Moreover, solar lasers in space can be used to precisely
measure distances of millions of kilometers, detect trace gases in
the atmosphere of Earth from a satellite, or transmit data between
satellites at very high rates.

Based on a proposal by Holloway et al., a diode laser system
coupled to solar panels could deliver 1 MW of power with 20% wall-
plug efficiency. Such architecture employs 3600 m2 solar panels to
convert solar light to electricity at 40% efficiency, delivering 5 MW
of power. This power is then used to pump diode lasers with 50%
conversion efficiency. For any given receiver station on Earth, the
solar power beaming station can illuminate a specific receiver for
∼9 min at the megawatt power level. After the 9 min, the solar power
beaming station will not be able to see that particular receiver and
should, therefore, switch to another receiver on Earth.54 However,
the lower conversion efficiencies of the laser-based system mean that
considerably more energy is wasted in heat than with microwave
systems, and this heat must be managed as part of the satellite opera-
tion.55 Moreover, the space system must accurately point toward the
Sun, while the transmitter and the receiver must maintain a precise
and stable alignment. A desirable laser for space communications
would derive all its power efficiently and directly from the sun.

In the subsequent sections, we delve into the performance and
challenges of state-of-the-art solid-state solar lasers as one of the
most advanced types of solar lasers developed in the past decade.
We then explore potential strategies for addressing these challenges,
focusing on two main avenues: the development of novel gain media
designed for low pumping thresholds compatible with the intensity
of natural sunlight and the implementation of innovative pumping
schemes, such as blackbody lasers, to harness solar energy more effi-
ciently. These discussions aim to outline a roadmap for enhancing
the efficacy and applicability of solar lasers, paving the way for their
broader adoption in sustainable energy systems.

III. EMERGING INNOVATIONS IN SOLAR
LASER TECHNOLOGY
A. Solid-state solar lasers

The first solar laser was demonstrated by Kiss et al. in 1963,56

and the first solid-state solar laser was developed by Young in 1966.57

In this system, the solar radiation was concentrated into a rod of
Nd:YAG by a parabolic mirror, resulting in an output power of
0.8 W with a total efficiency of less than 1%. Various designs based
on primary and secondary focusing geometries have been realized to
enhance the solar light collection and increase the pump intensity on
the gain medium. The primary focusing geometry is mainly made of
a Fresnel lens or a parabolic mirror, combined with heliostat mirrors
and conical pump cavities. The focused light is then coupled to the
secondary focusing modality consisting of non-imaging optics, such
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FIG. 3. Evolution of (a) output power and (b) optical-to-optical conversion efficiency in solar-pumped solid-state lasers since their inception.19,58–85 (c) The absorption and89–99

(d) emission spectra of common solid-state gain media.93,97,100–108

as compound parabolic concentrators (CPC) or ball lenses, for fur-
ther focus and an increase in the solar pump intensity in the laser
gain medium. Figures 3(a) and 3(b) show a comprehensive sum-
mary of the advancements in solar-pumped solid-state lasers from
their inception, showcasing the progression in output power and the
optical-to-optical conversion efficiency.19,20,58–88

To be a candidate for solar pumping, a laser material with
a high ratio of fluorescent lifetime, low lasing threshold, opera-
tion at room temperature, and broadband absorption is desired.

A comparison between the absorption and emission bandwidth of
the common solid-state laser gain media is shown in Figs. 3(c) and
3(d). Neodymium-doped YAG (Nd:YAG), Ti:sapphire, Cr:LiSAF,
and alexandrite have a broad absorption bandwidth. However, their
partial overlap with the solar spectrum and their high upper state
lifetime demand for high solar pump intensity. Therefore, in addi-
tion to optimizing collection efficiencies, multiple research groups
have explored various methods to boost the conversion efficiencies
of solar-pumped lasers by developing innovative gain materials.

FIG. 4. (a) The energy levels of cerium and neodymium ions with cross-relaxation paths.77 (b) Solar spectrum (gray), the absorption spectrum of Ce (0.1%):Nd (1.1%):YAG
(blue), the emission spectra of cerium (green), and neodymium (purple) and emission spectra of Cr:LiCAF (yellow).64,77 Reproduced with permission from Garcia et al.,
Energies 15, 5292 (2022); licensed under a Creative Commons Attribution (CC BY) license.
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Cerium (Ce3+) has a broadband absorption spectrum in the
ultraviolet and visible range. When co-doping with the Nd:YAG
crystal, it can significantly improve the efficiency of the laser. Cerium
absorbs at 339 and 460 nm and has a broad fluorescence spectrum
spanning from 500 to 600 nm. The emission spectrum overlaps with
the excitation peaks of the neodymium ions, resulting in increased
absorption and, therefore, optical-to-optical efficiency of the solar
laser (Fig. 4).18,25,59,61,65,72,77,80,109 Alternatively, it has been suggested
that employing crystals such as Cr:LiCAF as an external frequency
converter to downshift large amounts of unabsorbed solar photons
could enhance the efficiency of solar Nd:YAG lasers and reduce the
pump intensity lasing threshold.64

Although theoretical models suggest that broadband-pumped
lasers could achieve a balanced efficiency limit of 31%,110,111 exper-
imental demonstrations of solar lasers have consistently shown
efficiencies under 10%.12,119–121 Several obstacles must be overcome
to make solar pumping competitive with conventional pumping
schemes. Solar radiation needs to be concentrated to very high
intensities to achieve the laser threshold when pumping currently
available laser materials. This concentration process requires precise
pointing of the optics toward the Sun112,113 and leads to significant
heat accumulation in very small spaces within both the concentra-
tor and the laser crystal. The substantial heat within the laser crystal
necessitates the use of specialized cooling methods, compromises
laser performance, and increases the risk of catastrophic failure due
to the limitations of the materials used. In addition, a major draw-
back of solar pumping is the absence of energy storage capabilities.
Un-like electrical energy, which can be readily stored in capacitors
and batteries to overcome periods of solar radiation unavailabil-
ity due to satellite orientation or solar occultation by a planet,
solar-pumped systems lack this flexibility. Furthermore, achieving
reductions in the size and weight of solar lasers to make them com-
parable to photovoltaic (PV) panels could unlock new possibilities
for their application.

B. Low-threshold solar lasers
Solar-pumped lasers benefit from eliminating large concentrat-

ing lenses and precise solar tracking. Furthermore, it is crucial to
capture diffused horizontal sunlight or harvest solar energy on over-
cast days, as diffused solar radiation constitutes, on average, 49%
of the annual total solar irradiance.114,115 Low-threshold lasers hold
promise to address these challenges.

Radiative energy transfer could successfully decouple the con-
ventional trade-off between solar absorption efficiency and the mode
volume of the optical gain material through cascade energy transfer
in a luminescent solar concentrator, therefore, lowering the las-
ing threshold.116–122 In this technique, the luminescent colloidal
nanocrystals are paired with traditional optical gain media, such as
Nd3+ and Tm3+, in a planar waveguide geometry. The absorbed
solar light re-emits in the layer of luminescent colloidal semicon-
ductor nanocrystals. A fraction of the emitted photoluminescence
is then trapped in a sub-millimeter gain medium attached to the
luminescent solar concentrator.117,123 Based on this technique, an
actively cooled solar laser with an optical-to-optical conversion effi-
ciency of 0.023% and a collection efficiency of 0.21 W/m has been
demonstrated.114

Several proposals have been made to engineer novel gain media
for efficient, low-threshold lasing under natural sunlight. Mattiotti
et al. proposed a new gain media inspired by the architecture of natu-
ral photosynthetic complexes, as one of the most remarkable aspects
of many natural molecular aggregates is their ability to efficiently
process extremely weak sources of energy or signals for biological
purposes.126–132 In their proposed hybrid structure, photosynthetic
complexes in purple bacteria (Rhodobacter sphaeroides) surround
a suitably engineered molecular dimer composed of two strongly
coupled chromophores. The photosynthetic complex efficiently col-
lects and concentrates solar energy to the core dimer structure,
allowing for population inversion and lasing under natural sunlight
[Fig. 5(a)].124

FIG. 5. (a) Photosynthetic antenna complex collects energy from sunlight, which is converted to electronic excitation and efficiently funneled to an H-dimer placed in the
middle. Here, the excitation is absorbed to a bright, high-energy state, and it relaxes quickly to a dark, low-energy state. This mechanism prevents re-emission and allows
population inversion between the dark and ground states and, therefore, lasing.124 Reproduced with permission from Mattiotti et al., New J. Phys. 23, 103015 (2021); licensed
under a Creative Commons Attribution (CC BY) license. (b) Coherent light emission from a partially pumped atomic array. A ring of atoms with an additional atom in its center
incoherently pumped.125 Reprinted Fig. 1(a) with permission from Holzinger et al., Phys. Rev. Lett. 124, 253603 (2020). Copyright (2024) by the American Physical Society.
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In a recent study, Holzinger et al. proposed the implementa-
tion of a minimalistic sub-wavelength-sized laser with no pumping
threshold. The proposed geometry contains a collection of atomic
quantum emitters as the gain medium and resonator. A continu-
ously pumped single atom surrounded by a nano-ring of identical
atoms, as shown in Fig. 5(b), could emit spatially and temporally
coherent light in a sub-wavelength laser cavity.125,133

C. Blackbody-pumped solar lasers
To address the challenges associated with solar energy collec-

tion, one innovative strategy that has been investigated involves
blackbody-pumped solar lasers.134–137 This approach uses solar radi-
ation to heat a source, emitting thermal radiation based on the black-
body radiation law. When a large-area blackbody is used, it produces
substantial thermal radiation that energizes a gain medium. The
pumping efficiency of the laser improves in tandem with the temper-
ature of the blackbody, thus boosting the laser’s overall performance.
An additional benefit of blackbody-pumped solar lasers is their
intrinsic thermal storage capability. This feature enables the laser to
continue operating without additional heat input until it reaches a
critical temperature that matches its operational threshold. Such a
characteristic could potentially allow a laser system to function even
during the Earth’s orbit on its dark side. Moreover, the total energy
in the solar spectrum can be used to pump the gain medium.

Two factors limit the upper temperature of the blackbody: (i)
thermal limitation of material and (ii) radiation losses out of the
blackbody cavity through the solar light entrance hole. Such con-
straints have limited blackbody pumping systems to 2000 K, well
below the thermodynamic limit of the sun at 5800 K.138 Producing
high-temperature blackbodies do not pose a significant technolog-
ical hurdle, given their application in solar furnaces.139,140 The pri-
mary challenge within these systems lies in achieving efficient cou-
pling between the blackbody and the gain medium. Much research
has been conducted on blackbody lasers based on gas gain media,
where the thermally excited vibrational state of gas molecules is used
for pumping the gas by collisional transfer of the vibrational energy.
The energy transfer can occur via translational heating or vibrational
heating. In translational heating, the blackbody heats the molecules
of a transfer gas, creating a Boltzmann distribution of vibrational
states, where the molecular translational, vibrational, and rotational
temperatures come into equilibrium with the blackbody tempera-
ture. In the vibrational heating concept, the transfer gas molecules
absorb a portion of the blackbody spectral radiation in a narrow
absorption band and become vibrationally excited. The laser effi-
ciency is limited to less than 1% when the vibrational energy transfer
is used due to the inefficiency of the Boltzmann distribution in cre-
ating vibrational states. Moreover, the active cooling of the transfer
gas is required. Translational heating can achieve higher efficiencies,
but the difficulties rely on the efficient coupling of the transfer gas
and the blackbody. The concept of blackbody pumping has been
more advanced toward employing solid-state gain media, such as
Nd:YAG, and high efficiencies up to 35% are anticipated.141,142

IV. PERSPECTIVE
As a high-intensity, renewable energy source, a solar laser with

a simple design, no active electronics or moving parts, low threshold

operation, and beyond 10% optical to optical efficiency holds the
potential to significantly contribute to sustainable energy solutions
and optical communications for space exploration.16,17,48–50,143–145

Scaling down solar lasers to dimensions akin to those of photo-
voltaic panels could revolutionize their applications, for example,
enabling wireless power delivery to electric vehicles and unmanned
aerial vehicles.146–151 This innovation is already under way, with the
introduction of new crystalline silicon photovoltaic cells designed
for power transmission from solar lasers. These cells are tailored
for extremely high-intensity, monochromatic light at a wavelength
of 1064 nm and function optimally at specific incident angles.152–154

While micro-solar lasers offer to enhance the stability and resilience
of the solar lasers to wind stress, thanks to their compact size
and the efficient heat management facilitated by free or natural air
convection,155,156 there remains ample scope for further research.
Enhancing the performance of solid-state solar lasers, particularly
through the adoption of disk geometry,157–159 presents a promis-
ing avenue. Such geometries can facilitate more efficient cooling
and quicker heat removal, potentially improving beam quality and
efficiency.160,161 Furthermore, innovations in novel gain media for
low-threshold lasing support the simplification and miniaturiza-
tion of solar lasers. This allows them to function effectively at the
sunlight’s natural intensity threshold, opening new avenues for their
application and performance.

The uninterrupted access to solar energy in space positions
the concept of directly beaming it to Earth as highly compelling,
ensuring superior energy conversion efficiency over time relative to
conventional terrestrial solar panels. However, the realization of
space-based solar-pumped lasers and magnesium-generating tech-
nologies as dependable energy sources is still in the distant future.
Nevertheless, should these innovative approaches reach their full
potential, they promise to provide a sustainable and clean energy
supply. Beyond contributing to the magnesium economy, the
advancement of efficient solar lasers could also enhance solar hydro-
gen production. This is particularly relevant for photocatalytic water
splitting, which shows higher efficiency in the ultraviolet spectral
range.162,163 A leap in the efficiency, lasing threshold, and com-
pactness of solar lasers could unlock a plethora of application
opportunities. These range from powering devices in remote loca-
tions, bolstering the nascent low-Earth orbit economy, enhancing
electric mobility, and facilitating operations underwater to enabling
material processing, conducting atmospheric research, and advanc-
ing space propulsion technologies. Such innovations promise to
transform a wide array of sectors through innovative solar energy
utilization.
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