日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Uncovering kinesin dynamics in neurites with MINFLUX

MPS-Authors
/persons/resource/persons298717

Wirth,  Jan Otto
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons298719

Schentarra,  Eva-Maria
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons280771

Scheiderer,  Lukas
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons298722

Macarrón-Palacios,  Victor
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

/persons/resource/persons15210

Hell,  Stefan W.       
Optical Nanoscopy, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Wirth, J. O., Schentarra, E.-M., Scheiderer, L., Macarrón-Palacios, V., Tarnawski, M., & Hell, S. W. (2024). Uncovering kinesin dynamics in neurites with MINFLUX. Communications Biology, 7:, pp. 1-7. doi:10.1038/s42003-024-06358-4.


引用: https://hdl.handle.net/21.11116/0000-000F-5ACF-4
要旨
Neurons grow neurites of several tens of micrometers in length, necessitating active transport from the cell body by motor proteins. By tracking fluorophores as minimally invasive labels, MINFLUX is able to quantify the motion of those proteins with nanometer/millisecond resolution. Here we study the substeps of a truncated kinesin-1 mutant in primary rat hippocampal neurons, which have so far been mainly observed on polymerized microtubules deposited onto glass coverslips. A gentle fixation protocol largely maintains the structure and surface modifications of the microtubules in the cell. By analyzing the time between the substeps, we identify the ATP-binding state of kinesin-1 and observe the associated rotation of the kinesin-1 head in neurites. We also observed kinesin-1 switching microtubules mid-walk, highlighting the potential of MINFLUX to study the details of active cellular transport.