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The leading-order contribution of a new boson to the muonic fine-structure anomaly, which
refers to a discrepancy between the predicted transition energies and spectroscopic measurements of
µ−90Zr, µ−120Sn, and µ−208Pb, is investigated. We consider bosons of scalar, vector, pseudoscalar,
and pseudovector type. Spin-dependent couplings sourced by pseudoscalars or pseudovectors are
disfavoured as solutions to the anomaly due to the nuclei in question having vanishing angular mo-
mentum. Spin-independent interactions resulting from scalar or vector exchange are also disfavoured
because no parameter space exists to simultaneously fit different atomic states of the same nucleus.
Therefore, we conclude that a ‘Beyond-the-Standard-Model’ resolution of the muonic fine-structure
anomaly is generally disfavoured, and the first-order solution by a single new boson is excluded.

I. INTRODUCTION

Transition energies between bound muonic states in
heavy atoms are of great interest for nuclear physics. The
low-lying orbitals of muonic atoms have a sizeable over-
lap with the nucleus and are, as a result, highly sensitive
to the nuclear structure [1–3]. Spectroscopic measure-
ments of the transition lines of µ−90Zr [4], µ−120Sn [5]
and µ−208Pb [6, 7] reveal a discrepancy between theory
prediction and experimental values, which we refer to as
the fine-structure anomaly in heavy muonic atoms.

This puzzle was believed to be caused by nuclear polar-
isation effects; however, recent investigations revealed the
corrections not sufficient to fit the experimental data [8].
Theory prediction of the difference ∆2pNP ≡ ∆ENP

2p3/2
−

∆ENP
2p1/2

resulting from nuclear polarisation (NP) is con-

sistently too high to be compatible with the precision
measurements, see Fig. 1. Re-investigation of the orig-
inal theory predictions is under way, see e.g. Ref. [9]
for the muonic self-energy (SE) correction. Meanwhile,
we carry out a complementary investigation of a poten-
tial ‘Beyond-the-Standard-Model’ (BSM) solution to the
muonic-atom fine-structure anomaly based on a similar
line of argument: the heavier muon, bound on a tighter
orbit around the nucleus, is more sensitive to new short-
range forces than electrons on their larger orbits. The
correction ∆ENP

2s is approximately compatible with the
experimental data and can therefore act as a reference:
any new interaction should not spoil this compatibility.

New macroscopic forces, arising as a result of the ex-
change of new bosons added to the Standard Model (SM),
come in a variety of forms [10, 11]. The nature of such
new mediators dictates the phenomenology of the new
forces. The inclusion of new scalars (ϕ) or vectors (Zν)
coupled to the SM fermions (f), to leading order, re-
sults in new, spin-independent forces. Pseudoscalars (a)
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and axial vectors (Bν) in contrast result in spin-spin cou-
plings. The interaction of these new degrees of freedom
is assumed to be of the following form

Lϕ ⊃ gϕfϕf̄f, La ⊃ igafaf̄γ
5f,

LZ ⊃ gZf Zν f̄γ
νf, LB ⊃ gBf Bν f̄γ

νγ5f (1)

where the gXf are the coupling constants of the new boson
X to the standard model fermions f = p, n, µ, and γν

are the Dirac matrices. We work in units where ℏ = c =
1. Also note that we exclusively reserve ‘µ’ to label the
muon to avoid confusion with Lorentz indices.
The potential for discovering such forces in elec-

tronic atomic systems has recently been under investi-
gation [12–14]. Potential effects include radiative cor-
rections to the energy levels of atoms [15], which be-
come isotope-dependent for couplings to neutrons result-
ing in King plot non-linearities [16, 17]. Spectroscopy
of hydrogen-like ions is used to search for such fea-
tures [18, 19]. Contributions to the hyperfine splitting
of muonic hydrogen as a result of a novel coupling to the
proton were investigated in Ref. [20]. New scalar inter-
actions have received great attention in the light of the
Higgs boson interaction [21, 22], including its influence on
bound g factors [23]. A systematic investigation of the
effects of various new bosons in muonic atoms was per-
formed in Ref. [24] with the treatment restricted to non-
relativistic muon wavefunctions. The possibility of in-
cluding new particles with an exclusive coupling to muons
and their effect on µ−H was investigated in Ref. [25] un-
der the assumption of dark-photon-type models, giving
the new boson a vector- or axial-vector-type interaction
and a coupling to the electromagnetic current.
We restrict ourselves to tree-level couplings between

the new boson and the standard-model fermions as in
Eq. (1), which cause a shift in the binding energy of
muonic atoms. Defining ∆2pX ≡ ∆EX

2p3/2
−∆EX

2p1/2
and

∆3pX ≡ ∆EX
3p3/2

− ∆EX
3p1/2

, in analogy to the nuclear-

polarisation shift, the resulting fit to the experimental
data can easily be performed. We use the full set of
measurements available, which includes ∆E2s shifts to-
gether with the above defined ∆2p and ∆3p. We begin by
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reviewing the interaction potentials stemming from the
new interactions in §II. The full set of potentials can also
be found in, e.g., Ref. [26, 27]. We then calculate the
resulting shifts in the binding energies of the low-lying
muonic orbitals in §III. Fitting the experimental data for
all measurements available leaves a number of interest-
ing parameter ranges, which we calculate in §IV. We then
examine the possibility of solving the muonic-atom fine-
structure anomaly with a single new-boson inclusion to
the SM.

II. INTERACTION POTENTIAL

A new exchange boson X results in a new interaction
term in the Hamiltonian, see appendix A for more expla-
nations. We will in the following refer to this term as the
interaction potential.

A. Scalar interaction

Perhaps the simplest of the new interactions in Eq. (1)
and, as a result of that, the most studied is the interaction
mediated by a new scalar boson ϕ corresponding to the
first term

Lϕ ⊃
∑

f=p,n,µ

gϕfϕf̄f. (2)

The exchange results in a potential between the muon µ
and a single nucleon of the form [26]

V
(f)
ϕ (r) = −

gϕf g
ϕ
µ

4π
γ0

∫
d3y

e−mϕr

r
f̄(y)f(y), (3)

where mϕ is the mass of the new scalar and the γ0 acts
on the muonic wavefunction. The nucleon (f = p, n) is
treated non-relativistically, which is justified by the slow
motion in the nucleus. Thence, the nuclear potential, as
seen by the muon, is obtained by a suitable average over
the nuclear density

ρ(f)(r) =
3Nf

4πR3
0

Θ(R0 − r) , (4)

which we assume to be a uniformly charged sphere with
radius R0 =

√
5/3rrms, where rrms is the root-mean-

square radius as found in [28]. It reads

Vϕ(r) = −αϕ
fγ

0

∫
e−mϕ|r−R|

|r−R|
ρ(f)(R)d3R

=
−3Nfα

ϕ
f

(mϕR0)
3 [Θ(r −R0)C1 +Θ(R0 − r)C2] γ0. (5)

Here, αϕ
f ≡ gϕf g

ϕ
µ/4π,

C1 ≡ e−mϕr

r
[mϕR0 cosh (mϕR0)− sinh (mϕR0)] (6)

and

C2 ≡ mϕ − e−mϕR0 (1 +mϕR0)
sinh (mϕr)

r
. (7)

B. Vector interaction

A vector Zν mediated interaction also results in a spin-
independent force to lowest order in the momentum ex-
change and corresponds to the third term in Eq. (1)

LV ⊃
∑

f=p,n,µ

gZf f̄ /Zf. (8)

The potential sourced by a nucleon f = n, p is obtained
similarly to the scalar case as [26]

V
(f)
Z (r) = αZ

f γ0γα

∫
d3yf̄γαf

e−mZr

r
. (9)

The γα act on the muonic wavefunction. Non-relativistic
treatment of the constituents of the nucleus results in

f̄γαfγ0γα = jα(f)(y)γ0γα ∼ ρ(f)(y).

In analogy to the scalar case this then results in a poten-
tial

VZ(r) = −Vϕ(r)γ
0. (10)

Note that the two are not equal in spin space but, in the
non-relativistic limit for the muon, reduce once again to
the same Yukawa-like potential only differing by a sign.

C. Pseudoscalar interaction

The first spin-dependent interaction corresponds to the
second term in Eq. (1)

La ⊃
∑

f=p,n,µ

igafaf̄γ
5f, (11)

and is a result of pseudoscalar a exchange. The potential
is [26]

V (f)
a (r) = 4παa

fγ
0γ5

∫
d3y

∫
d3q

(2π)3
f̄γ5f

e−iq·(x−y)

q2 +m2
a

.

(12)
Taking the non-relativistic limit in the nuclear part of
the interaction∫

d3yf̄γ5feiq·y ∼ −sf · q
mf

leads to the potential:

Va(r) = −iαa
fγ

0γ5(sN ·∇)
e−mar

mfr
(13)

with sN being the spin vector of the nucleus.
Note that here we are assuming the nucleus to be point-

like, an assumption which will be unproblematic because
of the vanishing nuclear spin for the elements in question.
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FIG. 1. The coloured areas show the experimentally allowed ranges of shifts in ∆E2s for µ−90Zr (a) and µ−208Pb (b), and
∆2p for µ−90Zr (c) and µ−208Pb (d). The red crosses are the latest evaluations of the shifts from nuclear polarisation in the
SAMi parametrisation as found in Ref. [8] and the self energy contributions as found in [9]. The plots are adapted from Ref. [4]
for µ−90Zr and Ref. [6, 7] for µ−208Pb, respectively. The slopes’ parameters are given in table I.

D. Axial vector interaction

The other spin-dependent new force, arising from ax-
ial vector Bν exchange (the last term in Eq. (1)), has a
potential [26]

V
(f)
B (r) = αB

f γ0γαγ
5

∫
d3yf̄γαγ5f

e−mBr

r
. (14)

In the limit of a non-relativistic, static nucleus,

V
(f)
B (r) = −αB

f

(
iγ5 sN ·∇

mf
+Σ · sN

)
e−mBr

r
. (15)

Here, Σ = γ0γγ
5.

III. CORRECTION TO THE ATOMIC ENERGY
STATES

We will, in the following, work under the assumption
that the new coupling αX ≡ gXf gXµ /4π be sufficiently
small to allow treatment of the BSM effects as pertur-
bations to the central Coulomb potential. Hence, the
muon’s wavefunction is calculated as a solution to Dirac’s
equation in the central Coulomb potential of the nu-
cleus alone. The functional form of the Dirac spinors

for state Q is then [29]

ΨQ =

(
gQ(r)χ

mQ
κQ (θ, φ)

ifQ(r)χ
mQ

−κQ
(θ, φ)

)
, (16)

with the bi-spinors

χm
κ (θ, φ) =

− κ
|κ|

√
κ+ 1

2−m

2κ+1 Ym− 1
2

|κ+ 1
2 |−

1
2

(θ, φ)√
κ+ 1

2+m

2κ+1 Ym+ 1
2

|κ+ 1
2 |−

1
2

(θ, φ)

 . (17)

Here, κQ ≡ (−1)j+l+1/2
(
j + 1

2

)
is the relativistic angu-

lar quantum number, j is the total angular momentum
quantum number with m the projection onto the quanti-
sation axis, l is the orbital momentum quantum number,
and Yb

a(θ, φ) are normalised, complex spherical harmon-
ics.
The BSM coupling then causes a perturbative shift in

the binding energy of the states Q

∆EX
Q = ⟨Q|VX(r) |Q⟩ =

∫
Ψ†

Q(r)VX(r)ΨQ(r)d
3r. (18)

A. Spin independent

The exchange potential for scalars (Eq. (5)) and vec-
tors (Eq. (10)) have identical, trivial angular dependence.
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Therefore the angular part of the energy shift integral can
be solved analytically

∆EX
Q = ∓αX

3Nf

(mϕR0)
3

[∫ R0

0

drr2C1
(
g2Q(r)∓ f2

Q(r)
)

+

∫ ∞

R0

drr2C2
(
g2Q(r)∓ f2

Q(r)
) ]

.

(19)

where the minus sign corresponds to the scalar interac-
tion [Eq. (5)], and plus to the vector one [Eq. (10)].

For a study of the general trends the far-field approx-
imation and the corresponding expression

lim
R0→0

Vs(r) = −αϕNfγ
0 e

−mϕr

r
, (20)

are sufficient. This would result in a significantly simpler
integral for the energy difference

lim
R0→0

∆EX
Q = ∓αXNf

∫
drr2

(
g2Q(r)∓ f2

Q(r)
) e−mXr

r
.

(21)
Once again, the minus (plus) corresponds to scalar (vec-
tor) exchange.1 We, however, present calculations using
the average over the nuclear density with the root-mean-
square radii tabulated in Ref. [30]. Quantitatively the
results differ by up to 50% for the 1s energy calculation
but qualitatively the interpretation is unaffected.

B. Spin dependent

Because of the dependence on spin, more care must be
taken when calculating the spin-dependent energy shifts.
The individual angular momentum quantum numbers I
and j of the nucleus and muon, respectively, are no longer
good quantum numbers. Only the total angular momen-
tum of the system F = I + j is. Because of our non-
relativistic treatment of the nucleus, we use∑

n

⟨IM | s(n) |IM ′⟩ ≡ ⟨IM |S |IM ′⟩ = ⟨IM | I |IM ′⟩ .

(22)
Then, the energy shift is evaluated as

∆Ea
Q = i

αa

2mf

∑
Mm

∑
M ′m′

CFMF

IMjmCFMF

IM ′jm′

× ⟨IM | I |IM ′⟩ · ⟨jm| re
−mar

r3
(1 +mar) γ

5 |jm′⟩ . (23)

Here we used

|FMF Ij⟩ =
∑
M,m

CFMF

IMjm |IM⟩ |jm⟩ . (24)

1 Note that the potential for scalar and vector boson exchange both
reduce to the Yukawa potential in the non-relativistic limit. For
relativistic muons they differ not only by the sign but also γ0.

CFMF

IMjm are Clebsch-Gordon coefficients and |IM⟩ and

|jm⟩ are the nuclear and muonic parts of the wavefunc-
tion, respectively. M(m) is the projection of the total
angular momentum I(j) of the nucleus (muon) onto the
z axis. F is the total angular momentum of the atom
with the projection MF .
After applying the Wigner-Eckhard theorem for the

muonic part twice we are left with

∆Ea
Q = −αak(µ)[F (F + 1)− I(I + 1)− j(j + 1)]. (25)

Here we have defined

k(µ) =

∫
gQ(r)fQ(r)

1 +mar

2mf
e−mardr (26)

×
∫

cos(θ)

[(
χ

1
2
−κ

)†
χ

1
2
κ +

(
χ

1
2
κ

)†
χ

1
2
−κ

]
d2Ω.

Treating the nucleus as a homogeneously charged sphere
of radius R0, we need to evaluate the radial integrals
numerically, while the angular part can be obtained in
closed form. The measurements have been performed
for the magic nuclei 90Zr, 120Sn and the double magic
208Pb. These nuclei are spherical and have vanishing an-
gular momentum ⟨Î⟩ = 0. Therefore, the spin dependent
potentials do not affect the energy levels to leading order:
∆Ea

a = 0.

IV. FIT TO THE MUONIC ATOM PUZZLE

Fine-structure measurements of µ−90Zr [4], µ−120Sn
[5] and µ−208Pb [6, 7] reveal a discrepancy between the-
ory and experiment. The theoretical predictions of the
SM contributions to ESM

2p ≡ ESM
2p3/2

−ESM
2p1/2

do not match

the measured Eexp
2p ≡ Eexp

2p3/2
−Eexp

2p1/2
. A similar anomaly,

albeit a weaker one, exists between the calculated ESM
2s

and the measured Eexp
2s for µ−208Pb. The above men-

tioned theory prediction includes the latest evaluations
of NP [8] and SE effects [9] as listed in table I.

The presence of a new force between the muon and the
nucleus affects the binding energy and must be added to
the SM prediction. Compatibility with the experimental
values is obtained if

ESM
Q +∆QX = Eexp

Q . (27)

Fig. 1 shows the required ∆2p ≡ ∆2pNP + ∆2pX and
∆ENP

2s +∆EX
2s as coloured bands, and the latest NP + SE

values as red crosses. Using this input we can calculate
the coupling strength αX necessary to fit the data for
each nucleus (Zr, Sn, and Pb), and each state (2s, 2p,
and 3p) individually. We parameterise the band’s edges
for the state Q as

∆Q(∆E1s) = −AQ∆E1s + BQ, (28)

with the parameters as in table I.
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FIG. 2. The plot shows the parameter space for a new scalar [vector] particle in logarithmic (a) [(c)] or absolute (b) [(d)] scales.
The gray regions show previous exclusions coming from Lamb shift measurements of light muonic atoms and the transition
3d5/2 − 2p3/2 in µ−24Mg and µ−28Si [31]. The lighter (darker) blue region shows the parameter space for which the level

difference ∆2p in µ−90Zr (µ−208Pb) fits the experimental measurements of Ref. [5] (see also Refs. [6, 7]). In yellow (orange)
we depict the corresponding parameter space from fitting to the ∆E2s states for µ−90Zr (µ−208Pb) and in green the ∆3p
measurements only available for µ−208Pb. In royalblue we show the fit for µ120Sn [5].

Element AZ
2p AZ

2s B(u,l)
2p,Z [eV] B(u,l)

2s,Z [eV] ∆ENP
1s [eV] ∆ENP

2s [eV] ∆2pNP[eV] ∆ESE
1s [eV] ∆ESE

2s [eV] ∆2pSE[eV]
90Zr 7× 10−3 0.15 −16, −24 44, −28 −1438 −203 5.7 40 16 0.55
120Sn — — — — −2530 −363 18.7 102 −299 −0.2
208Pb 4.5× 10−2 0.19 −360, −470 270, 47 −5727 −1045 59.1 589 162 −31

TABLE I. A table showing the important parameters for the nuclei considered in the main text. The parameters for the

compatibility region, parametrised as ∆2p(∆E1s) = −A2p∆E1s + B(u,l)
2p with (u) [(l)] indicating the upper [lower] edge, were

extracted from [4] (µ−90Zr), [5](µ−120Sn) and [6, 7] (µ−208Pb). The parametrisation for 2s is equivalent. The NP shifts are
calculated in [8] and the SE corrections in [9]. Note that the SE correction quoted here is the difference between the previous
evaluation and the modern value.

The above considered new-boson additions to the SM
cause a shift in ∆E1s, ∆E2s and ∆2p, which, for a fixed
mass mX , move the theory predictions on the lines

∆Q = ∆QNP +
(
∆E1s −∆ENP

1s

)(∆QX

∆EX
1s

)
, (29)

NP data for 1s and ∆2p have been presented in Ref. [8]
and can be found in table I. Our evaluations for the 2s
state using the SAMi parametrisation as an average of
the alternative choices is also presented there. The latest

evaluation of the SE contribution has been performed in
Ref. [9] and the differences to previous calculations are
shown in table I.
The range of couplings which fit the experimental data

can now simply be obtained by the intersection of the
above curves Eq. (29) with the corresponding experimen-
tal lines Eq. (28). The intersection points are

αX =
B2p −∆2pNP −∆ENP

1s AZ
2p[(

∆2pX

αX

)
+AZ

2p

(
∆EX

1s

αX

)] , (30)
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from which we can easily infer the range by allowing any
coupling between the two boundaries of the measurement
range. The intersection for ∆E2s is obtained analogously.
Note that ∆2pX/αX and ∆EX

2s/αX are independent of
αX and the sign of the required coupling is fixed.

Plots of the compatible ranges of couplings for scalars
and vectors to all nucleons (protons and neutrons) with
equal strength are given in Fig. 2 a, b and c, d, re-
spectively. Each coloured area in the plots indicates the
necessary parameter range to fit the individual states. A
simultaneous fit of multiple states and nuclei is therefore
indicated by an intersection of the areas. A close inspec-
tion of the parameter space depicted in Fig. 2 reveals
that no such intersection of all the areas exists. Fur-
thermore, even the fits for multiple states of the same
element do not intersect, as can be seen when taking the
sign requirement of the new coupling αX into account.
The required sign is determined by comparing the slope
of the compatibility region AQ with the slope of the line
of new predictions ∆EX

Q /∆EX
1s. The sign of the required

coupling is inverted when the relative sizes of the slopes
switch, corresponding to the poles in Fig. 2. For equal
slopes, the required coupling formally diverges. This par-
ticularly disfavours a new scalar or vector as the solu-
tion to the muonic-atom-fine-structure anomaly because,
while changing the ratio of couplings to different elements
by lifting the assumption of equal coupling strength to
all nucleons is possible, a state-dependent coupling can
not be achieved in this way.

We are not restricted to couplings of these new bosons
to protons and neutrons with equal strength only. In
principle, there could be couplings to protons and neu-
trons with different strength and sign. To keep the num-
ber of new parameters to a minimum we restrict ourselves
to a single new boson. The coupling to a specific nucleus
depends on the new coupling to protons (neutrons) αX

p

(αX
n ), both of which are identical for all nuclei, and the

number of protons (neutrons) Z (A− Z). A simple sub-
stitution

NfαX = ZαX
p + (A− Z)αX

n (31)

is sufficient to transform the above calculations and plots.
It is important to point out once more that the new cou-
pling constant is independent of the atomic state Q and
therefore we will be unable to fit any single nucleus, which
requires at least two different couplings for two different
states. Comparison to Fig. 2 shows that this is the case
for both Zr and Pb. For most parameter space even the
relative sign of the required coupling for different states is
opposite. We must therefore conclude that a single new
scalar or vector as in Eq. (1) does not result in a suc-
cessful resolution of the fine-structure anomaly in heavy
muonic atoms.

A new pseudoscalar or axial vector degree of freedom
will, to first order in the new couplings, not alleviate the
tension because of the vanishing nuclear angular momen-
tum of µ−90Zr, µ−120Sn and µ−208Pb. If we assume the
nucleus to have angular momentum, for example by con-

sidering an excited state or an induced nuclear moment
from the muon, we can easily perform the analogous anal-
ysis to the scalar case for the pseudoscalar and find Fig.
3 in which we have re-defined the coupling

βa ≡ αa (F (F + 1)− I(I + 1)− j(j + 1)) .

The three states ∆2p[Zr], ∆2p[Pb] and ∆E2s[Zr] can be
fit simultaneously for most pseudoscalar masses. The
data for ∆3p[Pb] and ∆E2p[Sn] are not fit with the same
boson. Both of these are problematic however, ∆3p[Pb]
calculations for NP being unreliable because of poten-
tial nuclear dipole excitations with energies close to the
muonic 3p → 1s transition [3, 32, 33], and the data for
Sn do not come with a detailed analysis of the experi-
mentally allowed NP corrections. The overlap is spoiled
nevertheless by the fit to ∆E2s[Pb].
A non-zero nuclear spin could arise, either because of

excitation of the nucleus or as higher-order effects in the
perturbation series. The former option may safely be
excluded because the spectroscopic measurements reveal
single transition lines instead of a forest of lines as would
be expected for a mixture of excited and ground state
nuclei. It is highly improbable that all nuclei are equally
excited. The latter option is disfavoured because of the
additional suppression of the effect, which would require
the new coupling αX to be larger, in conflict with µH
measurements, as one can see from Fig. 3. Additionally,
any higher-order interactions would result in element-
dependent shifts and therefore most likely spoil the nice
overlap we see in the plot. We therefore conclude that
the introduction of a new pseudoscalar or axial vector
does not result in the potential resolution of the muonic
fine-structure anomaly either.
Because of the sparseness of data any potential fit in-

volving multiple new bosons is a result of the availability
of more free parameters than data points to fit. We thus
restrict ourselves to comment on the possibility but do
not attempt such a fit until more data are available.
What can easily be seen is that two bosons of the same

mass simply result in a re-definition of the coupling to

α
(1)
X ± α

(2)
X and the above plots and conclusions apply

to this combined coupling. If the nature of these two
bosons of equal mass differs then the spin structure be-
comes i± γ5 for a scalar with a pseudoscalar and 1± γ5

for a vector with a pseudovector. The contribution of
these mixed potentials reduce to the above scalar or vec-
tor cases because the spin-spin coupling vanishes by the
vanishing nuclear spin and the spin-density coupling is
odd under parity, therefore does not result in a shift of
the binding energy to first order in the new coupling.
Hence, multiple new bosons of the same mass suffer the
same problem as a single new boson.

V. CONCLUSION

We have shown that the extension of the SM by one
new boson of the form in Eq. (1) will, to first order in the
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FIG. 3. The plot shows the parameter space for a new pseudoscalar particle. The gray region shows previous exclusions coming
from hyperfine measurements of muonic hydrogen [34, 35]. The other lines corresponds to projections of hyperfine measurements
of electronic hydrogen under the assumption gµ = mµ/mege (dashed) and gµ = ge (dotted). The lighter (darker) blue region
shows the parameter space for which the level difference ∆2p in µ−90Zr (µ−208Pb) fits the experimental measurements of
Ref. [5] ([6, 7]). In yellow (orange) we depict the corresponding parameter space from fitting to the ∆E2s states for µ−90Zr
(µ−208Pb) and in green the ∆3p measurements only available for µ−208Pb. In royalblue we show the fit for µ120Sn [5].

coupling, not result in the resolution of the fine-structure
anomaly in heavy muonic atoms. We further argued
against a solution involving combinations of multiple
such bosons. While such a possibility is not excluded for
more than one new boson with different masses, there
does not exist enough data to meaningfully constrain the
additional free parameters.

New spin-dependent forces as mediated by a pseu-
doscalar [Eq. (13)] or axial vector [Eq. (15)] produce a
shift of the binding energy proportional to the nuclear
spin. In the case of µ−90Zr, µ−120Sn and µ−208Pb,
the nuclear spin vanishes and therefore no change in the
binding energy is produced to first order. Any poten-
tial higher-order contribution, like e.g. a muon induced
static magnetic moment in the nucleus [36], will face chal-
lenges from previous exclusion bounds. As can be seen in
Fig. 3, the parameter range to fit the anomaly is close to
the excluded region stemming from spectroscopy of µH.
Higher-order effects will require larger couplings, scaling
like the square root in the case of second-order effects in
the new coupling.

A new scalar or vector boson results in a spin indepen-
dent coupling which does produce a first-order shift in the
binding energy. We have shown that there does not exist
free parameter space for such a boson to simultaneously
fit the spectroscopic data of µ−90Zr and µ−208Pb; the
same nucleus requires different couplings αX for different
states. Fig. 2 b, d reveal that even artificially increasing
the error bars will not change this picture prior to the
anomaly becoming statistically irrelevant.

It is therefore concluded that a BSM resolution of the
fine-structure anomaly in heavy muonic atoms with a sin-
gle new boson is disfavoured. This motivates further a
careful re-investigation of the wide range of effects enter-
ing the binding energy calculations as was accomplished
with NP in Ref. [8] or SE in Ref. [9]. Finally, new experi-
mental data including additional elements with improved
precision could also shed light on the muonic puzzle, or
even bring back some of the previously excluded resolu-
tions.
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Appendix A: Calculation of the Energy Shift

1. Scalar

Be n, µ, and ϕ the nucleon, muon and exchange boson fields, respectively. The former two are Dirac 4 spinors and
the latter is a bosonic scalar. The action for the coupled system is

Ss = S(µ) + S(n) + S(ϕ) + Sγ + Sint =

∫ (
L(µ) + L(n) + L(ϕ) + L(γ) + Lint

)
d4x (A1)

with the free particle Lagrangians

L(µ) + L(n) + Ls
(ϕ) + Sγ = µ̄

(
i /D −mi

)
µ+ n̄

(
i /D −mi

)
n +

1

2
(∂νϕ)

2 − 1

2
m2

ϕϕ
2 − 1

4
FαβFαβ , (A2)

and the interaction Lagrangian

Ls
int = gµµ̄µϕ+ gnn̄nϕ. (A3)

Note that we have absorbed the electromagnetic interaction into the free particle Lagrangians for the electrically
charged particles through the connection Dν = ∂ν + iqAν .
The equations of motion (eom) for the fields are then, as obtained from the Euler-Lagrange equation

0 =
δLµ

δµ
− d

dxν

δL(µ)

δ∂νµ
=
(
i/∂ − q(µ) /A−mµ + gµϕ

)
µ, (A4)

0 =
(
i/∂ − q(n) /A−mn + gnϕ

)
n, (A5)

and (
∂2 +m2

ϕ

)
ϕ = gµµ̄µ+ gnn̄n. (A6)

We begin by making the assumption that gnn̄n ≫ gµµ̄µ. In the heavy nuclei we wish to apply the analysis to, there
are many nucleons in the nucleus. Making the assumption that gµ ∼ gµ, it seems obvious that the main contribution
to the static potential will come from the nucleus. Then Eq. (A6) has the solution

ϕ(x) = ign

∫
d4y

∫
d4q

(2π)4
ieiq.(x−y)

q2 −m2
ϕ

n̄(y)n(y). (A7)

The equation for the muon Eq. (A4) then becomes

(
i/∂ − q(µ) /A−mµ

)
µ(x) = 4παϕ

∫
d4y

∫
d4q

(2π)4
eiq.(x−y)

q2 −m2
ϕ

n̄(y)n(y)µ(x). (A8)

From here we find

i∂tµ =

(
iα ·∇+ q(µ)A0 − q(µ)α ·A+mµγ0 + 4παϕ

∫
d4y

∫
d4q

(2π)4
eiq.(x−y)

q2 −m2
ϕ

n̄(y)n(y)γ0

)
µ ≡

(
H+Hs

(ϕ)

)
µ, (A9)
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where α ≡ γ0γ and H is the Hamiltonian operator of the system. We further assume that the coupling to the

new boson is small and does not significantly alter the muonic wavefunction, such that
∫
d3xΨ†

QHΨQ = EQ, the
unperturbed binding energy of the muon. Then,

∆Eϕ
Q = 4παϕ

∫
d3x

∫
d4y

∫
d4q

(2π)4
eiq.(x−y)

q2 −m2
ϕ

n̄(y)n(y)µ†(x)γ0µ(x). (A10)

The Dirac bilinear in the limit of a static, non-relativistic nucleus reduces to n̄(y)n(y) ∼ ρ(y), the nuclear density.
The energy difference then reduces to

∆Eϕ
Q = −αϕ

∫
d3xµ̄(x)µ(x)

∫
d3yρ(y)

e−mϕr

r
. (A11)

2. Pseudo-scalar

For a a pseudoscalar, the free Lagrangian is unchanged but the interaction term changes to

Lp
int = igµµ̄γ

5µa+ ignn̄γ
5na, (A12)

to preserve CP invariance. Thence, the eom is(
∂2 +m2

a

)
a = igµµ̄γ

5µ+ ignn̄γ
5n, (A13)

which is solved by

a(x) = −gn

∫
d4y

∫
d4p

(2π)4
ieip.(x−y)

p2 −m2
a

n̄(y)γ5n(y). (A14)

The muon equation is then

(
i/∂ − q(µ) /A−mµ

)
µ(x) = −4παaγ

5

∫
d4y

∫
d4q

(2π)4
eiq.(x−y)

q2 −m2
a

n̄(y)γ5n(y)µ(x), (A15)

or the Hamiltonian

i∂tµ =

(
iα ·∇+ q(µ)A0 − q(µ)α ·A+mµγ0 − 4παaγ0γ

5

∫
d4y

∫
d4q

(2π)4
eiq.(x−y)

q2 −m2
a

n̄(y)γ5n(y)

)
µ ≡

(
H+Hp

(a)

)
µ.

(A16)
The energy difference resulting from this perturbation is

∆Ea
Q = −4παϕ

∫
d3xµ†(x)γ0γ

5µ(x)

∫
d4y

∫
d4q

(2π)4
eiq.(x−y)

q2 −m2
ϕ

n̄(y)γ5n(y). (A17)

The Dirac bilinear for a static, non-relativistic nucleus is

n̄(y)γ5n(y) ∼ −s · q, (A18)

thence

∆Ea
Q = iαa

∫
d3xµ̄(x)γ5µ(x)

∫
d3y

(
s ·∇e−mar

r

)
. (A19)

3. Vector

Be Zν a vector boson. Then the free particle Lagrangian is

LZ = −1

4

(
∂αZβ − ∂βZα

)
(∂αZβ − ∂βZα) +m2

ZZνZ
ν ≡ −1

4
Fαβ
(Z)F

(Z)
αβ +m2

ZZνZ
ν , (A20)
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and the interaction term

Lint = gµµ̄ /Zµ+ gnn̄/Zn. (A21)

Once again, we calculate the eom for the vector boson

∂α
(
∂αZβ − ∂βZα

)
+m2

ZZ
β =

(
∂α∂

α +m2
Z

)
Zβ = gnn̄γ

βn, (A22)

where in the second equality we introduced the gauge condition ∂αZ
α = 0. The fundamental solution is

Dαβ(q) =

(
ηαβ − qαqβ

m2
Z

)
q2 −m2

Z

(A23)

and thus, the solution to the inhomogeneous equation is

Zβ(x) = gn

∫
d4y

∫
d4q

(2π)4

(
ηαβ − qαqβ

m2
Z

)
q2 −m2

Z

eiq.(x−y)n̄(y)γαn(y) = gn

∫
d4y

∫
d4q

(2π)4
eiq.(x−y)

q2 −m2
Z

n̄(y)γβn(y). (A24)

In the second equality we used the conservation of the Dirac current n̄γαn. Once again, the equation for the muon
becomes

i∂tµ =

(
iα ·∇+ q(µ)A0 − q(µ)α ·A+mµγ0 − αZγ0γβ

∫
d4y

∫
d4q

(2π)4
eiq.(x−y)

q2 −m2
Z

n̄(y)γβn(y)

)
µ ≡

(
H+HV

(Z)

)
µ.

(A25)
From here the energy difference is obtained as

∆EZ
Q = −αZ

∫
d3xµ†(x)γ0γβµ(x)

∫
d4y

∫
d4q

(2π)4
eiq.(x−y)

q2 −m2
Z

n̄(y)γβn(y) (A26)

The Dirac bilinear for a static, non-relativistic nucleus is n̄(y)γαn(y) ∼ jα(y), thence

µ†(x)γ0γβµ(x)n̄(y)γ
αn(y) = j0(y)µ†(x)µ(x)− j(y) · µ̄(x)γµ(x) ∼ ρ(y)µ†(x)µ(x), (A27)

and the energy difference reduces to

∆EZ
Q = αZ

∫
d3xµ†(x)µ(x)

∫
d3yρ(y)

e−mZr

r
. (A28)

4. Pseudo-vector

For Bν a pseudo-vector, the calculation is equivalent to the vector case up to the Dirac bilinear

n̄(y)γνγ
5n(y) ∼

( i
mµ

s ·∇
s

)
. (A29)

Thence,

∆EB
Q = αB

∫
d3xµ̄(x)γαγ

5µ(x)

∫
d3y

( i
mµ

s ·∇
s

)α
e−mZr

r
. (A30)


