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Advanced artificial intelligence (AI) systems with access to millions of research papers could inspire
new research ideas that may not be conceived by humans alone. However, how interesting are these
AI-generated ideas, and how can we improve their quality? Here, we introduce SciMuse, a system
that uses an evolving knowledge graph built from more than 58 million scientific papers to generate
personalized research ideas via an interface to GPT-4. We conducted a large-scale human evaluation
with over 100 research group leaders from the Max Planck Society, who ranked more than 4,000
personalized research ideas based on their level of interest. This evaluation allows us to understand
the relationships between scientific interest and the core properties of the knowledge graph. We
find that data-efficient machine learning can predict research interest with high precision, allowing
us to optimize the interest-level of generated research ideas. This work represents a step towards
an artificial scientific muse that could catalyze unforeseen collaborations and suggest interesting
avenues for scientists.

INTRODUCTION

A compelling idea is often at the heart of successful
research projects, crucial for their success and impact.
However, with the enormous growth in the number of
scientific papers published each year [1–3], it becomes
increasingly difficult for researchers to uncover novel and
interesting ideas. This difficulty is even more pronounced
for those looking for interdisciplinary research avenues
or collaborations, as they face an overwhelming sea of
literature.

Automated systems capable of extracting insights from
the millions of scientific papers might offer a solution
[2, 4]. One promising approach involves the use of knowl-
edge graphs, which map the relationships between dif-
ferent research concepts and domains. In a pioneering
work, the authors of [5] demonstrate potentially more
efficient research strategies in the field of biochemistry
by compressing the content of millions of scientific pa-
pers into knowledge graphs. These graphs not only help
in mapping existing knowledge but also enable the dis-
covery of surprising and impactful ideas by linking pre-
viously unconnected concepts. For instance, researchers
have utilized knowledge graphs to forecast future research
directions in quantum physics [6], biomedicine [7, 8],
and artificial intelligence [9]. Beyond trend prediction
and uncovering new links, these approaches have demon-
strated that surprising combinations of research concepts
are strongly associated with high-impact discoveries [10].
Additionally, human-aware AI systems can generate sci-
entifically promising ‘alien’ hypotheses that might other-
wise be overlooked [11], and knowledge graphs have been
used to predict the impact of new research connections
before a paper is written [12].

Some recent efforts demonstrate how to generate re-
search ideas in the form of text. One such example is
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PaperRobot, which starts with a knowledge graph and
incrementally translates the idea into a draft of a pa-
per [13]. With the growing prominence of large language
models (LLMs), various systems now leverage these mod-
els to generate research ideas. SciMON, for instance, gen-
erates novel scientific ideas by comparing them to prior
work and continuously enhancing their novelty [14]. An-
other system uses LLMs to mine large-scale scientific lit-
erature and generate hypotheses by finding unanticipated
connections between research topics [15]. Similarly, Re-
searchAgent develops new research ideas by analyzing
scientific literature and refining them progressively to en-
sure both novelty and relevance [16].
While novelty and relevance of the generated ideas are

crucial, a critical question arises: Are these AI-generated
research ideas interesting for human scientists? The
aforementioned works conducted small-scale human eval-
uations involving one biomedical domain expert [13], six
natural language processing (NLP) PhD students [14],
three social science PhD students [15] and ten PhD stu-
dents in computer science and biomedicine [16].
However, it is often experienced researchers who define

and evaluate research projects by writing and assessing
research grant applications, as well as leading and shap-
ing the research agenda of their groups. It would be
particularly insightful to see how these experienced sci-
entists evaluate AI-generated project ideas. With more
evaluators and a greater number of evaluations, we could
develop tools to predict which research ideas will be in-
teresting in the future. This is precisely the goal of our
paper, aiming to suggest interesting research projects and
collaborations for scientists.
Here, we introduce SciMuse, a system designed to

suggest new personalized research ideas for individual sci-
entists or collaborations between researchers. To achieve
this, we first generate a knowledge graph from more
than 58 million papers, incorporating semantic and im-
pact information. We then identify sub-graphs relevant
to the research interests of individual scientists and use
these sub-graphs to select research topics. Using GPT-
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4 [17], we formulate these research topics into compre-
hensive research suggestions. To evaluate our approach,
we conducted a large-scale survey with over 100 research
group leaders from the Max Planck Society in natural
sciences and technology (such as the Institutes for Bio-
geochemistry, Astrophysics, Quantum Optics, and Intel-
ligent Systems) and social sciences and humanities (such
as the Institutes for Geoanthropology, Demographic Re-
search, and Human Development). These experienced
researchers assessed the interest level of more than 4,000
personalized AI-generated project suggestions. We an-
alyzed the evaluations and found clear correlations be-
tween the properties of the knowledge graph and the in-
terest level of the research suggestions. Using these cor-
relations, we trained a machine learning model to pre-
dict research interest based solely on knowledge graph
data. The model achieves high precision for the top-N
predicted interesting suggestions, with precision exceed-
ing 50% for N≤15. Our findings demonstrate the poten-
tial of SciMuse for suggesting highly interesting research
ideas and collaborations, highlighting the role of artificial
intelligence as a source of inspiration in science [18–21].

RESULTS

Creating the knowledge graph – While we could
directly use publicly available large language models such
as GPT-4 [17] or Gemini [22] or Claude [23] to suggest
new research ideas and collaborations, our control over
the generated ideas would be limited to the structure
of the prompt. Therefore, we decided to build a large
knowledge graph from the scientific literature to identify
the personalized research interests of scientists.

The knowledge graph, depicted in Fig. 1(a), consists
of vertices, representing scientific concepts, and edges are
drawn when two concepts jointly appear in a title or ab-
stract of a scientific paper. The concept list is gener-
ated from the titles and abstracts of around 2.44 million
papers from arXiv, bioRxiv, ChemRxiv, and medRxiv,
with a data cutoff in February 2023. Rapid Automatic
Key-word Extraction (RAKE) algorithm based on sta-
tistical text analysis is used to extract candidate con-
cepts [24]. Those candidates are further refined using
GPT, Wikipedia, and human annotators, resulting in
123,128 concepts in the natural and social sciences. We
then use more than 58 million scientific papers from
the open-source database OpenAlex [25] to create edges.
These edges contain information about the co-occurrence
of concepts in scientific papers (in titles and abstracts)
and their subsequent citation rates. This new knowledge
graph representation was recently introduced in [12] to
predict the impact of future research topics. As a result,
we have an evolving knowledge graph that captures part
of the evolution of science from 1665 (a text by Robert
Hooke on the observation of a great spot on Jupiter [29])
to April 2023. Details of the knowledge graph generation
are depicted in Fig. 1(a) and the Appendix.

Personalized research suggestions – We focus on
generating personalized research proposals for collabora-
tions between two scientists, both group leaders from the
Max Planck Society. One of these researchers will later
evaluate the proposal.

To generate suggestions for pairs of researchers, as de-
picted in Fig. 1(b), we begin by identifying the research
interests of both Researcher A and Researcher B. This
is done by analyzing all their published papers from the
past two years. Specifically, we extract their concepts
from the titles and abstracts of these papers using the full
concept list shown in Fig. 1(a). The personalized concept
lists are further refined by GPT-4. Consequently, we are
able to construct a subgraph in the knowledge graph for
each researcher based on theirs personalized concepts.

With the researchers’ subgraphs, we generate a prompt
for GPT-4 to create a research project (details in the Ap-
pendix). In the prompt, we provide the titles of up to
seven papers from each researcher and ask GPT-4 to cre-
ate a research project based on two selected scientific con-
cepts. We choose these concepts in three different ways.
In one-third of the cases, we use a randomly sampled
concept pair, with one concept from each researcher. In
another third, we select the concept pair with the highest
predicted future impact, using an adaptation of [12]. In
the final third, we do not specify concept pairs, instead
asking GPT-4 to create the project using only the pa-
per titles. Although we cannot directly relate these pure
GPT-4 suggestions to knowledge graph features and in-
terest levels from human evaluation, they serve as an
important sanity check for our method (see Appendix).
The prompt itself employs self-reflection, as described in
[30], to improve the response. Specifically, we ask GPT-4
to generate three ideas, reflect upon them, and improve
them twice. In the end, GPT-4 selects the most suitable
project idea as the final result.

Human Evaluation – To assess how interesting these
AI-generated ideas are, we asked research group lead-
ers at scientific institutes, who regularly deal with and
act upon research ideas, to participate in the evalua-
tion. Specifically, 110 research group leaders from 54 Max
Planck Institutes within the Max Planck Society (one of
the largest research societies worldwide) participated (see
Fig. 2(a) and (b)). They were tasked with evaluating
up to 48 personalized research projects for their interest
level, ranging from 1 (‘not interesting’) to 5 (‘very in-
teresting’). Of the 110 researchers, 104 are from natural
science institutes, and 6 are from social science institutes.
In total, we received 4,451 responses. The full statistics
are shown in Fig. 2(c). Notably, 1,107 projects received
an interest level of 4 or 5 (nearly 25% of the projects),
with 394 of these being ranked as very interesting.

Interest versus knowledge graph features – We
find that, on average, there is no significant difference in
the interest value between projects generated by the three
different methods: random concept pairs, high-impact
concept pairs, and without concept pairs. The fact that
the sanity test (a project generated without a concept
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FIG. 1. SciMuse suggests research ideas or collaborations using knowledge graph and GPT-4. (a), Generation
of a knowledge graph. Nodes represent scientific concepts extracted from about 2.44 million paper titles and abstracts from
four academic preprint servers. Using natural language processing (NLP) tools such as RAKE [24] to create a concept list,
we then refined it with customized NLP techniques, manual review, and GPT, removing non-conceptual phrases like verbs,
ordinal numbers, conjunctions, and adverbials. Wikipedia was used to restore any mistakenly removed concepts. In the end,
we obtained a final list of 123,128 concepts. Edges are created when two concepts co-occur in the title or abstract of more
than 58 million scientific papers in the OpenAlex database [25]. These edges are augmented with citation information, which
can serve as a proxy for impact. A mini-knowledge graph as an example is shown for two randomly selected papers [26, 27]
in OpenAlex. (b), AI-generated research collaborations. We first process the publications of Researcher A and Researcher
B through our refined concept list from (a), generating individual concept lists for each researcher. We then use GPT-4 to
enhance these lists to create high-quality concept representations. These refined lists identify distinct subnetworks within our
knowledge graph that correspond to each researcher’s interests. To propose research collaborations or ideas, we identify and
combine relevant concept pairs between the two researchers along with their research information. This combined input is then
fed into GPT-4, which generates personalized research ideas or collaboration projects.

pair in the prompt) and the cases where we provide con-
cept pairs yield very similar results allows us to further
analyze which knowledge graph features strongly influ-
ence the interest. If we can determine which features
affect the interestingness of a research project, we can
use this insight in the future to suggest research projects
with higher research interest.

We first compute 144 knowledge graph features for
each concept pair used in a research project. The first
141 features are the same features as those used to pre-
dict the future impact of concept pairs, as described in
[12]. The features include node characteristics of the first
and second concepts, such as node degree and PageRank
[31], as well as edge features, such as the Simpson similar-

ity, and the Sørensen–Dice coefficient [32]. Additionally,
several features are based on impact information, such as
citations within the last year. The final three features are
the predicted impact and two different distance metrics
of the researchers’ subgraphs (see Fig. 1(b)). The first
distance metric considers only the subgraphs, using the
concepts from Researcher A’s and Researcher B’s con-
cept lists to determine the distance between these sub-
graphs. The second metric accounts for the entire neigh-
borhood of the subgraphs, defined as semantic distances.
For this, we collect the neighbors of all concepts in both
researchers’ concept lists and determine the distance be-
tween these expanded subgraphs built from neighboring
concepts.
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FIG. 2. Large-scale human evaluation within the Max Planck Society. (a)-(b), A total of 4,451 AI-generated
personalized research suggestions were evaluated by 110 research group leaders. Each suggestion proposes a collaboration
between the evaluating researcher (Researcher A) and another researcher (Researcher B) from the Max Planck Society. These
proposed collaborations are visualized as edges on a graph, where an edge is bi-colored from orange (representing Researcher
A) to green (representing Researcher B). If Researchers A and B are from the same institute, this is indicated by a purple circle
around that institute. The transparency of the edge is proportional to the number of evaluated suggestions. Additionally, the
research fields of the researchers are categorized into natural science (denoted by a blue dot, labeled as nat) and social science
(denoted by a red dot, labeled as soc). The map of Germany is based on GISCO statistical unit dataset from Eurostat [28].
(c), For each research suggestion, participants were asked to rate their interest on a scale from 1 (‘not interesting’) to 5 (‘very
interesting’). The summary figure displays the distribution of these ratings. In total, 394 research suggestions were rated as
very interesting, and 713 ideas received a rating of 4. The figure includes separate sections for responses where both researchers
are from the same institute, as well as for those from different institutes, further categorized by their affiliation with either the
natural science or social science faculties.

We then split the 2,996 suggested research projects,
created using concept pairs from the knowledge graph,
into 50 equally sized bins. For each bin, we compute the
mean interest and its standard deviation.

In Fig. 3, we display these correlations and identify
several notable properties. For instance, the degree and
PageRank of the first concept, selected from the evalu-
ating researcher’s concept list, is strongly negatively cor-
related with human-evaluated interest-level. This means
that the more widely connected a concept is within the
knowledge graph, the less appealing the research projects

are. A similar effect is observed for the citation rate: the
more frequently a concept has been cited in the past (in
the last year, and sum over all years), the less interesting
the research projects are evaluated. Some features, such
as the rank of concept B’s citation growth rate or the
minimum count of the total number of papers contain-
ing concept A or B up to two years ago, show peculiar
behaviour for very large or small values. This behaviour
could be exploited to predict the interest level. On the
other hand, we find a strong positive correlation between
the Simpson similarity coefficient of the two concepts
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FIG. 3. Analysis of interest levels versus knowledge graph features. We analyzed how eight individual features of a
knowledge graph relate to researchers’ interest levels. After normalizing these features using z-scores, we arranged them from
lowest to highest and segmented the data into 50 equal groups. For each group, we plotted the average normalized feature value
(x-axis) alongside the corresponding average interest value (y-axis), including the standard deviation for each point, to identify
trends in how different graph features influence researchers’ preferences. Features (a) and (b) relate to node features, (c) to (e)
to node citation metrics, (f) is an edge feature, (g) is an edge citation metric, and (h) represents the semantic distance of the
two researchers’ sub-networks (larger values mean that the researcher’s scientific fields are further apart). The plot includes
data points in blue representing all 2,996 responses, green for the top 50% of research questions by predicted impact, and red
for the top 25%.

and the evaluated interest-level. Additionally, using se-
mantic distance feature, we find a negative correlation
in Fig. 3(h), indicating that research proposals from re-
searchers in similar fields are considered more interesting
than those from distant fields. This finding is consis-
tent with Fig. 2(c), where research proposals from the
same institutes are generally considered more interesting
than those from other institutes (with different research
focus).

We show the correlations for all 2,996 answers contain-
ing concepts from the knowledge graph (blue), as well as
for the top 50% and top 25% of concept pairs with the
highest predicted impact (green and red, respectively) in
Fig. 3, indicating that some correlations are stronger for
suggestions using high-impact concept pairs.

Predicting interest – Given that the features of the
knowledge graph significantly influence the interest in
suggested research projects, we can take this analysis a
step further by training a machine learning model to pre-
dict the level of interest based solely on these properties.
If successful, this approach would allow us to suggest
research projects that are more likely to be considered
highly interesting in the future for scientists.

We start with a concept pair, compute the relevant
features in the knowledge graph, and use these features

to predict whether a research proposal will receive an
interest rating of 4 or 5 (on a scale from 1 to 5: not in-
teresting to very interesting) or below 4, as illustrated in
Fig. 4(a). Due to the scarcity of training data – each data
point representing the evaluation of a proposed research
project’s interestingness by a research group leader – we
employ a low-data machine learning technique. Specifi-
cally, we use a small neural network configured with 25
individually high-performing features, 50 neurons in a
single hidden layer, and one output neuron, incorporat-
ing dropout to train the neural network [33]. To ensure
robust evaluation and maximize the utility of our lim-
ited data, we utilize Monte Carlo cross-validation, also
known as repeated random sub-sampling validation (see
Appendix).

For our binary classification task, we achieve an aver-
age Area Under the Curve (AUC) of the receiver op-
erating characteristic (ROC) curve [34] of nearly 2/3,
as shown in Fig. 4(b). More relevant for our task is
achieving high precision, as we want SciMuse to suggest
highly interesting projects within a very small number
of overall suggestions. For this, we compute the preci-
sion of the top-N highest predicted concept pairs. For
small N, we find a precision higher than 65%. This indi-
cates that within the highest predicted suggested concept
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FIG. 4. Learning Scientific Interest. (a), We use the evaluations from research group leaders to train a neural network.
This model predicts whether research suggestions are assigned an interest level of 4 or 5 (on a 5-point scale) or below 4, thereby
setting up a binary classification task. The input to the neural network consists of 25 features from the knowledge graph of
a concept pair, and its output is a single number indicating whether the concept pair is highly interesting (i.e., interest level
is ≥4) or not. Given the small size of our training dataset, which comprises a total of 2,996 evaluated research suggestions
generated through our knowledge graph, we employ Monte Carlo cross-validation to determine the accuracy of our learning
process. (b), The ROC curve indicates that we can correctly predict a randomly chosen highly interesting concept pair over
a randomly chosen not-highly interesting concept pair in nearly 65% of cases. (c), The precision of our model for the top-N
highest-interest research suggestions is significantly higher than for a random selection of suggestions. Especially for the Top-1
suggestion, the precision is larger than 70%, and Top-5, the precision is still above 60%. (d), The probability of having at least
one high-interest suggestion among N research suggestions is significantly higher than with a random selection. This indicates
that our machine learning model, which has access to the knowledge graph in conjunction with GPT-4, is able to produce more
high-interest research suggestions than GPT-4 itself.

pairs, roughly 65% are evaluated with high interest level,
as illustrated in Fig. 4(c). This precision is significantly
higher than random selection, which achieves only 23%.
Additionally, we can ask what is the probability of ob-
taining at least one highly interesting suggestion within
the first N suggestions. Fig. 4(d) shows that our machine
learning method provides a significantly higher probabil-
ity of finding interesting suggestions within the first few
suggestions compared to random sampling.

DISCUSSION

Our results show that one could predict which project
suggestions experienced researchers will find interesting
by analyzing the knowledge-graph properties of the con-
cept pairs used for the prompts to GPT-4, without con-
sidering the detailed text produced by GPT-4. This find-
ing allows us to enhance SciMuse such that it can select

novel, and high-interest research topics from knowledge
graphs and translate them into full-fledged proposals us-
ing modern large language models. As publicly available
large language models like GPT-4 [17], Gemini 1.5 [22],
LLaMa3 [35], and Claude [23] become increasingly pow-
erful, with improvements occurring nearly monthly [36],
we anticipate that the generated personalized research
ideas will become more targeted and reasonable.

The methodologies demonstrated in our work, em-
ployed by SciMuse, have the potential to inspire novel,
unexpected cross-disciplinary research on a large scale.
By providing a big-picture view through the analysis of
millions of scientific papers, SciMuse allows the dis-
covery of interesting research projects between scien-
tists in different domains, which might otherwise be very
challenging to find. Research projects in distant fields
are known to have great potential for impactful, award-
winning results [1, 2, 5, 37]. Therefore, large scientific
societies, national funding agencies, and other stakehold-
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ers might be motivated to implement methodologies in
the line of SciMuse, which could foster new highly in-
terdisciplinary and interesting collaborations and ideas
that might otherwise remain untapped. This, hopefully,
could advance the progress and impact of science at a
large scale.
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APPENDIX

Datasets for creating knowledge graph –We com-
piled a list of scientific concepts using metadata from
arXiv, bioRxiv, medRxiv, and chemRxiv. The arXiv
data is available on Kaggle, while bioRxiv, medRxiv, and
chemRxiv metadata can be accessed through their APIs.
Our dataset includes ∼2.44 million papers, with a data
cutoff in February 2023.

For edge generation, we used the OpenAlex database
snapshot, available for download in OpenAlex bucket,
with a data cutoff in April 2023. For more details, re-
fer to the OpenAlex website [25]. The complete dataset
is around 330 GB, expanding to 1.6 TB when decom-
pressed. We focused on scientific journal papers with
publication time, title, abstract, and citation informa-
tion, reducing the dataset to a more manageable 68 GB
gzip-compressed file, comprising about 92 million papers.

Creating the concept list – From four preprint
dataset of approximately 2.44 million papers, we ana-
lyzed each article’s title and abstract using the RAKE
algorithm, enhanced with additional stopwords, to ex-
tract potential concept candidates. These candidates
were stored for subsequent analysis. We filtered out con-
cepts to retain only those with two words that appeared
in nine or more articles, and those with three or more
words that appeared in six or more articles. This step
significantly reduced the noise from the RAKE-generated
concepts, yielding a refined list of 726,439 concepts.

To further enhance the quality of the identified con-
cepts, we developed a suite of automatic tools designed
to identify and eliminate common, domain-independent
errors often associated with RAKE. Additionally, we con-
ducted a manual review to remove inaccuracies in the
concepts, such as non-conceptual phrases, verbs, ordinal
numbers, conjunctions, and adverbials, reducing the list
to 368,825 concepts.

Next, we used GPT-3.5 to further refine the concepts,
which resulted in the removal of 286,311 concepts. To ad-
dress potential incorrect removals, we used Wikipedia to
recover mistakenly removed concepts, successfully restor-
ing 40,614 concepts. This process ultimately produced a
final list of 123,128 concepts.

Classification of Max Planck Institutes – We clas-
sify all 87 Max Planck Institutes into two classes: Class
1, abbreviated as nat, includes natural sciences, tech-
nology, mathematics, and medicine (68 institutes), while
Class 2, abbreviated as soc, includes social sciences and
humanities (19 institutes). We did manual classification
based on institute titles and research fields, and we also
used GPT-4o for automatic classification. The two ap-
proaches perfectly matched each other.

Prompt to GPT-4 for concept refinement – The
prompt to refine the researchers’ concept list is:
A scientist has written the following papers:
0) title1
1) title2
2) title3

...

I have a noisy list of the researchers topics of in-
terest, and I would like that you help me filtering them.
Please look at the list below, and return all concepts in
that list, which are relevant to the scientists research
(based on their paper titles), and that are meaningful
in the context of their research direction. The concepts
can be detailed, I mainly want that you filter out not
meaningful concepts, words which are not concepts, or
concepts that are too general for the direction of the
scientist (for example, artificial intelligence might be a
meaningful concept for a geologist, but not for a machine
learning researcher). Do not change or add any of the
concepts. only remove them or keep them.

concept list=[c1, c2, c3, c4, c5, c6, ....]

Prompt to GPT-4 for project idea generation –
The prompt to suggest research ideas using concept pair
from knowledge graph is:
Two researchers A and B, with expertise in “concept1”
and “concept2” respectively, are eager to collaborate on a
novel interdisciplinary project that leverages their unique
strengths and creates synergy between their fields.

To better understand their backgrounds, here are
the titles of recent publications from each researcher:
Researcher A:
1: title1
2: title2
3: title3
...

Researcher B:
1: title1
2: title2
3: title3
...

Please suggest a creative and surprising scientific
project that combines “concept1” and “concept2”. In
your response, follow this outline:

First, explain “concept1” and “concept2” in one
short sentence each.

Then, do the following three steps 3 times, improv-
ing in each time the response:
A) Describe 4 interesting and new scientific contexts,
in which those two concepts might appear together in a
natural and useful way.
B) Criticize the 4 contexts (one short sentence each),
based on how well the contexts merge the idea of the two
concepts.
C) Give a 2 sentence summary of your reflections above,
on how well one can combine these concepts naturally
and interestingly.

https://www.kaggle.com/datasets/Cornell-University/arxiv
https://openalex.s3.amazonaws.com/browse.html
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FIG. 5. Interest levels depending on generation
method. We use three different ways to generate research
ideas: (1) no concepts provided by the knowledge graph, (2)
random concepts from the researchers’ subnetwork, and (3)
high-impact concept pairs from the researchers’ subnetwork.
The figures show: (a) the interest level of all answers (num-
bers inside the bars indicate the number of answers with that
evaluation), (b) answers without using concepts from the
knowledge graph, (c) answers with random concept pairs,
and (d) high-impact predicted concept pairs (using the neu-
ral network from [12]).

Then, start finding a project. Taking your reflec-
tions from (A-C) into account, define in your response
a project title, followed by a brief explanation of the
project’s main objective.

Finally, address the following questions (Take the
full reflections (A-C) into account):
What specific interesting research questions will this
project address, that will lead to innovative novel results?
[2 bullet points, one sentence each]

Rather than relying on a knowledge graph to supply
“concept1” and “concept2” for GPT-4, it is possible to
direct GPT-4 to extract these concepts from the titles
of research papers authored by Researcher A and Re-
searcher B, respectively. Subsequently, GPT-4 can use
these identified concepts within the same prompting con-
text to generate innovative research ideas.

Interest-Evaluation for three different genera-
tion methods – In Fig. 5, we show the three different

generation methods for the research suggestions. The
interest-level distributions are very similar, particularly
between those with and without concepts from the knowl-
edge graph. This similarity allows us to analyze the cor-
relations between the properties of knowledge graph and
interest level, and to use these properties to predict the
interest level of proposals.

Predicting high interest from knowledge graph
features – In Fig. 4 in the main text, our goal is to
predict whether a certain research proposal will be eval-
uated with high interest. Specifically, using only data
from the knowledge graph (and not the final text of the
research proposal generated with GPT), we want to pre-
dict whether the proposal receives an interest value of
4 or 5 (on a scale from 1 to 5: not interesting to very
interesting) or below 4, which constitutes a binary clas-
sification task.

Due to the small dataset size (2,996 answers with prop-
erties from the knowledge graph), we use a data-efficient
learning method for the prediction task, specifically a
small neural network with dropout. The input to the
neural network consists of the 25 best-performing fea-
tures from the knowledge graph. The neural network
has only one hidden layer with 50 neurons and a single
output neuron. We use mean square error as the loss
function.

To get a consistent evaluation of the neural network
performance for this small dataset, we perform Monte
Carlo cross-validation. In this method, the dataset is
randomly split into training and validation sets multiple
times, and the model is trained and evaluated on each
split. This process ensures that the performance metrics
are robust and not dependent on a particular split of
the data. We continue splitting and evaluating until the

standard deviation of the mean AUC is less than 10−2

3 ,
which is achieved after 130 iterations. This approach
provides a reliable estimate of the model’s performance,
which is crucial for small datasets where individual splits
may lead to high variance in the evaluation metrics.

The neural network performance is not specifically
sensitive to hyperparameter choices, thus we refrained
from hyperparameter optimization, and instead used a
reasonable choice: learning rate=0.003, dropout=20%,
weight decay=0.0007, training dataset=75%, validation
dataset=15%, test dataset=10%.

We experimented with other data-efficient learning
methods, such as decision trees, but they did not sig-
nificantly outperform the neural network.
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