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Abstract

We consider reachability decision problems for linear dynamical systems: Given a linear
map on Rd , together with source and target sets, determine whether there is a point in the
source set whose orbit, obtained by repeatedly applying the linear map, enters the target
set. When the source and target sets are semialgebraic, this problem can be reduced to a
point-to-polytope reachability question. The latter is generally believed not to be substan-
tially harder than the well-known Skolem and Positivity Problems. The situation is markedly
different for multiple reachability, i.e. the question of whether the orbit visits the target set
at least m times, for some given positive integer m. In this paper, we prove that when the
source set is semialgebraic and the target set consists of a hyperplane, multiple reachability
is undecidable; in fact we already obtain undecidability in ambient dimension d = 10 and
with fixed m = 9. Moreover, as we observe that procedures for dimensions 3 up to 9 would
imply strong results pertaining to effective solutions of Diophantine equations, we mainly
focus on the affine plane (R2). We obtain two main positive results. We show that multi-
ple reachability is decidable for halfplane targets, and that it is also decidable for general
semialgebraic targets, provided the linear map is a rotation. The latter result involves a new
method, based on intersections of algebraic subgroups with subvarieties, due to Bombieri
and Zannier.
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1 Introduction

A linear dynamical system is defined by a matrix M ∈Qd×d with rational entries. Typically one
is interested in understanding, and deciding properties of the system’s orbit for initial points
p ∈Qd , which is defined as:

OM (p)
def= {

p ·M n : n ∈N}
.

Besides being one of the most fundamental and simplest kinds of dynamical systems, there
is wide interest in studying such systems coming from two directions. First, number theory,
through the study of linear recurrence sequences and exponential polynomials; and second,
more recently, computer science, and in particular the quest to analyse and verify simple fam-
ilies of programs, such as while loops with affine assignments and guards. Yet despite sub-
stantial and sustained research attention from the scientific community over several decades,
which has given rise to a voluminous literature, many basic problems remain unsolved. The
text [EvdPSW03] contains some of the central theorems of this field as well as a number of ap-
plications.

One of the central properties of the orbit we wish to understand is reachability: Does the
orbit reach some target set? A general phrasing of this question is the following. Given source
and target sets S,T ⊆ Rd , decide whether there is some point p ∈ S whose orbit reaches T, i.e.
whether

OM (p)∩T ̸= ;.

Point-to-point reachability, i.e. the case in which both the source and target sets are single-
tons, S = {

p
}
, T = {t}, is decidable in polynomial time [KL86]. But essentially every other ques-

tion is open. Notably, point-to-hyperplane reachability—also known as Skolem’s problem—and
point-to-halfspace reachability—also known as the Positivity Problem—have been studied ex-
tensively, but remain unsolved in general.

Singletons, hyperplanes, and halfspaces are fairly simple subsets ofRd . One might therefore
expect that for more complicated subsets, the reachability problem becomes truly intractable.
This is not the case. For the rather general family of semialgebraic subsets of Rd (i.e. subsets
definable in terms of polynomial inequalities), the problem is no harder than point-to-polytope
reachability:

Theorem 1.1. Semialgebraic-to-semialgebraic reachability can effectively be reduced to point-
to-polytope reachability.

In other words, simultaneously reaching halfspaces (i.e. a polytope) is the most difficult
reachability type question. This suggests that it is unlikely that more complex reachability ques-
tions are undecidable if the Positivity and Skolem Problems are not.

This article is about multiple (or repeated) reachability: the question is not merely whether
the target can be reached, but whether it can be reached a prescribed number of times. More
precisely, we want to decide whether there exists a point p ∈ S such that∣∣OM (p)∩T

∣∣≥ m,
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for a positive integer m ∈N given as input. At first blush, it may seem that this is a small gener-
alisation leading to slightly more complex decision problems. Perhaps surprisingly, this is not
the case: multiple reachability is considerably more difficult than mere one-time reachability.
In particular, in contrast to Theorem 1.1, for multiple reachability we cannot always reduce to
the point-to-polytope case. In fact we will prove:

Theorem 1.2. Algebraic-to-hyperplane multiple reachability is undecidable.

Natural problems that are undecidable are quite rare in this field. Intuitively, this is because
there is a single deterministic rule that governs the dynamics of the system. In other words,
these are programs without conditionals. In dynamical systems which have some choice, i.e.
when the dynamics is governed by at least two maps, undecidable problems abound. For ex-
ample, emptiness of probabilistic automata can be seen as a point-to-halfspace reachability
problem, but where we have at least two linear maps M1, M2 at our disposal, to move the point
to the target. The choice between the two dynamics is used to simulate a Turing machine. We
have to proceed differently for the proof of Theorem 1.2. We reduce from a variant of Hilbert’s
tenth problem. The instances are encoded in the source set S ⊆Rd , so that points p ∈ S contain
some real solution to the given polynomial. Afterwards, the matrix M is constructed in such a
way that the orbit of p under M reaches some hyperplane if and only if the coordinates of p are
distinct natural numbers. This last step is made feasible by the fact that every univariate poly-
nomial of degree d satisfies the same linear recurrence relation. In the reduction the matrix M
is not diagonalisable, and the proof would not work if it were.

Hilbert’s tenth problem is undecidable for 9 variables, and consequently our reduction im-
plies that algebraic-to-hyperplane multiple reachability is undecidable in dimension d = 19 for
fixed m = 9, and the same for semialgebraic-to-hyperplane, but in dimension d = 10. Algo-
rithms for dimensions d = 9, . . . ,3 would imply effective solutions of Diophantine equations
with d −1 variables, which is considered very difficult even when d = 3 (and for d > 4 it might
even be undecidable). Indeed, effectively solving Thue equations (homogeneous equations in
two variables) was only possible after Baker’s work on linear forms in logarithms in 1966. Con-
sequently, we focus our search for positive results on the two-dimensional affine plane R2.

We establish the following two results:

Theorem 1.3. On the plane, semialgebraic-to-halfplane multiple reachability is decidable.

Theorem 1.4. On the plane, semialgebraic-to-semialgebraic multiple reachability is decidable
for rotations.

The first theorem is proved using some standard tools, notably a theorem of Kronecker
together with Tarski’s quantifier-elimination procedure for the first-order logic of real-closed
fields. The second result, Theorem 1.4, is the main contribution of the present paper. Contrary
to most positive results in the theory of linear dynamical systems, its proof does not employ
the central tool of this area, namely Baker’s effective bounds on linear forms in logarithms. In-
stead, we make use of certain structure theorems due to Bombieri and Zannier which bound the
height of algebraic points in the set of intersections between a variety and algebraic subgroups
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of low dimension. We expect that these tools, alongside with the underlying algorithms of the
above theorems, will find applications in other problems regarding linear dynamical systems.

Unsatisfactorily, we leave the general problem of semialgebraic-to-semialgebraic multiple
reachability on the plane open. It does not seem to lend itself to the techniques that are known
to us. It is intriguing, however, that sophisticated methods seem to be required, even on the
plane.

Let us give an illustrating example.

1.1 An Example

Consider the following program:

(x, y) satisfying x3 +x y2 = 2y2

m ← 2
while m ̸= 0 do{

x ← 4x/5−3y/5

y ← 3x/5+4y/5
if x = y +1 then

m ← m −1
end if

end while

The curly brace on the left of the two assignments signifies that they are to be carried in par-
allel (simultaneously). Does this program terminate? More precisely, is there some initialisation
of the variables x, y ∈R such that they satisfy the polynomial1

x3 +x y2 = 2y2, (1)

and for which the program terminates? Let us reinterpret this question as follows. First we
notice that the vector (x, y) is being updated with the matrix(

4/5 3/5
−3/5 4/5

)
,

1This curve is the cissoid of Diocles, discovered around 180 BC. See [Loc67, Chapter 15].
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which has the property that for all n ∈N and θ =−cos−1(4/5):(
4/5 3/5
−3/5 4/5

)n

=
(
cosnθ −sinnθ
sinnθ cosnθ.

)
We see that with every loop iteration, the updates rotate the point (x, y) by the angle θ on the
affine plane. So the question of the termination of the program above is the question of whether
there is some point p in the cissoid defined above, that can be rotated into at least two points of
the line y = x −1.

The algorithms that we present in this paper can be used to answer questions like these (and
more). In this example, the answer is no; there are no points in the cissoid that can be rotated
by θ to two different points on the line. Therefore if the variables x, y are initialised such that
they satisfy the polynomial (1), the procedure above does not terminate.

1.2 Related Work

Effective procedures for reachability in linear dynamical systems have been investigated for a
long time. There are various partial results. A brief survey of the state of the art can be found
in [KKOW22].

Directly related to the present paper, the semialgebraic-to-semialgebraic (single) reachabil-
ity problem was assiduously studied in [AOW19]. There, this decision problem is shown decid-
able when the dimension is 3, using Baker’s effective estimates. Furthermore, [AOW19] shows
by way of hardness that an algorithm for deciding this problem in dimension 4 would entail the
ability to effectively estimate Lagrange constants of certain transcendental numbers. The proof
of Theorem 1.1 appears implicitly in [AOW19, Theorem 11].

More closely related to multiple reachability is the question of multiplicity in linear recur-
rence sequences. A consequence of the Skolem-Mahler-Lech theorem is that for any integer k,
and any nondegenerate linear recurrence sequence 〈un〉n∈N, there are only finitely many n for
which un = k. Thus one can ask what is the largest such number of n one can have when 〈un〉n∈N
ranges over nondegenerate linear recurrence sequences of a certain order. Equivalently, what is
the largest number of times a nondegenerate linear dynamical system from a singleton source
hits a hyperplane target? There are many interesting and deep answers to this question, see
[EvdPSW03, Chapter 2.2] and references therein.

The questions that we consider in this paper are generalisations of the Skolem Problem.
There is another interesting generalisation in a different direction, which happens to be un-
decidable for nontrivial reasons. Namely, given k linear recurrence sequences over algebraic
numbers:

〈u(1)
n 〉n∈N,〈u(2)

n 〉n∈N, . . . ,〈u(k)
n 〉n∈N,

we are asked to decide whether there are natural numbers n1, . . . ,nk such that

u(1)
n1

+u(2)
n2

+·· ·+u(k)
nk

= 0.
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This problem was conjectured to be undecidable by Cerlienco, Mignotte, and Piras in [CMP87].
The conjecture was proved by Derksen and Masser a few years ago in [DM15], for k = 557844.
Similarly to the present paper, they reduce from Hilbert’s tenth problem, and their proof re-
quires that the sequences not be diagonalisable.

2 Definitions and Basic Properties

We define the natural numbers as the set N = {1,2,3, . . .}. Atomic formulas of the first-order
logic of reals are propositions of the type:

P (x1, . . . , xn) > 0,

where x1, . . . , xn are first-order variables ranging over R, and P ∈ Z[x1, . . . , xn] is a polynomial
with integer coefficients. Atomic propositions can be combined with Boolean connectives, and
we can also quantify over the set of real numbers. This logic admits effective quantifier elimi-
nation via Tarski’s algorithm [Tar51]. This means that given a formula:

∃x0 Φ(x0, x1, . . . , xn),

there is an equivalent formula Γ(x1, . . . , xn) that can be effectively computed. In particular, given
a sentence (i.e. a formula with no free variables), Tarski’s procedure can be used to decide
whether the sentence is true for real numbers.

Subsets S ⊆Rd that can be expressed using formulas in the logic described above, that is

S =
{

(x1, . . . , xd ) ∈Rd : Φ(x1, . . . , xd )
}

,

for some formulaΦ, are called semialgebraic sets. Due to the closure under projection of semi-
algebraic sets, it is not difficult to see that the semialgebraic sets are exactly the sets S ⊆Rd that
can be written as finite unions of sets of tuples (x1, . . . , xd ) ∈Rd that satisfy simultaneously:

P0(x1, . . . , xd ) = 0,

P1(x1, . . . , xd ) > 0,
...

Pk (x1, . . . , xd ) > 0,

(2)

where Pi ∈ Z[x1, . . . , xd ]. To see this, note that the intersection of real zeros of polynomials P
and Q is exactly the set of real zeros of the polynomial P 2 +Q2. In this setting, an algebraic set
is the set of zeros of a polynomial with integer coefficients. A hyperplane is the set of solutions
of a linear equation, i.e. (x1, . . . , xd ) ∈Rd for which

a1x1 +·· ·+ad xd +ad+1 = 0,

where ai are integers. A halfspace is the set of solutions of a linear inequality, and a polytope
is the intersection of finitely many halfspaces. By the adjective homogeneous, when applied to
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the notions above, we mean that the topological closure contains the origin. On R2, a hyper-
plane is just a line, and a halfspace is called a halfplane.

A linear recurrence sequence is a sequence 〈un〉n∈N of rational numbers that satisfies a
linear recurrence relation:

un = a1un−1 +·· ·+ad un−d , (3)

for all n > d where ai are rational numbers. The minimal number d for which the sequence sat-
isfies (3) is called the order of the sequence. Linear recurrence sequences and linear dynamical
systems are basically the same object, as summarised in the two following propositions.

Proposition 2.1. Let 〈un〉n∈N be a linear recurrence sequence of order d. Then there exists M ∈
Qd×d such that

un = (M n)1,d for all n ∈N.

Proposition 2.2. Let M ∈Qd×d be a matrix with rational entries, and 1 ≤ i , j ≤ d. Then

〈(M n)i , j 〉n∈N

is a linear recurrence sequence of order at most d.

The proof of Proposition 2.1 is elementary, and Proposition 2.2 follows from the Cayley-Hamilton
theorem, see [EvdPSW03, Chapter 1] for more details. Furthermore both operations are effec-
tive.

The characteristic polynomial of a linear recurrence (3) is

xd −a1xd−1 −a2xd−2 −·· ·−ad .

Denote by Λ1, . . . ,Λk the distinct roots of this polynomial and by m1, . . . ,mk their respective
multiplicities. A linear recurrence sequence 〈un〉n∈N can also be written as a generalized power
sum, which is an expression of the form:

un =
k∑

i=1
Pi (n)Λn

i ,

where Pi ∈Q[n] are polynomials of degree at most mi −1. Furthermore, all generalized power
sums satisfy linear recurrence relations with algebraic coefficients. A consequence of this fact
is that linear recurrence sequences are closed under addition and product. More precisely,
if 〈un〉n∈N and 〈vn〉n∈N are two linear recurrence sequences, then so are the sequences 〈un +
vn〉n∈N and 〈un · vn〉n∈N.

These are all the necessary facts required to prove our first result, Theorem 1.1, which we
recall here.

Theorem 1.1. Semialgebraic-to-semialgebraic reachability can effectively be reduced to point-
to-polytope reachability.
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The main idea appears implicitly in the proof of [AOW19, Theorem 11].

Proof. Suppose that we are given an instance of the semialgebraic-to-semialgebraic reachabil-
ity problem. Let d ∈ N be the dimension of its ambient space, S,T ⊆ Rd the source and target
sets respectively, and M the given matrix. Denote by ΦS, ΦT, the formulas defining the respec-
tive sets S,T. Write x for the tuple of variables (x1, . . . , xd ) and A for the d ×d matrix of variables
(A1,1, . . . , Ad ,d ), and define the formula:

Γ(x, A)
def=ΦS(x) andΦT(x, A).

The reachability problem asks whether there exists p ∈ Rd and n ∈N such that Γ(p, M n) holds.
Since the first-order theory of reals admits effective quantifier elimination, we first use Tarski’s
algorithm to produce a quantifier-free formula Γ′(A), which is equivalent to the projection
∃x Γ(x, A). Now the reachability problem is equivalent to the question of whether there is some
n such that Γ′(M n) holds. Since Γ′ is quantifier-free, it can be written as a disjunction of formu-
las ϕ1, . . . ,ϕm , for some m ∈ N, such that each φi is of the form (2). For each ϕi we construct
an instance of the point-to-polytope reachability problem, with the property thatϕi (M n) holds
for some n if and only if the respective polytope can be reached. To this end, let ϕ be one of the
disjuncts defined as:

∧


P0(A1,1, . . . , Ad ,d ) = 0,

P1(A1,1, . . . , Ad ,d ) > 0,
...

Pk (A1,1, . . . , Ad ,d ) > 0.

Define, for all i ∈ {0, . . . ,k} the sequences

ui ,n
def= Pi

(
(M n)1,1, . . . , (M n)d ,d

)
, n ∈N.

It follows from Proposition 2.2 and the closure of linear recurrence sequences under component-
wise addition and multiplication, that the sequences 〈ui ,n〉n∈N are themselves linear recurrence
sequences, of orders di , say. Applying Proposition 2.1 we construct matrices Ni of size di ×di ,
0 ≤ i ≤ k, that have the property that the upper-right corner of N n

i is equal to ui ,n .
Unravelling the definitions, we see that for all n ∈ N, ϕ(M n) holds if and only if the upper-

right corner of N n
0 is 0, and the upper-right corners of N n

i , 1 ≤ i ≤ k are strictly positive. The lat-
ter can be interpreted as a point-to-polytope reachability problem as follows. Let D :=∑

di , and
construct a block diagonal matrix whose blocks are N0, . . . , Nk , and whose size is D×D . Then the
equivalent instance of the point-to-polytope problem has as initial point p0 := (1, . . . ,1) ∈ RD ,
the matrix is N and the polytope is the intersection of the following halfspaces. The closed half-
spaces characterised by the normal vectors ∆(d0) and −∆(d0) (where by ∆(i ) ∈ RD we denote
the vector whose components are all zero except the component in position i whose value is 1),
and the open halfspaces with normal vectors ∆(d1), . . . ,∆(dk ).
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Why does a similar proof not work for multiple reachability? The critical difference is af-
ter we obtain the projection Γ′. If there are two distinct integers n1,n2 such that Γ′(M n1 ) and
Γ′(M n2 ) hold, it does not necessarily mean that there is a single p for which both Γ(p, M n1 ) and
Γ(p, M n2 ) hold. Indeed, it is unlikely that such a reduction is possible for multiple reachability,
in light of the result of the next section.

3 Hilbert’s Tenth Problem and Linear Dynamical Systems

In this section we prove the undecidability of the multiple reachability problem, with algebraic
starting sets and hyperplane targets, by reducing from a variant of Hilbert’s tenth problem.2 The
variant that we reduce from is the following:

Problem 3.1. Given a polynomial P (x1, . . . , xk ) with integer coefficients, decide whether there are
distinct positive integers n1,n2, . . . ,nk such that

P (n1, . . . ,nk ) = 0.

Proposition 3.2. Problem 3.1 is undecidable.

Proof. Let Q(x1, . . . , xn) be an arbitrary polynomial with integer coefficients. For any subset
A ⊆ {1, . . . ,n}, define Q A to be the polynomial that one obtains by taking Q and replacing all
variables xi , for i ∈ A, by a single fresh variable x. It is plain that Q has a zero in positive inte-
gers x1, . . . , xn if and only if one of the 2n polynomials Q A has a zero in distinct positive integers.
Since Hilbert’s tenth problem is undecidable (i.e. there is no procedure that can decide whether
a given polynomial has a zero in positive integers, see [DMR76, Chapter 5]), it follows that Prob-
lem 3.1 is also undecidable.

Hilbert’s tenth problem is known to be undecidable even when the number of variables is
fixed, equal to 9. As a consequence of the proof above we have the following corollary.

Proposition 3.3 ([Jon82]). Problem 3.1 is undecidable for fixed k = 9.

We will now show that Problem 3.1 can be reduced to the multiple reachability problem.
This comprises two steps. First we prove that all univariate polynomials of degree d satisfy the
same linear recurrence relation, which is then turned into a matrix form. In the second step we
construct a certain algebraic set from the polynomial of Problem 3.1.

Lemma 3.4. Let P be a univariate polynomial of degree d. The unique sequence that satisfies the
recurrence

d+1∑
i=0

(−1)i

(
d +1

i

)
vn−i = 0, n > d +1. (4)

and whose first d +1 entries are P (1),P (2), . . . ,P (d +1) is the sequence 〈P (n)〉n∈N.
2A sketch of this proof has already appeared in [KKOW22].
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Proof. The characteristic polynomial of the recurrence (4) is (x − 1)d+1, as one can see by ex-
panding the latter product using the Binomial theorem. In other words, the recurrence has
a single characteristic root 1, with multipliciity d + 1. It follows from standard results (see,
e.g., [EvdPSW03, Section 1.1.6]) that the set of solutions of (4) is spanned by the d +1 sequences
〈nk〉∞n=0, where k = 0, . . . ,d . Equivalently, a sequence 〈vn〉∞n=0 satisfies (4) if and only if for some
polynomial P (x) of degree at most d we have vn = P (n) for all n ∈N. For uniqueness, notice that
if one fixes the d+1 first entries of a sequence, the remainder is determined from the recurrence
relation of that order.

Let us turn the statement of the above lemma into matrix form. To this end let d ∈ N be a
natural number. Denote the d +1 coefficients of the recurrence (4) by

qi
def= (−1)i+1

(
k +1

i

)
, 1 ≤ i ≤ d +1.

Let hd := (1,0, . . . ,0) ∈Rd+1 and define the matrix

Md
def=


0 0 · · · 0 qd+1

1 0 · · · 0 qd

0 1 · · · 0 qd−1
...

...
. . .

...
...

0 0 · · · 1 q1

,

where the shaded block is the d×d identity matrix. It follows from the discussion above that for
all univariate polynomials P of degree d , we have(

P (1),P (2), . . . ,P (d +1)
)

M n
d h⊤

d = P (n), for all n ∈N. (5)

To reduce the variant of Hilbert’s tenth problem to the algebraic-to-hyperplane multiple
reachability, we proceed as follows. Let F ∈Z[y1, . . . , yn] be an arbitrary polynomial with integer
coefficients. We define the algebraic set S ⊆R2n+1 as:

(x1, . . . , xn+1, y1, . . . , yn) ∈ S ⇔

∧


F (y1, . . . , yn) = 0,

x1 = (1− y1)(1− y2) · · · (1− yn),

x2 = (2− y1)(2− y2) · · · (2− yn),
...

xn+1 = (n +1− y1)(n +1− y2) · · · (n +1− yn).

The idea is that to check whether a root (y1, . . . , yn) of F is in Nn , we need only check that the
sequence (m − y1) · · · (m − yn), m ∈ N, has n zeros. More precisely, denote by M the (2n +1)×
(2n +1) matrix whose first (n +1)× (n +1) block is equal to Mn and the other entries are 0, and
set h := h2n .

11



Lemma 3.5. The following two statements are equivalent:

• The polynomial F has a solution in distinct positive integers.

• There is some p := (x1, . . . , xn+1, y1, . . . , yn) ∈ S and distinct positive integers r1, . . . ,rn such
that

p M ri h⊤ = 0, 1 ≤ i ≤ n.

Proof. (⇒) Let y1, . . . , yn be distinct positive integers that are a root of F . Set

xi := (i − y1)(i − y2) · · · (i − yn),

for all i ∈ {1, . . . ,n +1}. Then p := (x1, . . . , xn+1, y1, . . . , yn) ∈ S by definition. The definition of the
matrix M above (that has nonzero entries only in the first (n +1)× (n +1) block) and (5) imply
that for all r ∈Nwe have

p M r h⊤ = (r − y1)(r − y2) · · · (r − yn). (6)

Hence the second statement of the lemma holds for the distinct positive integers ri = yi .
(⇐) Let p and distinct positive integers r1, . . . ,rn be such that the second statement holds. Then
(6) implies that the tuple (y1, . . . , yn) is a permutation of the tuple of distinct positive integers
(r1, . . . ,rn). It then follows from the definition of S that the same permutation is also a root of F .

Proposition 3.2 and Lemma 3.5 imply that algebraic-to-hyperplane multiple reachability is
undecidable, i.e. Theorem 1.2. Indeed the set S defined above is algebraic,3 and h is the normal
vector of some hyperplane (recall that a point x is on the hyperplane with a normal vector h if
and only if x ·h⊤ = 0).

More precisely, we have shown that a procedure to decide algebraic-to-hyperplane multiple
reachability in dimension 2n +1 can be used to effectively solve Diophantine equations with n
variables. By projecting away the coordinates y1, . . . , yn in the definition of S above, in general
we get a semialgebraic set. Hence a procedure to decide semialgebraic-to-hyperplane multiple
reachability in dimension n +1 can be used to effectively solve Diophantine equations with n
variables. In light of Proposition 3.3, we have the following theorem.

Theorem 3.6. Algebraic-to-hyperplane multiple reachability is undecidable in dimension 19,
and semialgebraic-to-hyperplane multiple reachability is undecidable in dimension 10.

Effectively solving Diophantine equations is notoriously difficult. Even Thue equations, i.e.
equations of the type P (x) = m where P is a homogeneous polynomial, could only be solved
effectively in the second half of the twentieth century, after the work of Alan Baker [Bak90, The-
orem 4.1]. As a consequence, in the next section, we focus our efforts in understanding the

3As mentioned in the previous section, the real vectors x for which P (x) = 0 and Q(x) = 0 coincide with the real
vectors x for which P (x)2 +Q(x)2 = 0.
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multiple reachability problem on the affine plane, i.e. when the dimension is fixed at d = 2. As
we shall see, even on the plane, multiple reachability can be quite challenging.

In the undecidability proof of this section, the matrix M is not diagonalisable. It is interest-
ing to explore the multiple reachability problem for diagonalisable matrices, as the latter is a
property that holds for generic matrices. This is at least as hard as Positivity for diagonalisable
linear recurrence sequences.

4 Algorithms on the Affine Plane

This section is devoted to proving Theorem 1.3 and Theorem 1.4. We give algorithms for decid-
ing multiple reachability for various targets on the affine plane. The dimension d = 2 is fixed.
The system is given in the form of a 2×2 matrix with rational entries. The eigenvalues of such a
matrix can be one of the following: (a) a pair of complex conjugates λ,λ ∈Q, (b) two real alge-
braic roots ρ1,ρ2 ∈Q∩R, or (c) a repeated real root ρ ∈Q∩R. When the eigenvalues are a pair
of complex conjugates and furthermore |λ| = 1 we say that the matrix is a rotation.

We will assume that λ/λ is not a root of unity, because this case is essentially the same as the
case when the eigenvalues are real. Matrices whose ratios of distinct eigenvalues are not roots
of unity, we call nondegenerate.

We begin by noting the first difference between arbitrary dimension and the affine plane,
as regards the multiple reachability problem: when the target is a homogeneous hyperplane
(in this case a line passing through the origin), it cannot be reached more than once, unless
the matrix has a very special form. A consequence of this fact and the work in [AOW19], which
gives an algorithm for deciding single reachability in dimension 2, is that multiple reachability
is decidable for such targets. This is not the case in dimension 10 or higher.

Proposition 4.1. Let p ∈ R2 be any point, not the origin, h a line going through the origin given
by the normal vector h ∈ R2, and M ∈ R2×2 a nondegenerate matrix. If there are distinct positive
integers n,m ∈N such that both M n and M m send p to the line h, i.e.

p M n h⊤ = p M m h⊤ = 0, (7)

then pM k h⊤ = 0 for all k ∈N. Moreover, in this case, either one of the eigenvalues of M is zero, or

M =
(

s 0
0 s

)
,

for some s ∈R.

Proof. By assumption (7) the point h belongs to the two lines defined by pM n and pM m , which
pass through the origin. Since h ̸= 0, it follows that there is some r ∈R, r ̸= 0, such that

r p M n = p M m .
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If M is not invertible then one of the eigenvalues is 0, and by putting M into Jordan normal
form, we can see that (7) cannot hold, unless M is the zero matrix, or the other eigenvalue is 1,
in which case the conclusion holds. If M is invertible,

r p = p M m−n ,

so r is an eigenvalue of M m−n and by nondegeneracy, the matrix M has eigenvalue R := r 1/(m−n),
which is real. The scaled matrix M̃ = M/R has the property that for any k ∈N, M̃ k sends p to the
line h if and only if M k does as well. The matrix M̃ has 1 as an eigenvalue, and for (7) to hold, M̃
(and also M) has to be a stretching matrix, i.e. corresponding to multiplication by a scalar s ∈R.
Consequently, ph⊤ = 0 and hence pM k h⊤ = psk h⊤ = 0 for all k ∈N.

The hypothesis that the target line passes through the origin is important. Indeed, perhaps
surprisingly, when the target is a line that does not pass through the origin, multiple reachability
becomes more difficult. What is the difficulty? First, the above proposition fails in that case.
Such a target can be reached multiple times.4

Second, almost all known effective methods are based on Baker’s work on linear forms in
logarithms. Such methods yield an effective time bound, after which it is guaranteed that the
orbit will not go in the target. This bound however depends on the height of the initial points. It
is not clear how to apply these methods when the initial point is replaced by a set. One possibil-
ity is to take the projection of the initial set (as in [AOW19] and the last subsection of this paper),
but then the multiple reachability problem is reduced to a problem about intersections of alge-
braic subgroups with varieties inside tori. There are finiteness results about such intersections,
but few of them effective.

To provide some more intuition, consider a linear map on R2. In general, the effect of a
linear map on a point consists of (a) a dilation (a shrinking or stretching), and (b) a rotation.
When both these effects are relevant, the multiple reachability problem becomes difficult. The
positive results that we provide in this section solve decision problems where just one of the
effects is at play. For example, the proposition above is about a target that passes through the
origin, so the stretching effect of the linear map is not relevant.

4.1 Halfplane Targets

A semialgebraic set S is said to be bounded if there exists a real ρ > 0 such that S is contained
in the open disk x2 + y2 < ρ. We call the infimum among such ρ the radius of the set S. The
infimum among ρ ≥ 0 such that the set S intersects the open disk of radius ρ is called the dis-
tance to the origin. Clearly, boundedness is expressible as a formula in first-order logic, and
the radius and distance to the origin are real algebraic by quantifier elimination.

We prove Theorem 1.3, by giving an algorithm that decides multiple reachability for half-
planes. To this end, let S be the initial semialgebraic set, T the target halfplane, M a 2×2 matrix

4There is some work characterising when a line that does not pass through the origin is reached at most once.
For example, if the initial point is inZ2 and the eigenvalue |λ| > 1, then for all but finitely many such integral initial
points the target can be reached at most once [BPS01].
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with rational entries and m ∈ N a positive integer, the minimum number of times we wish to
enter the target. We consider, separately, the case when M has complex conjugate eigenvalues
λ,λ, and the case when it has real eigenvalues. We begin with the former.

Let p ∈ R2 be a point, with polar coordinates (r,ϕ). By putting M into Jordan normal form
(or similarly by using the polar decomposition), and applying some trigonometric identities,
we can show that there exist real numbers s,ϑ,ϑ0 such that for all n ∈N the polar coordinates of
pM n are

(sr |λ|n ,nϑ+ϑ0 +ϕ). (8)

The numbers s,r and |λ| are real algebraic whose formulas we can compute, while ϑ and ϑ0

are logarithms of algebraic numbers. We will make use of the following fact from Diophantine
approximation. It is a corollary of [Cas59, Theorem 1 in Page 11]. For x ∈R, denote by {x}2π the
unique real number in [0,2π) such that, for some integer m, x = 2πm + {x}2π.

Lemma 4.2. If ϑ is an irrational multiple of 2π, we have

{{nϑ}2π : n ∈N} is dense in [0,2π].

Proof of Theorem 1.3 for complex eigenvalues. If |λ| > 1, the algorithm answers yes. The justi-
fication is as follows. When T is a halfplane, there exist positive real numbers α0,φ1,φ2, with
φ1 <φ2, such that for all α>α0 and φ1 <φ<φ2, the point with polar coordinates (α,φ) is in T.
This simply means that the halfplane contains a cone minus a bounded set.

The matrix M is assumed to be nondegenerate, which implies that the rotation angle ϑ in
(8) is an irrational multiple of 2π. So by applying Lemma 4.2 to this number, we see that the
intersection of the set {

nϑ+ϑ0 +φ mod 2π : n ∈N}
(9)

and the interval (φ1,φ2) contains infinitely many points. From |λ| > 1, it follows that the se-
quence of points pM n will enter the cone mentioned above, which is a subset of T, infinitely
many times.

Suppose now that |λ| < 1.5 When the halfplane T has distance to the origin equal to 0, or
when the source S is unbounded, the algorithm answers yes, with a justification symmetric to
the one above. Assume that T has distance to the origin equal to δ > 0 and let S be bounded
with radius ρ. Choose some N ∈ N such that ρ|λ|N < δ, then for any source point p ∈ S, and
all n > N , pM n is not in the target T. To decide the multiple reachability problem, consider the
semialgebraic sets, defined for all n ∈ {0,1, . . . , N } as

Sn
def= {

p ∈ S : pM n ∈ T
}

,

and decide whether there are m among them that have nonempty intersection.

5The rotation case |λ| = 1 is handled in the next subsection in a more general setting.
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We turn our attention now to the case where the eigenvalues of the matrix M are real. We do
a case analysis depending on whether the eigenvalues are distinct or not, and whether they are
positive or not.
- Diagonalisable M with distinct positive eigenvalues.
In Jordan normal form the matrix M is BDB−1 where D is the diagonal matrix and B is invertible
matrix with real algebraic entries. We can replace S by S ·B , and the target set by B−1 ·T. As a
consequence we can simply assume that

M =
(
ρ1 0
0 ρ2

)
.

We will also assume without loss of generality that ρ1 > ρ2 > 0. The algorithm rests on the
following lemma.

Lemma 4.3. Let M be as above, H a halfplane, p ∈ R2 a point, and p0,p1, . . . its orbit under M.
The orbit can switch from H to R2 \H, or conversely, at most twice. In particular, from some point
on, the orbit either is in H and remains there forever, or it is outside H, and never enters H.

Proof. We begin by observing that for all real numbers a1, a2, a3, not all zero, and positive reals
b1,b2, the function f : R→R, defined as

x 7→ a1bx
1 +a2bx

2 +a3, (10)

has at most two zeros. Indeed, since f is continuous, by Rolle’s theorem, between any two zeros
of f , f ′ has a zero. As a consequence, if f had more than two zeros, f ′ would have more than
one zero. But since f ′ has the form α1bx

1 +α2bx
2 for real numbers α1,α2, this is impossible.

Let c1,c2,c3 be real numbers such that the point (x, y) belongs to the halfplane H if and only if

c1x + c2 y + c3 > 0.

The orbit of such a point under M is (xρn
1 , yρn

2 ). Consider now the expression

c1xρn
1 + c2 yρn

2 + c3. (11)

From the observation about the zeros of (10) above, this expression as a function of n may
change sign at most twice, which establishes the lemma.

From this proof we also see that when the halfplane is given by a homogeneous inequality,
the orbit cannot leave the halfplane and come back. For other cases, we proceed to prove that
the gaps between consecutive visits to the halfplane H cannot be longer than 3.
- Diagonalisable M with a single negative eigenvalue.
Suppose that the matrix M is

M =
(
ρ1 0
0 ρ2

)
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whereρ1 < 0 and ρ2 > 0. (We do not make any assumptions on |ρ1| and |ρ2|.) Consider a starting
point (x, y) ∈ R2 and a halfplane H defined by c1x + c2 y > c3. The orbit of (x, y) visits H at time
n if

{
c1x|ρ1|n + c2 yρn

2 > c3, n even, (12a)

−c1x|ρ1|n + c2 yρn
2 > c3, n odd. (12b)

Depending on the signs of x and y , one of the inequalities implies the other. Without loss
of generality suppose (12a) implies (12b). By Lemma 4.3, the set of n satisfying (12a) forms an
interval subset ofN. It follows that the gaps between two consecutive visits from (x, y) to H is at
most 2.
- Diagonalisable M with two negative eigenvalues.

Next, suppose that ρ1 < 0 and ρ2 < 0. Clearly, for all c1,c2,c3 ∈ R with c3 ≤ 0 and c1,c2 not
both zero, the inequality c1ρ

n
1 + c2ρ

n
2 > c3 has infinitely many solutions. We thus focus on the

case that c3 > 0. Here we prove that the gap between two consecutive visits of the orbit of
(x, y) ∈R2 to H is at most 3. To this end, let (x, y) ∈R2, and define the function F : R→R,

F (t )
def= c1x|ρ1|t + c2 y |ρ2|t .

Then we have that for n ∈N,

c1xρn
1 + c2 yρn

2 =
{

F (n) if n is even,

−F (n) if n is odd.
(13)

Assuming that c1,c2 and x, y are nonzero (otherwise we would have an even simpler case), and
ρ1 ̸= ρ2, we see that the function F (t ) is bounded for positive reals t if and only if |ρ1| ≤ 1 and
|ρ2| ≤ 1. If F (t ) is unbounded, then from (13) we see that for any (x, y) ∈R2 nonzero, the system
will enter the halfplane H infinitely many times.

If on the other hand F (t ) is bounded in R+ then the following two inequalities cannot hold
simultaneously:

c1xρ1 + c2 yρ2 < c3

c1xρ3
1 + c2 yρ3

2 > c3.

Indeed, the two expressions on the left hand side have the same sign, however the second one
is smaller in magnitude due to |ρ1| ≤ 1 and |ρ2| ≤ 1. The claim that the gaps between two con-
secutive visits from (x, y) to H is at most 2 follows.
- Non-diagonalisable M with a repeated eigenvalue.

A version of Lemma 4.3 also holds in case M has a repeated eigenvalue ρ. In this case, every
orbit under M can switch from H to R2 \ H , or conversely, at most once. Indeed, by a change of
basis, we can assume that M has the form

M =
(
ρ 1
0 ρ

)
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Then the expression corresponding to (11) is

(nxc2ρ
−1 + c2 y + c1x)ρn + c3.

If ρ > 0, then it is clear that this expression can change sign at most once as n ranges over N.
If, on the other hand, ρ < 0, we can do a similar analysis as above. If |ρ| > 1 then the halfplane
is entered infinitely often. If |ρ| ≤ 1, we can prove, as we did above, that the gaps between two
consecutive visits in H is at most 2.
- M with a zero eigenvalue.

This case is one-dimensional, and it can be shown directly that the orbit can switch from H
to R2 \ H (or vice versa) at most once.

Having handled all the cases, we are now ready to give a proof of Theorem 1.3 for real eigen-
values.

Proof of Theorem 1.3 for M with real eigenvalues.
Lemma 4.3 and the case analysis above, implies that any orbit that enters H at least m times
must harbour a segment of m visits to H whose gaps between consecutive visits is at most 3. In
other words, the orbit of p enters T at least m times if and only if there exist n1, . . . ,nm ∈N such
that

pM ni ∈ T and 0 < ni+1 −ni ≤ 3 for all ni .

This contiguous multiple reachability question can easily be reduced to a union of single reach-
ability queries. Indeed, an orbit contains a pattern (of visits and not visits to H) of length 3m if
and only if it reaches a certain polytope subset P of R2; A formula defining P can be constructed
by considering the sets

{
x ∈R2 : M k x ∈ H

}
and

{
x ∈R2 : M k x ∉ H

}
for 0 ≤ k ≤ 3m. Thus multi-

ple reachability is reduced to at most 23m instances of single reachability from S to P, which can
be solved by invoking the algorithm from [AOW19].

4.2 Rotations

Now we prove Theorem 1.4, which says that semialgebraic-to-semialgebraic multiple reacha-
bility is decidable on the plane for rotations.

Let S,T ⊆ R2 be the source and target semialgebraic sets, given by the formulas ΦS,ΦT of
first-order logic of reals; M a matrix whose eigenvalues are the pair λ,λ on the unit circle, that
is |λ| = 1, and let m ∈N. We show in this section that we can decide whether there exists some
p ∈ S and distinct positive integers x1, . . . , xm ∈N such that

p M xi ∈ T,

for all i ∈ {1,2, . . . ,m}.
We begin our proof by treating an easier problem first, namely the question of entering the

target set infinitely often.

Proposition 4.4. For any p ∈R2, exactly one of the following holds:

18



1. There are infinitely many positive integers, and infinitely many negative integers x such
that p M x ∈ T.

2. There are only finitely many positive integers, and finitely many negative integers x such
that p M x ∈ T.

Furthermore, we can decide whether there exists some p ∈ S for which the first case holds.

Proof. If the target is of dimension ≤ 1, then by the Skolem-Mahler-Lech theorem for any p ∈ S,
M n sends p to T at most finitely many times. If the target has dimension 2, then using Tarski’s
algorithm we check whether there exists a circle, centered at the origin, of radius r such that (1)
it intersects S, and (2) writing its points in polar coordinates (r,θ), there exists θ1 < θ2 in [0,2π],
such that for all θ in (θ1,θ2), the points (r,θ) are in T.

If such a circle exists then an argument similar to that in the proof of Theorem 1.3 for com-
plex eigenvalues can be used to show that there exists p ∈ S whose orbit enters the target T
infinitely often.

If no such circle exists then clearly all circles centered at the origin that intersect S, intersect
T at finitely many points, and therefore no orbit from S can hit the target infinitely often.

If the first alternative in the proposition holds for some point in the source set, then clearly
the answer to the multiple reachability problem is yes. We assume for the rest of this section
that from every point in the source set, the target can be reached only finitely many times. More
precisely:

Remark 4.5. Assume that the input is such that for every point p ∈ S in the source set, there are
only finitely many positive or negative integers x such that p M x ∈ T. In other words, the second
alternative of Proposition 4.4 holds for all points in the source set.

We proceed by eliminating the existential quantifier in the decision question. To this end, let
v = (v1, v2) be a tuple of variables, let V1, . . . ,Vm be 2×2 matrices of fresh variables, and consider
the following formula:

Γ(v,V1, . . . ,Vm)
def=ΦS(v)∧

m∧
i=1
ΦT (v Vi ) .

The multiple reachability decision problem asks whether there is some p ∈R2 and distinct pos-
itive integers x1, . . . , xm such that

Γ(p, M x1 , . . . , M xm ) (14)

holds. Eliminating the existential quantifiers for v from Γ, we effectively get another formula
Γ′(V1, . . . ,Vm) such that (14) holds for some point p if and only if Γ′(M x1 , . . . , M xm ) is true. Tuples
of reals that satisfy Γ′ form a semialgebraic set; which can be written as a finite union of sets
of the form (2), that is a system of one polynomial equality and a finite number of polynomial
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inequalities. Each set in this union can be treated separately, so let P0, . . . ,Pℓ be polynomials
(with integer coefficients) of one of the sets:

Ψ(V1, . . . ,Vm)
def=∧


P0(V1, . . . ,Vm) = 0,

P1(V1, . . . ,Vm) > 0,
...

Pℓ(V1, . . . ,Vm) > 0.

We want to prove that we can decide whether there are distinct positive integers x1, . . . , xm

such that

Ψ(M x1 , . . . , M xm ) (15)

holds. We will simply call any such tuple (x1, . . . , xm) a solution.
By diagonalisation there are algebraic numbers c1, . . . ,c4 ∈Q such that for all n ∈N

M n =
(

c1λ
n + c1λn c2λ

n + c2λn

c3λ
n + c3λn c4λ

n + c4λn

)
.

So when polynomials P0, . . . ,Pℓ are instantiated with M x they can be seen as polynomials in λx

and λ
x = λ−x ; in other words there are polynomials Q0, . . . ,Qℓ with algebraic coefficients such

that

Pi (M x1 , . . . , M xm ) =Qi (λx1 ,λ−x1 , . . . ,λxm ,λ−xm ),

for 0 ≤ i ≤ ℓ and all tuples of integers (x1, . . . , xm) ∈Zm .
When P0 is identically zero, we will prove that there cannot be any solutions. This is due to

the assumption that we have made in Remark 4.5. In fact, we prove a more general statement
which will be useful later on.

Lemma 4.6. Let Λ⊆Zm be a subgroup, where the group operation is component-wise addition.
If for all (x1, . . . , xm) ∈Λ, we have Q0(λx1 ,λ−x1 , . . . ,λxm ,λ−xm ) = 0, then there is no solution inΛ.

For the case in which P0 (or equivalently Q0) is identically zero, we takeΛ=Zm in the lemma
above, and conclude that there are no solutions. The idea is to use a general version of Kro-
necker’s theorem for Diophantine approximation to prove that if there is some element of the
subgroup (x1, . . . , xm) ∈Λ for which

Qi (λx1 , . . . ,λ−xm ) > 0,

then there are infinitely many of them—which contradicts the assumption that we have made
in Remark 4.5.
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Proof. Suppose that the subgroup Λ is given as the integer points in the kernel of a matrix A
with integer entries, m rows, and m′ ≤ m columns. We have:

Λ= {
x ∈Zm : x A = 0

}
.

Denote by T the unit circle in the complex plane. We will write z for the vector (z1, . . . , zm) and
for any vector b = (b1, . . . ,bm) of length m, we abbreviate

zb = zb1
1 · · ·zbm

m .

Denote by a1, . . . ,am′ the columns of A, and define the following semialgebraic sets:

R
def= {

z ∈Tm : zai = 1 for all 1 ≤ i ≤ m′} ,

R′ def= {
z ∈ R : Qi (z1, z−1

1 , . . . , zm , z−1
m ) > 0 for all 1 ≤ i ≤ ℓ} .

We are going to prove that R′ is empty. Observe that this is sufficient to prove the lemma, for if
there were a solution (x1, . . . , xm) ∈Λ, then

(λx1 , . . . ,λxm ) ∈ R,

from the definition of the subgroupΛ and R; and moreover, by definition of a solution, (λx1 , . . . ,λxm )
belongs to R′.

We will prove that R′ =; via this claim:

Claim 4.7. If R′ is non-empty, there are infinitely many elements of (x1, . . . , xm) ∈ Λ, for which
(λx1 , . . . ,λxm ) ∈ R′.

Indeed, if the claim holds, and R′ is non-empty, there are infinitely many (x1, . . . , xm) for
which (λx1 , . . . ,λxm ) is a zero of Q0 and satisfies the polynomial inequalities Qi > 0, for 1 ≤ i ≤ ℓ.
This means that for infinitely many (x1, . . . , xm), the formula (14) holds which contradicts the
assumption made in Remark 4.5, namely that there can be only finitely many such tuples. It
follows that R′ is empty.

For the proof of the claim we will use a theorem from Diophantine approximations due to
Kronecker, which is convenient to state here.

Theorem 4.8 (Theorem IV in Page 53 of [Cas59]). Let

L j (y) = L j (y1, . . . , ym′), 1 ≤ j ≤ m,

be m homogeneous linear forms in any number m′ of variables yi . Then the two following state-
ments about a real vector α= (α1, . . . ,αm) are equivalent:

1. For all ϵ> 0 there is an integral vector a = (a1, . . . , am′) such that simultaneously

|L j (a)−α j | < ϵ, 1 ≤ j ≤ m.
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2. If u = (u1, . . . ,um) is any integral vector such that:

u1L1(y)+·· ·+umLm(y)

has integer coefficients, considered as a form in the indeterminates yi , then

u1α1 +·· ·+umαm ∈Z.

In order to apply this theorem, we define our linear forms Li as follows. By putting A in a
row-reduced echelon form, finding a basis and multiplying with a suitable scalar, we can com-
pute a set of integral vectors b1, . . . ,bm′ that generate Λ. Write λ= exp(ϑ2πi), where the angle ϑ
is not a rational number, because λ is not a root of 1. For 1 ≤ j ≤ m define:

L j (y1, . . . , ym′)
def=

m′∑
i=1

ϑ bi , j yi .

Choose some element of ζ ∈ R′ and write it as:(
exp(α12πi), . . . ,exp(αm2πi)

)
.

Let u = (u1, . . . ,um) ∈Zm be an integral vector such that
∑

ui Li (y) has integer coefficients, con-
sidered as a form in the indeterminates yi . A small computation shows that sinceα is irrational,
for such u we must have

u B = 0,

where B is the matrix that has the vectors b1, . . . ,bm′ as columns. This means that such vectors
u belong to the orthogonal complement of the linear subspace V ⊆Rm , spanned by b1, . . . ,bm′ .
By virtue of ζ belonging to R′ and hence also R, we have that (α1, . . . ,αm) belongs to V , and
consequently

∑
uiαi = 0. We have proved that Statement 2 in the above theorem holds for our

real vector α. Applying the theorem gives us Statement 1, namely that there are integral vectors
a that make L j (a) get arbitrarily close to α j . As a ranges over Zm′

, (L1(a), . . . ,Lm(a)) range over
ϑΛ, which in turn means that

(λL1(a)/ϑ, . . . ,λLm (a)/ϑ) ∈ R, (16)

and gets arbitrarily close to ζ. Finally, since R′ is an open subset of R, by choosing ϵ small
enough, we get some a such that the tuple of (16) belongs to the subset R′. The point ζ was
chosen arbitrarily, so the infinitude of (x1, . . . , xm) ∈ Λ for which (λx1 , . . . ,λxm ) is in R′ follows.
This concludes the proof of Claim 4.7 and that of the lemma.

The rest of this section is devoted to proving the following lemma:

Lemma 4.9. There exists an effective bound B ∈ N depending only on Q0, such that if there is
some solution inNm , then there is one (call it x) in Zm , with

∥x∥ def=∑ |xi | ≤ B.
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Since both λ and the coefficients of the polynomials are algebraic numbers, we can use
Tarski’s algorithm to check whether each of x, ∥x∥ ≤ B , is a solution. Therefore as a consequence
of Lemma 4.9 and Proposition 4.4, multiple reachability for rotations is decidable, i.e. Theo-
rem 1.4 holds.

For the proof of Lemma 4.9, we will make use of certain interesting results regarding the
intersection of varieties with algebraic subgroups of dimension 1, due to Zannier, Bombieri,
and Schmidt. In order to state these results, we need a few definitions. The general theory is
developed more extensively in [Sch96], [Sch00], and especially in [BG07, Chapter 3]. We borrow
from the latter freely.

It is convenient in the rest of this section to set n := 2m, where m is the number of times we
want to enter the target set. A variety Y in affine n-dimensional space Q

n
is defined to be the

set of tuples (y1, . . . , yn) which satisfy a system of polynomial equations fi (y1, . . . , yn) = 0, where
fi is from a family of polynomials with algebraic coefficients. We say that a variety is irreducible
if it cannot be written as the union of two proper subvarieties.

We define6 Gn
m to be the set of tuples (z1, . . . , zn) of nonzero algebraic numbers. In other

words it is the subset of Q
n

satisfying z1 · · ·zn ̸= 0. It has a group structure, where the group
operation is given by component-wise multiplication:

(y1, . . . , yn) · (z1, . . . , zn) = (y1z1, . . . , yn zn).

The variety that we are interested in, which we will denote by X0 ⊆Gn
m , is the zero set of our

polynomial Q0, conjoined with polynomial equations

z j z j+1 −1 = 0,

where 1 ≤ j ≤ n is an odd number, to ensure that the conjugate relations hold. We assume
that X0 is irreducible, for otherwise, we can factorize the polynomials and treat the irreducible
components in turn. We will effectively find points in the intersection of this variety and all
algebraic subgroups of dimension 1, which we now define.

An algebraic subgroup is a subvariety of Gn
m that is also a subgroup. As an example, given

an additive subgroup Γ⊆Zn , we can see that it determines an algebraic subgroup

HΛ
def= {

(z1, . . . , zn) ∈Gn
m : za1

1 za2
2 · · ·zan

n = 1 for all a ∈ Γ}
.

In fact every algebraic subgroup is of this type, [BG07, Corollary 3.2.15]. Further, if Λ is a sub-
group of Zn of rank n − r then HΛ is an algebraic subgroup of dimension r . By dimension here
we mean the dimension of the variety, see for example [Har77, Definition on Page 5].

Lemma 4.10. For all (a1, . . . , ak ) ∈Zk , the point(
λa1 , . . . ,λak

)
belongs to an algebraic subgroup of dimension 1.

6The subscript m in the notation Gn
m stands for “multiplicative” and is unrelated to the input m ∈ N in our

decision problem which stands for the number of times we aim enter the target set.
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Proof. If all ai = 0, then the lemma clearly holds, so suppose that there is some j such that a j ̸=
0. The tuple (a1, . . . , ak ) belongs to the linear subspace that is defined by the linear equations:

ai x j −a j xi = 0, i ̸= j , and 1 ≤ i ≤ k.

These are k −1 equations, defining a linear subspace V . It follows that Λ :=V ∩Zk is generated
by a set of k−1 vectors (and no smaller set). This in turn implies that the point in the statement
of the lemma belongs to the algebraic subgroup HΛ, which is a subgroup of dimension 1.

We will denote by H1(n) the union of all algebraic subgroups of Gn
m that have dimension 1;

the parameter n will be omitted when the ambient dimension is understood. We are interested
in the intersection

H1 ∩X0,

as according to the lemma above, this will contain all

(λx1 ,λ−x1 , . . . ,λxm ,λ−xm )

for which

Q0(λx1 ,λ−x1 , . . . ,λxm ,λ−xm ) = 0,

where xi are integers.
In order to analyse the intersection above, the variety X0 will be partitioned into two subsets

which we now define. A linear torus is an algebraic subgroup that is irreducible. A torus coset
is a coset of the form g H where H is a linear torus and g ∈Gn

m .
Given any subvariety X ⊆ Gn

m we denote by X • the union of all nontrivial torus cosets that
are contained entirely in X , in other words:

X • def=⋃{
g H a torus coset : g H ⊆ X and nontrivial

}
.

Also define

X ◦ def= X \ X •.

We will analyse the points in X •
0 ∩H1 and those in X ◦

0 ∩H1 in the next two subsections, calling
them respectively the tall points and the short points.

4.2.1 Tall Points

Recall that for a vector of integers a ∈Zn we write

za = za1
1 · · ·zan

n .
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Let A be an n ×n matrix with integer entries, and denote by A1, . . . , An its columns. We write by
ϕA : Gn

m →Gn
m the map

ϕA(z)
def= (

zA1 , . . . ,zAn
)
.

One can show that ϕAB = ϕB ◦ϕA, and as a consequence for matrices A with determinant ±1,
ϕA is an isomorphism7 with inverse ϕA−1 . Such an isomorphism is called a monoidal transfor-
mation. Recall that the group of n×n integer matrices with determinant ±1 is the special linear
group, denoted SL(n,Z).

We state here some important basic results related to the structure of algebraic subgroups.
Recall that we have used the notation ∥a∥ for the ℓ1 norm; when A is a matrix, we denote by ∥A∥
the maximum of ℓ1 norms of its columns.

Proposition 4.11 ([BG07, Proposition 3.2.10 and Corollary 3.2.9]). Let HΛ be a linear torus,
where Λ is a subgroup of Zn of rank n − r and suppose that Λ has n − r independent vectors of
norm at most N . Then there is a matrix A ∈ SL(n,Z) with ∥A∥ ≤ n3N n−r and

∥∥A−1
∥∥≤ n2n−1N (n−1)2

,
such that

ϕA(1n−r ×Gr
m) = HΛ,

where

1n−r
def= {(1, . . . ,1)︸ ︷︷ ︸

unit of Gr
m

}.

From the bounds of GA
m , we can effectively compute this matrix, given n − r independent

vectors ofΛ.
Let X ⊆ Gn

m be a subvariety. We say that an algebraic subgroup H of Gn
m is maximal in X if

H ⊆ X and H is not contained in a larger subgroup of X .

Proposition 4.12 ([BG07, Proposition 3.2.14]). Let X ⊆ Gn
m be a subvariety, defined by polyno-

mial equations fi (x) :=∑
ci ,axa = 0, 1 ≤ i ≤ k, and let Ei be the set of exponents appearing in the

monomials of fi . Let H be a maximal algebraic subgroup of Gn
m contained in X . Then H = HΛ

whereΛ is generated by vectors of type a′
i −ai , with a′

i ,ai ∈ Ei , for i = 1, . . . ,k.

The first proposition says that linear tori of dimension r are simply isomorphic to Gr
m , and

that the isomorphism is given in terms of a monoidal transformation that we can compute. (An
analogous statement holds also for general algebraic subgroups; however the component 1n−r

is replaced by a finite subgroup of Gn−r
m in the general case.) The second proposition tells us

that maximal algebraic subgroups contained in a variety X are defined simply by the exponents
of monomials that appear in the definition of X .

The two propositions above have the following important consequence. If g H ⊆ X is a max-
imal torus coset (meaning that it is not contained in another torus coset), then H is one of the

7This means that it is a group homomorphism that is also a morphism of algebraic varieties.
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components of a maximal algebraic subgroup H ′ of the variety g−1X . Proposition 4.12 implies
that there are finitely many such H ′, that we can effectively compute them, and further that
they are independent of g —note that only the exponents matter in the proposition, not the co-
efficients. Since it is possible to compute the equations of each component of H ′ by factorising
in the number fieldQ(λ), we have:

Lemma 4.13. We can effectively construct a (possibly empty) set TX of positive-dimensional tori,
such that if g H ⊆ X is a maximal torus coset, then H ∈ TX , and for every H ∈ TX there is some
torus coset g H ⊆ X which is maximal.

From this lemma, given a variety X , another way of defining the subset X • is

X • =⋃{
g H : g ∈Gn

m , H ∈TX , and g H ⊆ X
}

.

Finally we give another way of expressing all torus cosets g H for fixed H that are contained in X .

Lemma 4.14 ([BG07, Theorem 3.3.9]). Let X ⊆ Gn
m be a subvariety and H a linear torus of di-

mension r ≥ 1. Then there exists a matrix A ∈ SL(n,Z), which can be computed, such that⋃
g H⊆X

g H =ϕA(X1 ×Gr
m),

where X1 ⊆Gn−r
m is a subvariety, whose defining polynomials can be computed.

Proof. Using Proposition 4.12 we can conclude that H = HΛ whereΛ is a subgroup ofZn of rank
n − r , and from Proposition 4.11, we can compute a matrix A, such that H = ϕA(1n−r ×Gr

m). If
we define X̃ to be ϕ−1

A (X ), we have⋃
g H⊆X

g H = ⋃
g ·(1n−r ×Gr

m )⊆X̃

g · (1n−r ×Gr
m).

Note that since A can be computed, so can the polynomials of X̃ . Let f1, . . . , fk be these defining
polynomials of X̃ . Then g · (1n−r ×Gr

m) being a subset of X̃ means that

fi (g1, . . . , gn−r , yn−r+1, . . . , yn) = 0, 1 ≤ i ≤ k,

are identically satisfied in yn−r+1, . . . , yn . This is just a set of polynomial equations in indetermi-
nates g1, . . . , gn−r , i.e. a subvariety ofGn−r

m , which we call X1. So if g ∈ X1, then g ·(1n−r ×Gr
m) ⊆ X̃ ,

or equivalently ϕA(g · (1n−r ×Gr
m)) ⊆ X . The lemma follows.

The end goal of this subsection was to show that X • is composed of finitely many sets which
essentially are subvarieties of strictly smaller dimension. Since all the objects are effective, this
lends itself to a recursive procedure. Before explaining how all of this comes together in the
proof of Lemma 4.9, we first discuss the points in X ◦.
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4.2.2 Short Points

The height of a point z in Q
n

is a central notion in Diophantine geometry. It is used to measure
the arithmetic complexity of z. For more details the reader should consult, for example, Chap-
ter 1 of [BG07]. For our purposes, it suffices to define the height as follows. Let K :=Q(λ) be the
number field that we work in. There is a way of choosing absolute values MK in this field, such
that the product formula holds. Define

log+ t = max(0, log t ).

Then the height8 of a point z = (z1, . . . , zn) ∈ K n is defined as:

h(z)
def= ∑

v∈MK

max
j

log+ |z j |v .

We are interested in specific points of the form (λx1 , . . . ,λxn ), where xi ∈ Z. The height of such
points has the following properties:

Lemma 4.15. Let x ∈Zn , and denote by M = max j |x j |. Then

Mh(λ) ≤ h
(
(λx1 , . . . ,λxn )

)≤ 2Mh(λ).

Proof. By the definition of height and absolute value we have:

h
(
(λx1 , . . . ,λxn )

)= ∑
v∈MK

max
j

log+ |λx j |v = ∑
v∈MK

max
j

log+ |λ|x j
v .

Since for every absolute value | · |v , |λ|v |λ−1|v = 1, it follows that∑
v∈MK

max
j

log+ |λ|x j
v ≤ M(h(λ)+h(λ−1)),

and since h(α) = h(α−1) for every algebraic number α (see [BG07, Lemma 1.5.18]), we get the
upper bound. For the lower bound:

h
(
(λx1 , . . . ,λxn )

)≥ h(λM ) = Mh(λ).

The main fact that allows for a procedure to decide multiple reachability for rotations is the
following theorem on heights of points in X ◦∩H1, due to Bombieri and Zannier:

Theorem 4.16 ([Sch00, Theorem 1, Page 524]). Let X ⊆Gn
m be a subvariety. Then there exists an

effective bound b ∈N depending only on X such that for all algebraic points z ∈Gn
m ,

z ∈ X ◦∩H1 ⇒ h(z) ≤ b.

The theorem cited in [Sch00] does not explicitly state that the bound is effective, but upon
a closer inspection of the proof one can see that almost all the bounds are explicit, with the
exception of the points (c∗1 , . . . ,c∗h ) ∈Zh which are chosen to be outside a finite number of linear

subspaces ofQh . It is plain that we can effectively construct such a point.
Now it is possible to describe the algorithm that computes the bound of Lemma 4.9.

8The long name is the absolute logarithmic (Weil) height.
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4.2.3 The Algorithm

Consider vectors x ∈Zm such that

(λx1 ,λ−x1 , . . . ,λxm ,λ−xm ) ∈ X0.

From Lemma 4.10 these points also belong to H1 ∩ X0. From Theorem 4.16 we compute a
bound b0 ∈N such that if ∥x∥ > b0 then (λx1 , . . . ,λ−xm ) does not belong to H1 ∩X ◦

0 .
Next, for points in H1 ∩X •

0 , we use Lemma 4.13 to construct the set TX0 of tori, which have
a maximal coset contained in X0. If TX0 is empty, so is the set X •

0 , and we are done because the
bound b0 suffices. Otherwise let H ∈TX0 be a linear torus of dimension r ≥ 1.

If r = n, using Lemma 4.14 we can compute a matrix A ∈ SL(n,Z) such that⋃
g H⊆X0

g H =ϕA(Gn
m).

In this case, we take the image of A, Im(A) ⊆Qn , which is a linear subspace, and intersect it with
the subspace generated by the equations x1+x2 = 0, x3+x4 = 0, up to xn−1+xn = 0, to get linear
subspace V of Qm . This is a subspace of Qm , because the odd coordinates determine the even
ones. The set V ∩Zm is a subgroup of Zm , and it satisfies the conditions of Lemma 4.6, so for all
x ∈Zm , and g ∈Gn

m such that

(λx1 ,λ−x1 , . . . ,λxm ,λ−xm ) ∈ g H ,

the vector x cannot be a solution.
Now suppose that 0 < r < n. Using Lemma 4.14, we compute a matrix A ∈ SL(n,Z), and the

subvariety X1 ⊆Gn−r
m , such that ⋃

g H⊆X0

g H =ϕA(X1 ×Gr
m).

Since the set of all subgroups of dimension 1, H1, is invariant under monoidal transformations,
we have

H1 ∩ϕA(X1 ×Gr
m) =H1 ∩ (X1 ×Gr

m).

Let b′
1 be the bound we get from Theorem 4.16 when applied to the intersection

X ◦
1 ∩H1(n − r ). (17)

Let (y1, . . . , yn−r ) ∈ Zn−r , and denote by ỹ the maximal value among |y1|, . . . , |yn−r |. Then the
bound in Lemma 4.15, implies that if ỹ > b′

1/h(λ), (λy1 , . . . ,λyn−r ) does not belong to the in-
tersection in (17). We can enumerate the finitely many vectors (y1, . . . , yn−r ) ∈ Zn−r such that
ỹ ≤ ⌈b′

1/h(λ)⌉, and test for each using Tarski’s algorithm whether (λy1 , . . . ,λyn−r ) belongs to X1,
and collect those vectors for which the inclusion holds in a finite set E ⊆ Zn−r . If E = ; then
clearly there are no solutions in ϕA(X ◦

1 ×Gr
m), otherwise the set

(E ×Zr ) · A,
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is a finite union of sets of the form V +h where V is a linear subspace ofQn . When we intersect
these translated subspaces with requirements that odd coordinates must be strictly positive and
distinct, we get a set of linear (in)equalities, for which an integer solution x can be found using
a variation of integer linear programming (see, e.g., [JMM17]). If ∥x∥ > b0, then set b1 = ⌈∥x∥⌉. In
this way we have shown that if there is a point (λy1 ,λ−y1 , . . . ,λym ,λ−ym ) belonging either to X ◦

0
or to ϕA(X ◦

1 ×Gr
m), then there is one with exponents x such that ∥x∥ ≤ b1.

We then proceed recursively for X •
1 to construct the set TX1 , and repeat the process. Simi-

larly for other tori in TX0 , either by showing that there are no solutions or computing bounds
b2 < b3 < ·· · < B . The procedure terminates because in Lemma 4.14 the dimension of the sub-
variety X1 is strictly smaller than that of X , and because the set of tori TX in Lemma 4.13 is
finite.

This concludes the proof of Lemma 4.9, and that of Theorem 1.4.
Finally, let us briefly comment about why we are limited to rotations on the plane. If the

given matrix is not a rotation, then the relevant points do not all belong to H1, but rather to
H2, in subgroups of dimension 2. Intuitively this is because the matrix changes vectors over
two dimensions: scaling and rotating. What we lack is an effective bound akin to that in Theo-
rem 4.16, but for subgroups of dimension 2. There are finiteness results, often as special cases
of the Mordell-Lang conjecture, see e.g. [Lau84], but to our knowledge, no effective bounds are
known.
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