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Abstract: To control the growth of CO2 emissions and achieve the goal of carbon peaking, this
study carried out a detailed spatio-temporal analysis of carbon emissions in major cities of China
on a city-wide and seasonal scale, used carbon emissions as an indicator to explore the impact of
COVID-19 on human activities, and thereby studied the urban resilience of different cities. Our
research re-vealed that (i) the seasonal patterns of CO2 emissions in major cities of China could be
divided into four types: Long High, Summer High, Winter High, and Fluctuations, which was highly
related to the power and industrial sectors. (ii) The annual trends, which were strongly affected by
the pan-demic, could be divided into four types: Little Impact, First Impact, Second Impact, and Both
Impact. (iii) The recovery speed of CO2 emissions reflected urban resilience. Cities with higher levels
of de-velopment had a stronger resistance to the pandemic, but a slower recovery speed. Studying
the changes in CO2 emissions and their causes can help to make timely policy adjustments during the
economic recovery period after the end of the pandemic, provide more references to urban resilience
construction, and provide experience for future responses to large-scale emergencies.

Keywords: CO2 emissions; time series decomposition; annual dynamics; seasonal dynamics; urban
resilience; social emergencies (COVID-19)

1. Introduction

Global warming is broadly agreed to be mainly caused by human activity, and is
currently an important issue facing sustainable human development [1]. Evidence shows
that the heat-trapping gases released by burning fossil fuels, referred to as greenhouse
gases, are responsible for causing global warming [2], which is related to multiple sectors
such as power, industry, transportation, and residential consumption [3]. Thus, greenhouse
gas emissions (GHG), such as carbon dioxide (CO2), are critical for understanding and
addressing the climate crisis [4]. In this context, many countries have set clear targets to re-
duce their CO2 emissions in order to face the challenges of climate change. China promises
to peak carbon by 2030 and achieve carbon neutrality by 2060 [5]. Correspondingly, despite
facing many difficulties, China is taking a series of measures to achieve this goal, making a
positive contribution to promoting global governance in response to climate change. These
measures include developing and widely promoting low-carbon technologies; developing a
new energy industry to promote energy transformation; and implementing comprehensive
low-carbon policies and laws [6–8]. So far, CO2 emissions per unit of energy consumption,
energy consumption per unit of gross domestic product (GDP), and CO2 emissions per unit
of GDP all present downward trends in China, but China is yet to reach its peak in CO2
emissions per capita, which is the key factor of CO2 emission measurements [9]. Therefore,
accurately characterizing the dynamics of CO2 emissions (before the carbon peak is attained
as a turning point) is critical for China to formulate and implement corresponding policies
in order to fulfill its commitment of reducing CO2 emissions.
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At present, China’s total CO2 emissions rank first in the world, but their growth rate
is constantly decreasing and has been effectively controlled. In addition, China’s CO2
emissions are unevenly distributed in space, with significant differences among different
sectors [10]. According to studies in recent years, there was an initial dip in CO2 emissions
due to the COVID-19 pandemic, followed by varying degrees of rebounds [11]. Studying
the dynamics of CO2 emissions can observe the impact of the COVID-19 pandemic on
human socio-economic activities and reveal patterns of urban resilience occurring during
the pandemic period (2019–2022). Urban resilience is the capacity of a city to rebound
from major and minor disasters [12], which shows whether a city can cope with risks or
events and is an important goal in SDG 11 (making cities and human settlements inclusive,
safe, resilient, and sustainable). According to the recovery of CO2 emissions, we can adjust
the relevant policies in the post-pandemic period in a timely manner and study the laws
of urban resilience through the recovery rate of CO2 emissions. This can also provide
experience for dealing with disturbances in the future and improve the adaptability of
cities to risks [13].

As the world’s current major economic power and emitter of CO2, there are abun-
dant CO2 emissions studies focusing on China [14]. However, due to the lack of high-
spatiotemporal-accuracy CO2 emission data, studies of CO2 dynamics are mostly analyzed
on an annual basis [15], lacking a high temporal accuracy. Moreover, most studies choose
the whole country or certain provinces as their research object, but less focus on the ur-
ban scale [16], which lacks fine-scale conclusions for the guidance of emission reduction.
Furthermore, the contribution of each CO2 emission sector is worth considering, but the
specific classification of various CO2 emission sources is needed now [17]. According to
relevant research, the influencing factors of CO2 emissions are mainly divided into three
categories: technology, scale, and structure, which are also the main ideas involved in
implementing CO2 reduction policies [18–20]. In recent years, some studies have noticed
the impact of seasonal changes on carbon emissions [21], which provides new possible
methods for emission reduction, but there is a lack of more extensive and detailed research.
The development of CO2 emission datasets brings new possibilities for finer-scale studies.
Fine temporal–spatial CO2 emission management becomes the inevitable trend, keeping
the goals of carbon peak and carbon neutrality. More precision in terms of the accuracy of
timing allows us to grasp the dynamic changes occurring due to the impact of major social
events on human activities in a more timely and accurate manner. The precise spatial scale
allows us to focus on typical research areas. In addition, detailed sources of CO2 emissions
make it easier for us to study the causes of CO2 emission changes.

In order to summarize the patterns of CO2 emission changes occurring during the
pandemic period and provide new ideas for the implementation of future emission re-
duction policies, this study separated the seasonal and annual trends of CO2 emissions
by time series decomposition. Taking COVID-19 from 2019 to 2022 as an example, we
analyzed the relationship between the impact of major social events and changes in CO2
emissions, as well as the relationship between seasons and CO2 emissions during this
period, which is lacking in previous relevant studies. This study fills the gap in related
research by conducting more refined studies (urban and monthly scales), comparing and
analyzing CO2 emissions from different sectors and cities, and studying the seasonal trends
of CO2 emissions. In addition, we studied the recovery rates of CO2 emissions in different
cities after COVID-19 (2019.1–2022.12) and analyzed their patterns.

2. Data and Methods

This study contains three major steps (Figure 1): (1) Data collection and the pre-
procession of CO2 emissions and relevant variables. (2) Time series decomposition of CO2
emission trends into annual and seasonal patterns, and then an analysis of both patterns by
types and causes. (3) Evaluation of urban resilience during the COVID-19 pandemic based
on the annual patterns of CO2 emissions. The following sub-sections detail the data and
main methods.
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Figure 1. The process in this study.

2.1. Raw Data Collection and Pre-Procession

Thirty-one major cities in China with intensive human activities were selected as the
research areas to be analyzed, which have high carbon footprints and become the main
locations for controlling CO2 emissions. The research period lasted from January 2019 to
December 2022, which includes the period from the outbreak to the end of the pandemic.

The raw data for this article came from Global gRidded dAily CO2 Emissions Dataset
(GRACED) [22–25], which provides near-real-time global gridded daily CO2 emissions
data from fossil fuel and cement production with a global spatial resolution of 0.1◦ by 0.1◦

and a temporal resolution of 1 day, and the measure in kilograms of CO2 per hour (kgC/h).
The data satisfy the demand for high-quality, high-precision, and near-real-time data on
CO2 emissions to support global emissions monitoring across various spatial scales.

We calculated the monthly CO2 emission data for provincial capital cities in China. For
each city, we obtained the total CO2 emission data, as well as specific CO2 emission data for
each of the four sectors: Power, Industry, Residential, and Ground Transportation. GRACED
also provided CO2 emission data from three sectors: International Aviation, International
Shipping, and Domestic Aviation, which were not studied in detail in this work, due to their
small contributions and their very low or even zero CO2 emissions. A data summary is
provided in Table 1 to provide readers with a general understanding of the data.

Table 1. Summary of total CO2 emissions data for the studied cities (unit: kgC/h).

Year 2019 2020 2021 2022

Max 13,005,368 12,957,019 13,696,092 12,686,413

Min 71,630 73,133 77,953 71,983

Mean 2,255,063 2,333,183 2,470,084 2,413,396

STDEV 2,297,401 2,331,765 2,438,838 2,279,562



ISPRS Int. J. Geo-Inf. 2024, 13, 181 4 of 13

Other relevant data, such as population and gross domestic product (GDP). etc., were
obtained from the China Statistical Yearbook to serve as a reference for exploring the causes
of CO2 emission changes in the subsequent experiments [26].

2.2. Time Series Decomposition of CO2 Emissions Trend

A time series Yt with seasonal factors can be decomposed into the following three
components: (1) a trend component (Tt) representing long-term changes; (2) a seasonal
component (St) which reveals periodic changes over time; and (3) an error component (Et)
as a mutation caused by errors [27]. Thus, Yt can be decomposed by an additive model.

Yt = Tt + St + Et (1)

This seasonal trend decomposition based on LOESS (STL) is a time series data analysis
method, which makes the curve smoother and employs locally weighted regression models
to decompose a time series into trend, seasonal, and remaining contributions. STL consists
of an inner and an outer loop; the inner loop calculates the trend and seasonal components
and the outer loop provides the robustness weights for the next inner loop. The process of
STL is shown in Figure 2.
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Figure 2. The process of STL.

STL is a simple and easy-to-use method for obtaining robust trend and seasonal com-
ponents, and has a better applicability for complex long-term time series. The advantages
of STL is that it can identify seasonal components changing over time, it is responsive to
nonlinear trends, and it is robust in the presence of outliers [28]. The STL procedure was
developed and implemented in the R software (version 4.2.1), and decomposed the CO2
emissions into seasonal and annual patterns. Further, we analyzed the types and causes of
the seasonal and annual patterns from the perspectives of CO2 emission sectors and urban
development, respectively.
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2.3. Evaluation of Urban Resilience

A city is a huge artificial ecosystem in the sense that we can deal with the city problem
as an ecological entity. We found that when cities were facing the impact of the pandemic,
their human activity levels reflected in CO2 emissions exhibited different fluctuations,
which were related to their different levels of development. In this study, we used the per
capita GDP of 2019 to represent the development levels of different cities during normal
periods. Some cities, which revealed strong resistance to external influences and quickly
recovered after being affected, we identified as urban resilient. Due to the fact that CO2
emissions levels can reflect the strength of human activity levels, the recovery rate of CO2
emissions can reflect the recovery rate of human activity levels, thereby reflecting the
resistance of different cities (Equation (2)). Note that, in order to quantitatively compare
cities with different levels of CO2 emissions, their variations in CO2 emission levels were
measured by the ratio of the increase in CO2 emissions to the initial value per time interval
of the recovery period,

V =
∆E
E0

Tend − Tstar
(2)

with the recovery rate of CO2 emissions V, the total increase in CO2 emissions during the
recovery period is represented by ∆E. E0 is the initial value of CO2 emissions (the average
CO2 emissions in the first half of 2019, which represents the normal CO2 emissions without
experiencing the pandemic); Tstar denotes the time when CO2 emissions begin to show a
long-term upward trend; and Tend defines the time when CO2 emissions do not show an
upward trend or the monthly increase is very small. Furthermore, we used per capita GDP
as an indicator to represent the development level of the city to investigate the relationship
between the development level of the city and its own recovery rate, and then reveal the
patterns of urban resilience.

3. Results

We decomposed the CO2 emission variation patterns into seasonal and annual varia-
tions by STL, and then classified and summarized the results. In Section 3.1, we discuss
the seasonal patterns of total CO2 emissions and further investigate the seasonal patterns
of the four specific CO2 emission sectors, power, industry, residential, and others. As
the power and industry sectors were the main sources of CO2 emissions, we focused on
their discussion. In Section 3.2, we analyze the annual patterns of total CO2 emissions
divided into four types. Then, we choose a city as an example for more detailed analysis.
In Section 3.3, we calculate the recovery rate of the city and plot it.

3.1. Seasonal Patterns of CO2 Emissions

The seasonal patterns of the total CO2 emissions in major cities in China can be
generally classified into the following four categories in Figure 3. The number on the
vertical axes in Figure 3 represents the proportion of seasonal components of CO2 emissions
relative to the initial value. The distribution of these patterns is shown in Figure 4. More
detailed data can be found in Table 2. Power and Industry, respectively, represent the
proportion of CO2 emissions from the power sector and industry sector in the total CO2
emissions. Type represents the classification of the seasonal components of CO2 emissions
in cities. No data represents missing relevant raw data.

Long-term High: CO2 emissions have a low peak around February and a high to
medium level during other time periods, such as Shanghai.

Summer High: CO2 emissions have a high peak during summer and a low level
during other time periods, such as Beijing.

Winter High: CO2 emissions have a high peak during winter and a low level during
other time periods, such as Guangzhou.

Fluctuations: CO2 emissions fluctuate frequently throughout the year, such as Hohhot.
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Considering the sectors of CO2 emissions, we found that CO2 emissions from the
same sector in different cities had similar patterns. The power sector peaked in summer,
in winter, or both, and often fluctuated in the other months. For the industry sector, all
cities’ CO2 emissions revealed a low peak around February, and most of them stayed at
a high level in the other months. Note that all cities’ CO2 emissions from the residential
sector showed the same pattern: peaking around January and remaining at low levels
at all other times. Due to the significant impact of the pandemic on CO2 emissions from
the transportation sector, the data could not be decomposed into a trend component and
seasonal component. But we can find patterns by observing the original data in Figure 5:
during the pandemic, there were two time periods (January to October 2021 and March to
December 2022) during which CO2 emissions were at very low levels, while CO2 emissions
fluctuated greatly at other times. The other sectors were not studied in detail, due to their
small contributions and the very low or even zero CO2 emissions.
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Table 2. The composition and seasonal classification of CO2 emissions in cities.

City Power/% Industry/% Type

Chengdu 11.04 69.58

Long-term High

Guiyang 39.74 36.79
Hangzhou 11.05 65.63

Hefei 36.07 48.58
Kunming 18.86 57.83
Shanghai 8.36 83.53

Chongqing 37.02 41.87
Nanjing 31.32 56.47
Harbin - -

Beijing 17.98 60.2

Summer High
Shenyang 26.4 57.03

Changchun 69.38 14.65
Tianjing 55.11 24.19

Shijiazhuang 63.91 25.33

Guangzhou 40.58 34.15

Winter High

Haikou 72.29 13.53
Nanchang 58.97 26.73
Nanning 30.34 53.59
Urumqi 40.97 38.19
Wuhan 27.15 62.87
Xi’an 41.99 31.99

Zhengzhou 58.28 28.99
Xining - -
Lhasa 10.31 28.96

Changsha 28.83 45.89

Taiyuan 67.06 22.25

Fluctuations

Hohhot 79.97 11.11
Lanzhou 59.74 24.84

Jinan 63.59 23.46
Yinchuan 86.51 7.74
Fuzhou 58.23 28.04

Mean 43.14 38.76
Max 86.51 83.52
Min 8.36 7.74
SD 22.40 19.52ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 14 
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3.2. Annual Patterns of CO2 Emissions

In our study, city CO2 emissions showed an upward trend most of the time. However,
almost all cities fluctuated during specific time periods, which coincided highly with the
outbreaks of the pandemic. Based on these specific fluctuations, we divided the annual
patterns of total CO2 emissions into the following four types in Figure 6. First and Second
represent the time of the first and second outbreaks of the pandemic.

Figure 6. Conceptual charts of the four trend patterns of CO2 emissions: (a) Little Impact, (b) First
Impact, (c) Second Impact, and (d) Both Impacts.

Little Impact: CO2 emissions showed a stable upward trend or little change, such as
in Hohhot.

First Impact: CO2 emissions showed a low peak in early 2020, followed by a slow
upward trend, such as in Fuzhou.

Second Impact: CO2 emissions showed a low peak at the end of 2021, such as in Beijing.
Both Impacts: CO2 emissions showed low peaks in early 2020 and at the end of 2021,

such as in Changchun.
For each type, we selected a typical city to display the STL results (Figure 7). The

number on the vertical axes in Figure 7 represents the proportion of seasonal components
of CO2 emissions relative to the initial value. To more specifically describe the relation-
ship between the impact of the pandemic and the changes in CO2 emissions, we selected
Changchun as an example. During the period from January 2020 to April 2020, Changchun
City had a cumulative increase of 49 new infected individuals, which led to the imple-
mentation of strict control measures and a reduction in human activities, so, accordingly,
CO2 emissions decreased during this period. For a long time afterwards, there were no
new infections and CO2 emissions increased during this period. At the beginning of 2022,
there was a large number of new infections, while CO2 emissions decreased again at the
same time. Due to China’s implementation of the policy of liberalization at the end of the
pandemic, this subsequent part was not within the scope of this study. It can be seen that
the CO2 emissions of Changchun significantly decreased during the two time periods of
sudden increases in the number of infected individuals, since the levels of human activities
were significantly affected by the pandemic at those times. Almost all cities showed a
similar pattern: when the impact of the pandemic was severe or aggravated, CO2 emissions
decreased, and vice versa, when the impact was mild, CO2 emissions rose.
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(c) Shanghai, and (d) Changchun. (The shaded areas represent that the city was in a period of
recovery.)

3.3. Urban Resilience

We calculated the rates of increase in CO2 emissions in cities and indicated which post-
pandemic recovery rate they belonged to; the results are presented in Table 3. The Recovery
Speed I and Recovery Speed II represent the recovery speeds of CO2 emissions in cities after
experiencing the impact of the first and the second outbreak of the pandemic. Recovery
Value I and Recovery Value II represent the proportion of CO2 emissions increasing relative
to the initial value after experiencing the impacts of the first and second pandemic outbreaks.
No data means that the city did not experience a decrease in CO2 emissions due to the
pandemic during this period, or it did not recover until the end of the research period.
Then, we plot the calculation results in Figure 8. Blue means the recovery rate after the first
outbreak of the pandemic, while red means the second.

Table 3. The recovery rate of CO2 emissions in cities and other data.

City Per Capita GDP
/×104 Yuan

Recovery Speed
I

Recovery Speed
II Recovery Value I Recovery Value

II

Fuzhou 13.53 0.54% - 9.62% -
Hefei 12.12 1.17% - 7.5% -
Jinan 12.31 1.66% - 18.6% -
Lhasa 8.68 1.15% - −0.72% -

Nanchang 10.48 1.00% - −1.78% -
Nanning 5.82 1.21% - 18.76% -
Tianjing 11.37 1.07% - 14.39% -
Urumqi 9.08 2.02% - 1.57% -
Wuhan 13.53 0.98% - 15.24% -
Xi’an 8.37 0.75% - 3.52% -

Xining 6.26 1.89% - −0.65% -
Changsha 13.07 0.47% - 8.27% -
Nanjing 17.45 - 1.43% - 6.25%

Shanghai 17.54 - 0.78% - 3.72%
Beijing 18.75 - 1.71% - 14.49%

Shijiazhuang 5.78 - 1.22% - 12.5%
Taiyuan 9.56 - 1.37% - 9.79%

Shenyang 7.97 2.31% 0.85% 13.71% 5.37%
Changchun 7.83 2.54% 1.70% 3.39% 1.75%

Harbin 5.07 1.69% 1.36% 5.01% 14.43%
Zhengzhou 10.01 1.66% 1.09% 10.93% 9.19%
Kunming 8.51 0.98% 0.51% 7.57% 6.12%

Guangzhou 15.04 1.10% 0.89% −1.68% 1.19%
Hangzhou 14.99 0.51% 0.47% 1.27% −2.06%
Chengdu 9.46 0.62% 0.48% 8.08% 8.45%
Hohhot 8.98 - - - -
Guiyang 7.79 - - - -
Haikou 7.1 - - - -

Lanzhou 7.38 - - - -
Yinchuan 7.88 - - - -

Chongqing 8.75 - - - -
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4. Discussion
4.1. Seasonal Patterns and the Causes

The data sources used in this study, which provide the CO2 emissions, include many
sources (such as industrial electricity and building electricity). For the power sector, about
half of the cities saw seasonal fluctuations in CO2 emissions, while the others peaked only
during summer or winter. In most cities, the CO2 emissions from the industry sector were at
high levels throughout the year, but lower peaks were experienced during the Spring Festival
(traditional Chinese festival during which many companies, factories, enterprises, and schools
give employees and students a long holiday). However, different from the industry sector,
due to the impact of the pandemic, most people choose to celebrate the Spring Festival at
home, resulting in an increase in CO2 emissions from the residential sector during this period.
As for CO2 emissions from the transportation sector, due to the uncertainty of people’s travel
willingness during the pandemic and other possible factors, various transportation modes,
such as express delivery, saw fluctuation. When implementing travel restriction policies, it
will drop to a very low or even close to zero level.

For all cities in this study, the CO2 emissions of the power and industrial sectors
accounted for at least 75% of the total CO2 emissions; that is, these two sectors are the main
contributors to changes in the total CO2 emissions. In general, cities with the industry
sector as their main source of CO2 emissions reveal more obvious seasonal patterns of CO2
emissions, while cities with the power sector dominating as the main source of CO2 emis-
sions are more prone to fluctuations in their seasonal CO2 emission patterns. In addition,
we also found that most cities with similar seasonal patterns in their CO2 emissions are
geographically clustered (see Figure 3). As for the residential and transportation sectors,
both have undergone significant changes at certain times, but CO2 emissions from the
industrial and electricity sectors have not shown significant fluctuations during these times.
This indicates that emissions reduction in the power and industrial sectors is important for
achieving carbon peaking, while low-carbon transportation and residential energy saving
cannot make sufficient contributions to this. Although seasonal components account for a
relatively small proportion of CO2 emissions, they are more prone to significant changes
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in the short-term time scale. Therefore, in order to observe the changes in CO2 emissions
more accurately, it is necessary to remove seasonal effects. This way, we can grasp the
rising and falling trends of CO2 emissions in a timely and accurate way, which is conducive
to a fast-responding policy to achieve carbon peaking.

4.2. Resilience of Annual Patterns in CO2 Emissions

The impact of the pandemic on cities varied in degree and duration, and thus on
human activities, which could be reflected through the changes in the CO2 emission trends.
At the same time, different cities had varying levels of resistance and resilience to the
impact of the pandemic. We compared the changes in the number of infected individuals
and the annual patterns in CO2 emissions during the pandemic period, and obtained the
relationship between the two:

(i) When the impact of the pandemic did not exceed the city’s resistance to the pan-
demic, CO2 emissions showed an upward trend associated with the normal development
of the economy and the acceleration of various production activities.

(ii) When the impact of the pandemic exceeded the city’s resistance, CO2 emissions
rapidly decreased in the short-term time scale and then rose after the impact ended.

During the pandemic, the period when urban CO2 emissions suddenly decreased is
similar to the period when the number of infected people in the city suddenly increased
significantly (which also indicates that the impact of the pandemic is increasing). This
result indicates that it is feasible to measure the impact of large-scale emergencies on cities
through real-time observations of changes in CO2 emissions. When a city is affected by
large-scale emergencies, we can react in a timely manner and respond accordingly. It can
be seen that cities with a higher per capita GDP have a lower recovery rate. In fact, a higher
level of development means that the internal structure of the city is more complex, which
means that a small amount of impact can not only lead to the paralysis of the urban system,
but also to a more difficult recovery after destruction.

In this sense, urban resilience means “resistance”, “quick transformation”, and “rapid
recovery”. But from the results, most cities have been more or less affected by the pandemic,
indicating that the current construction of urban resilience is insufficient. Therefore, the
construction of urban resilience is important and should consider different levels of urban
development. The improvement in urban resilience can reduce the impact of large-scale
emergencies such as COVID-19, and accelerate the recovery rate of cities after the city is
affected. In addition, our study found that the CO2 emission levels of most cities after the
recovery period had exceeded the initial levels, with some even approaching a 20% increase.
For cities affected by two outbreaks, we found that the recovery rate of CO2 emissions
had an unreasonably high value after the first impact ended. In addition, comparing the
two trend lines in Figure 8, we found that the recovery rate of CO2 emissions after the
first impact of the pandemic was faster than the second. This means that the rising rate
of CO2 emissions during the period was not under control, which may be due to the lack
of experience in responding to the pandemic. This also indicates that there are still many
risks that need to be carefully addressed during the urban recovery period. Achieving a
fast recovery speed of cities after disasters is important, but ensuring that recovery is not
too excessive is also highly important. How to achieve these goals is what we need to focus
on in the future.

5. Conclusions

The impact of the pandemic on human activities is analyzed accurately and in more
detail, thereby studying the urban resilience of different cities. This included the seasonal
and annual patterns of CO2 emissions by STL, and urban resilience by calculating and
comparing the recovery rates of CO2 emissions in different cities.

Seasonal trends can be classified into four types, mainly generated by the power and
industrial sectors, which are also the focus of emission reduction. The seasonal portion of
CO2 emissions generally does not exceed 15% overall, but can change significantly in the
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short term, which means that we must consider it when observing the short-term trend of
CO2 emissions. When facing large-scale emergencies such as the pandemic, we need to
consider the seasonal trends of human activities when evaluating the short-term impacts
of the event. In addition, due to the significant differences in seasonal patterns between
different seasons, implementing emission reduction policies tailored to the seasons can
achieve better results. Due to the fact that cities with the same seasonal pattern are not
geographically dispersed, it is feasible to implement this differentiated policy nationwide.
However, this study still has the following limitations: (1) It is difficult to explain seasonal
trends related to the power sector due to the lack of more detailed classifications from the
raw data. (2) There is no analysis of urban resistance to compare with urban resilience
(existing research indicates an inverse relationship between the two). (3) Due to the
significant impact of the pandemic on the transportation sector, time series decomposition
cannot be performed.

The annual trend can also be classified into four types, which are related to the impact
of the pandemic. During the pandemic, CO2 emissions in many cities rose or recovered with
normal economic development, and rapidly decreased if severely affected by the pandemic.
Many cities are experiencing economic development or recovery, but uncontrolled CO2
emissions are detrimental to achieving the goal of carbon peaking. In our study, most cities
had already exceeded their initial CO2 emission levels after rebounding. Especially after
the end of the first pandemic outbreak, the rebound rate in some cities showed abnormally
high values, and their CO2 emissions eventually exceeded the initial value. When facing
large-scale emergencies, apart from the degree of impact, we also need to consider factors
such as urban development, economy, and population, etc., which can reflect the strength
of the city’s resistance to such events and play an important role in the achievement of
SDG 11. During the recovery period after the impact of the event, we also need to achieve
economic recovery while preventing excessive rebounds in CO2 emissions. Especially in
recent years, when SDG11 and the carbon peak target date are approaching, it is crucial to
control the growth rate of CO2 emissions and even achieve a reduction. In future research,
we can construct an urban resilience evaluation system based on CO2 emissions to achieve
the goals of urban health assessment, sustainable development, and carbon peaking.
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