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We investigate states of rapidly rotating Rayleigh-Bénard convection in a cylindri-
cal cell over a range of Rayleigh numbers 3×105 � Ra � 5×109 and Ekman numbers
10−6 � Ek � 10−4 for Prandtl number Pr = 0.8 and aspect ratios 1/5 � � � 5 using
direct numerical simulations. We characterize, for perfectly insulating sidewall boundary
conditions, the first transition to convection via wall mode instability and the nonlinear
growth and instability of the resulting wall mode states, including a secondary transition
to time dependence. We show how the radial structure of the vertical velocity uz and the
temperature T is captured well by the linear eigenfunctions of the wall mode instability
where the radial width of uz is δuz ∼ Ek1/3r/H whereas δT ∼ e−kr (k is the wave number
of a laterally infinite wall mode state). The disparity in spatial scales for Ek = 10−6 means
that the heat transport is dominated by the radial structure of uz since T varies slowly over
the radial scale δuz . We further describe how the transition to a state of bulk convection is
influenced by the presence of the wall mode states. We use temporal and spatial scales as
measures of the local state of convection and the Nusselt number Nu as representative of
global transport. Our results elucidate the evolution of the wall state of rotating convection
and confirm that wall modes are strongly linked with the boundary zonal flow being
the robust remnant of nonlinear wall mode states. We also show how the heat transport
(Nu) contributions of wall modes and bulk modes are related and discuss approaches to
disentangling their relative contributions.

DOI: 10.1103/PhysRevFluids.9.053501

I. INTRODUCTION

Thermal convection driven by buoyancy and subject to rotation [1,2] is a phenomenon of great
relevance in many physical disciplines, especially in geo- and astrophysics and also in engineering
applications. In the Rayleigh-Bénard convection (RBC) geometry a fluid with thermal-expansion
coefficient α, kinematic viscosity ν, and thermal diffusivity κ is bounded above and below by
isothermal boundaries separated by a height H and heated from below so as to produce a tem-
perature difference �. In a gravitational field with acceleration g, the strength of thermal forcing
is determined by the Rayleigh number Ra ≡ αg�H3/(κν), and the fluid type by the Prandtl
number Pr = ν/κ . In the presence of rotation about an axis parallel to gravity, the influence of
the Coriolis force is a balance of angular rotation rate �d and viscous diffusion time H2/ν. There
are many ways to represent this balance, namely, nondimensional � ≡ �d H2/ν and the Taylor
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number Ta ≡ (2�)2. Another measure popular in geophysics that we use here is the Ekman number
Ek ≡ ν/(2�DH2) that nicely captures the limit of rapid rotation as a small parameter, i.e., Ek → 0.
A similar parameter that measures the balance of buoyancy and rotation is the convective Rossby
number Ro ≡ √

Ra/(PrTa) = (Ra/Pr)1/2Ek = √
gα�/H/(2�d ) where the latter is the ratio of

buoyancy frequency and rotation frequency. Note that Ro is independent of dissipation parameters.
Unless otherwise specified, we use length scale H , timescale

√
H/(gα�), and temperature scale �

for nondimensional variables.
In physical realizations of convection, there are solid horizontal boundaries, usually of cylindrical

geometry with aspect ratio � ≡ D/H (D is the cylinder diameter), that have a finite thermal
conductivity and diffusivity. In direct numerical simulations (DNSs), these sidewall boundaries
can be perfectly insulating or, less frequently, perfectly conducting. Experimental boundaries are
somewhere in between these limits and tend towards the insulating case so as to minimize heat
transport through the sidewalls. We consider here the case of perfectly insulating sidewalls; results
for perfectly conducting boundaries will be presented elsewhere.

The global response of the system is measured by the molecular-diffusion-normalized heat
transport, Nusselt number Nu ≡ (〈uzT 〉z − κ∂z〈T 〉z )/(κ�/H ). Here, T denotes the temperature,
u is the velocity field with component uz in the vertical direction, and 〈·〉z denotes the average in
time and over a horizontal cross section at height z from the bottom.

The multitude of states of rotating Rayleigh-Bénard convection (RRBC) in a fluid layer bounded
above and below by isothermal boundaries have been elucidated over many decades going back to
early linear stability calculations [3,4] and preliminary experiments [5] (see also Ref. [2]). They
found that the onset of bulk convection was strongly suppressed by the rotation-induced Coriolis
force, which inhibits the vertical motions associated with thermal convection via mechanisms
associated with the Taylor–Proudman constraint on slow, inviscid flows [6]. In particular, the critical
Rayleigh number Rac was found to vary approximately as Ek−4/3 for rapid rotation. Whereas the
form of convection without rotation is in the form of convection rolls with characteristic length
λ ≈ 2H (for a roll pair), rotation induces vortical motions near onset [7] with a corresponding
characteristic length λ ∼ Ek1/3 [3]. Experimental heat transport measurements [8–11] confirmed the
suppression of the convective onset by rotation, noted that some manner of convection ensued prior
to strong bulk flow of linear theory, and revealed that rotation could, over some ranges in Ra and Pr,
enhance heat transport over nonrotating turbulent RBC. The nature of the “subcritical instability”
identified in the heat transport measurements was partially explained by linear stability calculations
of stationary wall-mode states [11,12] but simultaneous heat transport and shadowgraph visualiza-
tion experiments [13,14] together with theory [15,16] showed that these wall-mode states precess
in the rotating frame and have precession frequency ω and integer (resulting from the cylindrically
periodic azimuthal symmetry) mode number m. Further experiments [17–19] and linear stability
calculations [16,20,21] showed beautiful correspondence between theory and experiment—here we
denote Raw ∼ Ek−1 as the critical value for the transition from the diffusive conduction state to one
of wall-mode convection. A phase diagram showing the boundaries of different convective states in
RRBC is presented in Fig. 1 where we plot Ra/Rac(Ek = 0) versus Ek.

The enhancement of heat transport (Nu) in RRBC compared with its value in nonrotating RBC
(Nu0) has been observed in many experimental studies [8,14,18,25–29] and DNS [30–34] and has
been attributed to Ekman pumping from the thermal boundary layers. This enhancement occurs over
a range of Ra, Pr, and Ek, with states at low Pr or small Ek not showing an enhancement but rather
a decrease in Nu for all Ra [9,11,24,35–38]. We denote the value Rat at fixed Ek as the transition
from buoyancy-dominated flow to rotation-influenced behavior.

Another well-defined region of rapidly rotating convection is the geostrophic regime where the
flow maintains geostrophic balance and is rotation-dominated. The importance of this regime to
geophysical and astrophysical situations was articulated through the derivation [39] and simulation
[40–42] of a reduced set of equations valid in the limit Ek → 0 and Ra → ∞ such that the scaled
variable R̃a ≡ RaEk4/3 remains finite. The evolution of states from the onset of bulk convection
at R̃ac ≈ 8.7 depends on Pr and includes cellular patterns, convective Taylor vortices, plume
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FIG. 1. Schematic phase diagram of states of rotating convection (perfectly insulating sidewall boundary
conditions): RaEk4/3/A0 (dashed black line) where A0 = 8.7 is the asymptotic Ek → 0 value versus Ek. The
lines for Rac (dashed blue line) [4,22,23] and Raw (solid blue line) [20] are from linear stability analysis
with idealized boundary conditions on laterally infinite domains. Rag marks the approximate boundary of the
geostrophic, rotation-dominated region and Rat denotes the transition to buoyancy-dominated flow [1,2,24].
The precise details of this diagram depend on parameters including Pr and � and are not included here. The
data points show the parameter values reported in this paper.

states, and geostrophic turbulence. The range 1 � Ra/Rac � 20 was explored using these reduced

equations and a prediction was made that in the geostrophic turbulence regime Nu ∼ R̃a
3/2

where it
is controlled by the interior quasigeostrophic (QG) flow rather than being boundary layer controlled,
a result that was demonstrated in the simulations only for Pr = 1 over a short range in RaEk4/3.
The experimental and DNS test of these predicted states [26,28,29,36] and their Nu scalings is
challenging [43] owing to the need for very small Ek < 10−6, large Ra, and the experimental
resolution to measure rather small deviations from Nu ≈ 1, i.e., over a range 1 � Nu � 20.

The flow structure of rotating convection for sufficiently small Ek � 0.02 starts with wall
modes that arise as a supercritical bifurcation from the no-flow base state [13–16,20,21]. These
initial flow states persist to higher Ra and serve as the nonlinear base state for the onset of fully
three-dimensional bulk convection. In the idealized case usually considered in DNS, the sidewall
is perfectly adiabatic. In experiments, however, this is not the case. The details of the onset and
evolution of wall modes depend on the ratio of thermal conductivity of the sidewalls to that of the
nonconvecting fluid. Often the sidewalls are acrylic or polycarbonate with thermal conductivity of
order 0.2 W/(m K) compared with, for example, water with 0.6 W/(m K). These conditions yield
small (order 10%) modification of the asymptotic critical parameters for insulating sidewall bound-
ary conditions [21] with higher Rayleigh number for the onset of the wall modes Raw (74.4 versus
63.6), lower procession frequency at the onset ωκc = ωcH2/κ = (57.7 versus 66.1), and lower wave
number kw (5.55 versus 6.07). Here we consider the idealized case of perfectly insulating sidewalls.

A. Direct numerical simulations

We consider rotating Rayleigh-Bénard convection (RRBC) in a cylindrical container with radius
R and height H (� ≡ 2R/H). The governing equations for RRBC in the Oberbeck–Boussinesq
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approximation include the continuity equation ∇ · u = 0 and the momentum equation and heat
equations

∂t u + (u · ∇)u = −∇p + ν∇2u − 2�d ez × u + α(T − T0)gez, (1)

∂t T + (u · ∇)T = κ∇2T . (2)

Here, p denotes the reduced kinematic pressure, ez is the unit vector pointing upward, and T0 ≡
(T+ + T−)/2. We do not include any centrifugal acceleration because, in laboratory realizations of
RRBC, it is negligible compared with the gravitational acceleration, i.e., the Froude number is very
small, Fr ≡ �2

d R/g � 1. We apply the standard boundary conditions for RBC which are no-slip
for the velocity (u = 0) at all walls, isothermal at the bottom plate (T = T+ at z = 0) and top plate
(T = T− at z = H , where T− < T+), and adiabatic (∂T/∂n = 0) at the sidewall for the temperature.
Here n denotes a unit vector orthogonal to the boundary surface.

Taking as the reference quantities τ = H/
√

αg�H for time, � for temperature, H for length,√
αg�H for velocity, and αg�H for the reduced kinematic pressure, from equations (1) and (2) we

obtain the following dimensionless governing equations:

∂t u + (u · ∇)u = −∇p + (Pr/Ra)1/2∇2u − Ro−1ez × u + T ez, (3)

∂t T + (u · ∇)T = (PrRa)−1/2∇2T . (4)

The resulting set of equations (3) and (4) together with ∇ · u = 0 is solved numerically using
the direct numerical solver GOLDFISH [44,45] in its latest version [46,47], which is optimized for
efficient computation with massive parallelization. The computational code uses a fourth-order
finite-volume discretization on staggered grids and a third-order Runge–Kutta time integration
scheme. The direct numerical solver GOLDFISH utilizes a two-dimensional pencil decomposition
employing the 2DECOMP library [48] and a HDF5 file management.

Unless otherwise specified, all quantities are made dimensionless by τ , H , and � (velocity by
H/τ ). The exception is the radial distance, which we explicitly scale with the radius R, i.e., r/R =
(2/�)r/H .

B. Linear stability theory

One can establish using linear stability calculations the onset of RRBC of a laterally infinite
fluid layer [4,22,23] and of precessing wall modes [16,20,21,25] that arise owing to the existence of
sidewalls. Here we summarize the asymptotic results (see the Appendix for empirical fits for larger
Ek) for Pr � 0.68 and Ek → 0. For the bulk instability the onset Rayleigh number Rac, critical wave
number kc and characteristic length λc are

Rac ≈ 8.70 Ek−4/3(1 − 1.11Ek1/6 + 0.153Ek1/3), (5)

kc ≈ 1.31 Ek−1/3(1 − 0.554Ek1/6 − 0.345Ek1/3), (6)

λc ≈ 4.80 Ek1/3(1 + 0.554Ek1/6 + 0.345Ek1/3), (7)

where kc and λc are normalized by H−1 and H , respectively, and λckc = 2π .
For the precessing wall modes with perfectly insulating boundaries, one has for a planar wall (no

curvature) and to second order in Ek (see also the Appendix) [20,21,25]

Raw ≈ π2
√

6
√

3 Ek−1 + 46.5 Ek−2/3 ≈ 31.8 Ek−1 + 46.5 Ek−2/3, (8)

kw ≈ π
√

2 +
√

3 − 35.0 Ek1/3 ≈ 6.07 − 35.0 Ek1/3, (9)

mw = (�/2)kw, (10)
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ωκw ≡ ωwH2/κ = ω f fw Ra1/2Pr1/2 ≈ 2π2
√

6 + 3
√

3 − 732 Ek1/3

≈ 66.0 − 732 Ek1/3, (11)

ωdw ≡ ωw/� = 2ωκw Ek Pr−1 ≈ Ek Pr−1(4π2
√

6 + 3
√

3 − 1465Ek1/3)

≈ 132.1 Ek Pr−1 − 1465 Ek4/3 Pr−1, (12)

where the spatial scale is H and the precession frequency ωw is made dimensionless with the
timescale H2/κ for ωκw ,

√
H/(gα�) for ω f fw , and �−1 for ωκc and ωdw , respectively. Recall that

for realistic sidewall boundary conditions [21] these asymptotic values are modified by about 10%;
something that needs to be considered when comparing experimental and DNS results. For finite
cylindrical geometries, especially for small �, the values also shift slightly with smaller Raw for
m = 1, 2 [16,20] compared with their planar wall values.

The paper is organized to generally track the evolution of the RRBC state for Ek = 10−6 and
Pr = 0.8 over the range 3×107 � Ra � 5×109. In Sec. II B, we describe the properties of wall
modes including (Sec. II A) effects of aspect ratio, (Sec. II B) their spatial and temporal structure
in terms of linear state eigenfunctions, and (Sec. II C) the evolution of the nonlinear state through a
subcritical bifurcation. We also consider (Sec. II D) the transition to the bulk state and (Sec. II E) the
associated spatial and temporal properties of the coexisting wall mode and bulk mode states where
we use the term boundary zonal flow (BZF) to label the wall-localized state in the presence of bulk
flow. In Sec. II F, we focus on the heat transport (Nu). We provide conclusions in Sec. III and end
with the acknowledgments. The Appendix has details of the data presented here, some extra features
of wall modes, and the empirical fits of critical parameters for larger Ek.

II. WALL MODES

The goal of this paper is to address the evolution of the states of rotating convection at small Ek
from the onset of wall modes through the onset of bulk convection and up to the upper threshold of
the geostrophic regime (Fig. 1). We begin with a description of pure wall modes for Pr = 0.8, Ek =
10−6 and 10−4, and for a range of 1/5 � � � 5 (details of these parameters are presented in Table II
in the Appendix). Within this range we identify the critical onset Raw, the mode number m (and
corresponding azimuthal wave number k), and different measures of temporal and spatial degrees of
freedom. Owing to the previous lack of data for wall modes at small Ek, we systematically consider
aspects of the onset of wall modes with a particular emphasis on the effects of small � < 1. We
then address the nonlinear evolution of the wall modes including a subcritical transition to time
dependence and the mechanisms for that transition. We identify three distinct regions. First, one has
steady (in the precessing frame) wall mode states for 3×107 � Ra � 3×108. For 4×108 � Ra �
9×108, there is a subcritical bifurcation to time dependence followed by increasingly nonlinear
states. The mechanism for this bifurcation is the lateral ejection of plumes originating near the
azimuthal zero crossings of temperature and uz and propagating into the interior, see also Ref. [49].
Finally, one gets a transition at Ra ≈ 109 to bulk convection where the wall mode states are in a
dynamic balance with the bulk states in the form of a BZF. We characterize this later state in the
range 109 � Ra � 5×109. Some aspects of these states emphasizing the connection between wall
modes and BZF were reported earlier by us [50].

A. Effect of aspect ratio �

In Fig. 2, we show m for a number of datasets with different � and Ek with corresponding values
of � of 2 [14], 5 [17], 10 [19], 2 [51], 1/5 [52], 3/2 [49], and {1/3, 1/2, 3/4, 1, 2} [53]. The
first four examples are for Pr = 6.4 and primarily involve the properties of the wall-mode state.
Most of the other values are for the BZF state where the wall localization coexists with a turbulent

053501-5



ZHANG, REITER, SHISHKINA, AND ECKE

FIG. 2. Azimuthal mode number m vs �. The shaded region between dashed lines corresponds to the
dependence for m(�) between the critical values for Ek = 0 (upper, asymptotic, blue dashed curve) and
for Ek = 10−5 (lower, red dashed curve). Blue circles: Pr = 0.8 [53,54], black squares: Pr = 5.2 [52], red
diamonds: Pr = 1 [49], magenta upward triangles: Pr = 6.4 [14,17,19], cyan downward triangles: Pr = 0.8
[50], open circles: Pr = 6.4 [51].

interior bulk mode. Because of the azimuthal periodicity, m is constrained to integer values so that,
for small � < 1, one has m = 1. The BZF state has systematically smaller values of m ≈ 2� than
the asymptotic (Ek → 0) condition mw ≈ 3.03� although the Ek correction in (1) is substantial in
the range 10−6 � Ek � 10−4, corresponding to 2.1 � mw � 2.83. (For Ek > 10−4 the expansion
to second order in Ek is inaccurate, see the Appendix). In Fig. 2, we show as a shaded region the
predicted range of mw over the range 0 < Ek < 10−5. The trends and approximate range of m are
consistent with a strong connection between wall mode states and the BZF. We next consider the
onset of wall modes in more detail.

The critical Raw for � = 1/5, 1, 5 are determined from the DNS with Pr = 0.8 at Ek = 10−4

and � = 1/2, 2 at Ek = 10−6, see Table I. One can understand the dependence of Raw on � by
considering the discrete wave number km of the corresponding mode number m (km = 2m/�) which
is selected owing to azimuthal periodicity and comparing it to the critical wave number kw for a
planar (flat) sidewall boundary. The marginal stability curve, Fig. 3, is defined by the k dependence
of the onset Ra designated as the marginal stability Rayleigh number RaM(k). For small differences
k − kw the dependence of RaM is quadratic, i.e., εM ≡ RaM(m)/Raw − 1 = ξ 2

0 (k − kw)2 [17,19,21].
The quadratic approximation is valid only for small k − kw and ε whereas for larger values there
are terms higher order in k − kw (see, e.g., Ref. [55]). Nevertheless, this representation gives a

TABLE I. Data from DNS with Pr = 0.8 showing Ek, �, Raw, Row, and m.

Ek � Raw Row m

10−6 1/2 2.8 × 107 0.07 1
10−6 2 3. × 107 0.07 3
10−4 1/5 8.3 × 105 0.10 1

1 3. × 105 0.03 2
5 3.3 × 105 0.06 14
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FIG. 3. RaM/Raw versus k, where RaM is the value of Ra along the marginal stability curve given by (solid
black) RaM/Raw = 1 + ξ 2

0 (k − kw)2 where, for periodic azimuthal conditions, one has discrete k = 2m/�.
(a) Ek = 10−6 with corresponding kw = 5.75 and ξ0 = 0.18 [21], Pr ≈ 1 and data points (�, m) = (1/5, 1),
red; (1/3, 1), green; (1/2, 1) and (1/2, 2), blue; (3/2, 3) to (3/2, 6), black [49]; (2, 4) to (2, 8), magenta.
(b) Ek = 10−4 with corresponding kw = 5.75 and ξ0 = 0.18 [21] and data points (�, m) = (1/5, 1), red; (1, 2)
to (1, 4), blue; (5, 11) to (5, 15), magenta. Dashed black line [55] shows computed effects of higher-order
terms at Ek ≈ 2×10−3 and corresponding data points (�, m) = (1/5, 1), red; (1, 1) and (1, 4), blue.

reasonable semiquantitative description of the variation of RaM for different parameter values. The
difference k − kw is particularly important for small � as we see below. The coefficient ξ 2

0 was
evaluated for experimentally realized [14,17] sidewall thermal conductivity as a function of Ek
[21] (see the Appendix). In Fig. 3(a), the curve is evaluated for Ek = 10−6 with kw = 5.75 and
ξ0 = 0.18, and the labeled data points are the discrete values km for � = 1/5, 1/3, 1/2, 3/2 [49], and
2 which have the lowest values of RaM/Raw. One can see the large and unintuitive dependence on
� � 1/2 where m = 1: for � = 1/5, RaM/Raw = 1.6 whereas � = 1/3 yields RaM/Raw = 1.003
and � = 1/2 has RaM/Raw = 1.1. The increase in RaM/Raw is nonmonotonic in � and depends
sensitively on kw. Another observation concerns the predicted lowest value for � = 3/2 which is
m = 4 whereas m = 6 was observed in DNS [49] upon increasing Ra but m = 4 when decreasing
Ra. This would be consistent with the m = 6 mode resulting from starting the DNS for Ra � Raw

from random initial conditions at Ra = 0 so that the state would evolve to an m �= mw, where mw

is the value corresponding to the smallest km − kw. The effect of a sudden increase in Ra was used
in experiments on wall modes [14,17,19] to access a wide range of available m. In Fig. 3(b), we
consider Ek = 10−4 where kw = 4.9 and ξ0 = 0.2 for � = 1/5, 1, 5. Here the shift in RaM/Raw is
even larger for � = 1/5 than for Ek = 10−6 but as � increases the density of discrete km increases
because �k ≡ km+1 − km = 2/� so that they increasingly cluster near RaM/Raw ≈ 1. For example,
for � = 5, we observe modes m = 14, 15 compared with the predicted values with the lowest RaM ,
m = 12, 13 (a small shift in kw would account for that difference). More importantly, we again
appear to find that the selected m can be different than the one closest to critical mw owing to starting
from random initial conditions; m = 14 near onset whereas m = 15 above onset and similarly for
� = 1, m = 2 near onset and m = 3 above onset as shown in Fig. 4. When we slowly raise Ra from
near onset, the selected m near onset is preserved.

To directly evaluate the observed and predicted onset values RaM, we plot in Fig. 5(a)
RaM/Raw = εM + 1 for different observed values of m at the corresponding �. The dramatic effect
for � = 1/5 where m = 1 noted above is well captured by the marginal stability model with an
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FIG. 4. Instantaneous temperature field at mid-height for Ek = 10−4, Pr = 0.8. (a) � = 1, Ra = 3×105,
Nu ≈ 1, m = 2, and (b) � = 5, Ra = 3×105, Nu = 1.03, m = 14. Horizontal black bars show scale R/�.

FIG. 5. RaM/Raw versus �. (a) The lines are calculations using values for m, kw(Ek), and ξ0(Ek). Different
m = 1, 2, 4, 6, 14 are shown with corresponding colors (blue, red, orange, magenta, black); the dashed blue
curve is evaluated for Ek = 10−6 whereas the solid blue is for Ek = 10−4. The data points are solid circle: Ek =
10−4, Pr = 0.8; solid square: Ek = 10−6, Pr = 0.8; triangle: Ek = 10−6, Pr = 1 [49]; diamond: Ek = 2×10−3,
Pr = 6.7 [16]. (b) Dotted lines show calculations [16] for m = 1, 2 taking into account the finite curvature of
the cylindrical container for specific �.
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FIG. 6. Linear eigenfunctions (discretized from data in Figs. 4 and 5 of Ref. [20] for Ek = 10−6 and
Pr = 7): (a) Eigenfunction of uz versus Ek−1/3x, where x reflects the distance from a flat sidewall. Characteristic
lengths are indicated by the location of the peak δuzp

, the first zero crossing δuz , and the minimum δuzm
.

(b) Eigenfunction of T versus x. The dashed line is an exponential fit to the data 1.05e−x/0.13 that fits extremely
well over the whole range except very near the sidewall on the order of the uz radial width [see the inset where
short red (long) dashed vertical line is rmax (r0) of uz]. (c) The geometric length scale LR = R = �/2 is plotted
versus values of � considered (solid black circles) and compared with the temperature length scale δT and the
vertical velocity length scale δuz evaluated at Ek = 10−4 (dashed blue) and Ek = 10−6 (solid blue).

observed factor of 2.6 in the onset RaM compared with a predicted ratio of about 2.1. For � = 1/2, 1,
there is actually a decrease relative to Raw which is captured in calculations for finite � [16], see
Fig. 5(b). As � is further increased, the observed m values yield k ≈ kw so there is little or no shift
in the onset RaM. Given that εM is not precisely quadratic except for small ε, ξ0 is computed for
imperfectly insulating sidewall boundary conditions, and the computations for Raw and kw do not
include rigid top or bottom boundary conditions, the agreement is quite satisfactory.

B. Wall mode spatial and temporal structure

We now turn to the spatial and temporal structure of the wall mode states. In previous work
[50,53,54], we considered the radial boundary length scales of wall modes and BZF states defined
by δuz = max 〈u2

z 〉1/2
φ,t and the zero crossing δ0 of 〈uφ〉φ,t , i.e., δ0 is the distance to the sidewall where

〈uφ〉φ,t = 0, where 〈·〉φ,t means averaging in the azimuthal direction and in time. As we discuss
below, δ0 may not be a good measure of radial extent owing to the midplane symmetry of uφ . Here
we consider characteristics of the stationary and subcritical wall modes as represented in the fluid
fields: temperature T , vertical velocity uz, azimuthal velocity uφ , radial velocity ur , and vertical
vorticity ωz.

One feature of wall modes that is perhaps not appreciated is the decoupling of the radial length
scales of the temperature field T from the vertical velocity uz and vertical vorticity ωz fields with
decreasing Ek [20]. In Figs. 6(a) and 6(b), we show, respectively, the radial eigenfunctions of
uz(r) and T (r) (interpolated from Ref. [20] for Ek = 10−6) where a Fourier–Bessel expansion is
an excellent representation of u(z) (anticipating the results in a cylindrical cell) and T is well fit
by an exponential function. The inset of Fig. 6(b) shows that the necessary condition at the wall,
∂T/∂r(r = R) = 0, relaxes quickly with r on length scales of order δuz . The decoupling of length
scales results from the T length scale δT ∼ k−1

w (1/e decay length) being dependent on Ek only
through its weak dependence kw(Ek) whereas the uz length scale (first zero crossing) δuz ∼ Ek1/3

has an explicit Ek scaling. This separation of scales has important implications for RRBC in small
aspect ratio containers with rapid rotation and for understanding the heat transport properties of wall
modes and the BZF.
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FIG. 7. Positive (red) and negative (blue) linear eigenfunctions of temperature T as in Fig. 6(b) and their
sum (black) for planar wall modes at Ek = 10−6 and Pr = 7 [20] plotted to approximate a radial profile at
mid-height in a confined cylindrical geometry with an odd m so that T (r) is radially asymmetric about r = 0.
(a) � = 1/2, (b) � = 1, (c) � = 2 and � = 5 (magenta).

In Fig. 6(c), we consider the different length scales associated with the eigenfunctions of uz and
T . We take the geometric length scale LR of the container as R so that LR = �/2 and compare with
the length scales δT, and δuz0

evaluated at Ek = 10−6 and 10−4. One obtains δT ≈ 0.13 (consistent
with Ref. [20], which predicts scaling of order k−1

w = 0.17), and δuz = 2.5Ek1/3 which yields values
of 0.12 for Ek = 10−4 and 0.025 for Ek = 10−6. Thus, for Ek = 10−4, δT ≈ δuz whereas for Ek =
10−6, δT ≈ 5δuz . For � ≈ 1/3, δT ≈ LR. Thus, the temperature field is highly constrained by the
geometry for small � � 1. On the other hand, for Ek = 10−6, δuz0

� δT and only becomes of order
R for very small � ≈ 1/20. Thus, uz should not be affected by geometry and should have a form in
cylindrical geometry similar to that of a planar boundary.

We expand on the disparity in length scales by considering in Figs. 7(a)–7(c), the wall-mode
linear temperature eigenfunction of a planar wall mode state with perfectly insulating sidewall
boundary conditions plotted versus r/R for different �: Fig. 7(a) 1/2, Fig. 7(b) 1, and Fig. 7(c)
2, 5. The positive and negative representations corresponding to opposite sides of the cylinder and
the sum of the two as an approximation of the effects of finite geometry (see also Ref. [16]) are
illustrated. For � = 1/2, there is considerable overlap of the two functions. For � = 1, one has just
about achieved separation into individual contributions but one needs � � 2 for a clean separation
of the thermal field. For comparison, we have plotted vertical dashed lines showing δuz .

Whereas the analysis above was for a planar wall [20], our finite cylindrical convection cell
suggests that the appropriate representation in that geometry are radial eigenfunctions using sums
of Bessel functions of the first kind, Jm(kr) of order m [16]. It is therefore natural to consider uz(r)
fields as Fourier–Bessel transforms with m = 1:

cn = 2/[J2( j1n)]2
∫ 1

0
ruz(r)J1( j1nr)dr,

uz(r) ≈
N∑
1

cnJ1( j1nr),

where uz(r) is the radial component of the vertical velocity field and j1n are the nth order zeros of
J1(x). Empirically, we find that N = 50 yields excellent fits to uz(r) which is primarily consequential
in the advection of heat and the determination of the global heat transport Nu. In Fig. 8(a),
we show the radial dependence of mean uz for Pr = 0.8, � = 1/2, and Ek = 10−6 evaluated
at its azimuthal maximum (in the precessing frame) and at the midplane (z = 1/2) height for

053501-10



WALL MODES AND THE TRANSITION TO BULK …

(a)

Fourier–Bessel
coefficients

1.0

0.5

0.0cn

−0.5

−1.0

0.0 0.2 0.4

n

0.6 0.8 1.0

0.15

0.10

0.05uz

0.00

−0.05

0.0 0.2 0.4

r/R

0.6 0.8 1.0

(b)

0.15

0.10

0.05uz

0.00

−0.05

0.7 0.8 0.9

r/R

1.0

0.7 0.8

r/R

0.9 1.0

0.0

0.5

1.0

δuz

3 × 107

4

5

7

10

20
30

(c)

0.15

0.10

0.05

uz

0.00

−0.05
0.7 0.8 0.9

r/R
1.0

δuz

4 × 108

5 × 108

6 × 108

7 × 108

8 × 108

9 × 108

(d)

1.0

u
z
,
u

φ
,
u

r

uφ uz

ur

0.5

0.0

−0.5
0 1 2 3 4

Ek−1/3x
5

(e)

u
z
m

a
x
,
u

φ
m

a
x
,
u

r
m

a
x

urm
ax

uφm
ax

uzm
ax

10−1

10−2

10−3

106 107 108 109

Ra − Raw

1010

FIG. 8. Midplane uz (averaged in precessing frame at maximum in φ) versus r/R for (a) Ra/107 = 3,
4, 5, 7, 10, 20, 30 where dark (light) blue corresponds to the smallest (largest) Ra. The inset of panel
(a) shows Fourier–Bessel coefficients cn normalized by cnmax (Ra) and averaged over the set of Ra in panel
(a). (b) Expanded version of panel (a) with 0.7 � r/R � 1.0. Inset of (b) is ũz(r) reconstructed from
the average of cn/cnmax in the inset of panel (a). (c) uz versus r/R of time-dependent wall-mode state
for 4×108 � Ra � 9×108 (colors per legend) with saturating peak amplitude and wider spread in δuz .
(d) Ra = 3×107 average radial structure (solid line) compared with linear eigenfunctions (dashed) [20] for
uφ (red) uz (blue), and ur (black). The first zero crossing of uz is at about the same r as the maximum of ur . All
profiles are scaled such that the maximum values are one. (e) Variation of radial maximum values uzmax (blue
solid circles), uzrms,max (light blue inverted triangles), uφmax (red solid squares), and urmax (black solid triangles) vs
Ra − Raw. Linear scaling u ∼ (Ra − Raw)1/2 (blue, red, and black dashed lines, respectively). Vertical dashed
lines from smaller to larger Ra: end of quasilinear regime (long-dashed) Ra ≈ 9×107—note the decrease in
uφ , the subcritical instability to lateral jet ejection (dashed), the transition to aperiodic (chaotic) jet ejection
(long-dashed), and the bulk onset (dashed).

3×107 � Ra � 3×108. The inset is the normalized Fourier–Bessel decomposition coefficients cn

which has a simple form and is quite independent (modulo an overall scale factor that increases
with Ra for Ra < 3×108, i.e., for steady wall modes). An expanded view in Fig. 8(b) shows the
details of the profiles near the sidewall and the definition of the radial extent of the main wall
peak—here we take the first zero crossing of uz(r) as the characteristic width δuz . The inset shows
the radial profile obtained by averaging the normalized cn values over the Ra range. The data
points are from the amplitude-normalized planar eigenfunction of uz shown in Fig. 6(a) and match
almost perfectly, indicating again that cylindrical curvature is not important here for uz. For larger
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FIG. 9. Midplane T fields for Ra: (a) 3×107, (b) 2×108, and (c) 5×108. Dashed lines show contours of
the arithmetic mean of the top and bottom temperatures. Directions of rotation and precession are indicated in
panel (a).

Ra � 4×108, the profiles change slightly as shown in Fig. 8(b) with a larger spread in δuz . This
change is associated with a secondary bifurcation of the wall modes as discussed below. It is quite
surprising that the radial profile of uz maintains a close correspondence with the linear eigenfunction
over such a large range of Ra. In Fig. 8(d), we compare the linear eigenfunctions (dashed lines) for
uz, uφ , and ur with data for Ra = 3×107 (solid lines) where one sees very close correspondence
between the eigenfunctions and the data for uz and uφ with a slightly smaller first zero crossing for
uφ . ur has a very different shape with a maximum value at a radius rmax (we define the characteristic
length of ur as δur = 1 − rmax) near the first zero crossing of uz, and there is a distinct difference
between the eigenfunction and the data indicating that ur is more affected by finite wall curvature
than the other convective fields. Figure 8(e) shows the peak amplitudes of uz, uφ , and ur plotted as a
function of Ra − Raw. Close to onset u ∼ (Ra − Raw)1/2, as expected for a supercritical bifurcation.
The monotonic increase in uz and ur appears to saturate near the onset of bulk convection at
Ra ≈ 109 whereas urmax drops rapidly after the onset of the subcritical instability described below.
Finally, there is a small drop in uφmax at Ra ≈ 9×107 which signals the end of the weakly nonlinear
wall mode regime. This signature shows up in measures of T .

The other dominant field contributing to the heat transport is the temperature field which, as noted
above, has a much broader radial distribution and is strongly affected by small � as was suggested
by considerations of the temperature eigenfunction [20] shown in Fig. 7(a). To get an overall flavor
of the wall mode states for Ra � 3×108, we show in Fig. 9 some representative azimuthal midplane
contours and corresponding fields; in all of them T extends significantly over most of the radial
domain. Figure 9(a) shows the nearly sinusoidal mean contour for Ra = 3×107 (ε = Ra/Raw − 1 =
0.07) with counterclockwise rotation and clockwise precession. For Ra = 2×108 (ε = 6.1) in Fig.
9(b), the contour is more nonlinear but the precession remains steady whereas for Ra = 5×108 (ε =
17) there is increased distortion of the mean contour and the state is time dependent. By going to the
precessing frame one can obtain well-converged statistical averages of the radial profiles of different
fields. We show in Fig. 10, the radial distribution of the max value of T (averaged in precessing
frame) in a midplane (z = 1/2) cross section. For Ra � 108, the profiles are remarkably linear,
more so than the eigenfunction, indicating that the finite geometry is having a significant effect on
T (r). For larger Ra > 108, T (r) becomes increasingly nonlinear with radial undulations owing to
the transition to time-dependent states and bulk-BZF convection described below. In Fig. 10(c), we
show the Ra variation of the max value of T which indicates the weakly nonlinear growth of the
wall mode amplitude but for higher Ra ≈ 9×107 this reverses and T decreases slowly owing to the
decreasing vertical gradient of T in the cell center as discussed below. This feature is correlated
with the small drop in uφmax in Fig. 8(e). Also shown is Trms for Ra � 109 owing to the unsteady
and intermittent precession once the bulk mode is present which makes averaging in the precessing
frame much slower to converge.
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FIG. 10. Midplane temperature field maximum (averaged in precessing frame at maximum with respect to
φ) T (r) versus r/R for (a) Ra/107 = 3, 10, and 30. Dashed colored lines indicate the temperature eigenfunction
for a planar wall [20] [as in Fig. 7(a)] adjusted for approximate sidewall mean temperature. Mean width δuz and
its variation (lateral error bars) in our computations are shown. (b) Ra/107 = 40, 60, and 80. The corresponding
temperature eigenfunction for Ra = 4×108 and the mean width δuz are shown. (c) maximum radial value (at
r/R = 1) Tmax (black circles) and Trms (red squares) versus Ra/107 with different regions labeled by vertical
dashed lines. The long-dashed lines denote transitions: At Ra ≈ 8.5×107 from weakly nonlinear growth of T ,
where solid black line is 6.0×10−5(Ra − Raw )1/2 − 7.6×10−10(Ra − Raw ), to decreasing amplitude resulting
from steepening of the vertical temperature profile; at Ra ≈ 6.5×108 from periodic to aperiodic (chaotic) time
dependence of Nu.

With the insights provided by the structure of uz(r) and T (r), one can understand the radial
structure of the heat transport Nu(r). In Fig. 11(a), the normalized (peak values set to one) fields
ũz(r), T̃ (r), ũz(r)T̃ (r), and Ñu(r) are shown for an average over time-independent wall modes
3 � Ra/107 < 30. T (r) varies slowly with r and the fields are time independent in the precessing
frame. If the azimuthal phase difference between uz and T is small, i.e., the place where uz is
maximally upward (downward) is the same as where T is maximally positive (negative) with respect
to the mean, then one has Nu(r) ∼ uz(r) to within about 10%. Taking Nu ∼ 〈T 〉〈uz〉 improves the
agreement to about ±5%. Averaging over the time-dependent wall mode states in the range 40 �
Ra/107 � 90 yields similar results shown in Fig. 11(b). More surprising is that averaging over
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FIG. 11. Ñu(r) (blue), ũz(r) (red), T̃ (r) (black), and ũz(r)T̃ (r) for Ek = 10−6, Pr = 0.8. Each profile
for a given Ra is the radial profile evaluated at the max value in φ in the mean precessing frame and
then normalized by the maximum value. Then different ranges of Ra are averaged. (a) Averaged over
3 � Ra/107 � 30, (b) Averaged over 40 � Ra/107 � 90. (c) Averaged over 100 � Ra/107 � 500 where the
bulk contribution is subtracted out.

053501-13



ZHANG, REITER, SHISHKINA, AND ECKE

(e)

−0.3

0.0

0.3
T

−π 0 π

φ

z = 0.95–
z = 0.8 –
z = 0.5 –

(f)

−0.6

0.0

0.6
uz

−π 0 π

φ

z = 0.95–
z = 0.8 –
z = 0.5 –

(g)

−0.4

0.0

0.4 uφ

−π 0 π

φ

z = 0.95–
z = 0.8 –

(h)

−0.1

0.1

0.3
ur

−π 0 π

φ

z = 0.95–
z = 0.8 –

2λc 2λc

(a) (b) (c) (d)

FIG. 12. (a)–(d) Vertical temperature field T (r = 0.98R, φ, z) for Ek = 10−6, Ra: (a) 3×107, (b) 5×107,
(c) 5×108, (d) 109. Precession direction is right to left as indicated by the arrow. (e)–(h) Averaged angular
profiles (temporally averaged in the precessing frame, i.e., φp = φ0 + ωt) for Ra = 5×108 (arbitrary amplitude
scaled approximately to ±1/2). The first Fourier mode corresponding to the linear eigenfunction in φ is
black dashed line whereas different z = 0.5, 0.8, and 0.95 are indicated by black, red, and blue solid lines,
respectively. The insets of panels (e)–(g) are the approximate amplitudes �T , �uz, �uφ of the shock-like
feature as a function of z near the upper boundary (z = 1), respectively, with the horizontal arrows indicating the
minimum and maximum extent of the shock. The dashed blue lines are (e) to guide the eye with local maximum
at 1 − zmax = 0.03, (f) an exponential saturation fit to ∼1 − e−(1−z)/z0 with z0 = 0.04, and (g) an exponential
growth fit to ∼e(1−z)/z1 with z1 = 0.003. (e) 〈T (r = 0.98R, φ, z)〉φp , (f) 〈uz(r = 0.98R, φ, z = H/2)〉φp , (g)
〈uφ (r = 0.98R, φ, z = H/2)〉φp , and (h) 〈ur (r = 0.98R, φ, z = H/2)〉φp . For T (z = 1/2) and uz(z = 1/2), the
profiles are close to the linear eigenfunction as is uφ (z = 0.8) (uφ ≈ 0 at z = 1/2) and display very sharp
nonlinear fronts at their advancing edge for z = 0.95, i.e., close to the upper boundary. On the other hand, ur

has a pulse-like shape with very little of the profile being described by the first Fourier mode. The inset shows
a expanded view at the advancing edge (region indicated by black arrow) of the narrow peak at φ ≈ 0.3π with
a spatial oscillation with length about 2λc.

the bulk-BZF states 100 � Ra/107 � 500, Fig. 11(c), also produces a fairly good correspondence
where here we subtract out the bulk contribution in the cell interior. There is a widening zone of
boundary zone influence in the BZF but the form of Nu near the wall is driven predominately by
the vertical velocity uz of the wall mode which remains highly localized to within a radial width of
order Ek1/3 characteristic of the linear wall-mode eigenfunctions. A more quantitative test of this
comparison requires detailed amplitude averaging of the uz(φ) and T (φ) for which we would need
better converged statistical quantities in the bulk phase with Ra > Rac; we consider this in future
work.

In addition to the radial structure of the fields, we consider their azimuthal structure. In
Figs. 12(a)–12(d), we show instantaneous vertical temperature fields T (r = 0.98R, φ, z) for values
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of Ra in the interval 3×107 � Ra � 5×109. A very nonlinear profile develops with increasing Ra
with only the smallest Ra = 3×107 being well approximated by a single-mode sinusoidal function.
To characterize this nonlinearity for Ra = 5×108, we show in Figs. 12(e)–12(h) azimuthal profiles
of T , uz, uφ , and ur , respectively, averaged in the precessing frame (φp = φ0 + ωt) at r = 0.98R
and at three different z = 0.5, 0.8, and 0.95 [horizontal dashed lines in Fig. 12(c)]. For T and
uz, the midplane profiles are rather close to the linear eigenfunction, i.e., to the lowest Fourier
mode. The eigenfunction solutions for the φ dependence of T and u are discrete Fourier series∑N

n=1 an sin(nmφ)eiωt with the first term being sin(mφ + φp). For uφ and ur , the midplane is
problematic because it corresponds to a zero crossing. Considering z = 0.8, one also sees reasonable
correspondence with the lowest Fourier mode for uφ but ur is very different with almost no weight
in the lowest Fourier mode. Close to the top (or bottom) boundary with z = 0.95, the nonlinearity
of the wall mode is revealed where there is a sharp front-like feature appearing in T , uz, and uφ

and a pulse-like structure for ur . The emerging contribution of bulk-like excitations are visible in
the azimuthal oscillations of order 2λc at the leading edge of ur shown in the inset of Fig. 12(h).
The shock-like features for T , uz, and uφ vanish at the upper boundary consistent with rigid and
isothermal boundary conditions as shown in the insets of Figs. 12(f) and 12(g): T approaches zero
consistent with global heat transport constraint, uz because the zero normal velocity BC, and uφ

because of the zero tangential BC. The latter should be controlled by an Ekman boundary layer
condition of order δE = Ek1/2 = 0.001 but more quantitatively there is a coefficient relating δE to
the viscous boundary layer of order 3 [56]. The blue dashed line in Fig. 12(g) is proportional to
e(1−z)/0.003, consistent with an Ekman boundary layer. More detail on the z dependence is provided
in the Appendix (Fig. 28) where we compute for Ra = 5×108: 〈X 〉rms and 〈X − X (1)〉rms, where X
is the convective field and X (1) is its lowest Fourier mode.

C. Evolution of wall modes: Nonlinearity and instability

Wall modes for Ek > 10−4 [14,17,19] have a narrow Ra-window between their onset and the
onset of bulk convection Rac/Raw < 4 whereas for Ek = 10−6 one has Rac/Raw ≈ 30. Thus, the
wall mode state becomes increasingly nonlinear and eventually time-dependent over that interval,
as noted previously [49,57]. In Figs. 12(a)–12(d), representative instantaneous temperature fields
T (r = 0.98R, φ, z) are shown for increasing Ra at Ek = 10−6. As Ra increases, the vertical profile
is initially sinusoidal near onset [Fig. 12(a), Ra = 3×107] but becomes highly nonlinear—square-
wave like and nonsingle-valued at the leading (left) and trailing (right) edge [Fig. 12(b), Ra =
5×107; Fig. 12(c), Ra = 5×108). Above Ra = 7×108, there are strong lateral spatial striations [Fig.
12(d) Ra = 109, near bulk onset] superimposed on the overall single-mode structure.

We characterize the transition to an oscillatory state through the time dependence of the heat
transport which is time-independent for precessing wall modes. For 108 � Ra � 3×108, Nu(t ) is a
decaying oscillation of the form Nu ≈ Nu∞ + Nu0 cos [ω2(t − t0)]e−t/τ0 starting from some random
initial condition, as shown in Figs. 13(a) and 13(b). For 4×108 � Ra � 6×108, the waveform is
approximately stationary (or slightly increasing saturation, see Appendix A 3) with amplitude �Nu
(mean peak-to-peak) and an oscillation frequency ω2 as in Fig. 13(c). The nature of the onset of time
dependence is a subcritical bifurcation as shown in Fig. 14 where we plot the max-min envelope
of Nu(t ), the difference Numax − Numin = �Nu, the oscillation frequency ωd2/ωd , and the decay
frequency ωd0/ωd versus Ra, where ωd is the precession frequency in units of �−1.

We show in Fig. 14(a) the Nu(t ) envelope defined by its maximum and minimum values as
a function of Ra. For Ra � 3×108, Nu is time-independent and Numax = Numin. There is a rapid
increase in Numax for Ra � 4×108 whereas the minima stay roughly constant at Numin ≈ 6.3, very
close to its value at Ra = 3×108. The solid (dashed) blue line is an three-parameter adjustable
fit to the stable (unstable) portions of a subcritical bifurcation. This schematic illustration of the
nonlinear time-dependent amplitude (solid line) and the unstable subcritical region (dashed line) is
presented in a conventional bifurcation diagram in Fig. 14(b). In Fig. 14(c), we show ωd2/ωd where
the black circles and corresponding black dashed line indicate the oscillatory part of the decaying
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FIG. 13. Time dependence of the heat transport Nu(t ) for Ra: (a) 108, (b) 2×108, and (c) 5×108. The
dashed lines in panels (a) and (b) have the form Nu(∞) + Nu0 cos [ω2(t − t0 )]e−t/τ0 , where ω2 = 2π/τ2 is
the oscillatory frequency and τ0 is the decay time. For panel (c) one has a more complicated relationship that
accounts for large or small asymmetry ∼ cos 4[ω2(t − t0 )] and a transient growth ∼1 − e−t/τ0 . The dashed lines
are fits to the data using these forms, fitted values are indicated, and horizontal (blue or black) bars indicate τ2

and τ0, respectively.

solutions associated with the time-independent state whereas the blue circles and dashed line show
ωd2/ωd ∼ Ra ≈ 1.7. The decay frequency ωd0/ωd ∼ (Raw2 − Ra) (magenta diamonds and dashed
line), where its zero intercept indicates the Rayleigh number Raw2 at which the wall mode state
becomes unstable to infinitesimal perturbations. For Ra � 7×108, the waveform becomes chaotic
with increasing fluctuations and irregular oscillation frequency. The inference from Fig. 14(a) is that
the minimum value Numin is when the system is close to the pure wall mode state whereas Numax

occurs when the lateral jet makes the maximal contribution to the heat transport. We discuss this in
more detail below when we consider the full range of Nu.
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FIG. 14. (a) Extreme maximum and minimum values of Nu(t ) (minima: black solid circles, maxima: blue
solid circles and solid red square for chaotic state), where the error bars depict the range of less extreme
maxiumum or minimum values, (b) �Nu (mean peak-to-peak), and (c) normalized oscillation frequency
ωd2/ωd (solid circles: black, stable state and blue, unstable state) and normalized decay frequency (scaled by
1/2 for comparison) (1/2)(2π/τd0 )/ωd (magenta diamonds) vs Ra/108, where ωd is the wall mode precession
frequency. Error bars denote variability of �Nu, ωd2/ωd , and (2π/τd0 )/ωd owing to shorter or longer lengths
of time series and/or unsteady oscillations. The blue shaded region denotes an approximate zone of subcritical
instability. The solid (dashed) lines are schematic suggestions for stable (unstable) behavior. The square (red)
indicates a state where the oscillations have become chaotic with increased fluctuations and variable frequency.
The dashed magenta line represents the stable state transient inverse time constant which is expected to vary as
τ−1

0 ∼ (Raw2 − Ra).
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respectively), uφ , and ur , respectively, for z = 0.8. Red (blue) corresponds to hot (cold) and up (down),
AC—anticyclonic (C—cyclonic), and radially out (radially in), respectively. Vertical profiles (e)–(h) for
corresponding fields (φ, z) evaluated at r/R = 0.98 [see panel (b), outer dashed line]. Arrows and ± symbols
indicate qualitative motion directions. Spatial oscillations of order 2λc are visible in horizontal cross sections of
uz and ur and in vertical azimuthal profiles of uz, uφ , and ur . Note that the major ejections of jets (and return
flow) represented in ur happen near the top and bottom boundaries.

The time dependence of the wall mode was noted earlier [49] for Pr = 1, � = 3/2, and Ek =
10−6 where the emission of horizontally propagating thermal plumes originating within the wall-
mode region and moving into the interior were observed for Ra � 5×108, consistent with our results
(see also Refs. [57,58]). The mechanism for these fluctuations was hypothesized to result from a
shear instability of a Stewartson layer of width ∼Ek1/4 [49,59] that develops a net mean flow for
Ra  Raw. The criterion for instability in a differentially sheared rotating layer (not a wall-bounded
flow) is Re ≈ 10 to 20 [60] which is qualitatively consistent with the computational results [49]. For
comparison we get Re values of 6 and 12 for Ra = 2×108 and 5×108, respectively, based on the
wall-bounded layer and 15 and 30 based on the outer free shear layer. Although the qualitative Re are
about right for shear instability of a zonal barotropic mode [61], a more detailed analysis was beyond
their scope [49]. Our results show that small scale fluctuation structures appear in the wall-bounded
zone of order Ek1/3, see Figs. 15(d), 15(g), and 15(h), rather than in the outer shear layer of order
Ek1/4 (see also below for length scale of striations). Further analysis and characterization of this
instability is also beyond the scope of our work. Here we elucidate the onset of this time-dependent
degree of freedom for Pr = 0.8, � = 1/2, and Ek = 10−6. In Fig. 15, we show instantaneous fields
of horizontal and vertical profiles, respectively: T [Figs. 15(a) and 15(e)], uz [Figs. 15(b) and 15(f)],
uφ [Figs. 15(c) and 15(g)], and ur [Figs. 15(d) and 15(h)] for Ra = 5×108, above the subcritical
onset of time dependence. Figs. 15(a)–15(d) show horizontal cross sections at z = 1/2 [Fig. 15(a)]
and z = 0.8 [Figs. 15(b)–15(d)] whereas Figs. 15(e) and 15(f) illustrate the wall mode region r/R =
0.98 with vertical 0 � z � 1 and horizontal 0 � φ � 2π . The horizontal fields show the lateral
plume emission into the interior near the zero crossing between positive and negative uφ and uz

whereas the vertical fields show a spatially oscillatory signature of order 2λc that generates in the
build-up to the emission. The oscillations are strongest for uφ and ur compared with less obvious

053501-17



ZHANG, REITER, SHISHKINA, AND ECKE
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ωz cyclonic anti-cyclonic
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FIG. 16. Horizontal cross sections (a), (c) T (red—warmer, blue—colder than the arithmetic mean of the
top and bottom temperatures); (b), (d) ωz (red—cyclonic, blue—anticyclonic); and (e)–(g) uz (red—up, blue—
down), uφ (red—cyclonic, blue—anticyclonic), ur (red—outwards, blue—inwards), respectively. Ra: (a), (b)
109; (c)–(g) 4×109 at the same time. (a), (c) Length scale depicted is bulk λc.

features in T and uz. In the bulk region represented in Figs. 15(a)–15(d), uz is quite small compared
with its value near the wall whereas the other fields have significant contributions in the interior.
Thus, although the contribution to Nu ∝ uz seems small; the perturbations in the interior region
probably act as the foundation for the nucleation of bulk convection. At the same time, the vertical
striations of order 2λc seem to be related to bulk instability implying that the underlying wall mode
acts as the foundation for the nucleation of bulk instability. Thus, the jet instability and the 2λc bulk
structures seem inextricably linked. The striation length scale (proportional to Ek1/3) suggests that
the origins of the instability arise within the wall shear zone rather than in the outer free shear zone
of order Ek1/4 [49]. Other characteristics of the subcritical state include unsteady precession and the
qualitative change in the shape of the contours of T : compare Figs. 9(b) and 9(c).

D. Transition to bulk modes

The transition to finite amplitude bulk convection occurs for Ra ≈ 109 as compared with
the theoretical prediction of Rac ≈ 7.8×108 for an infinite layer without sidewall effects. For
comparison with the theoretical predictions of the nonhydrostatic quasigeostrophic (NHQGS)
equations (see also below), the range 8×108 < Ra � 5×109 corresponds to 1 � Ra/Rac � 6
(8 � RaEk4/3 � 60) where the plume state is predicted to be prevalent for Pr = 1 [40,41]. In
Fig. 16, representative horizontal cross sections for instantaneous fields of T , ωz, uz, uφ , and ur are
shown (z = 1/2 for T and ωz and z = 0.8 for u). At Ra = 109, there are strong lateral jets of con-
trasting thermal signature for T in Fig. 16(a) which are generated near the intersection of cold and
hot zones, i.e., where T ≈ 〈T 〉 and uz ≈ 0 (see Fig. 12). There are corresponding regions of cyclonic
vorticity generation as shown for ωz in Fig. 16(b). Around the sidewall boundary, there are azimuthal
variations of T and ωz with some spatially intermittent structure. When bulk convection is well
established at Ra = 5×109 as in Figs. 16(c) and 16(d) for T and ωz, respectively, the BZF remains
visible in the T field but there are significant small-scale temperature and vorticity fluctuations
with spatial scales of the order of the linear length scale λc = 4.8Ek1/3 [0.051 for Ek = 10−6, see
Eq. (7)]. In Figs. 16(e)–16(g), uz, uφ , and ur , evaluated for Ra = 4×109 and at the same time,
show that uz displays little remnant of the horizontal jet flow but uφ and ur show that even at
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(a) T (b) ωz (c) T (d) ωz

z = 0.5

(e) uz (f) uφ (g) ur

z = 0.8

T warmer colder
ωz cyclonic anti-cyclonic
uz up down
uφ cyclonic anti-cyclonic
ur outwards inwards

FIG. 17. Vertical azimuthal slice at r/R = 0.98 with fields indicated and z = 0.5 (top) and z = 0.8 (bottom)
as labeled on the far right. (a), (c) T (red—warmer, blue—colder); (b), (d) ωz, and (e) uz, (f) uφ , (g) ur . Red
(blue): warmer (colder), cyclonic (anticyclonic), up (down), cyclonic (anticyclonic), out (in), respectively. Ra:
(a), (b) 1×109 at the same time; (c)–(g) 4×109 at the same time; (a), (c) length scale depicted is bulk 2λc.

Ra/Rac ≈ 4, there are large-scale motions suggesting residual emanations from the BZF region—
note in particular the in and out radial velocity structure in Fig. 16(g).

The vertical profiles of the same fields evaluated for r/R = 0.98, Figs. 17(a)–17(g) further
characterize interactions of the boundary flow and the bulk interior flow. The vertically coherent
structures of T and ωz in Figs. 17(a) and 17(b), respectively, at Ra = 109 have a characteristic length
of order 2λc shown in both plots and the m = 1 BZF remains quite coherent. At Ra = 5×109, the
BZF is instantaneously less coherent in T [Fig. 17(c)] but with vertical structures with remain-
ing vertical correlation. In the nonhydrostatic, quasigeostrophic description [40,41], the state at
Ra = 109 corresponds to the cellular regime of bulk convection whereas 2×109 � Ra � 5×109

corresponds to the plume regime (ending at about Ra/Rac ≈ 6, i.e., for Ra = 6×109 for our data
at Ek = 10−6). The vertical profiles of the velocity fields [Figs. 17(e)–17(g)] for Ra = 4×109 show
similar spatial structure with some vertical coherence and a range of horizontal spatial scales.
The BZF structure is again most visible in uz [Fig. 17(e)] compared with uφ [Fig. 17(f)] and ur

[Fig. 17(g)]. The spatial structure of uφ is similar to uz whereas ur has much finer spatial structures.
The ur field in particular shows the strong radially inward and outward exchange with the bulk
interior flow. To make these statements involving spatial length scales more quantitative, we
compute the different measures of spatial length scale covering the range from the wall modes
up to full bulk convection.

E. Length scales of wall modes and boundary zonal flow

There are multiple different length scales to consider when spanning the regimes of steady wall
modes, 3×107 � Ra � 3×108, unsteady subcritical wall modes 4×108 � Ra � 8×108, and bulk
modes 9×108 � Ra � 5×109. For our � = 1/2, the largest length scale is the m = 1 wall mode
state with λ1 = π/2 which persists over the full range considered here. The radial length scale of
the wall-mode or BZF states can be found in different ways [53,54]. Here we take a radial length
defined either by the first zero crossing r0 of each field in the radial direction starting from the
sidewall boundary (r/R = 1), for ur , the radial position of the peak maximum [see Fig. 8(d)], and
for ωz we take the second zero crossing. Note that δu/H = (1 − r0/R)�/2 = (1 − r0/R)/4. We
compute this in the precessing frame at the maximum of the field in the azimuthal direction; the
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FIG. 18. Radial widths δ Ek−1/3 versus Ra/107 for Ek = 10−6: � = 1/2 (closed symbols) and � = 2 (open
symbol); δuz (blue circles), δuφ

(red squares), δur (magenta diamonds), and δωz (orange triangles), and δuzrms

(blue triangles). The three regions are steady wall modes (yellow), subcritical unsteady wall modes (blue), and
BZF with bulk modes (pink). The lateral (blue) dashed line is the length scale of the eigenfunction of uz of 2.5,
the lateral red dashed line is the length scale of the eigenfunction of uφ of 2.24, and the orange lateral line is for
the radial width of ωz of 3.3. The values for δuz for Ra � 9×108 are the rms values and the blue dashed curve
is the function δuz = 2.5 + 0.16(Ra/107 − 80)1/2.

approach we used above for comparing with linear eigenfunctions [20]. Previously, we measured
the radial length scale of the wall-mode or BZF states by the first zero crossing of 〈uφ〉φ,t at the
midplane [53,54]. This does not work well for the wall mode state because uφ (z) has an approximate
zero at the midplane, a radial length scale δuφ

is about 1/2 of its value at, for example, z = 0.8. This
explains the apparent scaling ∼Ek2/3 of δ0 found earlier for a range of Ek [53,54] instead of the
expected Ek1/3 scaling. This approach works well even for unsteady precession in the subcritical
regime but there are insufficient data to get statistical convergence for the highly intermittent BZF
state in this study where strong bulk flow is present. In that case, we use the first minimum of
the root-mean-square (rms) field (〈uz

2〉φ,t )1/2 which should be at the approximate location of the
first zero crossing used for the wall-mode regime. The results are shown in Fig. 18 for uz, uφ ,
ur , and ωz where the widths δ are normalized by Ek1/3 for comparison with the wall-mode linear
eigenfunctions. In the weakly nonlinear regime with Ra � 7×107, δuφ

≈ 2.25Ek1/3 consistent with
the linear eigenfunction whereas for Ra � 108, we have δuφ

≈ δuz ≈ 2.5Ek1/3. In contrast, δωz ≈
3.3Ek1/3 ≈ 1.3δuz for Ra � 109. Both δuφ

and δuz start to increase slightly in the region of subcritical
instability. For � = 2 (blue, open circle), δuz ≈ δuφ

at Ra = 5×108. For Ra � 109, δuz rms
increases

rapidly with Ra. δur shows more variability, perhaps owing to the smaller amplitude of ur which
might require better statistical averaging.

Other length scales are the horizontal length scales in the interior of the cell as measured in
horizontal cross sections and the horizontal and vertical length scales in the azimuthal and vertical
direction around the circumference in the sidewall boundary region. The first is characteristic of
bulk convection whereas the second is reflective of BZF–bulk interactions. For horizontal cross
sections, we compute the two-dimensional (2D) autocorrelation function of the field F as CFF (r) ≡
〈F (x)F (x + r)〉A,t/〈F 2(x)〉A,t in a centered rectangular domain with dimensions 0.6D×0.6D, where
〈·〉A,t means averaging over a horizontal cross-section and in time. We define the length scale δ such
that CFF (δ) = 0.25 with uncertainty defined by dδ = ±[dC(r)/dr]−1�C = ±0.05[dC(r)/dr]−1

[as compared with Ref. [57] which uses δ = ∫ ∞
0 C(r)dr so our lengths are a bit larger]. In Fig. 19(a),
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FIG. 19. (a) Bulk length scales δT Ek−1/3 versus Ra/107 for horizontal cross sections of T at z = 1/2 in a
square domain with 46% of the circular area [shown in images in panel (b)]. The labels (1), (2), (3) correspond
to Ra values of images in panel (b). (b) False color images of T : (left) T (x, y, z = 1/2) and (right) T (r/R =
0.98, φ, z). (1) Ra = 2×108, (2) Ra = 1×109, and (3) Ra = 5×109. (c) Wall-mode or BZF scales δT Ek−1/3

vs Ra/107 for vertical sections T (r/R = 0.98, φ, z): CT T (0.98Rφ) (horizontal) and CT T (z) (vertical). Unless
labeled in the figure, dashed lines (with corresponding colors) are guides to the eye.

we show δT Ek−1/3 versus Ra with corresponding representative images (left) in Fig. 19(b) for (1)
Ra = 2×108, (2) Ra = 1×109, and (3) Ra = 5×109. The size of the interior domain of area 0.36D2

is shown. In the steady wall-mode region, δT ≈ 13 which corresponds roughly to the exponential
decay shown in Fig. 7(a). In the unsteady subcritical regime, δT decreases owing to an increasing
fraction of lateral spatial structures with smaller length scale. In the bulk regime for Ra � 1×109,
δT Ek−1/3 ≈ λcEk−1/3 = 5.1, characteristic of bulk rotating convection.

We also compute the one-dimensional (1D) correlation functions for the anisotropic
directions in a vertical azimuthal slice T (r/R = 0.98, φ, z): CT T (Rφ) = 〈〈T (r/R =
0.98, θ, z)T (r/R = 0.98, (θ + φ, z))〉z/〈T 2〉z〉t and CT T (z) = 〈〈T (r/R = 0.98, φ, y)T (r/R =
0.98, φ, y + z)〉φ/〈T 2〉φ〉t . The results are shown in Fig. 20(c) with the corresponding representative
images in Fig. 20(b) (right). The azimuthal length scale is dominated by the m = 1 sinusoidal
character of the wall mode and is about 30 up to the onset of bulk convection—a m = 1 cosine
function has a correlation length of about 20 in these units. In the bulk regime, it drops to about 17.
The vertical length scale is roughly independent of Ra which is consistent with the main vertical
variation of T being a linear gradient with a corresponding slope independent correlation length of
about 25 (the correlation length of a linear gradient is independent of its slope). Instead, the value
is somewhat lower, about 18–20.

To obtain a more complete description of the length scales defined above, we apply the auto-
correlation analysis to the velocity and vertical vorticity fields for horizontal cross sections and
for the horizontal and vertical directions in a azimuthal slice near the sidewall. In particular, we
use for the horizontal sections, z = 0.8 for uz, uφ , ur , and ωz to avoid the approximate vertical
zero crossing of uφ at z = 1/2. We show in Figs. 20(a)–20(c) the correlation lengths δEk−1/3

versus Ra/107 for horizontal cross sections [Fig. 20(a)], horizontal variations in a vertical azimuthal
profile [Fig. 20(b)], and vertical variations in a vertical azimuthal profile [Fig. 20(c)]. The length
scales for horizontal cross sections all show the same overall trend with a decrease from about
ten starting at Ra ≈ 5×108 to between two and five corresponding to λc/2 and λc, respectively,
for higher Ra. Whereas δT decreases gradually over the subcritical regime, the velocities and ωz

abruptly decrease and maintain roughly constant values through the subcritical and bulk regimes
5×108 � Ra � 5×109. This suggests that the subcritical wall-mode instability is related to the bulk
instability with structures of the order of the linear stability length scale. The slower decline of δT
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FIG. 20. Autocorrelation lengths δ Ek−1/3 vs Ra/107: δT (black triangles), δuz (blue circles), δuφ
(red

squares), δur (magenta diamonds), δωz (orange inverted triangles). (a) Bulk length scales from horizontal cross
sections of T and ωz at z = 1/2 and uz, uφ , and ur at z = 0.8 in a square domain with 46% of the circular area,
(b) wall-mode or BZF horizontal autocorrelation lengths for vertical sections at r/R = 0.98 and (c) wall-mode
or BZF vertical correlation lengths for vertical sections r/R = 0.98. Averaging is as in Fig. 19. Unless labeled
in the figure, the dashed lines (with corresponding colors) are guides to the eye.

is related to the longer (exponential) width of the temperature field relative to the radially confined
velocity and ωz fields.

The horizontal and vertical lengths in the sidewall boundary region, Figs. 20(b) and 20(c), are
more complicated to interpret. The length scales of T , u, and ωz are consistently about 28 for Ra �
Rac ≈ 1×109 with the exception of δur ≈ 8 in the subcritical regime. For 1×109 � Ra � 5×109,
δT ≈ δuz ≈ δuφ

≈ δωz ∼ F (Ra/Rac − 1) (assuming a dependence on Ra/Rac − 1). An empirical
approximation of the data is F (x) ∼ x1/3. The exception is ur ≈ 1.5 which reflects the small scale
nature of the boundary-interior interactions, see Fig. 17(g). The vertical correlations are somewhat
different although δuz and δuφ

are reasonably described by F (x) ∼ xγ with γ = 1.2, 0.7, respectively.
Comparatively, δur starts to decrease in the subcritical regime, similar to the horizontal component.
The quantitative trends shown here are consistent with the qualitative impressions provided by
representative images in Fig. 17.

F. Heat transport Nu

There are heat transport contributions from the wall modes and their remnants in the BZF and
from the bulk flow. As we have seen above, the two states are not independent. The wall-mode
jet instability for Ra � 4×108 injects temperature and velocity perturbations into the interior prior
to and continuing into the region of bulk instability, see Fig. 16. In the other direction, the finite
convective amplitude near the sidewall boundary appears to be the nucleation site for bulk-like
perturbations with spatial separation of order λc and with strong vertical coherence, see Fig. 17.
Thus, cleanly separating the individual contributions, especially for convection cells with � < 1, is
a complicated proposition. In Fig. 14(a), we noted that the time series of Nu in the subcritical regime
4×108 � Ra � 109 had minima corresponding to a more quiescent state and maxima corresponding
to the lateral jet ejection process. Extending the range of this analysis to include bulk convection
up to Ra = 5×109 yields Fig. 21(a) where both the maxima and minima of Nu vary linearly
with Ra (the red and black dashed lines are of the form a + bRa) so the difference �Nu also
varies linearly with Ra. What then is the base state for the onset of bulk interior convection? In
Fig. 21(b), T fields corresponding to minimum and maximum Nu for Ra = 5×108 and 1×109

are shown. For Ra = 5×108, the minimum Nu state corresponds quite closely to a nonlinear
time-independent state whereas the maximum Nu state involves the emission of lateral jet structures.

053501-22



WALL MODES AND THE TRANSITION TO BULK …

(a)

N
u

100

50

10

5

0.5 1 5 10 50

Ra/108

W
a
ll

M
o
d
es

S
u
b
cr

it
ic

a
l

Bulk +

BZF

(b) Ra = 5 × 108

Ra = 109

T+

T−

T

FIG. 21. (a) Numax (blue solid circles, red solid square and diamonds) and Numin (black, solid circles and
triangles) vs Ra/108. Regions are labeled with vertical dashed lines separating them. Red and black dashed
lines are linear fits (of the form a + bRa) to Nu vs Ra for Ra � 109. (b) T fields for (top) Ra = 5×108 and
(bottom) Ra = 109 showing example at the minimum (left image) and maximum (right image) of Nu. Color
bar of T is shown.

The situation near the onset of bulk instability at Ra = 1×109 is more complex with lateral jets
visible in both images; the timing and strength of the jets is probably important and not characterized
here.

It appears from the analysis presented in Figs. 21(a) and 21(b) that the lateral jets from the wall
region contribute substantially to the heat transport at the onset of bulk convection at Ra ≈ 1×109.
With that in mind, we look at the average Nu and consider how best to separate the wall and bulk
contributions. Previously, we have done so in several ways. First, owing to the rather unique radial
structure of the wall modes and their remnants, we defined the BZF contribution as 2π

∫ 1
r0

Nu(r)rdr,
where r0 is the first zero crossing of Nu(r) [53,54]. But this misses the negative contribution in Nu(r)
as discussed above, see Figs. 11(a) and 11(b). Recently, we generalized this approach by dividing the
total Nu into inner and outer portions (2/r2

s )
∫ rs

0 Nu(r)rdr and 2/(1 − r2
s )

∫ 1
rs

Nu(r)rdr, respectively,
where rs was varied [50]. Here we choose rs = 0.8 (in units of R) which is a good approximation
to where the radial signature of the wall-mode or BZF seems to have become small, see Fig. 11(b).
So from this perspective there are three contributions to the heat transport: pure wall mode (with
jet instability), BZF, and bulk. In Fig. 22(a), these different pieces are plotted versus Ra/Rac. For
rs = 0.8, Nu contributions of BZF and bulk are about the same and both vary quite linearly with
Ra/Rac. For comparison, Nu from the nonhydrostatic quasigeostrophic model (NHQGS model)
[40,41] for Ek → 0 and from Nu from a laterally periodic DNS for Pr = 1 and Ek = 10−7 [42]
which includes Ekman pumping contributions (see also Refs. [62,63]) are plotted. The NHQGS is
smaller owing to ignoring the contributions of Ekman pumping whereas the DNS is a bit higher,
perhaps owing to larger Ek, i.e., Ek > 0.

Another possible separation strategy is to define rs(Ra) based on some feature of, for example,
uz(r) or Nu(r) rather than having it be a constant value. Varying rs slightly for different Ra
introduces a net upward (downward) curvature to Nu versus Ra for BZF (bulk) pieces. We choose
instead to evaluate the separation for several constant rs, recognizing that there is no unambiguous,
testable separation strategy using the data we have here. In Fig. 11(c), the features of Ñu, ũz,
and T̃ suggest 0.7 < rs/R < 0.8. In Fig. 22(b), we show results using rs/R = 0.7 to contrast
with rs/R = 0.8 in Fig. 22(a). The trends are both consistent with a linear increase of Nu with
Ra/Rac but with a greater (lesser) slope for BZF (bulk) contributions. Here the bulk contribution is
quite comparable to the NHQGS data with little Ekman pumping correction whereas the seeming
correspondence of the BZF contribution with the DNS results is purely coincidental.
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FIG. 22. Nu versus Ra/Rac: (a) rs/R = 0.8, Nu>rs − Nuwm BZF (red circles), Nu<rs Bulk (blue squares),
NuNHQGS Pr = 1 [41] (magenta diamonds), and NuDNS Pr = 1, Ek = 10−7 (black triangles) [42]. Horizontal
dashed line for Ra/Rac � 1 is the wall-mode contribution Nuwm. The blue dashed line is a linear approximation
to Nu>rs − Nuwm ≈ Nu<rs . (b) Same data with rs/R = 0.7. The blue and red dashed lines are linear fits to the
bulk (blue squares) and BZF (red circles), respectively.

Although the procedure above is a tempting one that offers a more or less clean separation,
there are concerns about this approach that can be elucidated by considering the vertical tem-
perature profile 〈T (r = rmax, φ, z)〉φ,t , where rmax is the value of, and its variation with, Ra. In
Fig. 23(a), profiles of 〈T 〉 are shown as functions of z for 3×107 � Ra � 7×108 and in the inset
for 109 � Ra � 5×109. There is a continual increasing slope at the top and bottom boundaries
but the interior gradient is not monotonic with a smaller slope at Ra = 5×108 compared with
that at Ra = 7×108. This reversal is also observed in the inset where higher Ra have steeper
interior slope. These variations are features associated with the different states of wall modes for
Ra � Rac ≈ 9×108 and the development of the bulk instability. An important point here is that
the slope is continuously varying (see Fig. 23 in the Appendix) so that the definition of a thermal
BL thickness is quite problematic. Perhaps there is localized Ekman pumping associated with the
BZF—a topic for further investigation.

FIG. 23. (a) Temperature profiles 〈T (r = 0.98R)〉φ,t for 3×107 � Ra � 7×108 as indicated. The diag-
onal black dashed line is the linear conductivity profile of the thermally conducting state. Inset shows
〈T (r = rmax)〉φ,t for 109 � Ra � 5×109, where rmax is the radial position of the maxima of 〈uz(r)〉φ,t . (b)
−dT/dz|z=0 − 1 (blue, solid circles) and 1 + dT/dz|z=1/2 (red, solid squares) at the same r as in panel (a).
(c) Comparison of −dT/dz|z=0 at the same r as in panel (a) (blue, solid circles) and Nu (red, solid squares),
showing close correspondence.
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In Fig. 23(b), we present the slope at the lower boundary −dT/dz as −dT/dz(z = 0, r =
rmax) − 1 for which there are three distinct regions: weakly nonlinear growth ∼(Ra − Raw), the
nonlinear state including the periodic time-dependent state up to Ra = 6×108, and the combined
BZF and bulk state with increasing slope ∼Ra. If one averaged over r as well as over φ and t , one
would expect an exact correspondence between global heat transport and local temperature slope
Nu − 1 = −dT/dz(z = 0, r = rmax) − 1. In Fig. 23(c), there is very close agreement between these
two quantities except in the weakly nonlinear regime. Returning to the interior slope, we plot in
Fig. 23(b) dT/dz(z = 1/2) + 1 which is zero at Raw and would approach one with increasing Ra
for nonrotating convection but has a finite slope for bulk rotating convection [50]. Here we have
between 0.8 and 0.9 compared with a value of 0.6 for pure bulk geostrophic convection [40]. The
difference is not surprising given the coexistence of bulk fluctuations on top of the wall-localized
state as previously documented above.

Perhaps the most interesting feature of these profiles of 〈T 〉 is the close agreement of the localized
(in r) measure of Nulocal = −dT/dz(z = 0, rmax) and the global heat transport Nu that averages over
the whole domain. If there was a clean separation between wall and bulk modes, Nulocal would not
increase rapidly and in close correspondence to Nu. One can then infer that the bulk-like fluctuations
in the wall zone continue to increase in strength and dominate the heat transport with the average
wall-mode foundation playing a minor role. One cannot escape the realization that there are strong
interactions among the bulk and coexisting BZF that plays a major role in the heat transport in some
transition region from wall modes to bulk rotating convection.

III. CONCLUSION

We employed DNS using the Goldfish code of RRBC in a cylindrical geometry with aspect
ratio � = 1/2, insulating sidewall boundary conditions, Ek = 10−6, and Pr = 0.8 to characterize
the progression of states over a range 3×107 � Ra � 5×109. We also computed a smaller set of
properties for the same parameters but with � = 1, 2 and for Ek = 10−4 with � = 0.3, 1/2, 1,
2, 5, primarily to determine the mode number m. The set of values for Ek = 10−6 are tabulated
in the Appendix, Table II. We elucidated how the mode number m observed for different � was
consistent between wall modes and the BZF state, how the observed wall mode critical Raw varies
with Ek, �, and m, and how small � � 0.7 always has m = 1 owing to the azimuthal periodicity.
We further demonstrate the decoupling of radial length scales for T ∼ (kw)−1 and u ∼ Ek−1/3 in
the steady wall-mode regime 3×107 � Ra � 3×108 and show that the eigenfunctions of the planar
wall linear solutions [20] provide an excellent representation of the data, particularly for the radial
dependence of u(r) where, for Ek = 10−6, the radial localization near the sidewall of about 0.1
makes the sidewall curvature effects very small, i.e., 0.1/(2π ) ≈ 0.02. On the other hand, for T the
linear eigenfunction extends over a significant fraction of R and deviations owing to finite curvature
and growing nonlinearity are more keenly felt. Similarly, the azimuthal and vertical eigenfunctions
are also more effected by nonlinearity and curvature but give insight into the development of the
steady wall-mode state.

In the steady wall-mode regime, Nu is constant despite the traveling-wave nature of the wall
mode. For 4×108 � Ra � 8×108, the steady wall mode undergoes a subcritical bifurcation to a
state of time-dependent Nu through a nonlinear mechanism of lateral jet ejection from the wall
mode into the bulk interior (see Refs. [49,57]). Throughout the linear (steady) and nonlinear (time-
dependent) regimes for Ek = 10−6, Nu(r) ∼ 〈uz(r)〉〈T (r)〉 owing to the rapid radial variation of uz

compared with the very slow spatial variation of T and the fixed small phase difference between
them. The jet instability strengthens as Ra → Rac ≈ 1×109 and fine scale spatial (and temporal
oscillations, see Appendix) structures form around the azimuth in the wall localized region. We show
that the radial length scale δuz and δuφ

defined by first zero crossing is about 2.5Ek1/3 whereas δωz ≈
3.3Ek1/3 using its second zero crossing. We also use autocorrelation analysis to extract correlation
lengths for different cross sections of fields, namely, horizontal cross sections and vertical surfaces
of {φ, z} at constant r/R = 0.98 [the maximum value of uz(r)]. The correlation lengths are fairly
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constant in the wall-mode regime and decrease rapidly once the bulk mode sets in for Ra � 109.
In horizontal regions in the cell center and Ra � 109, δT , δuφ

≈ λc whereas δuz , δur , δωz ≈ λc/2. In
the wall localized regime, the azimuthal correlation lengths are roughly constant at about a half
wavelength of the m = 1 wall mode but decrease to 2λc − 4λc in the bulk mode region. The vertical
correlation lengths are more varied among the different fields but systematically decrease in the bulk
mode region.

When considered in the context of heat transport scaling, the analysis of the structure of wall
modes and their remnant robust features in the presence of bulk convection—the BZF—play a
key role in attempting to separate bulk influence from that of the wall-localized portion. The
negative feature in Nu is understood as arising from the oscillatory radial structure of uz(r) and
the much slower radial dependence of T . Once bulk convection begins in the interior, the BZF
spreads out radially and different features of Nu, uz, and T including the lateral jet instability makes
separation of the two components complicated. The resulting separation using rs/R = 0.8 and 0.7
and subtracting the wall-mode contribution [50,53], yields Nu ∼ Ra/Rac but with different slopes:
one that gives agreement with the NHQGS theory and the other with Ekman pumping corrections.
There are also subtle changes in the Ra dependence for the two rs values. The average vertical
temperature profiles reinforce the understanding that the BZF carries strong bulk fluctuations that
contribute heavily to the total heat transport. There seems to be no unambiguous way to disentangle
the two components of Nu in small aspect ratios such as studied here. A closer inspection of the
interplay of thermal boundary layers in the transitioning wall mode and for bulk convection with
coexisting BZF states is certainly warranted.
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APPENDIX

In this section, we provide tabulated data from our DNS, empirically expand the set of critical
parameters to higher order in Ek, and show some additional features of wall modes in the BZF
regime. In addition, we tabulate movies that we present in Supplemental Material [64].

1. Data

In Table II, the computed values of control parameters Ek = 10−6, Pr = 0.8, �, Ra, and
ε = Ra/Raw − 1 are listed with the resultant values of Nu, ωd , ωd2 , and ωd0/ωd .

2. Wall-mode critical parameters and aspect ratio effects

The asymptotic approximations for the critical values of Raw, ωw, and kw are valid over varying
ranges of Ek but the approximations are not adequate to accurately estimate these critical values
for larger Ek. Using the numerical data presented in Ref. [20], one can empirically extend the
asymptotic results to larger Ek using fits to the data and expansions in higher powers of Ek1/3.
In Fig. 24, we fit the data for the critical values assuming insulating sidewall boundary conditions
at Pr = 0.7, 7 (see Fig. 3 [20]). Only Raw has significant variation with Pr. Finite wall curvature
(� = 1 [16]) is shown to slightly decrease Raw whereas finite wall conductivity slight increases
Raw [19] as shown in Fig. 24(a). We also fit the curvature parameter ξ0 of the marginal stability
boundary computed for Pr = 7 and for partially insulating sidewalls [21]. The results are shown in
Fig. 24.
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TABLE II. Data from DNS with Pr = 0.8 indicating Ek, �, Ra, ε, Ro, Nu, ωd , ωd2 , and τ0ωd/(2π ).

Ek � Ra ε Ro Nu ωd ωd2 τ0ωd/(2π )

10−6 1/2 3.0 × 107 0.07 0.0061 1.1 1.9 × 10−4

4.0 × 107 0.43 0.0071 1.6 2.2 × 10−4

5.0 × 107 0.79 0.0079 2.0 2.4 × 10−4

7.0 × 107 1.5 0.0094 2.5 2.8 × 10−4 1.7 × 10−4 −0.25
1.0 × 108 2.6 0.011 4.2 3.7 × 10−4 3.3 × 10−4 −0.25
2.0 × 108 6.1 0.016 5.4 6.0 × 10−4 8.9 × 10−4 −0.42
3.0 × 108 9.7 0.019 6.5 8.1 × 10−4 1.4 × 10−3 −0.56
4.0 × 108 13.3 0.022 7.9 9.7 × 10−4 1.5 × 10−3

5.0 × 108 16.9 0.025 8.4 1.2 × 10−3 1.8 × 10−3 0.21
6.0 × 108 20.4 0.027 8.7 1.4 × 10−3 2.4 × 10−3 0.34
7.0 × 108 24. 0.030 9.1 2.9 × 10−3 1.7(5) × 10−3

8.0 × 108 27.6 0.032 10.3 2.7 × 10−3

9.0 × 108 27.6 0.034 10.8 3.4 × 10−3

1.0 × 109 34.7 0.035 11.2 4.4 × 10−3

2.0 × 109 70 0.05 24.1 7.4 × 10−3

3.0 × 109 106 0.061 36.4 9.6 × 10−3

4.0 × 109 142 0.071 47.1 1.2 × 10−3

5.0 × 109 178 0.079 55.8 1.5 × 10−2

With the resulting fit parameters:

Raw = 31.82Ek−1 + 46.5Ek−2/3 − 465Ek−1/3 + 1564 (Pr = 0.7)

= 31.82Ek−1 + 46.5Ek−2/3 − 194Ek−1/3 + 845 (Pr = 7),

kw = 6.07 − 35Ek1/3 + 250Ek2/3 − 990Ek (Pr = 0.7)

= 6.07 − 35Ek1/3 + 250Ek2/3 − 870Ek (Pr = 7),

ωκw = 66.05 − 732Ek1/3 + 5700Ek2/3 − 2300Ek

ξ0 = 0.142 + 0.447Ek1/6 − 1.08Ek1/3 + 1.34Ek1/2 (Pr = 7).

3. Transients

Whereas the form of the time dependence of Nu is very precisely sinusoidal [e.g., Fig. 25(b)], the
subcritical nonlinear state has some interesting additional features. At Ra = 4×108, there is a very
clear large versus small Nu asymmetry in Nu(t ) as shown in Fig. 25(a), i.e., the system prefers to be
in a larger Nu state relative to a smaller one. The solid line is a fit with a − b{cos4 [(ω2/2)t − φ0]}
to the normalized Nu(t ), where Nun is its approximate mean value. In Fig. 13(c) (Ra = 5×108),
there is some remaining asymmetry with both cos (ωt ) and cos [(ω2/2)t]4 contributions. Whereas
the amplitude �Nu at Ra = 4×108 is very constant over several oscillation periods, the amplitude
increases slowly for Ra = 6×108 as a saturation of the form 1 − e−t/τ0 ; this is also observed for
Ra = 5×108, see Fig. 13(c), but the single oscillation period makes the saturation difficult to
measure accurately. The time series for Ra = 7×108 in Fig. 25(c) is quite chaotic with an aperiodic
oscillation and an intermittent amplitude.

4. � = 1/3 prograde dynamics

Most of the BZF states that we explored had retrograde (anticyclonic) precession. The exception
is for � = 1/3 with Ra = 108, and Ek = 1.1×10−5, where we find prograde (cyclonic) precession
and alternations between prograde and retrograde directions, see Figs. 26(a) and 26(b). At early
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FIG. 24. Critical parameters of a planar wall mode with perfectly insulating sidewall boundary conditions
versus Ek using digitized data from Fig. 3 of Ref. [20]. Blue and red data points and corresponding fits in
powers of Ek1/3 are for Pr = 7 and Pr = 0.7, respectively. (a) Raw where black [16] and magenta [19] data
points for Pr ≈ 7 [below and above the Pr = 7 (blue) curve] show the effects, respectively, of finite curvature
(� = 1) and finite wall conductivity (plexiglass walls). (b) ωκw (recall that ωd = 2Ek/ Pr ωκ ), and (c) kw.
(d) The curvature parameter ξ0 of the marginal stability boundary εM = ξ 2

0 (k − kw)2 (schematically shown
in the inset) from data at Pr = 7 and weakly conducting sidewall boundary conditions [21].
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FIG. 26. Angle-time plot for Ra = 108, � = 1/3, and Ek = 1.1×10−5 of T (r = 0.98R, φ(t ), z = 1/2) and
(a) the whole time series of 1000 time units, (b) the last 200 time units. Hotter (red), cooler (blue).

t � 400 [Fig. 26(b) shows an expanded interval] and late times t � 700, the precession is prograde
but for intermediate times, an interval of retrograde precession is observed. It is not determined
from our data whether the prograde state is stable at long times. Uniform cyclonic precession
dynamics for wall-mode states was predicted theoretically for small � and Pr < 1 [16] and observed
in previous simulations [51] for � = 1/2, Pr = 0.8, Ra = 105, and Ek = 1.4×10−3. The prograde
direction of precession depended sensitively on a combination of � and Ek as we also find here
whereas retrograde precession is observed in almost all cases; we see prograde precession for
� = 1/3 but not for � = 1/5, 1/2, 3/4, 1 over similar ranges of Ra and Ek.

5. Eigenfunction root mean square

The qualitative features for the field shapes at Ra = 5×108 seen in Figs. 12(e)–12(h) show
that the development of the nonlinearity of the wall mode is near regions close to the horizontal
isothermal top or bottom boundaries. To make this more quantitative, we compute X (φ, z, r = 0.98)
and its first Fourier mode X (1)(φ, z, r = 0.98) at fixed z. We then find the rms value with respect to φ

of X and of X − X (1) and average in time. Figures 27(a)–27(d) show the z variation of the rms values
for T , uz, uφ , and ur , respectively, for Ra = 5×108 whereas [Figs. 27(f)–27(h)] show u fields for
Ra = 3×107; the differences with Ra are not large. The difference �X (z) [as shown in Fig. 27(a) for
T ] indicates the degree to which the X (1)(z) captures the main features of its φ dependence. Figure
27(e) shows the normalized ratio �X /X − 1. Except for ur , over much of the vertical extent almost
80% of the full rms value is captured by X (1)(z) with only a small enhancement for Ra ≈ Raw. On
the other hand, ur has very little weight—about 25%—in the first Fourier mode.

For the vertical profiles T (z), we computed the rms analysis of the deviation of T (z) from a linear
profile, i.e., θ (z) = T (z) − (1 − z), with respect to its first Fourier mode for different Ra as shown in
Fig. 28(a) where one sees the weakly nonlinear growth ∼(Ra − Raw )1/2 (blue dashed) for the θrms.
Subtracting out the dominant linear eigenfunction one gets second-order scaling of ∼Ra − Raw (red
dashed) for Ra � 1×108. The saturation at higher Ra results from increasing gradients near the top
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FIG. 27. 〈X (φ, z)〉φrmst
(blue solid circles) and 〈X (φ, z) − X (1)(z)〉φrmst

(red solid squares vs z, where X (1)

is first Fourier mode of field X where solid and dashed lines are guides to the eye unless otherwise specified.
(a) T , (b) uz, (c) uφ , and (d) ur for Ra = 5×108 and (f) uz, (g) uφ , and (h) ur for Ra = 5×107. (uφrms and urrms

go to zero at r/R = 1 for 0.99 � z < 1.0 consistent with zero tangential BC—not shown). (e) The normalized
difference 〈X − X (1)〉rms/〈X 〉rms − 1. For most of the height (excluding the center z = 1/2 for uφ and ur), X (1)

captures about 80% of the φ variation of T (blue solid circles), uz (red solid squares), and uφ (magenta solid
diamonds) with little variation for Ra ≈ Raw (solid blue, red, and magenta lines). ur (black solid triangles and
black line) is quite different with only about 20% for the higher Ra and 50%–70% for lower Ra.
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layer with an approximately constant slope only for z values within an Ekman boundary layer δEk = Ek1/2 =
0.001 indicated by dashed black vertical line. The dashed orange and black curves are the corresponding
profiles for nonrotating convection with the same Nu as for the corresponding solid orange and black curves.
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FIG. 29. Representative images of movies presented in Supplemental Material [64]. Ek = 10−6,
Pr = 0.8, and � = 1/2. Ra = 5×108: (a) T (r, φ, z = 1/2) (b) T (r = 0.98R, φ, z); Ra = 2×109: (c)
T (r, φ, z = 1/2), (d) T (r = 0.98R, φ, z); Ra = 109: (e) uz(r, φ, z = 0.8), (f) uz(r = 0.98R, φ, z), (g)
uφ (r, φ, z = 0.8), (h) uφ (r = 0.98R, φ, z), (i) ur (r, φ, z = 0.8), (j) ur (r = 0.98R, φ, z), (k) ωz(r, φ, z = 0.8),
(l) ωz(r = 0.98R, φ, z).

or bottom plates but saturating amplitude of θ . Finally, we show in Fig. 26(b) the boundary layer
profiles dT/dz(z) near the bottom boundary in the bulk or BZF region 1 � Ra/109 � 5. The curve
(blue) for Ra = 1×109 has a form still dominated by the wall-mode whereas the higher Ra curves
fall off much faster. For comparison the boundary layer profiles of dT/dz for nonrotating convection
for the same total Nu are shown for Ra/109 = 4 and 5. The RRBC profiles are quite different than
those of nonrotating RBC.

6. Movies

The dynamics and structure of the wall modes and the bulk/BZF states are hard to fully
characterize through static single frame images. In the Supplemental Material [64], we provide
representative movies that illustrate a variety of states. Figure 29 shows a representative frame for
each movie with details for each in the caption.
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