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Entropy production and thermodynamic inference for stochastic microswimmers
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The question of characterization of the degree of nonequilibrium activity in active matter systems is studied in
the context of a stochastic microswimmer model driven by a chemical cycle. The resulting dynamical properties
and entropy production rate unravel a complex interplay between the chemical and the hydrodynamic degrees
of freedom beyond linear response, which is not captured by conventional phenomenological approaches.
By studying the precision-dissipation trade off, a new protocol is proposed in which microscopic chemical
driving forces can be inferred experimentally. Our findings highlight subtleties associated with the stochastic
thermodynamics of autonomous microswimmers.
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Understanding entropy production and thermodynamic in-
ference [1] in autonomous systems [2], such as stochastic
motors [3,4] and microswimmers [5], is of fundamental im-
portance to the study of biological and synthetic active matter
[6–9]. These systems typically produce net motion or mechan-
ical work as a consequence of the dissipation of some form
of locally available energy (e.g., ATP hydrolysis) [10–12]. A
common assumption in the literature is that the dissipation can
be quantified by representing the autonomous self-propulsion
via an effective external “active force” [8,13–16].

The thermodynamic uncertainty relation (TUR) and its
various generalizations quantify the trade off between the
precision of a nonequilibrium current and its associated
dissipation, and thus provide a powerful tool to infer the
underlying driving forces of a system from experimental mea-
surements of its trajectories [1,17–19]. However, many of
the models studied until now to test the behavior of TURs
have been based on the assumption of tight coupling between
chemical and spatial degrees of freedom (where, e.g., a chem-
ical reaction always corresponds to a mechanical step and vice
versa) so that the dynamics is effectively one-dimensional,
and, hence, rendering the spatial, chemical, and entropy pro-
duction currents one and the same [17,20–25].

While convenient, these two (related) assumptions are not
generally valid. Realistic autonomous swimmers and molec-
ular motors involve at least two distinct currents (e.g., spatial
and chemical) and consequently at least two distinct kinds of
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driving forces. In fact, the relevant coupling in these systems
is off diagonal (in the language of linear irreversible ther-
modynamics [26–28]), as chemical forces drive motion. This
is particularly evident in the case of microswimmers, where
the force-free constraint on their self-propulsion mechanisms
introduces additional complexities [29–36], and has important
consequences on the bounds on entropy production [37,38]. A
multidimensional version of the TUR (MTUR) can, in princi-
ple, be used in multicurrent systems to obtain much-improved
bounds on the entropy production, and thus better inference
of the underlying driving forces [39]. However, how to exploit
this bound in practice is unclear, as typically only the spatial
current is measurable, while the chemical current is not. To
shed light on the inner workings of autonomous swimmers
and motors, we must therefore understand how spatial and
chemical forces and currents couple to each other arbitrarily
far from equilibrium, beyond linear response.

In this Letter, we study a stochastic three-sphere swim-
mer [32] as a minimal model that includes both chemical
and spatial (hydrodynamic) degrees of freedom; see Fig. 1.
The chemical cycle is represented by a four-state process
where each state corresponds to a different conformation of
the swimmer [Fig. 1(a)]. The key hydrodynamic degree of
freedom corresponds to the spatial position of the swimmer,
to which an external force may also be applied. The total
chemical energy ε associated with a cycle and the external
force F are the two affinities that drive the system out of
equilibrium and cause the overall swimming [Fig. 1(b)]. From
a hydrodynamic derivation (see Appendix A and [40]), we
show that the entropy production rate (EPR) can be written
as

T σ̇ = J (ε, F )ε + V (ε, F )F, (1)

where J (ε, F ) is the chemical current (rate) of the internal
cycle (see Fig. 1(b) and [40]) and V (ε, F ) is the velocity of the
swimmer. Superficially, Eq. (1) appears to have the standard
form of an EPR, with the chemical current J driven by the
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FIG. 1. (a) Full four-state cycle of the stochastic three-sphere
swimmer, after which it advances a distance d . L (long) and S (short)
indicate the state of the arms. (b) The current J through the cycle is
driven by the total affinity ε + Fd , where ε is the chemical affinity
and F the external force applied on the swimmer. (c) The total
velocity of the swimmer V includes an active swimming contribution
Jd and a passive drag MF , with M the hydrodynamic mobility.

chemical affinity ε and the spatial current V driven by the
spatial affinity F . However, the hydrodynamics of the swim-
ming mechanism leads to a coupling between the chemical
and spatial degrees of freedom, such that the currents J and V
do not respectively vanish when ε and F vanish. In fact, we
find that the velocity of the swimmer [40] is given by

V (ε, F ) = J (ε, F )d + MF, (2)

where the first term represents the active swimming (with d
being the distance advanced in the laboratory frame after a full
conformational cycle), while the second term is the passive
drag of the swimmer by the external force [Fig. 1(c)]. Here,
M is the hydrodynamic mobility of the swimmer, which is
related to its positional thermal diffusion coefficient through
the fluctuation-dissipation relation Dth = MkBT , where kB is
the Boltzmann constant and T is the temperature. Introducing
(2) into (1), we can rewrite the EPR as

T σ̇ = J (ε, F )(ε + Fd ) + MF 2. (3)

While perhaps less intuitive, (3) can be viewed as the canoni-
cal form of the EPR. Indeed, we show below that the external
force influences the dynamics of the chemical cycle through
the swimmer mechanics, such that the overall affinity driving
the chemical current J is ε + Fd . The passive drag velocity
MF in turn represents a hidden current that is exclusively
driven by the external force. Therefore, although Eq. (1) is
more practical as it involves currents that are observable (at
least in principle), it is only when written in the form of
Eq. (3) that the nonnegativity of the entropy production rate
as required by thermodynamics becomes manifest. Below, we
derive these results, and show how they strongly influence the
precision-dissipation trade off for the swimmer, and how they
can be used to infer the chemical driving force of the swimmer
from measurements of its position only.

Model. The model is summarized in Fig. 1(a). We assume
quick expansions or contractions of the arms such that their
possible states are contracted (uρ = 0) or expanded (uρ = δ),
where u� and ur represent the deformation of the left and
right arms, respectively, and δ is the extension amplitude.

TABLE I. Displacement of each sphere in each transition. For
the reverse transitions, �xi,αβ = −�xi,βα . The constants αL,S depend
on the geometry of the swimmer and satisfy 1

3 < αL < αS < 1
2 . The

total displacement d of the swimmer after a full cycle, obtained by
summing over any of the columns, is d = 2(αS − αL )δ.

Process �x1,βα/δ �x2,βα/δ �x3,βα/δ

A = LL −→ B = SL 1 − αL −αL −αL

B = SL −→ C = SS αS αS −(1 − αS )
C = SS −→ D = LS −(1 − αS ) αS αS

D = LS −→ A = LL −αL −αL 1 − αL

Each conformation corresponds to a state α = A, B,C, D of
the chemical cycle. The rate for the transition α → β is de-
noted as kβα . The states can also be named based on the
arms being long (L) or short (S), e.g., state B corresponds
to SL. To introduce forward propulsion (toward the right)
without an external force, one must break detailed-balance
such that the the trajectory of the system follows closed cycles
in the conformational space [30–32]. If the energy released
in going from α to β is �εβα , local detailed balance re-
quires kβα/kαβ = e�εβα/kBT . Note that local detailed balance
is required for a thermodynamically consistent definition of
stochastic entropy [41]. The total affinity of a cycle is then
given by ε = ∑

�εβα = kBT ln kBAkCBkDC kAD
kABkBC kCDkDA

. The steady-state
probability current J is given by J = kBAPA − kABPB, where
Pα’s are the steady-state probabilities [40]. This current can
be viewed as the rate or the inverse period for completion of
a chemical cycle. For ε = 0, equilibrium is restored and the
current vanishes.

Effect of an external force. We now consider that the
swimmer is pulled or pushed by a constant external force F ,
with the convention that negative force points toward the
left (against the direction of swimming). In principle, the
force could be distributed among the three spheres such that
F1 + F2 + F3 = F where force Fi is applied on the ith sphere.
Importantly, the force not only directly drags the swimmer,
but also affects its conformational dynamics by modifying
the transition rates kβα . From a hydrodynamic derivation of
entropy production (Appendix A), we calculate the total dis-
sipation per transition which includes the work done by the
external forces due to the displacements of each sphere.

The displacements �xi,βα of the ith sphere during transi-
tion α → β are listed in Table I (see Appendix A). Denoting
the rates in the absence of the external forces (or the bare
rates) as k0βα , local detailed balance demands that the rates
be modified as

kβα = k0βα exp

(
θβαWβα

kBT

)
, (4)

where Wβα = ∑
i Fi�xi,βα is the work done by the external

forces. Since the signs of the displacements are reversed in
the reverse transitions, this implies that Wαβ = −Wβα . The
factors θβα are related to the location of the energy bar-
rier between states α and β, and must satisfy θαβ = 1 − θβα

[40,42]. Importantly, independently of the choice of θβα and
of where the force is applied, the total affinity of the cycle be-
comes kBT ln kBAkCBkDC kAD

kABkBC kCDkDA
= ε + Fd. Using these ingredients
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FIG. 2. Dependence on external force F , for several values of the chemical affinity ε, of (a) the chemical current J , (b) the spatial current
or velocity V , (c) the chemical diffusion coefficient DJ , and (d) the correlation C between J and V . In (b), the dotted black line represents the
passive drag velocity V = MF .

and existing results from the literature [43,44] we calculate the
chemical current J and its associated diffusion coefficient DJ

[40]. Because each conformational cycle results in a displace-
ment d = 2(αS − αL )δ (see Table I), the active swimming
contributes Jd to the velocity V of the swimmer, while the
force F additionally contributes a passive drift; see Eq. (2).
The hydrodynamic mobility M is to the leading order constant
during the whole cycle, and more generally, it is an aver-
age over all conformations of the swimmer [40]. The spatial
diffusion coefficient (associated to V ) also includes active
swimming and passive hydrodynamic contributions, and reads
DV = DJd2 + Dth [40]. Using Eq. (2), we can also calculate
the correlation between J and V as C = 1/

√
1 + Dth/(DJd2)

[40].
Swimmer dynamics. In all of the following results, we fix

the geometric parameters to αL = 2.1
6 and αS = 2.9

6 ; the force
is applied on the leftmost (trailing) sphere so that F1 = F and
F2 = F3 = 0, and we set θβα = 1/2 for all the transitions. The
bare transition rates k0βα are all set to the same value k, with
the exception of k0BA which is set to k0BA = keε/kBT . Further-
more, we focus on strong swimmers and set Dth/kδ2 = 10−3.
In all plots, quantities are nondimensionalized using k−1 as
the timescale, δ as the length scale, and kBT and kB as units of
energy and entropy, respectively.

Figure 2 displays the behavior of several quantities of in-
terest as a function of the applied force F , for various values
of the chemical affinity ε. The chemical current, shown in
Fig. 2(a), clearly manifests the mechanochemical coupling in
this system, as an applied force can create a chemical current
even in the absence of any chemical driving (ε = 0). When
ε > 0, the current vanishes at the critical force F∗ = −ε/d
that makes the total affinity of the cycle zero, while it is
reversed for F < F∗. At large positive or negative force, J
vanishes [45]. The behavior of the velocity V is similar to
that of J [see Fig. 2(b)] except that V shows a linear depen-
dence as V = MF at large force, when it is dominated by
the passive drag by the external force since J vanishes. The
velocity vanishes at the stall force Fs, which can be calculated
from the implicit equation J (ε, Fs )d + MFs = 0 [see Eq. (2)]
and satisfies F∗ < Fs < 0 (for ε > 0). For sufficiently large
ε, small positive forces cause the swimmer to decelerate,
whereas small negative forces cause the swimmer to accel-
erate [32]. This phenomenon, known as negative differential
mobility, has also been observed in other nonequilibrium
systems [46,47]. Lastly, the force dependence of the chemical
diffusion coefficient DJ (which coincides with that of the
spatial diffusion DV , except for a prefactor and a constant
baseline) and the correlation C are displayed in Figs. 2(c) and

2(d). We find that both generally peak at small negative values
of the applied force, independently of the magnitude of ε.

Entropy production. We can calculate the EPR from the hy-
drodynamic definition of dissipation, T σ̇ = ∑

i〈ẋi fi〉, where
ẋi is the velocity of each sphere and fi is the corresponding
instantaneous force, satisfying the force balance f1 + f2 +
f3 = F . The crucial step in the derivation is to separately
consider the internal and external contributions to the forces
(see Appendix A). In this framework, the EPR splits into an
active swimming contribution related to the conformational
transitions, and a purely passive one. After averaging, these
two contributions make up the result presented in Eq. (3).
The coupling between chemical and hydrodynamic driving
forces gives rise to a rather complicated dependence of the
EPR on the forces, with local maxima and minima as shown
in Fig. 3(a). For ε = F = 0, the system is at equilibrium. For
ε > 0, at low force the entropy production is largely domi-
nated by the chemical part, while at large force we recover
the usual hydrodynamic energy dissipation (∼F 2) of a passive
object dragged by a constant force.

Thermodynamic precision. The precision of a nonequilib-
rium process is bounded by the EPR through the TUR [17].
More specifically, the MTUR provides the bound J T · D−1 ·
J � σ̇ /kB at steady state, where J is any vectorial current
and D is the diffusion matrix describing the fluctuations of
the current [39]. Applying this bound to the individual current
V , we obtain the standard TUR, V 2/DV � σ̇ /kB. We esti-
mate the quality of this bound using the (nonnegative) factor
QV ≡ (V 2/DV )/(σ̇ /kB), which equals one when the bound is
saturated and is smaller otherwise. The values of QV for our
swimmer are shown in Fig. 3(b) as a function of the force F
for several values of the chemical driving ε, and in Fig. 3(c)
as a function of ε for several values of F . The behavior of QV

is rather complex, reflecting the fact that the current has two
driving forces which can compete with each other.

An intriguing observation can be made by considering the
behavior of QV near equilibrium (ε = F = 0). While in the
limit F → 0 for ε = 0 in Fig. 3(b) we find QV → 1 (the bound
is saturated), in the limit ε → 0 for F = 0 in Fig. 3(c) we find
QV → 0.8163 (the bound is not saturated). The two limits
do not coincide as one might have naively expected, imply-
ing that the near equilibrium limit is not uniquely defined.
This generic behavior can be understood in linear response
(see Appendix B), and reflects the fact that F is the direct
(diagonal) driving force of the current V , whereas ε is its indi-
rect (off-diagonal) driving force [48]. This difference between
direct and indirect forces with regards to TUR saturation near
equilibrium is of practical relevance, as typically (e.g., for
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FIG. 3. (a) Entropy production rate σ̇ as a function of the external force F , for several values of the chemical affinity ε. (b), (c) The quality
factor QV of the precision-dissipation trade off for the spatial current V , (b) as a function of F for fixed values of ε, and (c) as a function of
ε for fixed values of F . (d) Ratio of the MTUR-inferred [Eq. (6)] and true chemical force ε/d . F∗ is the critical force at which the chemical
current vanishes. For F > F∗ the inferred value is a lower bound, for F < F∗ an upper bound, and for F = F∗ it is exact.

molecular motors and swimmers) the affinity of interest (e.g.,
ATP hydrolysis) only indirectly drives the measurable current
(e.g., spatial velocity).

A tighter bound on entropy production can be obtained by
applying the MTUR to the two-dimensional current (J,V ),
which yields

1

1 − C2

[
J2

DJ
− 2CJV√

DJDV
+ V 2

DV

]
� σ̇

kB
. (5)

This bound is well behaved and saturated in the near equi-
librium limit, as can be proven in the linear response regime
(see Appendix B). While it may appear to be less useful in
practice, as it involves J , DJ , and C, all of which are not
directly observable in an experiment that only has access to
the swimmer position, our knowledge of the swimmer me-
chanics can be exploited to obtain a much improved bound
(even an equality) on the chemical energy consumption per
unit distance (chemical force) of the swimmer, ε/d .

Thermodynamic inference. Indeed, using Eq. (2) and the
expressions for DV and C, we can write J , DJ , and C as
functions of V , DV , the passive hydrodynamic mobility M (or
thermal diffusion coefficient Dth = MkBT ), and the external
force F ; substitute them into (5) together with expression
(3) for the EPR; and finally rearrange the terms to obtain an
inequality on ε/d . Defining( ε

d

)
MTUR

≡ kBTV/DV − F

1 − Dth/DV
, (6)

we find that, for F > F∗ (where F∗ < 0 is the critical force at
which the chemical current vanishes), the MTUR provides a
lower bound ε/d � (ε/d )MTUR, while for F < F∗ the MTUR
provides an upper bound ε/d � (ε/d )MTUR. By continuity,
for F = F∗ [which implies J = 0 and thus V = MF∗ through
Eq. (2)], we find the equality ε/d = (ε/d )MTUR = −F∗. This
result is consistent with the total affinity ε + Fd of the chem-
ical current vanishing at F = F∗. The quality of this bound as
measured by the ratio (ε/d )MTUR/(ε/d ) is shown in Fig. 3(d)
as a function of F , for several values of ε.

These results reveal several strategies for the inference
of the chemical force. In passive measurements with F = 0,
we can estimate ε/d � kBT (V/DV )(1 − Dth/DV )−1. This im-
proves the bound obtained from the standard TUR by a
factor (1 − Dth/DV )−1. In active measurements with F 	= 0,
one may measure the stall force of the swimmer Fs < 0
at which V = 0, as well as the position fluctuations giving
DV , and infer ε/d � −Fs(1 − Dth/DV )−1. Lastly, and opti-
mally, one may measure the critical force F∗ at which the

swimmer moves precisely at the velocity that one would ex-
pect from passive hydrodynamic drag, i.e., V = MF∗. The
chemical force is then exactly ε/d = −F∗. In all these cases,
the passive mobility M (and associated Dth = MkBT ) may
be estimated from purely hydrodynamic calculations. Alter-
natively, if |J (F )| grows more slowly than linear, tends to a
constant, or vanishes at large force (as is the case for the three-
sphere swimmer), M can be measured from the asymptotic
behavior of the swimmer velocity as F → ±∞; see the force-
velocity (F -V ) curve in Fig. 2(b). In this case, F∗ and thus ε/d
can be inferred by measuring the F -V curve, estimating its
high-force asymptote, and obtaining the intersection point of
the asymptote and the F -V curve, which occurs at F∗.

Discussion. Using a stochastic three-sphere swimmer as
an analytically tractable and thermodynamically-consistent
model for a chemically powered autonomous microswimmer,
we have explicitly calculated its swimming dynamics and its
entropy production in the presence of an external force. This
allowed us to study the coupling between spatial and chemical
forces and currents beyond the linear response regime. We
have found a number of interesting properties in the force
dependence of the swimmer dynamics as well as its thermo-
dynamic properties, such as the radically different dependence
of the thermodynamic precision-dissipation trade off of the
swimmer velocity on the external force (direct driving) and
internal chemical affinity (indirect driving). Moreover, we
have shown how the chemical affinity of the swimmer can be
precisely inferred by measurements of the spatial dynamics
only.

All of these properties are a consequence of the coupling
between spatial and chemical forces and currents in this sys-
tem, as exemplified by Eqs. (1), (2), (3), and the expressions
for DV and C. Importantly, we expect the form of these equa-
tions to remain unchanged for other autonomous swimmers
(see, e.g., Ref. [49] for a derivation of equivalent expressions
for self-phoretic swimmers). Only the precise functional form
of the chemical current J (ε, F ) (and associated diffusion DJ )
and the distance d advanced per cycle will depend on the mi-
croscopic details. Therefore, the general lessons learned here
and the thermodynamic inference strategy proposed [Eq. (6)]
should be applicable to a wide range of autonomous motors
and swimmers.
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Appendix A: Hydrodynamic calculation of velocity and en-
tropy production. The force balance equation for the swimmer
reads

∑
i fi = F . The force on sphere i denoted as fi can

be expressed as fi = f̃i + Fi, in terms of the internal force f̃i

and the external force Fi. We have
∑

i f̃i = 0 and
∑

i Fi = F .
The internal forces can be written as f̃1 = − f̃�, f̃2 = f̃� − f̃r ,
and f̃3 = f̃r , where f̃� and f̃r are respectively the internal
stresses on the left and right arms, defined to be positive
when they act to expand the arm. We denote the instantaneous
speeds of the arms as u̇� = ẋ2 − ẋ1, u̇r = ẋ3 − ẋ2. Forces and
velocities are linearly related through the hydrodynamic fric-
tion tensor Zi j such that fi = ∑

j Zi j ẋ j . By summing over
the forces we deduce that

∑
i Aiẋi = BF , with Ai(u�, ur ) ≡

(
∑

j Zi j )/(
∑

i, j Zi j ) and B(u�, ur ) ≡ 1/(
∑

i, j Zi j ). From this
expression, we derive equations describing the motion of each
of the spheres in response to the external force as well as
the changes in the lengths of the arms (active swimming) as
follows:

ẋ1 = BF − (1 − A1)u̇� − A3u̇r, (A1)

ẋ2 = BF + A1u̇� − A3u̇r, (A2)

ẋ3 = BF + A1u̇� + (1 − A3)u̇r . (A3)

The average velocity V of the swimmer is given by 〈ẋi〉,
where the average is taken at steady state and any sphere i may
be considered without loss of generality. Choosing i = 2, we
can write

V = 〈ẋ2〉 = MF + 〈A1u̇� − A3u̇r〉, (A4)

where we have defined M ≡ 〈B〉, which is independent of ε or
F to leading order in the hydrodynamic interactions [40]. The
first term represents the passive drag, whereas the second term
represents the active swimming. The latter results in finite
contributions for each conformational change, so that

〈A1u̇� − A3u̇r〉 = 1

T

∫ T

0
(A1u̇� − A3u̇r )dt,

= J
∑
{βα}

[∫ β

α

A1du� −
∫ β

α

A3dur

]
,

= J
∑
{βα}

�x2,βα = Jd, (A5)

where T = J−1 is the period of a cycle in steady state,
and the sums run over the forward transitions {βα} =
{BA,CB, DC, AD}. Equations (A4) and (A5) together result
in Eq. (2).

The displacement in each transition �x2,βα is calculated
by performing the associated integral in the second line of
Eq. (A5). For instance, in the transition A → B the left arm
shrinks and the right arm stays fixed at ur = δ, so that we find

�x2,BA =
∫ B

A
A1du� =

∫ 0

δ

A1(u�, δ)du� = −αLδ, (A6)

where we have defined

αL ≡ 1

δ

∫ δ

0
A1(u�, δ)du�. (A7)

Conversely, in the transition B → C, the right arm shrinks
while the left arm stays fixed at u� = 0. We thus find

�x2,CB = −
∫ C

B
A3dur = −

∫ 0

δ

A3(0, ur )dur = αSδ, (A8)

with the definition

αS ≡ 1

δ

∫ δ

0
A3(0, ur )dur . (A9)

Repeating this procedure for all transitions and calculating the
corresponding displacement of the first and third sphere, we
obtain the results in Table I, which are valid for a swimmer
with symmetric geometry as in Fig. 1. The calculations for
a more general asymmetric swimmer, their explicit integra-
tion using the Oseen approximation, and the estimation of
the bound 1/3 < αL < αS < 1/2 are performed in Ref. [40].
These recover the known results relating the velocity of the
swimmer to the area swept by cycles in conformational space
[31,32].

To calculate the EPR at steady state, we start from the
hydrodynamic dissipation T σ̇ = ∑

i〈ẋi fi〉. Using (A1)–(A3),
the EPR becomes

T σ̇ = MF 2 + 〈u̇�[ f̃� − (1 − A1)F1 + A1(F2 + F3)]

+ u̇r[ f̃r − A3(F1 + F2) + (1 − A3)F3]〉. (A10)

Here, analogously to the calculation of the velocity, the first
term represents the dissipation due to passive drag, whereas
the second term represents dissipation due to the active
swimming, which gives a finite contribution for each confor-
mational transition.

Indeed, following the same procedure used to derive
Eq. (A5), we may write

T σ̇ = MF 2 + J
∑
{βα}

T �σβα, (A11)

where T �σβα gives the dissipation occurring during the tran-
sition α → β. As an example, we consider again the transition
A → B. In this transition, u� shrinks whereas ur remains con-
stant and fixed to δ. Thus, the discrete dissipation during this
transition is

T �σBA =
∫ 0

δ

[ f̃� − (1 − A1)F1 + A1(F2 + F3)]du�

= �εBA + F1�x1,BA + F2�x2,BA + F3�x3,BA.

(A12)

Here, the first term results from the definition

�εBA ≡
∫ 0

δ

f̃�du�, (A13)

and gives the dissipation due to the internal active mechanism
of the swimmer, while the remaining terms result from the
displacements of the spheres previously calculated and give
the dissipation by the external force during a conformational
change.

An analogous result T �σβα = �εβα + ∑
i Fi�xi,βα is ob-

tained for all other transitions [40]. The transition-induced
dissipation obtained in this way must be used to enforce
local detailed balance in the stochastic transitions, leading to

L022044-5
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Eq. (4). Finally, using this result in Eq. (A11), and noting
that

∑
{βα} �εβα = ε and

∑
{βα},i Fi�xi,βα = Fd , leads to the

expression for the EPR in Eq. (3), which gives Eq. (1) when
combined with Eq. (2).

Appendix B: Linear response regime. In the linear-response
regime (ε, Fd � kBT ), the currents can be written as J =
Lεεε + LεF F and V = LFεε + LFF F , with Lεε = κ̃ , LFF =
κ̃d2 + M, and LεF = LFε = κ̃d , where κ̃ = κ0/(kBT ) and κ0

is an inverse timescale that depends only on the force-free
rates k0βα [40]. Thus, affinities couple to the currents through
Ja = ∑

b LabAb, where Ja = (J,V ) is a vector of currents,
Aa = (ε, F ) is a vector of affinities, and Lab is a symmetric
Onsager matrix. The EPR can then be expressed in the usual
bilinear form T σ̇ = ∑

ab LabAaAb [26–28].
It is straightforward to show that the MTUR (J T · D−1 ·

J � σ̇ /kB) is saturated in linear regime. Indeed, the diffusion
matrix D relates to the Onsager mobility matrix L through
the fluctuation-dissipation theorem D = kBT L, and using this
together with J = L · A directly results in J T · D−1 · J =
σ̇ /kB. The behavior of the standard single-current TUR, Qa ≡

(J 2
a /Da)/(σ̇ /kB) � 1 for current Ja, is more surprising. In

general, for a current Ja driven by N affinities Ab with
b = 1, . . . , N , the quality factor Qa can be written as

Qa =
∑

b,c LabLacAbAc

Laa
∑

b,c LbcAbAc
, (B1)

where we have used the fluctuation-dissipation relation
Da = Daa = kBT Laa. There are two distinct cases with
regards to how the system behaves when only one of the affini-
ties is nonzero: (i) If Ab = 0 for all b 	= a and Aa 	= 0 (weak
direct driving), we find Qa = 1, i.e., the bound saturates; (ii)
If Ab = 0 for all b 	= c and Ac 	= 0 for some c 	= a (weak
indirect driving), we find Qa = L2

ac/(LaaLcc) [48]. The latter
value is guaranteed to be smaller than or equal to one due to
the positive semidefiniteness of the Onsager matrix. Typically,
it is smaller than one, implying that the TUR bound is not sat-
urated. For our swimmer, we thus have QV → L2

Fε/(LFF Lεε )
when F = 0 and ε → 0, which for the parameters used in
Fig. 3 gives QV → 0.8163.
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