
Received: 10 January 2024 Revised: 8 April 2024 Accepted: 15 May 2024

DOI: 10.1002/mrm.30180

R E S E A R C H A R T I C L E

Improving MR axon radius estimation in human white
matter using spiral acquisition and field monitoring

Marten Veldmann1 Luke J. Edwards2 Kerrin J. Pine2 Philipp Ehses1

Mónica Ferreira3,4 Nikolaus Weiskopf2,5,6 Tony Stoecker1,7

1MR Physics, German Center for
Neurodegenerative Diseases (DZNE) e.V,
Bonn, Germany
2Department of Neurophysics, Max
Planck Institute for Human Cognitive and
Brain Sciences, Leipzig, Germany
3Clinical Research, German Center for
Neurodegenerative Diseases (DZNE) e.V,
Bonn, Germany
4University of Bonn, Bonn, Germany
5Felix Bloch Institute for Solid State
Physics, Faculty of Physics and Earth
System Sciences, Leipzig University,
Leipzig, Germany
6Wellcome Centre for Human
Neuroimaging, Institute of Neurology,
University College London, London, UK
7Department of Physics & Astronomy,
University of Bonn, Bonn, Germany

Correspondence
Tony Stoecker, German Center for
Neurodegenerative Diseases (DZNE) e.V.,
MR Physics, Venusberg-Campus 1,
Gebäude 99, 53127 Bonn, Germany.
Email: tony.stoecker@dzne.de

Funding information
Seventh Framework Programme,
Grant/Award Number: 616905;
Bundesministerium für Bildung und
Forschung, Grant/Award Number:
01ED2210; Deutsche
Forschungsgemeinschaft, Grant/Award
Number: 347592254; Horizon 2020
Framework Programme, Grant/Award
Number: 681094

Abstract
Purpose: To compare MR axon radius estimation in human white matter using
a multiband spiral sequence combined with field monitoring to the current
state-of-the-art echo-planar imaging (EPI)-based approach.
Methods: A custom multiband spiral sequence was used for diffusion-weighted
imaging at ultra-high b-values. Field monitoring and higher order image recon-
struction were employed to greatly reduce artifacts in spiral images. Diffusion
weighting parameters were chosen to match a state-of-the art EPI-based axon
radius mapping protocol. The spiral approach was compared to the EPI approach
by comparing the image signal-to-noise ratio (SNR) and performing a test–retest
study to assess the respective variability and repeatability of axon radius map-
ping. Effective axon radius estimates were compared over white matter voxels
and along the left corticospinal tract.
Results: Increased SNR and reduced artifacts in spiral images led to reduced
variability in resulting axon radius maps, especially in low-SNR regions.
Test–retest variability was reduced by a factor of approximately 1.5 using the spi-
ral approach. Reduced repeatability due to significant bias was found for some
subjects in both spiral and EPI approaches, and attributed to scanner instability,
pointing to a previously unknown limitation of the state-of-the-art approach.
Conclusion: Combining spiral readouts with field monitoring improved map-
ping of the effective axon radius compared to the conventional EPI approach.
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1 INTRODUCTION

Axons form the neural pathways in the white matter of the
human brain. The axon radius is a crucial factor influenc-
ing the speed and efficiency of axonal signal transmission.1
Previous ex vivo studies have associated axonal degen-
eration with various diseases; for instance, acute axonal
damage is a key morphological feature in the early stages of
multiple sclerosis.2 Therefore, the axon radius could serve
as an important biomarker, if accurate noninvasive in vivo
quantification were possible.

Diffusion-weighted MRI has been proposed as a
method for measuring axon radii in the human brain non-
invasively.3,4 Approaches to model the diffusion-weighted
signal in the white matter include both single- and
multi-compartment models. Multicompartment models
typically differentiate intra-axonal, extra-axonal and free
diffusion (CSF) compartments.3,5 If any extra-axonal and
free water signal is fully suppressed with sufficiently strong
diffusion-weighting,6 it is possible to reduce the model to
only the intra-axonal compartment, where axons are typ-
ically modeled as impermeable cylinders with finite axon
radius.7

Sensitizing the MR signal to the axon radius requires
data acquisition with very strong diffusion-weighting, as
the signal attenuation due to diffusion perpendicular to the
axonal cylinder is typically small. Therefore, high ampli-
tude gradients are required to achieve imaging at high
b-values. In recent years, the noninvasive quantification of
axon radii in the human white matter has come into reach,
due to the development of high-performance gradient sys-
tems like the Connectom system with gradient strengths
of up to 300 mT/m.8 However, even with these gradient
systems, the sensitivity of the diffusion-weighted signal is
still restricted to large axons greater than approximately
3 μm in diameter,9 which represent only a small fraction
of the axon radius distribution.10 Additionally, pointwise
estimates of axon radii using diffusion MRI are heavily
weighted toward the larger radii represented by the tail of
the distribution.9,11 This makes it difficult to gain any infor-
mation about the underlying distribution of axon radii
within a voxel without making any assumptions regarding
that distribution4 or further approximations.6 In order to
maximize the signal attenuation and decrease the resolu-
tion limit of axon diameter mapping, the b-value has to be
maximized while preserving enough signal-to-noise ratio
(SNR).

Fast MRI sequences are required to acquire diffu-
sion data at sufficiently short echo times and to achieve
reasonable scan times. These sequences typically suffer
from artifacts due to magnetic field inhomogeneities and
eddy currents. The workhorse of diffusion-weighted MRI
is a two-dimensional multi-band single-shot echo-planar

imaging (EPI) sequence12 used in most diffusion-weighted
MRI studies. This sequence offers fast acquisition of the
two-dimensional k-space, but suffers from susceptibility
and eddy current induced geometric distortions. Advanced
correction methods in image space have been developed13

allowing the elimination of most of these distortion arti-
facts. Spiral k-space trajectories offer a promising alter-
native to a rectilinear EPI readout, as acquisition starts
in the center of k-space, resulting in a reduced echo
time and potentially higher SNR.14 However, single-shot
spiral acquisitions are prone to artifacts arising from
hardware imperfections and eddy currents, especially in
the presence of strong diffusion sensitizing gradients.
These artifacts typically manifest as image blurring and
can not easily be corrected in image space, due to the
non-Cartesian acquisition of k-space. Measurement of
the actual encoding fields during the MR sequence, also
termed field monitoring, aims to mitigate these arti-
facts.15 Combined with an expanded encoding model, even
higher-order eddy current effects can be corrected in the
image reconstruction.16

In this work we used a custom two-dimensional multi-
band spiral sequence combined with field monitoring for
the quantification of in vivo MR axon radius estimates.
We compared this approach to an established EPI-based
axon radius mapping approach using a protocol, which
previously showed high repeatability.17 SNR measures for
both sequences were investigated and the variability of the
derived axon radius estimates was compared both within
one measurement and across two measurements using a
test–retest design.

2 METHODS

A single-compartment model for the diffusion-weighted
signal representing only the intra-axonal space was used to
derive axon radius estimates.6 Diffusion-weighted images
were acquired at two different high b-value shells as pro-
posed in Veraart et al.17 The lower b-value was set to
6000 s/mm2 to fully suppress the extra-axonal signal, while
keeping the sensitivity to the axon radius at a minimum.
The higher b-value was set to 30 450 s/mm2 to maximize
the sensitivity to the axon radius, while not exceeding the
hardware limits of the scanner and maintaining sufficient
SNR.

2.1 Data acquisition

A multiband single-shot spiral sequence was imple-
mented as part of a pipeline18 shown in Figure 1. The
sequence was created with PyPulseq19 and exported to the
Pulseq file format.20 A spiral k-space trajectory with two

 15222594, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

rm
.30180 by M

PI 374 H
um

an C
ognitive and B

rain Sciences, W
iley O

nline L
ibrary on [03/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



VELDMANN et al. 3

F I G U R E 1 Spiral sequence development and image reconstruction pipeline.18 The spiral sequence was designed using PyPulseq and
Pulseq. The sequence includes a dual-echo gradient echo (GRE) prescan for coil sensitivity calibration and mapping of static off-resonance.
Image reconstruction with an expanded encoding model was implemented in the PowerGrid toolbox using k-space phase coefficients of up to
third spatial order. An example set of phase coefficients measured with a field camera (Skope) is shown on the left.

interleaves was designed for a nominal resolution of
2.5 mm and accelerated by a factor of R = 2 by using only
the first interleave. The spiral trajectory was implemented
with time-optimized gradients.21 The sampling dwell time
was 2.2 μs with an oversampling factor of two and 8364
samples per shot. The multiband pulses (acceleration fac-
tor MB = 2) were created from single-band Shinnar–Le
Roux radiofrequency (RF) pulses from the vendor’s pulse
library, applying a minimum-time VERSE algorithm to
reduce peak RF power.22

The spiral sequence included a dual-echo GRE pres-
can at 1 × 1 × 2.5 mm3 resolution with an acquisition time
of TA = 1:40 min. Data were acquired at echo times TE1 =
2.42 ms and TE2 = 4.84 ms, where the water and fat sig-
nals are in phase at a field strength of 3 T. This prescan was
used for mapping of the static off-resonance fields and esti-
mation of coil sensitivities. The spiral data were acquired
straight axial, with no tilt applied.

A multiband EPI sequence with blipped-CAIPI (MB =
2) and in-plane GRAPPA acceleration (R = 2)12 was used
as a reference method, as it gave repeatable results in a
previous study.17 In contrast to that study, we only used
one instead of two repetitions of the diffusion protocol.
The phase-encoding resolution was 88% of the nomi-
nal resolution of 2.5 mm, resulting in 77 phase-encoding

lines and 13 552 samples per shot (no partial Fourier).
The missing phase-encoding lines were zero-filled in the
reconstruction. The EPI sequence uses ramp sampling
and the sampling dwell time was 2.5 μs with an over-
sampling factor of two. The EPI data were acquired
with anterior-posterior phase-encoding with a slight tilt
along the bottom of the corpus callosum, approximately
along the anterior commissure—posterior commissure
line.

The following parameters were kept constant for
both sequences: TR = 3.5 s, FOV = 220 × 220 × 135 mm3,
2.5 mm isotropic voxels. Data were acquired with
interleaved b-values b = 0 s/mm2 (b0; 10 volumes),
b = 6000 s/mm2 (60 non-colinear directions on the
sphere) and b = 30450 s/mm2 (120 non-colinear direc-
tions on the sphere) with diffusion gradient parameters
Gmax = 280 mT/m (maximum amplitude), Δ = 29.25 ms
(spacing between diffusion gradients) and 𝛿 = 15 ms (dif-
fusion gradient duration). For the EPI sequence, 10 b0
volumes were acquired with inverted phase-encoding
direction (posterior-anterior) for susceptibility-induced
distortion correction.

The respective echo times of the spiral (TE = 52 ms)
and EPI sequences (TE = 66 ms) were minimized for the
given parameters. The readout durations were 18.4 ms
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4 VELDMANN et al.

for the spiral and 22.8 ms for the EPI sequence, and the
total acquisition times were TA = 13:07 min (spiral) and
TA = 13:27 min (EPI) including all prescans and the
inverted phase-encoding b0 acquisition.

In addition to the diffusion data, T1-weighted anatom-
ical images were acquired with an MPRAGE sequence.
These images were used for registration and segmenta-
tion of white matter. MPRAGE data were acquired at 1 mm
isotropic resolution with a FOV of 256 × 256 × 192 mm3.

Data were acquired from ten healthy volunteers (five
male, five female, age between 19 and 36) after giving
informed consent on a 3 T Connectom scanner with a max-
imum gradient strength of 300 mT/m using a 32 channel
RF-receive coil (Siemens Healthcare). For each volunteer,
test and retest data were collected in two scanning ses-
sions with a short break of 10–20 min in-between using the
same imaging protocol. The subject was removed from the
scanner and then repositioned during the break. For one
subject (subject 7), the test–retest acquisition was repeated
twice to investigate the source of a bias in the repeatability
metrics observed during the analysis in three of the sub-
jects. The initial scan for this participant had been in the
afternoon after several subjects had already been scanned,
and so the second acquisition was performed first thing in
the morning to investigate the effect of scanner load on the
repeatability.

2.2 Field monitoring and image
reconstruction

For the spiral sequence only, the dynamic field evolution
was monitored using a field camera (Skope Magnetic Res-
onance Technologies AG) with 16 19F-based NMR field
probes. The spatially-varying field was estimated with
spherical harmonic basis functions up to third order and
second order concomitant field functions.15

The field monitoring data were acquired in a separate
scan session with the field probes placed inside the RF
coil mounted on a plastic frame in optimized positions23

to allow for third spatial order spherical harmonic fitting.
Field data were captured for every second spiral shot as
the shot-TR of 130 ms was too low to allow for proper
relaxation of the field probes. The field probe data of the
missing shots were acquired in a second scan, which was
performed after a break to regain the initial state of the
MR scanner. The field data collected in this separate scan
session was used for reconstruction of spiral data from all
subjects.

Image reconstruction was done with an iterative sen-
sitivity encoding (SENSE) reconstruction24 using the Pow-
erGrid toolbox.25 Image reconstruction was based on an
expanded signal model16:

𝜎

𝛾

(t) = ∫ 𝜌(r)s
𝛾

(r)e
−i[
∑

𝑗

k
𝑗

(t)h
𝑗

(r)+Δ𝜔(r)t]
. (1)

Here, 𝜎
𝛾

(t) is the signal of receive coil 𝛾 at time point t,
𝜌(r) is the transverse magnetization at voxel position r
and s

𝛾

(r) is the sensitivity of the respective receiver coil at
that position. The phase term includes the phase coeffi-
cients k

𝑗

(t), measured with the field camera, multiplied by
the respective spatial basis function h

𝑗

(r).15 A zeroth-order
phase shift k0(t)was already applied to the data by the ven-
dor’s eddy current compensation (ECC) at the acquisition
stage. As the vendor does not allow this ECC to be disabled,
this additional global phase shift had to be reversed before
image reconstruction. Otherwise, this phase would be cor-
rected twice by the ECC and the field probe data. During
conversion of the raw data to the MRD format,26 the global
phase k0(t) applied by the ECC was calculated using the
nominal gradient time courses of the sequence and the
vendor’s eddy current model. Afterwards, the raw data was
multiplied by the conjugate of these values to reverse the
ECC.1

The signal model additionally considers the phase evo-
lution due to the spatially dependent static off-resonance
fieldΔ𝜔(r). For the calculation of static off-resonance field
maps, phase difference maps between the first and second
echo were calculated channel-wise from the GRE prescan
using the Hermitian product. After phase-unwrapping,
the lowest and highest quartile of phase difference values
in a voxel across channels was removed.27 Off-resonance
maps were calculated by combining channel-wise maps
with a weighted sum, where the weights represent the
magnitudes of the respective channels, and dividing by
the echo-time difference. Coil sensitivity maps were deter-
mined from the first echo of the prescan using the ESPIRiT
algorithm.28 The conjugate-gradient algorithm was used to
solve the signal model for the image 𝜌(r).24 Iteration was
stopped after a maximum number of 20 iterations or when
the relative change of the iteration error norm fell below a
threshold of 0.01 %.

2.3 Image preprocessing

Preprocessing of the images included Gibbs-Ringing
correction,29 susceptibility-induced distortion correc-
tion, motion correction, eddy current correction up to
third order with “FSL eddy”13,30,31 and gradient non-
linearity correction.32 In the spiral data, “eddy” was
only used for motion correction as eddy currents and
distortions were already addressed during the reconstruc-
tion. The diffusion-weighted images were normalized
to the mean non-diffusion-weighted (mean b0) image
and spherical-harmonic coefficients of up to sixth
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VELDMANN et al. 5

order were calculated for both b-value shells using a
maximum-likelihood estimator.33 In order to account for
the Rician distribution of the data, a noise map was cal-
culated34 using only the lower b-value (b = 6000 s/mm2)
shell and the non-diffusion-weighted images. This
noise map was used to improve the precision of the
spherical-harmonic fit.

Although, in “eddy” an alignment of the shells is per-
formed, we observed a shift between the two shells in
the EPI data after spherical-harmonic fitting. Therefore,
in the EPI data an additional registration of the higher
b-value shell to the lower b-value shell was done using
“FSL FLIRT.”35 The warp fields of “eddy,” the gradient
nonlinearity correction and the additional alignment with
FLIRT were concatenated to avoid repeated interpolation.

The T1-weighted anatomical images were
brain-extracted, denoised and bias field corrected using
ANTsPy and ANTsPyNet.36

The exact parameters used in each image
(pre)processing step can be found in the Github repository
included in the Data Availability Statement.

2.4 MR axon radius quantification

The powder-averaged signals S(b) of both shells were
computed from the zeroth-order spherical harmonic coef-
ficients.37 In the absence of extra-axonal signal, the
intra-axonal radial diffusivity, D⊥

a can be estimated from
the powder-averaged signals using the relation17:

S(b) = 𝛽

√
b

e−beffD⊥

a
, (2)

where 𝛽 is a signal scaling factor. An effective b-value was
calculated for each voxel to account for gradient nonlin-
earities38,39:

beff =
1
n

n∑

i=1
Tr(Bi,eff), (3)

where n is the number of directions for the respective
b-value and Beff is the effective B-tensor in each voxel.
The effective B-tensor was calculated for each direction
using the spatial deviations from the nominal magnetic
field gradients, which were determined in the gradient
nonlinearity correction. The radial diffusivity D⊥

a was then
estimated together with the prefactor 𝛽 by nonlinear least
squares fitting. The MR estimate of the axon radius rMR was
calculated with the relation6:

rMR =
(48

7
𝛿(Δ − 𝛿∕3)D0D⊥

a

)1∕4
, (4)

where D0 is the diffusivity of the axoplasm, which was set
to D0 = 2500 μm2∕s.17

All axon radius maps were registered to T1-weighted
MPRAGE images using FSL FLIRT.35 Afterwards, white
matter was segmented based on the T1-weighted images
with FSL FAST.40 A white matter mask was calculated
from white matter partial volume maps using a threshold
of > 0.85. Masks of the corpus callosum were generated
using the “Hammersmith n30r95” atlas.41 The corpus cal-
losum was extracted from the atlas and registered from
MNI to T1 space with ANTsPy using the “MNI152-T1
1mm” template. The resulting masks were slightly eroded
to avoid including voxels containing CSF.

The axon radius was additionally estimated along the
left corticospinal tract (left CST) by applying along-fibre
quantification42 using Dipy43 and pyAFQ.44 In a first
step, 3000 tract-specific streamlines were generated for
the left CST using MRTrix3.45–47 Streamline outliers were
removed by a cleaning process described in Reference 42.
The ends of the fiber bundle were clipped to a compact
bundle without strongly diverging streamlines. Fibre bun-
dles were calculated only once for each subject based on
the first spiral dataset after it was registered to the halfway
space of the first and second session. Prior to along-fibre
quantification, individual datasets were registered to this
halfway space.

The bundle was divided into 100 equidistant seg-
ments of equal length and the powder-averaged signals
of both shells and the effective b-values were averaged
in each segment. Gaussian weights were applied in the
averaging to suppress contribution from streamlines that
diverge strongly from the center line of the bundle.42

The axon radius was then estimated for each segment
along the tract in the same way as in the voxel-wise
analysis.

2.5 Statistics

SNR measures were generated by dividing the mean b0
images and the mean images of both shells by the noise
map from the denoising step. The ratio of the mean SNR
measure between spiral and EPI data in white matter vox-
els was calculated for all shells across all subjects and both
sessions.

In order to investigate the repeatability, the test–retest
variability (TRV) of axon radius estimates in the white
matter and in segments of the left CST was calculated by17

TRV =
√
𝜋

2N

N∑

i=1

|Δr(i)|
𝜇r(i)

, (5)

where Δr(i) is the difference and 𝜇r(i) the mean axon
radius estimate of test and retest for the ith voxel or seg-
ment, respectively.
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6 VELDMANN et al.

3 RESULTS

3.1 SNR comparison

Maps of the SNR measure for the first subject are shown
in Figure 2 for the mean images of all shells. The SNR was
higher in spiral images compared to EPI in all shells for all
white matter regions. The SNR was overall higher in the
periphery and in superior parts compared to the center and
inferior parts of the brain.

The average SNR gain across all subjects and sessions
is shown below the SNR maps as a ratio of spiral and EPI
mean SNR values. The SNR gain was higher in the mean b0
images (30%) and the lower b-value shell (29%) compared
to the high b-value shell with 19% SNR gain. The SNR
ratio was consistent with a standard deviation of around
𝜎 = 0.02 across all subjects and sessions for all three cases.

3.2 MR axon radius mapping

Whole-brain maps of the axon radius estimates for the first
subject are shown in Figure 3. In the white matter, the
axon radius estimates varied mostly between 2 and 3.5 μm.
The EPI data showed more voids in the axon radius maps,
especially in the frontal lobe and in inferior brain regions,
indicating regions where no reasonable axon radius was
estimated in the fitting procedure.

Figure 4 shows an overlay of the MR axon radius esti-
mates in the white matter on T1-weighted volumes for the
first two subjects. Lower spatial variation of axon radius

estimates across the white matter was observed in the spi-
ral maps compared to EPI maps. Axon radius estimates
dropped close to zero especially in inferior regions of the
EPI maps, while this was not the case in spiral maps.

The lower variability of axon radius estimates in the
spiral data was also reflected in the histograms of these
estimates in the white matter (Figure 5), where the SDs
were lower for the spiral data in both subjects by around
a factor of 1.5. For EPI datasets, the distribution of axon
radius estimates had a longer tail toward zero compared
to the spiral datasets. Comparing data from all subjects
(Figure S1), in almost all cases both the mean and the
median of the estimated MR radius were higher in spi-
ral datasets compared to EPI, while the standard deviation
was lower in all cases. The histograms in Figure S2 show a
direct comparison of spiral and EPI data. The peaks of the
axon radius distributions were similar in almost all cases,
but the longer tail of EPI distributions led to overall smaller
median and mean values. Mean and median values of axon
radius estimates in the corpus callosum (Figure S3) dif-
fered in some cases from the whole white matter and the
standard deviations tended to be slightly higher.

Profiles of the axon radius along segments of the left
CST are shown in Figure 6. The mean axon radius esti-
mates across subjects (solid line) were relatively constant
across the whole tract in the spiral datasets for both test
and retest, while in the EPI datasets, the mean radius
increased from inferior towards superior positions. The
variability of individual subjects (shaded lines) was also
higher in the EPI data compared to spiral data, as indicated
by a narrower 95% confidence interval (dashed lines).

( ) ( ) ( )

F I G U R E 2 Maps of the signal-to-noise ratio (SNR) measure of the first subject for the mean signal of both shells and the mean b0
signal for spiral (top row) and EPI (bottom row) acquisitions. The last column shows the mean b0 images. Below the maps, the ratios of the
mean SNR measure across all subjects and sessions in the white matter (WM) are displayed.
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VELDMANN et al. 7

( )

F I G U R E 3 Axon radius maps estimated from spiral (top row) and echo-planar imaging (EPI) (bottom row) data of the first subject. The
maps are thresholded at 5 𝜇m, which was the upper bound used in the axon radius fitting procedure.

( )

F I G U R E 4 Overlay of estimated MR axon radius distributions in the white matter onto anatomical MPRAGE volumes for the first two
subjects.

3.3 Test–retest reliability

The Bland-Altman plots in Figure 7 show the agreement
between test and retest measurements. A low absolute
mean difference (bias) was observed for most subjects,
while for some subjects (e.g., subjects 7 and 10) there was
a significant bias of up to 10% of the mean axon radius
estimate. In the histograms of MR axon radius estimates
in white matter voxels (Figure S1) this bias is observable
as a shift in the axon radius distributions. The sign of
the bias was consistent across spiral and EPI data, while
the absolute amount of bias was similar in most cases.

The variability between test and retest, indicated by the
limits of agreement (outer solid lines), was lower by a
factor of 1.5–2 in all spiral datasets compared to EPI.

Results for the TRV in the white matter, the corpus cal-
losum and the left CST are shown in Table 1. The TRV
in the white matter was approximately 1.5–2 times lower
in spiral compared to EPI data. It was relatively consis-
tent across all subjects, except for subjects with a high bias,
where the TRV was significantly higher. These observa-
tions also hold for the corpus callosum, where however,
the TRV was higher compared to the whole white mat-
ter. In segments of the left CST, the TRV was lower than
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8 VELDMANN et al.

F I G U R E 5 Histograms of the MR axon radius (rMR) distributions in white matter of both test and retest measurements for the first two
subjects. Mean (𝜇), median (M), and SD (𝜎) of the distributions are shown in the legend.

(
)

(
)

(
)

(
)

F I G U R E 6 Profiles of the estimated axon radius in segments of the left CST from inferior (0) to superior (100) positions. The solid lines
represent the mean over all subjects. Dashed lines indicate 95% confidence intervals, calculated as ±1.96 × 𝜎∕

√
N, where 𝜎 is the SD and N

the number of subjects. Individual tract profiles are shown as shaded lines.
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VELDMANN et al. 9

F I G U R E 7 Bland–Altman plots of five subjects for all white matter voxels comparing test and retest measurements. Solid lines
represent the absolute mean difference and the limits of agreement, calculated as ±1.96 × 𝜎, where 𝜎 is the SD. Bland–Altman plots of all
subjects can be found in Figure S4.

T A B L E 1 Test–retest variability (TRV; %) in white matter, the corpus callosum (CC) and the left CST of spiral and echo-planar imaging
(EPI) datasets.

Subject 1 2 3 4 5 6 7a 8 9 10

WM spiral 4.00 4.48 5.23 4.50 5.65 4.41 10.38/5.34 6.07 4.48 7.77

WM EPI 8.83 6.61 11.72 12.00 15.92 9.74 17.67/7.72 9.72 8.92 13.60

CC spiral 6.06 5.92 9.79 5.88 7.06 6.03 11.98/8.22 5.93 7.31 10.87

CC EPI 14.50 8.70 21.62 12.43 22.39 14.93 23.04/12.11 10.77 14.52 13.41

CST spiral 1.89 2.16 2.66 2.43 4.71 2.55 4.62/2.72 2.12 3.11 4.04

CST EPI 2.82 3.64 3.74 4.77 6.48 2.05 6.74/3.38 3.32 4.52 4.67

Notes: The TRV values in white matter voxels obtained for echo-planar imaging (EPI) data agree with previously reported values, while the TRV in the left CST
was slightly higher than in Reference 17.
aThe test–retest measurement for subject 7 was repeated to investigate the low repeatability in the first measurement.

for the white matter in all cases and lower for spiral data
compared to EPI except for subject 6.

Figure 8 shows Bland-Altman plots of both repetitions
of the test–retest study for subject 7, who was re-scanned
to investigate the high bias in the first test–retest measure-
ment. Variability, bias and TRV (Table 1) were significantly
reduced for both spiral and EPI data in the repeated mea-
surement.

4 DISCUSSION

The results presented in the previous section show, that
the spiral acquisition leads to more repeatable results com-
pared to the state-of-the-art EPI-based approach. Reduced
variability across the brain is observed in both white

matter voxels and streamlines along the left CST. This is
mainly attributed to the higher SNR due to the lower TE
of the spiral readout and reduced artifacts by using field
monitoring.

The theoretical SNR gain of the spiral acquisition due
to shorter TE and therefore reduced T2 decay would be
around 20%, assuming an intra-axonal T2 = 75 ms.48,49

This value was exceeded for both the mean b0 images
and the low b-value shell (b = 6000 s/mm2). The reduced
SNR improvement observed in the high b-value data (b =
30450 s/mm2) compared to the lower b-value data could
be a result of a suboptimal image reconstruction of the
spiral data. The conjugate-gradient method with least
squares regularization adds noise to the reconstructed
images at each iteration step. It is therefore important to
find the optimal stopping point especially under low-SNR
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10 VELDMANN et al.

F I G U R E 8 Bland–Altman plot of
subject 7. The test–retest study for this
subject was repeated in a second scan to
investigate the large bias in the first
scan.

conditions.50 SNR might additionally be affected by the
20% lower readout time of the spirals compared to the
EPI readout. Although it is possible to increase the read-
out time of the spirals, that would result in increased
susceptibility-induced artifacts such as blurring. Partial
volume effects can be ruled out as a cause of the higher
SNR ratio in the mean b0 and lower b-value shell, as sim-
ilar SNR ratios were observed using a tighter white matter
mask (Table S1).

Spiral and EPI trajectories were designed for the same
nominal resolution, but are affected differently by T∗2
decay. The effective resolution is reduced by T∗2 blurring,
which has a stronger effect on spirals as outer k-space is
acquired later than in EPI.14 In this study, this is partly
compensated by the reduced nominal resolution of the EPI
sequence in the phase-encoding direction. Matching the
effective resolution would require increasing the nominal
resolution of the spirals and therefore a longer readout,
resulting in a smaller voxel size and therefore decreased
SNR.

EPI-based axon radius maps showed more artifacts
compared to spiral data, which we mainly attribute
to lower SNR and insufficient correction of eddy cur-
rents. The eddy current correction with the image-based
data-driven approach in “eddy” is limited in the pres-
ence of strong diffusion gradients, where low SNR makes
registration of diffusion volumes challenging and higher

order eddy currents become more significant. The direct
measurement of higher order fields leads to improved cor-
rection of eddy current-induced artifacts.51,52 Insufficient
correction of eddy currents results in local distortions of
the images. The amount of distortion varies with different
b-values and diffusion gradient directions. We observed
submillimeter spatial shifts between the two shells in
powder-averaged images, resulting in voids in the axon
radius maps. Less distortion and a higher SNR in spiral
images led to lower spatial variation in the estimation
of the axon radius. This is especially observable in infe-
rior regions of the brain, where the SNR is lower and the
axon radius from EPI data is underestimated compared to
that from spiral data. Existing comparisons in the litera-
ture between EPI with and without field monitoring,53 as
well as EPI and spiral readouts14,54 have shown that while
using field monitoring for EPI data does reduce geomet-
ric distortions and ghosting, the spiral data shows higher
SNR.

Mean axon radius estimates in the white matter
(Figure S1) tended to be higher than previously pub-
lished results both in the whole white matter and the
corpus callosum.17,55 Axon radius estimates from spi-
ral data were also on average higher compared to EPI.
Two possible confounding factors could have led to these
results. First, the Gaussian noise is estimated from strongly
diffusion-weighted images with relatively low SNR, which
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VELDMANN et al. 11

leads to an underestimation of the noise level.56 This may
have resulted in an insufficient correction of Rician bias
during spherical averaging. Insufficient bias correction
leads to an overestimation of the spherically-averaged sig-
nal of the high b-value shell and consequently to lower
estimates of the axon radius. This effect is stronger in EPI
images, as they have lower SNR. Acquisition of additional
data at lower b-value as in Reference 17 solely used for
noise mapping could improve noise estimation, as poten-
tial Rician bias in the noise map would be avoided, but
also increase scan time. We found only small differences
when estimating axon radii from the data acquired in Ref-
erence 17 with noise maps based on lower and higher
b-value data, though. The second confounding factor could
be insufficient decay of the extra-axonal signal in spiral
images due to the lower TE compared to EPI. This effect
would lead to an overestimation of the spherically aver-
aged signal in the lower b-value shell and therefore to
higher radius estimates.

Along-tract profiles of the axon radius estimates in
the left CST showed lower variability between subjects in
the spiral data. The TRV was lower for spiral data com-
pared to EPI, in agreement with the results in the white
matter. The EPI data showed a decreasing trend toward
inferior regions, which could be caused by the low SNR in
this region. The decreasing trend toward superior regions
reported in a previous study17 was not observed in the
data. Instead, we observed a decreasing trend towards
inferior positions in the EPI data, which we relate to
low SNR and artifacts in inferior areas in the EPI data.
A possible confounding factor could be the difference
in b-value along the tract due to gradient nonlinearities
(Figure S5). A lower b-value at the edges of the tracts could
have an impact on the suppression of the extra-axonal
compartment. However, the observed difference of the
b-value along the tract of less than 3% was relatively
small and did not match the pattern of the along-tract
profiles.

The test–retest study showed a lower variability in axon
radius maps based on spiral data compared to EPI. TRV
values were significantly lower for spiral data in white mat-
ter voxels, the corpus callosum and the segments along
the left CST. The TRV values obtained for the EPI data in
white matter agreed with previously reported values, while
the TRV in the left CST tended to be slightly higher.17 The
study in Reference 17 averaged over two repetitions, while
we only acquired one repetition, which could explain the
higher TRV.

The lower TRV in white matter of spirals (mean TRV
including the repeated participant: 5.66%) compared to
EPI (mean TRV: 11.13%) results in smaller sample sizes
needed to distinguish between cohorts. An example power
analysis (significance level 𝛼 = 5%, power 1 − 𝛽 = 0.95)

assuming a percentage difference in axon radius estimates
of 10% (effect size spiral/EPI: 1.77/0.90) yields sample sizes
of 8 (spiral) and 28 (EPI) samples per group (one-sided
t-test).57,58

While good repeatability was observed for most sub-
jects, significant bias was apparent in some subjects, indi-
cating a systematic error in the measurement. This bias
could potentially arise from the subject, from the data
acquisition, or from the image (pre)processing.

Regarding subjects, we found no larger motion in sub-
jects with high bias compared to subjects with low bias.
We also observed similar bias in spiral and EPI scans,
suggesting a limited impact of subject motion. We found
no apparent drift of the diffusion signal intensity during
one axon radius measurement (data not shown)59 and
no relation between the bias and the average SNR over
the white matter mask. We also investigated whether the
off-isocenter position of the subject could be a cause, as
gradient nonlinearities of the Connectom scanner increase
strongly with increasing distance to the isocenter.60 The
absolute distance from the center of the FOV to the
isocenter is shown in Table S2 for both test and retest,
along with the distance between test and retest posi-
tions and the observed bias for each subject. However,
no relation between the bias and the absolute off-center
position or the difference in position between test and
retest was found. Repetition of the acquisition for one
of the subjects showing strong bias gave a much smaller
bias, suggesting that the bias is not inherent to a given
subject.

Regarding image processing, different parameter set-
tings for the eddy current and motion correction pro-
cedures were tested, none of them having an impact
on the bias. We also tried denoising of complex spiral
data34 to reduce the Rician bias before spherical-harmonic
calculations, which also did not change the bias. To
rule out the possibility that differences in pipeline could
cause the bias, the whole image processing pipeline was
also tested on a dataset acquired in a previous study,17

where low bias was reported for all subjects studied. The
same low bias was obtained using our own pipeline for
that data.

Regarding the acquisition, strong bias was seen in both
EPI and spiral when it was seen at all. There also seemed
to be a connection between strong bias and multiple sub-
jects scanned in 1 day (but not a connection with just time
of day). Together, this suggests that the bias might be due
to usage-induced scanner drift. To investigate this, we cal-
culated the percentage difference of the powder-averaged
signals between the two sessions for subjects with small,
moderate and large bias of the MR axon radius estimates
(Figure S6) and found that the bias mainly resided in the
high b-value shell. Gradient instabilities might cause such
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12 VELDMANN et al.

deviations, as the actual b-value would then differ from
the nominal b-value. Therefore, the test–retest study for
subject 7 was repeated in the morning without any prior
scanning giving improved results. The bias observed in
the first test–retest study would be equivalent to a devia-
tion of the high b-value of around 15%, corresponding to
a 7.2% or 20 mT/m difference in gradient amplitude. Such
strong instabilities of the gradients would typically not be
expected, and may reflect as yet unknown limitations of
the scanner hardware when it is pushed to its limits over
long durations in the course of a day. It is relevant to note
that in the study in Reference 17, only one or two partic-
ipants were recorded in a day, and always in the morning
(personal communication from Jelle Veraart), which is in
line with our observations.

5 CONCLUSIONS

Combining spiral k-space trajectories with field monitor-
ing improved axon radius mapping in the white matter
compared to a state-of-the-art EPI-based approach. The
proposed approach both increased SNR and reduced arti-
facts in the strongly diffusion-weighted images, leading to
reduced variability in resulting maps of the effective axon
radius.

While the test–retest repeatability was good in most
subjects, limited repeatability due to significant bias was
found for some subjects after running the protocol mul-
tiple times in a day, suggesting that scanner stability
could be an issue. This represents a previously unknown
limitation of the axon radius mapping protocol which
was independent of the readout method used. However,
the precise origin of the observed bias requires further
investigation.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

Figure S1. Histograms of the MR axon radius (rMR)
distributions in white matter comparing test and retest
measurements for all subjects. Mean (𝜇), median (M)
and SD (𝜎) of the distributions are shown in the
legend.
Figure S2. Histograms of the MR axon radius (rMR)
distributions in white matter comparing EPI and spi-
ral data for all subjects and sessions. Mean (𝜇), median
(M) and SD (𝜎) of the distributions are shown in the
legend.
Figure S3. Histograms of the MR axon radius (rMR) dis-
tributions in the corpus callosum comparing test and
retest measurements for all subjects. Mean (𝜇), median
(M), and SD (𝜎) of the distributions are shown in the
legend.
Figure S4. Bland–Altman plots of all subjects for all white
matter voxels. Solid lines represent the absolute mean dif-
ference and the limits of agreement, calculated as 1.96 × 𝜎,
where 𝜎 is the SD.
Figure S5. Left: Mean b-value across all subjects along the
left CST from inferior to superior positions. Right: Corre-
sponding mean axon radii along the left CST as shown in
Figure 6 (top left and right) of the paper.
Figure S6. Histograms of difference (%) between
test and retest of powder-averaged signals in the
white matter. The difference Δ (%) was calculated for
both shells as Δ = (Stest − Sretest)∕Stest, where S is the
powder-averaged signal. Three different subjects with
small, moderate and large bias of the MR axon radius are
displayed.
Table S1. Ratio of the mean SNR measure across all sub-
jects and sessions as in Figure 2 of the paper. The ratios are
listed for the white matter (WM) mask used in the paper
and a tighter white matter mask. For the tighter mask, a
higher threshold of >0.98 and an additional binary erosion
was used to make sure only pure white matter voxels were
selected.
Table S2. Absolute distances of the center of the FOV
to the scanner’s isocenter for both measurements (Test
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and Retest) and each subject (only spiral datasets). Also,
the absolute distances between the centers of the FOV of
both measurements, that is, the difference between the two
scan positions are shown. In the last column the respec-
tive bias is shown, which is the mean of the differences
between Test and Retest for all white matter voxels as in
the Bland–Altman plots in Figure 7.
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