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N. S. Baßler,1, 2 M. Reitz,3 R. Holzinger,4 A. Vibók,5, 6 G. J. Halász,7 B. Gurlek,8 and C. Genes1, 2, ∗

1Max Planck Institute for the Science of Light, D-91058 Erlangen, Germany
2Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91058 Erlangen, Germany
3Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA

4Institut für Theoretische Physik, Universität Innsbruck, A-6020 Innsbruck, Austria
5Department of Theoretical Physics, University of Debrecen, H-4002 Debrecen, Hungary

6ELI-ALPS, ELI-HU Non-Profit Ltd, H-6720 Szeged, Hungary
7Department of Information Technology, University of Debrecen, H-4002 Debrecen, Hungary

8Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science,
Luruper Chaussee 149, 22761 Hamburg, Germany

(Dated: May 15, 2024)

Non-adiabatic molecular phenomena, arising from the breakdown of the Born-Oppenheimer
approximation, govern the fate of virtually all photo-physical and photochemical processes and
limit the quantum efficiency of molecules and other solid-state embedded quantum emitters. A
simple and elegant description, the energy gap law, was derived five decades ago, predicting that the
non-adiabatic coupling between the excited and ground potential landscapes lead to non-radiative
decay with a quasi-exponential dependence on the energy gap. We revisit and extend this theory to
account for crucial aspects such as vibrational relaxation, dephasing, and radiative loss. We find
a closed analytical solution with general validity which indicates a direct proportionality of the
non-radiative rate with the vibrational relaxation rate at low temperatures, and with the dephasing
rate of the electronic transition at high temperatures. Our work establishes a connection between
nanoscale quantum optics, open quantum system dynamics and non-adiabatic molecular physics.

Molecular quantum technologies rely on quantum emit-
ters, typically embedded in solid-state host matrices or
immersed in solvents, with large quantum efficiencies or
quantum yields of fluorescence [1, 2]. The quantum effi-
ciency QE= γr/γtot, i.e., the ratio of radiative emission γr
(defined here as the half width at half maximum HWHM)
of a target electronic excited state |e⟩ to the sum γtot of
all de-excitation rates to the ground state |g⟩, strongly
depends on the coupling of the electron to the collective
motion of all the nuclei comprising the molecules. In
the absence of intersystem crossing processes, the main
non-radiative relaxation path at rate γnr (at HWHM)
emerges from non-adiabatic processes which occur when
the Born-Oppenheimer approximation does not hold any
longer [3–6]. This way, electrons can jump from the ex-
cited state potential energy surface (PES) to the ground
PES without emitting a photon. The work of Englman
and Jortner (EJ) [7] in 1970 established a perturbative
method that allowed for the derivation of a set of scaling
laws (in particular an exponential one known as the energy
gap law – EGL) which strongly depend on the mismatch
between the minima of the ground and excited state PESs
along the many nuclear coordinates. The EGLs have been
experimentally validated, theoretically extended [8–10],
while anomalies have also been observed [11]. The main
fundamental assumptions of the EJ treatment are: i)
constant non-adiabatic coupling C, independent of the
displacement along any nuclear coordinate, ii) instanta-
neous thermalization processes, and iii) the presence of a
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manifold of high frequency vibrational modes with decent
Huang-Rhys factors (diagonal electron-vibron coupling
constants).

We extend this theory to an arbitrary number of vibra-
tions N , each with frequency νp, vibrational relaxation
rate Γp, and a Huang-Rhys factor sp, where p = 1, . . . ,N .
We make use of the toolbox of open quantum system
dynamics particularized to electron-vibron interactions
as introduced in Ref. [12]. A key point of our approach is
the distinction among timescales characterized by optical
frequencies (at femtosecond level), dephasing (from very
slow under cryogenic conditions up to hundreds of fem-
toseconds at room temperature), vibrational relaxation
(at picosecond level), and radiative emission (at tens of
nanoseconds level). Another key point is the phenomeno-
logical inclusion of the dephasing rate stemming from the
coupling of the electron to the bulk phonons in a nonlinear
fashion. This allows for a very compact and analytical
scaling law, valid at any temperature and bridging the
weak and strong coupling regimes introduced in Ref. [7].
The formalism we use allows for extension beyond the
constant non-adiabatic coupling case and can be applied
to any molecule once the set of νp,Γp, sp are known. The
scaling law can be cast as an infinite asymptotic expansion

γAE
nr = Re

∞∑
k=0

C2

(iω0)k+1
Bk(x1, x2, . . . , xk), (1)

which employs the set of complete Bell polynomials
with arguments xj , solely involving the set of νp,Γp, sp
and the dephasing rate γd. Crucial quantities are
sums weighted by the Huang-Rhys factors, such as for

example the collective Stokes shift ⟨ν⟩ =
∑N

p=1 spνp
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(appearing in x1) or higher order terms of the form

⟨νΓ⟩ = ∑N
p=1 spνpΓp (appearing in x2) and so on. We

find that γnr is proportional to ⟨Γ⟩ =
∑N

p=1 spΓp, at
cryogenic temperatures and to γd at room temperature
(reaching values at the order of a few THz), owing to
the high thermal occupancies of the low-frequency bulk
phonon modes.
From Eq. (1) we identify dephasing as the main

mechanism for lowering the QE at room temperature;
instead, the intrinsic temperature dependence stemming
from thermal occupancy of vibrational modes is very
weak. Consequently, knowledge of γr, γd and QE at T
= 300K and of ⟨Γ⟩ at cryogenic temperatures for a given
molecule, allows for a good estimation of both C and the
QE at low T. For example, for DBT (dibenzoterrylene)
molecules measured values around QE= 30% at room
temperature have been observed and the dephasing rate
is estimated around γd/2π = 1.43THz. Using values
for νp,Γp, sp derived from ab-initio calculations in the
displaced oscillator model [13], we make a gross estimate
for C/2π = 1.2THz and predict an expected QE around
97% at cryogenic temperatures around 4K or less.

Quantum Langevin equations. - The starting point of
our approach is a molecular Hamiltonian H = H0 +Hnon

where H0 = TN + V0 is the Hamiltonian under the Born-
Oppenheimer separation, with TN the nuclear kinetic
energy operator, V0 the potential energy, and a non-
adiabatic part Hnon (allowing different electronic states
to be coupled through nuclear motion [3, 5, 14, 15]).
Considering two PESs, corresponding, e.g., to a ground
|g⟩ and excited state |e⟩, this is expressed in matrix form
as

H = TN +

(
Ve(R) 0

0 Vg(R)

)
+

(
0 f(R)

f(R) 0

)
, (2)

where R is the vector containing all nuclear coordinates
Rp with p = 1, . . . ,N , and f(R) describes the non-
adiabatic coupling.

Introducing Pauli lowering and raising operators σ and
σ† for the electronic transition as well as bosonic annihi-
lation and creation operators bp and b†p for the nuclear

degrees of freedom, allows one to write H0 =
∑

p h
(p)
0 as

a sum of Holstein Hamiltonians (we also set ℏ = 1)

h
(p)
0 = ω̄

(p)
0 σ†σ + νpb

†
pbp −√

spνp(b
†
p + bp)σ

†σ. (3)

Here, we have assumed parabolic PESs and denoted the
optical energy gap as ω0 while the Stokes-shifted vertical

transition frequency is ω̄
(p)
0 = ω0 + spνp. Each vibration

is characterized by its bosonic mode bp with frequency

νp such that Rp = R
(p)
zpm(b†p + bp) and the dimensionless

Huang-Rhys factors sp = µpνpR
(p)
ge R

(p)
zpm, with the zero-

point motion R
(p)
zpm =

√
ℏ/(2µpνp) (µp – effective mass of

the vibrational mode) and the equilibrium mismatch R
(p)
ge .

We assume linear expansion of the non-adiabatic coupling
such that f(R) ≈ C+

∑N
p=1 C

(1)
p (b†p+ bp) (recovering the

EJ case [7] when setting all C
(1)
p to zero). The molecular

Hamiltonian is

H = H0 +
[
C +

∑N
p=1 C

(1)
p (b†p + bp)

]
(σ† + σ). (4)

Spontaneous emission at rate γr, dephasing at
rate γd, and vibrational relaxation for each
mode Γp are described by the Lindblad terms
L[ρ] = γrL[σ, ρ] + γdL[σ

†σ, ρ] +
∑

p ΓpL[bp −√
spσ

†σ, ρ]

(see Ref. [12]). The expression for the general
dissipator with collapse operator O is defined as
L[O, ρ] = 2OρO† − {O†O, ρ} such that the quantum
master equation for the density matrix ρ can be expressed
as ρ̇ = i[ρ,H] + L[ρ].
It is advantageous to move into a polaron frame,

as described in detail in Ref. [12], with the oper-

ator U†
pol = (D†)σ

†σ that diagonalizes H0. Here,

D =
∏

p exp[
√
sp(b

†
p − bp)] is the collective vibrational

displacement operator. We then follow with a per-

turbative treatment in C and C
(1)
p . Let us introduce

new operators b̄p = bp − √
spσ

†σ and σ̄ = D†σ, in
terms of which the Lindblad term can be re-expressed
L[ρ] = γrL[Dσ̄, ρ] + γdL[σ̄

†σ̄, ρ] +
∑

p ΓpL[b̄p, ρ]. Fol-

lowing a standard route [16], the master equation can
be mapped onto a set of nonlinear, coupled quantum
Langevin equations for the system operators

˙̄σ = −(iω0 + γr + γd)σ̄ + iD†
[
C +

∑N
p=1 C

(1)
p (b̄†p + b̄p)

]
(2σ†σ − 1)−

√
2γr(2σ

†σ − 1)σ̄in +
√
2γdσ̄σ̄

†σ̄in, (5a)

˙̄bp = −(iνp + Γp)b̄p − iC(1)
p (σ̄D + σ̄†D†)− i

√
sp

C +

N∑
j=1

C
(1)
j (b̄†j + b̄j + 2

√
sj σ̄

†σ̄)

 (Dσ̄ −D†σ̄†) +
√

2Γpb̄
(p)
in , (5b)

where the intermediate steps are detailed in
App. C. The vibrational input noise terms

obey ⟨b̄(p)in (t)b̄
(p)†
in (t′)⟩ = (N̄p + 1)δ(t − t′) and

⟨b̄(p)†in (t)b̄
(p)
in (t′)⟩ = N̄pδ(t − t′), where N̄p describes

the thermal occupation of each mode. For the noise af-

fecting the electronic transition ⟨σ̄in(t)σ̄
†
in(t

′)⟩ = δ(t− t′).
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All other two-time noise correlations are assumed zero.

Non-radiative rate.—We follow the dynamics
of the excited state population pe, which reads
ṗe = −2γrpe − 2 ImF(t). The effect of the non-adiabatic
contributions is incorporated in the correlations be-
tween nuclear motion and the electronic coherence
F(t) =

〈(
C +

∑N
p=1 C

(1)
p q̄p(t)

)
D(t)σ̄(t)

〉
. This correla-

tion function can be estimated by computing the time
evolution of the electronic operator under a Markovian
approximation (see App. D), allowing for a compact
expression ṗe(t) ≈ −2(γr + γnr)pe(t).
While we address the extra effect of linear coupling,

later on, we will focus in the following solely on the
constant coupling case where we derive analytical scaling
laws. The starting point is the integral representation
γnr = αC2

∫∞
0

dt e−iω0tf(t) (see App. D), with the
time-dependent kernel

f(t) = e−γttexp

{ N∑
p=1

sp
[
(N̄p+1)eiνpt + N̄pe

−iνpt
]
e−Γpt

}
,

(6)
where γt = γr + γd. The function f(t) is slowly varying
with respect to the very fast oscillations at ω0: the
timescale is given by the smallest rates between γr
and γd. Notice that this is an extension of the partial
EJ result [7]), where we explicitly include all loss
processes affecting the dynamics. While the treatment
there considered a saddle point approximation of the in-
tegral, we proceed instead by methods of series expansion.

Lorentzian expansion.—Numerical estimates of the
integral above are difficult and give little physical insight.
We proceed instead in expanding the non-radiative rate as
a sum over an infinite number of competing multi-vibron
relaxation paths, from the excited state with vibrational
mode occupancies n = {n1, . . . , nN } to the ground state
occupancies m = {m1, . . . ,mN }. We obtain

γnr = C2e−G
∞∑

n,m=0

γr+ γd+ Γn,m

(ω0+ νn,m)2+(γ + Γn,m)2
Fn,m. (7)

The exponential reduction involves the exponent

G =
∑N

p=1 sp(1 + 2N̄p), which exhibits a weak tem-

perature dependence (as the thermal occupancy of the
vibrational modes is well below unity even at room tem-
perature). Resonance conditions are encompassed in the

Lorentzians with linewidths Γn,m =
∑N

p=1(np +mp)Γp

and frequencies νn,m =
∑N

p=1(np−mp)νp. The thermally-
compounded Franck-Condon factors have the following
expression

Fn,m =

N∏
p=1

N̄np
p (N̄p + 1)mp

s
np+mp

j

np!mp!
(8)

and govern the strength of the vertical transitions.
For an exact result, the sum above is numerically un-

tractable owing to the large number of channels to be

Asymptotic expansionLorentzian expansion

1
vibrational mode

1
vibrational mode

Figure 1. Multi-vibron processes in the Lorentzian and asymp-
totic expansions, respectively. On the left, upper part, we sum
over diagonal non-radiative contributions, where de-excitation
occurs only along each of the nuclear coordinates. The lower
parts shows the bimodal amd trimodal contributions, where
the de-excitation pathways show jumps between two or three
distinct nuclear coordinates. On the right, we show the first
three orders of the asymptotic expansion. In this case the
total occupancy is fixed to the order number.

considered. However, it is extremely useful in understand-
ing the nature of the non-radiative loss as a competition
of generally off-resonant multi-vibron processes. Illus-
trated in Fig. 1 is the nature of the de-excitation process
summed over possible pathways, for low temperature. For

example, diagonal loss, at rate γ
(p)
nr implies following a

single nuclear coordinate all the way from |e⟩ to |g⟩ by
depositing any number of vibrons of type p. Instead, the

next orders γ
(p,p′)
nr and γ

(p,p′,p′′)
nr and so on, see a more

complex descending path following combinations of two
or more nuclear coordinates and the energy is deposited
in vibrons of different types.

Asymptotic expansion.—An analytically tractable al-
ternative is based on the following approximation: as the
timescale of f(t) is governed by γr, γd, and Γp, this allows
an asymptotic expansion in inverse powers of ω0 such that

γAE
nr =

∞∑
k=0

γ(k)
nr = α

∞∑
k=0

C2

(iω0)k+1
f (k)(0), (9)

where f (k)(0) is the k-th derivative of the function f(t),
evaluated at t = 0. Let us make the notation zp = iνp−Γp

and notice that

f (k)(0) =
1

α

(
d

dt

)k

exp


∞∑
j=1

xj
tj

j!


∣∣∣∣∣
t=0

, (10)

where the first N coefficients can be expressed as follows

x1 = −(γr + γd) +
〈
(1 + N̄)z

〉
+
〈
N̄z∗

〉
, (11a)

xj =
〈
(1 + N̄)zj

〉
+
〈
N̄(zj)∗

〉
for j > 1. (11b)
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(b)
pentacene

0

0.18

1 18
terrylene

0
1 23

0.35

1 41

DBT

0

0.04

(a)

Figure 2. (a) Convergence of the asymptotic expansion show-
ing that more than 80% of the contribution to the non-radiative
rate stems from the first two orders. (b) Histogram of single di-
agonal contributions to the γnr from the Lorentzian expansion
for 4K. The sum amounts to 28% (pentacene), 36% (terrylene)
and 17% (DBT) of their respective total non-radiative rates
indicating the strong contributions from bi-modal or higher
order terms in the Lorentzian expansion.

The coefficients above are expressed in terms of sums
weighted by the Huang-Rhys factors sp: for any set
of parameters Op with p = 1 to N , we made the

notation ⟨O⟩ =
∑N

p=1 spOp, where Op can stand for

Γp, νp, ν
2
p,Γpν,N̄pνp, etc. Notice that to compute terms

such as
〈
zj
〉
one needs to first perform the binomial ex-

pansion (see App. F).
The crucial observation now is that the function above

is the generating function for the complete Bell polyno-
mials Bk(x1, x2, . . . , xk) (for example B1(x1) = x1 and
B2(x1, x2) = x2

1 + x2 – see App. E for properties and
further orders of these polynomials). This allows us to
cast the non-radiative rate in the asymptotic expansion
in a fully analytical form as

γAE
nr = Re

∞∑
k=0

C2

(iω0)k+1
Bk(x1, x2, . . . , xk). (12)

The expression above is the main result of the paper. We
list the first four orders in the App. F but note that the
gross behavior of γAE

nr can already be understood from
the first two orders[

γAE
nr

](1)
=

C2

ω2
0

[γr+ γd + ⟨Γ⟩] , (13a)

[
γAE
nr

](2)
=

2C2

ω3
0

{[γr+ γd + ⟨Γ⟩] ⟨ν⟩+ ⟨Γν⟩} . (13b)

The convergence of the asymptotic expansion is validated
in Fig. 2(a) (for T= 4K) for three molecules. The con-
vergence is ensured quite quickly, around the 5th or 6th
order, while more than 80% of the total value is already
obtained after summing up only the first two contribu-
tions.

The low temperature case.—For low T, one can
set all N̄p = 0 and neglect the dephasing rate γd = 0
(as bulk phonons are almost frozen). Let us imagine a
photo-excitation stage, after which the molecule relaxes
almost instantaneously (on the ⟨Γ⟩ ps timescale) to the
|e, 0, 0 . . . , 0⟩ level. From here, apart from spontaneous
emission, the molecule can relax non-adiabatically to
a multitude of combinations of |g,m1, . . . ,mN ⟩. The
Lorentzian expansion gives physical insight into the
competing processes. Diagonal processes, dissipating the
gap energy into many excitations of a single vibron mode
occur but do not necessarily dominate. We make use of
vibrational frequencies and Huang-Rhys factors derived
from ab-initio numerical calculations (see tabulated
values in App. G) for DBT, terrylene and pentacene. We
illustrate the contribution from the diagonal terms in
Fig. 2a and conclude that most of the non-radiative rate
comes instead for bimodal or higher order terms in the
Lorentzian expansion. Notice also that the highest energy
manifold does not contribute much in all cases analyzed
owing to the weak Huang-Rhys factors. Instead, for the
particular example of terrylene, the most dominant mode
is the lowest energy one at ν1/2π = 7.44THz but an
extremely large s1 = 1.82. The situation can of course
drastically change when one accounts for the particularity
of the solid state matrix in which the molecules are
hosted (as our extracted table of values relies on ab-initio
numerical simulations in gas phase).

In all cases analyzed the resonance condition does not
play a role. Owing to the small Huang-Rhys factors
for high frequency vibrations and the low energy of
the modes which have a large Huang-Rhys factor, the
dominant contributions to the non-radiative rate are
very off-resonant (this is seen also in the scaling with
1/ω(k+1). The important scaling instead, obvious from
both analytical expansions, is γnr ∝ ⟨Γ⟩.
The scaling with the energy gap is shown in Fig. 3a

around the resonance. slight dependence on the charac-
teristics of specific molecules. We have used tabulated
values from App. G.

Using the Lorentzian expansion we quantified the effect

of a small additional linear coupling C
(1)
p (of the order of

1% of C. However, the effect simply renormalizes C by

roughly 2
∑N

p=1

√
spC

(1)
p . This is illustrated in App. I.

The high temperature case.—The linewidth of single-
molecule emission in solid-state experiments is strongly
broadened with increasing temperature due to the non-
linear electron-phonon couplings [17–19] combined with
the strong thermal activation of low frequency phonons.
We assume here a temperature scaling of the dephasing
rate (γd) exhibiting Arrhenius-like behaviour at low tem-
peratures with rapid increase as shown in Refs. [20–22]. In
particular, we estimate the room temperature dephasing
rate of a DBT molecule in a solid-state anthracene matrix
around γd/2π = 1.43THz by using the experimental pa-
rameters and formulas in Ref. [18]. Assuming measured
value for the QE around 0.3 and fixing ω0/2π = 390THz,
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(b)

1.43

(a)

Figure 3. (a) Energy gap law around the resonance frequency
ω0 showing slightly different scaling behavior implying that
different contributions in the asymptotic expansion are rele-
vant. (b) Scaling of the ratio γnr/γr with temperature. The
weak dependence stemming from the increase in N̄p can only
bring a factor of 3. Instead, the main effect comes from the
strong dependence of γd on T as seen in the inset.

Γ/2π = 15GHz and γr/2π = 17.5MHz, at room tem-
perature and ω0/2π = 403THz, Γ/2π = 5GHz and
γr/2π = 12.5MHz, at T = 4 K allows us to estimate
C/2π = 12THz. In turn, this indicates a QE of around
97% or more for DBT at 4K.
The temperature dependence is illustrated in Fig. 3.

There are two factors: one is the weak dependence stem-
ming from the increase in N̄p, which can only bring a
small factor of 2 or 3. Instead, the main effect comes from
the strong dependence of γd on T as seen in the inset.

Discussions and outlook.—We have applied an open
quantum system dynamics formalism to the question of
naturally occurring non-adiabatic transitions between
two molecular PESs. This formalism allows for the
explicit inclusion of all loss and dephasing rates into
the dynamics and leads to a fully analytical scaling law

expressed as an asymptotic expansion. The formalism
is amenable to both small and large molecules and
generally to any electronic systems where non-adiabatic
phenomena emerge from the coupling to localized or
delocalized vibrations, such as is the case for quantum
dots, vacancy centers, etc. [23, 24]. While we have
focused on the constant coupling case, we have shown
that an additional linear coupling can be analytically
tackled; this procedure could be generalized to include
quadratic or higher order terms.
The requirements of our treatment are: i) harmonic

approximation of the potential landscapes around the
minima, ii) constant or linear non-adiabatic coupling
that can be treated in second order perturbation theory,
iii) only radiative and dephasing rates are included in
addition to vibrations relaxation. Future endeavors
will see the inclusion of the electron-phonon coupling
both linear and non-linear and the effects brought on by
the presence of a solvent. The theory can also tackle
non-adiabatic transitions between singlet and triplet
states, thus quantifying intersystem crossing dynamics.
Moreover, the possibility of conical intersections is
implicit in our model and further investigations can
show how non-radiative decay is influenced by dynamics
around conical intersections.
The predictions and validity of these theoretical

findings could be tested within the context of quantum
simulations of non-adiabatic physics at exaggerated
length and time scales, e.g., using superconducting
circuits [25], trapped ions [26, 27] or Rydberg atoms in
optical tweezers [28].
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Appendix A: List of symbols

ω0 Energy difference between the electronic states

N Number of vibrational modes

νj Vibrational frequency of jth nuclear coordinate

sj Huang-Rhys factor of jth vibrational mode sj = µjνjR
(j)
ge r

(j)
zpm

∆ Collective reorganization energy ⟨ν⟩ =
∑

j sjνj

C Constant non-adiabatic coupling

C
(1)
j Linear non-adiabatic coupling for jth mode

µj Reduced mass of jth molecular vibration

R
(j)
zpm Nuclear zero-point motion R

(j)
zpm =

√
ℏ/(2µjνj)

R
(j)
ge Equilibrium mismatch between PESs

θ(R) Non-adiabatic mixing angle

Γj Damping rate of jth vibrational mode

N̄j Thermal occupation of jth vibrational mode N̄j = [exp(ℏνj/kBT )− 1]−1

Fn,m Franck-Condon factors

Sn,m Lorentzian sideband amplitudes

γr Radiative decay rate (fluorescence)

γd Dephasing rate

γt Total decay rate of electronic coherence γt = γr + γd

γnr Non-radiative decay rate

γpump Incoherent pumping rate due to non-adiabatic coupling

⟨O⟩ Huang-Rhys weighted sum ⟨O⟩ =
∑N

j=1 sjOj

Table I. Table of most important symbols used throughout the main text and the Supplemental Material, including a short
description.

Appendix B: From molecular dynamics to second quantization formulation

In this section, we briefly review a few aspects of adiabatic and non-adiabatic molecular physics. First, we introduce
the general problem of non-separable electronic and nuclear coordinates for a two electronic orbital problem and point
out the effect of off-diagonal couplings. Then we move on to exemplify how non-adiabatic couplings appearing in the
potential energy part (coupling the electronic orbitals) can be diagonalized and the non-adiabatic coupling parameters
can be computed. Finally, we show the formulation in second quantization and introduce some properties of the
polaron transform which diagonalizes the Holstein Hamiltonian.

General theory for non-adiabatic phenomena.– The general molecular Hamiltonian is given by the sum of
potential and kinetic energies HM = TN +HE with HE = TE + V(r,R) and r and R denote the sets of all electronic
and nuclear coordinates, respectively. The adiabatic electronic wave functions and potential energy surfaces are given
as solutions of the electronic Hamiltonian HE and they depend parametrically on the nuclear coordinates R. Let us
restrict to two electronic states |g(R)⟩ and |e(R)⟩ in the ket notation and ϕg(r,R) = ⟨r|g(R)⟩ and ϕe(r,R) = ⟨r|e(R)⟩,
in the position represention. To find the exact eigenstates of the system one then expands in terms of the adiabatic
electronic states

Ψ(r,R) = χg(R)ϕg(r,R) + χe(R)ϕe(r,R), (B1)

where the task afterward is to find the nuclear eigenstate spinor χ(R) with components χg(R) and χe(R). Inserting
this into the Schrödinger equation (HM − E)Ψ(r,R) = 0 and projecting onto the subspace spanned by ⟨g(R)| and
⟨e(R)|, followed by an integration over the electronic coordinate, leads to the following eigenvalue problem for the
nuclear spinor (

Vg(R) + TN(R)gg TN(R)ge
TN(R)eg Ve(R) + TN(R)ee

)
χ(R) = Eχ(R). (B2)
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We defined the matrix elements of the kinetic energy operator (which represents an operator in the reduced Hilbert
subspace of nuclear coordinates)

TN(R)ge = ⟨g(R)|TN |e(R)⟩ =
∫

drϕ∗
g(r,R)TNϕe(r,R), (B3)

and the other three elements in a similar fashion. This shows that the nuclear problem is not diagonal and the
PESs are coupled via the matrix elements of the kinetic energy operator. In the simplifying case where there is no
dependence of the electronic orbitals on R, these terms vanish and the problem becomes diagonal. For example, for
parabolic potentials, both spinor components are simply the eigenstates of the harmonic oscillator.

The Born-Oppenheimer separation.– Under some conditions, a decoupling of the two nuclear wavefunctions can
be performed. This is the case under the Born-Oppenheimer separation where

ΨBO(r,R) = χg(R)ϕBO
g (r,R) + χe(R)ϕBO

e (r,R), (B4)

where the condition is that TN(R)ge =
〈
gBO(R)

∣∣TN

∣∣eBO(R)
〉
= 0. This indicates that the nuclear problem is

separable into the ground and excited wavefunctions without any couplings and no non-adiabaticity is expected.

Off-diagonal potential energy terms.– Let us now assume the situation where the electronic Hamiltonian HE

admits a solution under the Born-Oppenheimer separation with bare eigenstates
∣∣gBO(R)

〉
and

∣∣eBO(R)
〉
. To this, we

add an off-diagonal contribution f(R). The addition of an off-diagonal term implies that one has to re-diagonalize the
electronic part to obtain the new eigenstates |g(R)⟩ and |e(R)⟩ via some transformation U which we parametrize as a
rotation (

ϕg(r,R)
ϕe(r,R)

)
=

(
cos θ(R) sin θ(R)
− sin θ(R) cos θ(R)

)(
ϕBO
g (r,R)

ϕBO
e (r,R)

)
, (B5)

where the position-dependent angle is given by θ(R) = arctan [2f(R)/ (Ve(R)− Vg(R))] /2. This transformation will
however also affect the kinetic energy part for the nuclear degree of freedom. The matrix elements of the kinetic energy
in the new basis are given by (omitting the coordinates for the ease of notation)

T̃N,mn = ⟨ϕm|TN|ϕn⟩ = δmnTN +
∑
j

1

µj
⟨ϕm|(Pjϕn)⟩Pj + ⟨ϕm|(TNϕn)⟩ . (B6)

For this, we have to evaluate terms (writing it for simplicity for a single nuclear coordinate R)

∂2

∂R2
cos θ(R) =

∂

∂R

[
− sin(θ)θ′ + cos(θ)

∂

∂R

]
=

[
− cos(θ)θ′2 − sin(θ)θ′′ − 2 sin(θ)θ′

∂

∂R
+ cos(θ)

∂2

∂R2

]
(B7)

and

∂2

∂R2
sin θ(R) =

∂

∂R

[
cos(θ)θ′ + sin(θ)

∂

∂R

]
=

[
− sin(θ)θ′2 + cos(θ)θ′′ + 2 cos(θ)θ′

∂

∂R
+ sin(θ)

∂2

∂R2

]
. (B8)

We obtain for the matrix elements of the kinetic energy

T̃N =

(
TN + θ′2/(2µ) θ′′/(2µ) + θ′/(2µ)∂R

−θ′′/(2µ) + θ′/(2µ)∂R TN + θ′2/(2µ)

)
, (B9)

where the couplings between electronic states are obtained as derivatives of the transformation angle. The relevant
term is typically the first-order derivative which appears as a non-adiabatic momentum coupling.

Holstein Hamiltonian and polaron transform.– Setting the non-adiabatic coupling to zero, yields the Holstein
Hamiltonian for a single nuclear coordinate

H0 = νb†b+ (ω0 + sν)σ†σ −√
sν(b† + b)σ†σ. (B10)

One can bring this Hamiltonian into diagonal form via the polaron transformation U†
pol = (D†)σ

†σ where the displacement

is defined as D = exp(−i
√
sp) = exp

[√
s(b† − b)

]
with the dimensionless momentum quadrature p = i(b† − b) as
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generator. Defining the polaron operators as Ō = UpolOU†
pol, the Hamiltonian in Eq. (B10) can be expressed as

H0 = νb̄†b̄+ ω0σ̄
†σ̄ with the polaron-transformed operators

b̄ = b−√
sσ†σ, σ̄ = σD†, σ̄z = σz, D̄ = D, (B11)

and an important commutation relationship of the displacement operator is given by

[b†,D] = [b,D] =
√
sD. (B12)

The polaron operators obey the same commutation relations as the original operators, due to the unitarity of the
transformation.

Appendix C: Full equations of motion

The Hamiltonian describing the coupling of an electronic transition to N vibrational modes with Huang-Rhys factors

sj , frequencies νj , and non-adiabatic constant C as well as linear couplings C
(1)
j reads

H = (ω0 +∆)σ†σ +

N∑
j=1

νjb
†
jbj −

N∑
j=1

√
sjνj(b

†
j + bj)σ

†σ +

C +

N∑
j=1

C
(1)
j (b†j + bj)

 (σ + σ†), (C1)

with the reorganization energy ∆ =
∑

j ∆
(j) =

∑
j sjνj . Defining the polaron transform U†

pol = (D†)σ
†σ in terms

of the collective vibrational displacement operator D =
∏N

j=1 Dj =
∏N

j=1 e
√
sj(b

†
j−bj), the vibrational and electronic

polaron operators Ō = U†
polOUpol are given by

b̄j = bj −
√
sjσ

†σ, σ̄ = σD†. (C2)

The Hamiltonian can be expressed in terms of these new operators as

H = ω0σ̄
†σ̄ +

N∑
j=1

νj b̄
†
j b̄j +

C +

N∑
j=1

C
(1)
j (b̄†j + b̄j + 2

√
sj σ̄

†σ̄)

 (σ̄†D† + σ̄D) (C3)

= ω0σ̄
†σ̄ +

N∑
j=1

νj b̄
†
j b̄j + C(σ̄D + σ̄†D†) +

N∑
j=1

C
(1)
j

[
(b̄†j + b̄j)σ̄D + (b̄†j + b̄j + 2

√
sj σ̄

†σ̄)σ̄†D†
]
.

The equation of motion for the population of the electronic excited state is

dpe
dt

= −2γrpe − 2 Im

〈C +

N∑
j=1

C
(1)
j (b̄†j + b̄j)

Dσ̄

〉
, (C4)

corresponding to a sum of the contributions from all vibrational modes. The master equation can be mapped onto an
equivalent set of quantum Langevin equations for the system operators. For any system operator O this can be done
as follows [12, 16]

Ȯ = i [H,O]−
∑
c

[
O, c†

] (
γc −

√
2γccin

)
+
∑
c

(
γcc

† −
√
2γcc

†
in

)
[O, c] , (C5)

where cin is the zero-averaged and delta-correlated input noise operator associated with the collapse operator c, γc is
the associated decay rate, and the sum goes over all decay channels.

The equations of motion for the fundamental operators of the system then read

dσ̄

dt
= −(iω0 + γr + γd)σ̄ + iD†

C +

N∑
j=1

C
(1)
j (b̄†j + b̄j)

σz −
√

2γrσzσ̄in +
√

2γdσ̄σ̄
†σ̄in, (C6a)

db̄i
dt

= −(iνi + Γi)b̄i − iC
(1)
j (σ̄D + σ̄†D†)− 2

√
siγrσ̄

†σ̄ (C6b)

− i
√
si

C +

N∑
j=1

C
(1)
j (b̄†j + b̄j + 2

√
sjσ

†σ)

 (Dσ̄ −D†σ̄†) +
√
2Γib̄

(i)
in .
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Note that a term proportional to
√
sjγr arises in the equation of motion for b̄i due to the fact that b̄i does not commute

with the Lindblad term for spontaneous emission. The noise correlations explicitly read〈
σ̄†
in(t)σ̄in(s)

〉
= 0,〈

σ̄in(s)σ̄
†
in(t)

〉
= δ(t− s),〈

b̄
(i),†
in (t)b̄

(j)
in (s)

〉
= δ(t− s)δi,jN̄i,〈

b̄
(i)
in (t)b̄

(j),†
in (s)

〉
= δ(t− s)δi,j(N̄i + 1),

(C7)

where N̄i = [eℏνi/(kBT ) − 1]−1 is the thermal occupancy of the ith vibrational mode. In order to shorten the notation
in the following, we also introduce the total decay rate of the coherence γt = γr + γd.

Appendix D: Calculation of the non-radiative decay rate for N nuclear coordinates

In order to derive the non-radiative rate, we perform a formal integration for the Langevin equations derived above,
leading to integrated equations of motion for the explicit time-dependence of the fundamental operators of the system

σ̄(t) = σ̄0(t) + i

∫ t

0

ds e−(γt+iω0)(t−s)D†(s)

 N∑
j=1

C
(1)
j q̄j

+ C

 σ̄z(s) (D1a)

+

∫ t

0

ds e−(γt+iω0)(t−s)
(√

2γdσ̄(s)σ̄
†(s)−

√
2γrσz(s)

)
σ̄in(s), (D1b)

b̄i(t) = b̄i,0(t)−
∫ t

0

dsΛ
(i)
b (t− s)

(
C

(j)
j

[
Dσ̄ + (1 + 2si)D†σ̄† +

√
si(b̄

†
i+b̄i)(Dσ̄−D†σ̄†)

]
+ C

√
sj(Dσ̄−D†σ̄†)

)
(D1c)

− i
√
si

∫ t

0

dsΛ
(i)
b (t− s)

N∑
j ̸=i

C
(1)
j (b̄†j + b̄j + 2

√
sjσ

†σ)(Dσ̄ −D†σ̄†) + C(Dσ̄ −D†σ̄†)

+
√

2Γi

∫ t

0

dsΛ
(i)
b (t− s)b̄

(i)
in (s),

where Λ
(i)
b (t) = e−(Γi+iνi)t is the propagator for the ith vibrational mode. We denoted the transient terms determined

by the initial conditions by the index 0, we neglected the term proportional to γr for the vibrational degrees of freedom,
and we dropped the argument of some of the operators under the integral for the ease of notation.
We proceed as follows: we insert Eqs. (D1) into Eq. (C4) in order to calculate the correlation function

Fj(t) =
〈((

C
(1)
j q̄j(t) + C/N

))
D(t)σ̄(t)

〉
up to second order in C, C

(1)
j and extract the nonradiative decay rate from

the expression for the correlation function. In order to clarify the procedure, we perform this step explicitly once for σ
and obtain for the correlation function

Fj(t) =
〈(

C
(1)
j

(
b̄†j(t) + b̄j(t)

)
+ C/N

)
D(t)σ̄0(t)

〉
(D2)

+

∫ t

0

ds e−(γt+iω0)(t−s)

〈(
C

(1)
j

(
b̄†j + b̄j

)
+ C/N

)
D(t)D†(s)

 N∑
j′=1

C
(1)
j′

(
b̄†j′ + b̄j′

)
+ C

 σ̄z(s)

〉
.

Notice, that the expectation values of the noise correlations of the σ-operators vanishes since. In order to find the
nonadiabatic decay rate up to the second order in the perturbation parameter, Eq. (D1) must be plugged into Eq. (D2),
generating all second order terms and some terms to third and fourth order in the perturbation parameter (for higher
order perturbation theories this step simply needs to be repeated until all terms of the perturbation order have been
generated). The higher order terms are neglected. Here we also neglect the time evolution for the initial condition of
the vibrational modes since they decay with Γi, which we assume to be much faster than the non-adiabatic decay rate.
We find the perturbative time evolution for the displacement operator by using the Dyson expansion for operator

exponentials

eA+ϵB = eA
[
1 + ϵ

∫ 1

0

dt1 e
−At1BeAt1 +O(ϵ2)

]
. (D3)
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At the end of this, there will be a combination of different terms that remain. All different constituents of this
expression will however have a similar form and simply be a product of operators at time t = 0, i.e., the initial
conditions, and of noise operators at different times, i.e., depend on the bath correlations. Since both of these are
known, the problem is then in principle solved. We give an example for such an expression〈

σ̄†
0σ̄0b̄

(i),v†
in (t)b̄

(i)
in (t′)

〉
=
〈
σ̄†
0σ̄0

〉〈
b̄
(i)†
in (t)b̄

(i)
in (t′)

〉
= p(0)Λb(t− t′)N̄i. (D4)

The initial condition factorizes with the noise terms. Within the perturbation order, electronic and vibrational

operators also factorize. It is then a matter of evaluating noise correlation expressions such as
〈
b̄
(i)†
in (t)b̄

(i)
in (t′)

〉
for the

thermal bath. By making use of the Isserlis’ theorem, one finds that most correlation functions in a thermal state can
be derived from the fact that (for τ = t− s ≥ 0)

〈
exp

[
Ab†(t) +Bb†(s) + Cb(t) +Db(s)

]〉
= exp

[
1

2

〈(
Ab†(t) +Bb†(s) + Cb(t) +Db(s)

)2〉]
= exp

[
1

2
(2N̄ + 1)(AC +BD + Λ∗

b(τ)AD + Λb(τ)BC)

]
. (D5)

Then, more complicated normal-ordered correlation functions can be written as derivatives

CA,B,C,D
n,m,k,l (τ) =

〈
b†(t)nb†(s)meAb†(t)+Bb†(s)+Cb(t)+Db(s)b(t)kb(t)l

〉
=[

d

dA
− C + Λ∗

b(τ)D

2

]n [
d

dB
− D + Λb(τ)C

2

]m [
d

dC
− A+ Λb(τ)B

2

]k [
d

dD
− B + Λ∗

b(τ)A

2

]l
× exp

[
1

2
(2N̄ + 1)(AC +BD + Λ∗

b(τ)AD + Λb(τ)BC)

]
,

(D6)

where the generalization to multiple different bosonic modes is straightforward.
The evaluation of the noise correlations is thus simply a matter of performing the proper operator ordering and then

applying the formula Eq. (D6). If all of the steps above are applied consistently, an analytical expression for Fj(t) can
be found to second order in the perturbation parameter. In order to make the expressions as compact as possible,
we write Fj(t) =

∑
i Fij(t), so that we collect all terms which come from the modes i and j in the term Fij(t). This

contribution to the correlation function can then be quite generally written as

Fij(t) =

∫ t

0

dse−(iω0+γt)(t−s)
[(
Kij

γ (t− s)−Kij
p (t− s)

)
pe(s) +Kij

p (t− s)
]
. (D7)

In practice, we calculate expressions for two modes and then generalize for N modes since there are no higher-order
interactions in this order of perturbation theory. Doing this (this calculation is quite tedious, so we implemented the
procedure prescribed in a CAS and automatically derived the folowing expressions), yields the integration kernels

Kii
γ = i

 N∏
j=1

e−sj(2N̄j+1)esj(N̄j+1)Λ
(j)∗
b esjN̄jΛ

(j)
b


×
[
C

(1)
j (N̄i + 1)Λ

(i)∗
b + C

(1)
j N̄iΛ

(i)
b −

(
C/N + C

(1)
i

√
si − C

(1)
i

√
si

(
(N̄i + 1)Λ

(i)∗
b − N̄iΛ

(i)
b

))2]
,

Kij
γ = i

 N∏
j=1

e−sj(2N̄j+1)esj(N̄j+1)Λ
(j)∗
b esjN̄jΛ

(j)
b


×
(
C/N − C

(1)
i

√
si − C

(1)
i

√
si

(
(N̄i + 1)Λ

(i)∗
b − N̄iΛ

(i)
b

))
×
(
C/N − C

(1)
j

√
sj − C

(1)
j

√
sj

(
(N̄j + 1)Λ

(j)∗
b − N̄jΛ

(j)
b

))
.

(D8)

Defining e−G =
∏N

j=1 e
−sj(2N̄j+1) and introducing the short notations αj = (N̄j + 1)Λ

(j)∗
b and βj = N̄jΛ

(j)
b , we
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introduce the generalized expression

Kij
γ (

√
sα,j ,

√
sβ,j) =

ie−G

4

[
2
C

N − C
(1)
j

(
√
sα,j +

√
sβ,j +

∂

∂
√
sβ,j

− ∂

∂
√
sα,j

)]
[
2
C

N − C
(1)
j

(
√
sα,i +

√
sβ,i +

∂

∂
√
sβ,i

− ∂

∂
√
sα,i

)] N∏
j=1

esα,jαjesβ,jβj

 (D9)

so that Kij
γ (

√
si,

√
sj) = Kij

γ and Kii
γ (

√
si,

√
si) = Kii

γ and for the non-adiabatic pump term we obtain similar results,

but with Λ
(i)∗
b and Λ

(i)
b exchanged, i.e., Kij

p (t) = Kij
γ (−t) =

(
Kij

γ (t)
)∗
. We now argue that γnr ≪ Γi, ω0, such that

pe(s) varies slowly during the integration. This allows us to make a Markovian approximation by pulling p(s) out of
the integral and setting the upper bound to infinity, ultimately yielding

Fij(t) ≈ pe(t) lim
t→∞

∫ t

0

ds e−(iω0+γt)(t−s)
(
Kij

γ (t− s) +Kij
p (t− s)

)
+ lim

t→∞

∫ t

0

ds e−(iω0+γt)(t−s)Kij
p (t− s). (D10)

By inspecting this expression, we can now find expressions for the non-adiabatic decay rate as well as a non-adiabatic
pump rate which appears without prefactor

γnr = Im

N∑
i,j=1

lim
t→∞

∫ t

0

ds e−(iω0+γt)(t−s)Kij
γ (t− s) (D11a)

γpump = Im

N∑
i,j=1

lim
t→∞

∫ t

0

ds e−(iω0+γt)(t−s)
(
Kij

γ (t− s)
)∗

, (D11b)

so that ∂tpe = −2(γr + γnr + γpump)pe + 2γpump. It can then be argued that this equation of motion can be deduced
from a Master equation where the dissipators are γnrD[σ] + 2γpump[σ

†]. We can now write out the expression for the
integration kernel in order to find an explicit representation for the non-adiabatic decay rate

γnr =

N∑
i,j=1

e−G

4

[
2
C

N − C
(1)
j

(
√
sα,j +

√
sβ,j +

∂

∂
√
sβ,j

− ∂

∂
√
sα,j

)][
2
C

N − C
(1)
j

(
√
sα,i +

√
sβ,i +

∂

∂
√
sβ,i

− ∂

∂
√
sα,i

)]

× Re

[∫ ∞

0

ds e−(iω0+γt)s+
∑N

j=1 sα,j(N̄j+1)e(iνj−Γj)s+sβ,jN̄je
(−iνj−Γj)s

]∣∣∣√
sα,j=

√
sβ,j=

√
sj

=
e−G

4

{ N∑
i=1

[
2
C

N − C
(1)
j

(
√
sα,i +

√
sβ,i +

∂

∂
√
sβ,i

− ∂

∂
√
sα,i

)]}2

I(
√
sα,j ,

√
sβ,j)

∣∣∣√
sα,j=

√
sβ,j=

√
sj
.

(D12)

There exist now several strategies to calculate the integral in the second line. An exact representation can be calculated
by performing a series expansion of the double exponentials. We have defined

I(
√
sα,j ,

√
sβ,j) = Re

∫ ∞

0

ds e−(iω0+γt)s+
∑N

j=1 sα,j(N̄j+1)e(iνj−Γj)s+sβ,jN̄je
(−iνj−Γj)s

(D13)

and write this formal series expansion as

I(
√
sα,j ,

√
sβ,j) =

∑
n,m

γt +
∑N

j=1(nj +mj)Γj

(ω0 +
∑N

j=1(nj −mj)νj)2 + (γt +
∑N

j=1(nj +mj)Γj)2

N∏
j=1

N̄n
j (N̄j + 1)m

smα,js
n
β,j

m!n!
, (D14)

where the summation runs over all tuples n,m of length N . In order to write these expressions more compactly, we
define the thermal Franck-Condon factors and Lorentzian sidebands

F (j)
n,m = N̄n

j (N̄j + 1)m
sn+m
j

m!n!
(D15a)

Sn,m =
γt +

∑N
j=1(nj +mj)Γj

(ω0 +
∑N

j=1(nj −mj)νj)2 + (γt +
∑N

j=1(nj +mj)Γj)2
, (D15b)
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which allows us to represent the nonadiabatic decay rate by executing the derivatives in Eq. (D12)

γnr = e−
∑N

j=0 sj(1+2N̄j)
∞∑

n,m=0

Sn,m

 N∏
j=1

F (j)
nj ,mj

C −
N∑
j=1

C
(1)
j

√
sj +

N∑
j=1

C
(1)
j√
sj

(nj −mj)

2

. (D16)

It is now quite straightforward to state the non-adiabatic pump term as well

γpump = e−
∑N

j=0 sj(1+2N̄j)
∞∑

n,m=0

Sn,m

 N∏
j=1

F (j)
mj ,nj

C −
N∑
j=1

C
(1)
j

√
sj +

N∑
j=1

C
(1)
j√
sj

(nj −mj)

2

, (D17)

where we simply replaced F
(j)
nj ,mj by F

(j)
mj ,nj , which is equivalent to exchanging Λ

(i)∗
b and Λ

(i)
b in the original expression.

Appendix E: Bell polynomials

The k-th complete Bell polynomials are defined from the following generating function

Bn(x1, . . . , xn) =

(
∂

∂t

)n

exp

 n∑
j=1

xj
tj

j!

∣∣∣∣∣∣
t=0

. (E1)

We list here the first seven orders:

B1(x1) = x1,

B2(x1, x2) = x2
1 + x2,

B3(x1, x2, x3) = x3
1 + 3x1x2 + x3,

B4(x1, x2, x3, x4) = x4
1 + 6x2

1x2 + 4x1x3 + 3x2
2 + x4,

B5(x1, x2, x3, x4, x5) = x5
1 + 10x2x

3
1 + 15x2

2x1 + 10x3x
2
1 + 10x3x2 + 5x4x1 + x5

B6(x1, x2, x3, x4, x5, x6) = x6
1 + 15x2x

4
1 + 20x3x

3
1 + 45x2

2x
2
1 + 15x3

2 + 60x3x2x1

+ 15x4x
2
1 + 10x2

3 + 15x4x2 + 6x5x1 + x6,

B7(x1, x2, x3, x4, x5, x6, x7) = x7
1 + 21x5

1x2 + 35x4
1x3 + 105x3

1x
2
2 + 35x3

1x4

+ 210x2
1x2x3 + 105x1x

3
2 + 21x2

1x5 + 105x1x2x4

+ 70x1x
2
3 + 105x2

2x3 + 7x1x6 + 21x2x5 + 35x3x4 + x7.

(E2)

Appendix F: Asymptotic expansion

We restrict ourselves to the case C
(1)
j = 0 here, and start with the integral representation of the non-radiative rate

γnr = αC2 Re
[ ∫ ∞

0

dt e−iω0tf(t)
]
, (F1)

where α = e−G with G =
∑N

j=1 sj and the slowly varying function in the integrand is

f(t) = e−(γr+γd)te
∑N

p=1 sp[(N̄p+1)eiνpt+N̄pe
−iνpt]e−Γpt

. (F2)

Upon repeated integration by parts∫ ∞

0

dt e−iω0tf(t) = − 1

(iω0)

[
e−iω0tf (0)(t)

]∞
0

− 1

(iω0)2

[
e−iω0tf (1)(t)

]∞
0

− 1

(iω0)3

[
e−iω0tf (2)(t)

]∞
0

− ... (F3)

and using the fact that the function and all derivatives vanish at infinity f (k)(∞) = 0 (for derivatives of any order k),
we derive the following asymptotic expansion

γAE
nr = αC2 Re

[ ∞∑
k=0

f (k)(0)

(iω0)k+1

]
. (F4)
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We now re-express the exponent in the function f(t) as follows

−γtt+

∞∑
j=1

tj

j!

N∑
p=1

sp(iνp − Γp)
j . (F5)

By making the following notations

x1 = −γt + ⟨iν − Γ⟩ ,

xj =
〈
(iν − Γ)j

〉
=

N∑
p=1

sp

j∑
j′=0

j!

(j − j′)!j′!
(iνp)

j−j′Γj′

p =

j∑
j′=0

j!

(j − j′)!j′!

N∑
p=1

sp(iνp)
j−j′Γj′

p ..
(F6)

we can bring f(t) to resemble the generating function of Bell polynomials

f(t) = exp

 k∑
j=1

xj
tj

j!

 (F7)

We can now write the non-radiative rate in terms of complete Bell Polynomials

γnr = αC2eG Re
[ ∞∑
k=1

Bk

(
−γt +

∑N
p=1 sp(iνp − Γp), . . . ,

∑N
p=1 sp(iνp − Γp)

k
)

(iω0)k+1

]
= C2 Re

[ ∞∑
k=1

Bn

(
−γt + ⟨iν − Γ⟩ , . . . ,

〈
(iν − Γ)k

〉)
(iω0)k+1

]
,

(F8)

using the notation for the weighted sums as introduced in the main text and we have used the fact, that the zeroth-order
has no real part. Using the table of complete Bell polynomials in Eq. (E2), we can now find explicitly the terms in

orders of 1/ωk to find expressions for γ
(k)
nr

ω2
0γ

(1)
nr

C2
= γt + ⟨Γ⟩

ω3
0γ

(2)
nr

C2
= 2(⟨ν⟩(γt + ⟨Γ⟩) + ⟨Γν⟩)

ω4
0γ

(3)
nr

C2
= −γ3

t − 3⟨Γ⟩
(
γ2
t +

〈
Γ2
〉
−
〈
ν2
〉
− ⟨ν⟩2

)
− 3γt

〈
Γ2
〉
+ 3

(
γt
〈
ν2
〉
+ γt⟨ν⟩2 + 2⟨ν⟩⟨Γν⟩

)
− 3γt⟨Γ⟩2 −

〈
Γ3
〉
+ 3

〈
Γν2

〉
− ⟨Γ⟩3

ω5
0γ

(4)
nr

C2
= −4

(
3⟨Γν⟩

(
γ2
t + 2γt⟨Γ⟩+

〈
Γ2
〉
+ ⟨Γ⟩2 −

〈
ν2
〉)

+ ⟨ν⟩
(
γ3
t + 3γ2

t ⟨Γ⟩+ 3γt
〈
Γ2
〉
− 3

〈
ν2
〉
(γt + ⟨Γ⟩) + 3γt⟨Γ⟩2 +

〈
Γ3
〉
+ 3⟨Γ⟩

〈
Γ2
〉

−3
〈
Γν2

〉
+ ⟨Γ⟩3

)
+ (γt + ⟨Γ⟩)

(
3
〈
Γ2ν

〉
−
〈
ν3
〉)

−
(
⟨ν⟩3(γt + ⟨Γ⟩)

)
+
〈
Γ3ν

〉
−
〈
Γν3

〉
− 3⟨ν⟩2⟨Γν⟩

)

(F9)

For nonzero temperature, we generalize this expression by recognizing that the exponent has a Taylor expansion

−γtt+

∞∑
j=1

tj

j!

N∑
p=1

[
(N̄p + 1)sp(iνp − Γp)

j + N̄psp(−iνp − Γp)
j
]

(F10)

yielding again an expression for the nonadiabatic decay rate in terms of complete Bell Polynomials, where the arguments
must now be adjusted

γnr = C2 Re

[ ∞∑
k=1

Bk

(
−γt +

〈
(1 + N̄)(iν − Γ)

〉
+
〈
N̄(−iν − Γ)

〉
, . . . ,

〈
(1 + N̄)(iν − Γ)k

〉
+
〈
N̄(−iν − Γ)k

〉)
(iω0)k+1

]
, (F11)

and the first few terms can once again be obtained by using

x1 = −γt +
〈
(1 + N̄)(iν − Γ)

〉
+
〈
N̄(−iν − Γ)

〉
,

xj =
〈
(1 + N̄)(iν − Γ)j

〉
+
〈
N̄(−iν − Γ)j

〉
.

(F12)
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Appendix G: Case studies: DBT, Terrylene and Pentacene

DBT Terrylene Pentacene
νj/2π [THz] sj νj/2π [THz] sj νj/2π [THz] sj

2.77 0.12 7.44 1.82 7.97 0.05
4.82 0.28 13.52 8.85×10−3 18.56 0.04
6.79 0.34 16.48 2.88×10−4 19.49 1.301×10−3

8.71 0.18 17.86 8.53×10−3 23.06 0.26
9.99 0.06 24.36 1.45×10−3 24.04 0.03
12.40 0.08 25.29 0.02 30.62 0.02
14.06 8.54×10−3 31.80 6.381×10−5 35.58 0.01
14.76 0.07 33.61 2.37×10−5 36.31 0.07
16.82 0.03 35.46 2.63×10−5 40.17 7.081×10−7

18.77 0.03 37.22 1.62×10−4 42.38 0.73
19.78 0.04 39.12 0.13 43.07 0.01
20.76 0.01 40.18 0.05 44.93 1.961×10−3

23.14 1.51×10−3 41.39 0.13 46.80 0.36
23.51 7.74×10−3 41.74 0.05 47.33 4.741×10−3

24.17 5.39×10−3 43.56 1.931×10−4 94.66 2.0×10−6

24.50 1.19×10−3 44.28 4.881×10−4 94.83 2.70×10−5

27.46 5.23×10−5 47.77 0.16 94.94 1.00×10−4

28.97 1.94×10−5 48.93 5.88×10−4 95.68 6.24×10−5

29.86 2.34×10−3 49.08 0.04
30.42 0.06 94.98 6.97×10−6

32.02 1.37×10−3 95.47 5.16×10−5

32.31 0.01 95.99 4.53×10−5

33.60 8.80×10−4 96.56 7.31×10−5

35.84 9.95×10−3

36.25 2.54×10−5

38.83 0.10
39.81 0.02
40.75 0.16
41.46 0.02
42.14 0.01
44.06 2.56×10−3

44.23 1.95×10−3

45.89 0.03
47.15 0.03
48.17 6.32×10−3

48.56 1.48×10−3

94.98 1.18×10−5

95.46 2.99×10−5

95.50 4.19×10−5

96.12 1.12×10−4

96.70 4.02×10−4

Table II. Huang-Rhys factors of gas phase dibenzoterrylene (DBT), terrylene and pentancene molecules commonly used for
quantum technology. The Huang-Rhys factors are extracted from ab initio simulations via an independent mode, displaced
harmonic oscillator model [13].

In order to understand the non-radiative decay mechanism and estimate the quantum efficiency of single molecules
via the formalism developed here, we utilize ab initio calculations of the most commonly used molecular emitters in
quantum technology, namely DBT, terrylene and pentacene. From ab initio calculations, we extract ground state
vibrational frequencies and Huang-Rhys factors of these molecules in the independent mode, displaced harmonic
oscillator model [13], where anharmonicities and Duschinsky mode mixing between ground and excited potential
energy surface is assumed negligible. The calculated parameters for gas phase molecules are shown in Table II,
where ground state geometry is calculated with TZVP basis set and B3LYP hybrid functional with D3 dispersion
correction, and TD-DFT calculations are performed to obtain the excited state geometry with TZVP basis set and
ωB97X range-separated hybrid fuctional with D3 dispersion correction. The calculations are done in ORCA simulation
software [29]
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Figure 4. Plot of Huang-Rhys factors for the three investigated molecules.

The relaxed ground state geometries of these molecules have C2h, D2h and D2h point groups, hence they have 41,
23 and 18 totally symmetric mode, respectively. The Huang-Rhys factors are calculated from the displacement of
molecular atoms between the ground level in the ground and excited state manifolds (∆R) by projecting it on to each

ground state normal mode, i.e.,
√
sj = ∆Qj/2∆Qj,zpm, where ∆Q = lTmwcM

1/2∆R, ∆Qj,zpm =
√

ℏ/2νj , M is the
diagonal mass matrix, and lmwc is the transformation matrix between the mass-weighted Cartesian coordinates and
the normal modes [13].
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Appendix H: Dephasing

We utilize the theoretical formalism and experimental data in Ref. [18] in order to predict the temperature-dependent
dephasing rate of a DBT molecule embedded into an anthracene microcrystal. The pure dephasing rate is calculated
in terms of the thermal occupation N̄(ω) via the integral

γd(T ) = 2µ

∫ ∞

0

dω ω6 N̄(ω)[N̄(ω) + 1]

∫ π

0

dθ sin θ[1 + cos θ]4 e−2ω2[1+cos(θ)]/η2

, (H1)

where the parameters obtained from fitting the emission spectra are µ = 4.7× 10−7 ps5 and η = 8.6 ps−1.
We extract some relevant parameters and quantum efficiencies of the considered molecules for both cryogenic

and room temperatures from experimental data as shwon Table III. The experimental data on single molecules are
sparse [30], and show variations depending on the host crystal matrix embedding the molecule. In the host crystal, the
single molecule ground state geometry is lowered compared to the one in the gas phase, hence ends up having more
vibrational modes and different Huang-Rhys factors. Moreover, the energetic levels of the host matrix could result in
further decay channels that contribute to the observed variation. However, these data could be used to get qualitative
understanding of the non-radiative relaxation process. Note that for pentacene molecules, the room temperature
quantum efficiency is considered to be dominated by intersystem crossing rather than internal conversion [31]. In a
similar vain, the importance of intersystem crossing rates in non-radiative relaxation prevents us from benchmarking
our theory for heavily studied simple molecules such as, e.g., benzene [32], naphtalene [33], or anthracene [34].

Cryo T Room T Cryo T Room T Cryo T Room T Cryo T Room T
Molecule ωZPL/2π [THz] γ/2π [MHz] Γ/2π [GHz] Quantum Efficiency
DBT 403 [30] 381-405 [35] 12.5 [30] 12.5-25 [35] 2-17.5 [36] N.A. > 0.5 [30] < 0.35 [35]

Terrylene 516-538 [37] 508 [38] 19-25 [37] 20 [39] N.A. N.A. N.A. 0.2-1[38, 40]
Pentacene 506 [37] N.A. 3 [37, 41] N.A. N.A. N.A. 37 [41] N.A.

Table III. Relevant parameters of DBT, terrylene and pentacene molecules in solid-state matrices and solutions found in the
literature in terms of our notation.

Appendix I: Beyond constant non-adiabatic coupling
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Figure 5. Comparison of the contributions to the non-radiative rate γnr for the first three vibrational modes of DBT and
Terrylene from the Table SII. The continuous lines correspond to the case when only constant coupling C is considered, whereas
the dashed-dotted lines correspond to the case of the renormalized constant coupling.

Let us now consider the effect of the linear coupling for low temperature in the Lorentzian expansion

γnr = α

∞∑
m=0

γr+ γd+ Γm

(ω0+ νm)2+(γ + Γm)2

N∏
p=1

s
mp

j

mp!

(
C −

N∑
p=1

C(1)
p

√
sp −

N∑
p=1

C
(1)
p√
sp

mp

)2

. (I1)
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We see that as most mp have most contributions around sp, the effect of the nonlinear coupling is to renormalize C

by roughly 2
∑N

p=1

√
spC

(1)
p . This is illustrated in Fig. 5 where we assume C

(1)
p at about 1% of C for all vibrational

modes.
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