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ABSTRACT The quantification of physical properties of biological matter gives rise to novel ways of understanding func-
tional mechanisms. One of the basic biophysical properties is the mass density (MD). It affects the dynamics in sub-cellular
compartments and plays a major role in defining the opto-acoustical properties of cells and tissues. As such, the MD can be
connected to the refractive index (RI) via the well known Lorentz-Lorenz relation, which takes into account the polarizability of
matter. However, computing the MD based on RI measurements poses a challenge, as it requires detailed knowledge of the
biochemical composition of the sample. Here we propose a methodology on how to account for assumptions about the
biochemical composition of the sample and respective RI measurements. To this aim, we employ the Biot mixing rule of
RIs alongside the assumption of volume additivity to find an approximate relation of MD and RI. We use Monte-Carlo simu-
lations and Gaussian propagation of uncertainty to obtain approximate analytical solutions for the respective uncertainties
of MD and RI. We validate this approach by applying it to a set of well-characterized complex mixtures given by bovine
milk and intralipid emulsion and employ it to estimate the MD of living zebrafish (Danio rerio) larvae trunk tissue. Our results
illustrate the importance of implementing this methodology not only for MD estimations but for many other related biophys-
ical problems, such as mechanical measurements using Brillouin microscopy and transient optical coherence elastography.
WHY IT MATTERS Mass density is a fundamental property of living matter. It is of central importance for
understanding inherent functional mechanisms by quantifying (statistical) processes and associated mechanical
properties. Currently, there is no experimental paradigm available to measure in vivo mass density directly. Indirectly, the
mass density can be inferred from refractive index measurements. However, we lack a robust framework that is capable
of accounting for the complex chemical composition of biological matter. Our manuscript directly addresses this gap by
establishing an experimentally validated, cohesive theoretical framework on how mass density of biological matter can
be estimated using (in vivo) refractive index measurements.
INTRODUCTION

Quantifying the physical properties of biological matter
has become increasingly important over recent de-
cades. The notion that biological function of cells and
tissues is affected by their physical phenotype and
vice versa has been validated in many experimental
studies (see, e.g., (1–3)). A fundamental propertyofmat-
ter, including livingmatter, is themass density (MD) (4),
which not only is associated with buoyancy, crowded-
ness (5), biomolecular condensation (6), and inherent
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dynamical processes of the sample of interest (7,8)
but also plays a major role in elastography, particularly
Brillouin microscopy (9–12) and transient optical
coherence elastography (see, e.g., (13,14)). However,
measuring the in vivoMDdistribution in a directmanner
poses a challenge that has not been resolved so far. One
wayof inferring the in vivoMDof a sample is tomeasure
the refractive index (RI) via microscopy techniques,
such as quantitative phase imaging (QPI), particularly
optical diffraction tomography (ODT) (15,16). The
Lorentz-Lorenz relation then connects the RI with the
MD if the molar refractivity and partial specific volume
(PSV) of the dry mass composition and the solvent
content are known. This knowledge, however, is not triv-
ially obtainable. A customary assumption regarding
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biological matter is that the dry mass composition is
given by proteins only (16–19) and that the solvent con-
tent is then indirectly constrained by the measured RI.
Although this approximation holds for binary solutions,
it cannot be directly extended to samples with a com-
plex dry mass composition.

In the context of cells and tissues, the dry mass
composition may be thought of as a mixture of
(phase-separated) proteins, lipids, sugars, etc. (20). By
employing, e.g., mass spectrometry (MS) and/or (stimu-
lated) Raman spectroscopy ((S)RS), individual compo-
nents and their respective concentrations in the
sample can be identified (21–23). Additionally, correla-
tive fluorescence information could be employed to
segment RI maps acquired by ODT (12,24). However,
these experimental modalities might not be available
or applicable for certain samples, which creates a de-
gree of ignorance about the dry mass composition
thatshouldbeconsidered in the inferenceprocessofob-
taining an MD estimate. Another closely related aspect
is the robust estimation of the uncertainty of the MD.
Considering the previously mentioned degree of igno-
rance, these uncertainties are clearly not only of statisti-
cal but also of a systematic nature. Further, even if
universal knowledge about the true distributions of the
molar refractivity and PSV were available, to estimate
the uncertainty of the MD adequately, the uncertainties
of the individual parameters should be propagated.

Here, we present a robust methodology for esti-
mating the uncertainties of the MD and the correlative
RI by employing Monte-Carlo (MC) simulations. We
provide analytical approximations for both the MD
and RI distributions in dependence of the dry mass
composition and the solvent content, employing
Gaussian propagation of uncertainty.

To this end, we first motivate a simple mixture
model to estimate the relationship between the MD
and the RI from two material constants, namely the
RI increment a and the PSV q. We then extend the
model toward unimodal distributions of a and q, for
which previously only precise values were assumed.

The distributions of the RI increment and PSV are
remarkably narrow when only considering proteins in
the mixture (15,25), resulting in sharp distributions of
RI and MD. However, taking a second type of molecule,
such as lipids or sugars, into account adds an addi-
tional complexity to the MD estimations since their
values of RI increment and PSV differ drastically
from those of proteins. Therefore, we derive an effec-
tive description of the system based on weighted
mixture distributions. This allows for a correlative pre-
diction of the RI and the MD, accounting, e.g., for the
lipid and water content of the sample and fluctuations
in both quantities. We then apply this approach to 1)
bovine milk, a well-characterized mixture of water, pro-
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teins, and lipids; and 2) 20% intralipid emulsion (IL),
which mainly consists of water and soybean oil.
Comparing the measured values of the MD and RI ac-
quired by pycnometry and Abbe refractometry, respec-
tively, with our theoretical estimates, we find both to
be in good agreement with each other.

After demonstrating the applicability of our model on
bovine milk and IL, we explore the MD distribution of
larval zebrafish trunk (comprising major tissue,
includingmuscle and spinal cord) employing the recent
RI andMSmeasurementsof (21).Although theaccurate
determinationof thebiochemical compositionof the tis-
sue poses a challenge, beset by numerous (crude) un-
certainties, the measured RI distribution and our
prediction coincide within one standard deviation (SD).
This purely optical and computational approach shows
how the MD can be estimated in complex in vivo speci-
mens, enabling a more profound interpretation of me-
chanical measurements.
MATERIALS AND METHODS

Sample preparation

The skim-milk powder (SM)was dissolved in distilledwater while care-
fully stirring the solution to avoid foaming. The solution was then left
on a tilt/roller mixer for approximately 30 min. For the IL, according
amounts of water were added to the emulsion and the solution was
left on a tilt/roller mixer for approximately 30 min as well. All samples
were freshly prepared before the measurements were performed.
Abbe refractometry and pycnometry

For measuring the RI of a liquid sample, 100 mL of the sample were
loaded into an Abbe refractometer (KERN ORT 1RS) and a commer-
cially available flashlight light-emitting diode (LED) was employed
as illumination source.

To determine the density of a liquid sample, a pycnometer (Blau-
brand 43305) was employed. First, the volume of the pycnometer
was determined by employing distilled water as a calibration sample
(N ¼ 10 technical repetitions) as

vpyc ¼ mw � mpyc

rw;lit:
¼ ð4:9455 5 0:0017ÞmL; (1)

where mw is the mass of the pycnometer filled with water,mpyc is the
mass of the empty pycnometer, and rw;lit: ¼ 0:997 g=mL is the litera-

ture value of the density of water at 23�C. The respectivemasses were
measuredusingahigh-precision lab scale (OhausPioneerPX124). The
density of the liquid sample under study was then computed by

r ¼ m � mpyc

vpyc
: (2)

Measurement uncertainties

The systematic uncertainties of the respective measurement de-
vices under use were taken from the manuals and considered in
all calculations together with the statistical uncertainties as



Dz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dz2sys þ Dz2stat

q
; (3)

where z is an arbitrary observable.
Data analysis

All data analysis, plotting, and simulations were performed using
custom scripts in Wolfram Research, Mathematica, Version 12.2
(26).
BACKGROUND

A binary mixture model for MD estimations

In the following, we consider a mixture of a solute (de-
noted by index 2) in a solvent (denoted by index 1) with
total mass m and volume v. The MD r ¼ m=v of the
mixture can be expressed in terms of the MDs ri and
volume fractions 4i ¼ ci=ri of its components as

r ¼ 41r1 þ 42r2; (4)

where the ci ¼ mi=v are the concentrations of the
respective constituents and we denote the total vol-

ume of the mixture by v ¼ v1 þm2w. Here, w is the
so-called apparent specific volume (ASV) of the solute,
which describes the volume per gram of the solute in
solution. As such, the ASV may be dependent on the
mass of the solute m2, since it accounts for solute-so-
lute interactions under constant temperature T, pres-
sure p, and solvent mass m1. The change of the total
volume of the solution v with respect to a change in
the mass of the solute is then characterized by the
PSV via

qh

�
vv
vm2

�
T ;p;m1

¼ wþm2

�
vw

vm2

�
T ;p;m1

; (5)

as motivated in (27). For the sake of simplicity, for all
the following considerations, we employ the concept

of volume additivity, for which it is straightforward to
show that q ¼ w ¼ 1=r2 (see Eq. S3 in the Supporting
Material).

By assuming volume additivity ½ð1 � 42Þ ¼ 41�, we
may express Eq. 4 in terms of the solvent MD, PSV,
and solute concentration as

r ¼ r1ð1 � c2qÞ þ c2: (6)

In the next step, we connect the RI of the solution to
the solute concentration c2. For that purpose we

employ the phenomenological mixing rule

n ¼ 41n1 þ 42n2; (7)

where we assumed that the RI follows the same
mixture rule as the MD, given in Eq. (4). In the

following, we refer to Eq. 7 as Biot equation or mixing
rule (28), which is commonly employed in the context
of QPI and ODT (15). Note that, in a typical ODT exper-
iment, we determine the RI contrast dnhn � n1, which
has to fulfill a nonnegativity constraint (i.e., dnR0).
Evaluating Eq. 7 while assuming volume additivity,
we arrive at

dn
c2

¼ qðn2 � n1Þ ¼ a; (8)

where we identify the customarily designated RI incre-
ment ahvn=vc .
2

Finally, by replacing c2 in Eq. 6 with the expression
given in Eq. 8, we obtain an estimate of the solution
MD in dependence of the RI as

r ¼ dn
a

þ r1

�
1 � q

dn
a

�
; (9)

which has been employed in (19), or stated equiva-
lently in (29). Eq. 9 is the basis of all the following con-

siderations and will be employed frequently
throughout this study. We note that the relationship
between MD and RI, given in Eq. 9 is linear and the
slope vr=vn ¼ ð1 � r1qÞ=a is only determined by the
PSV q and the RI increment a of the solute. In biolog-
ical matter, the solvent is assumed to be water, for
which the MD r1 and RI n1 are accurately known.

Experimentally, the PSV of a solute is determined by
measuring the density of the solution r in dependence
of the solute concentration c2 (27,30). A straightfor-
ward and common approach to obtain the MD of a
liquid is given by pycnometry, where the mass of a pre-
cisely fixed volume is measured. The MD is then sim-
ply given by the mass-to-volume ratio. Further
methods to measure MD are reviewed in (27) and ref-
erences therein. Similarly, the RI increment is custom-
arily determined by measuring the RI of the solution in
dependence of the solute concentration (see Eq. 8),
e.g., by employing an Abbe refractometer.

To our knowledge, the justification for or against the
assumption of volume additivity in complex biological
matter is yet to be given (experimentally). We may
interpret Eq. 5 in first-order approximation as
qzw5Dw, where any potential deviation from the vol-
ume additivity Dw could be treated as an additional
factor that will also contribute to the uncertainty of
the RI and MD estimates.

As pointed out earlier, Eq. 8 is commonly used in the
context of QPI and ODT to determine solute densities
(r2 ¼ 1=q) and subsequently solute masses of com-
plex biological samples from tomographic RI mea-
surements (15). To that aim the RI increments of
various proteins are customarily employed (17, 18,
31–35). Although this approach holds for the assump-
tion that biological matter consists of protein and
water, we will show later that it is not sufficient for
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FIGURE 1 Correlative distributions PðaB
p ; qpÞ of the RI increment

aB
p and PSV qp for the human proteome (blue; 82,127 proteins

included) and the zebrafish proteome (red; 46,517 proteins
included). The solid and dashed lines indicate the 68% and 95% con-
fidence contours, respectively.
inferences about complex solute composition with
more than one constituent. In brief, this is because
there exists no universal relationship a � q (i.e., n �
r) for different materials (see, e.g., (36); Fig. 1).
Complex mixtures

In the context of biological matter, one may think of
the solute as a complex composition of many constit-
uents, which makes the experimental determination of
both PSV and RI increment for all components and
their combinations practically impossible; the human
proteome alone consists of � 104 proteins (20,37).
To resolve this problem, at least partially, without ac-
counting for volume inadditivities, a method of deter-
mining the correlative distributions Pða; qÞ of the
proteomes of different organisms was introduced
and experimentally validated for two amino acid se-
quences in (25). The authors computed the molar
mass averages of the residue refractivity per gram
and according PSV q of proteins based on their respec-
tive amino acid sequence. The refractivity per gram Ri
of a molecule i is proportional to its polarizability bai
and molar mass Mi as Ri � ba i=Mi. The refractivity
per gram can then be connected to the RI and the
MD of the solute via the Lorentz-Lorenz (or Clausius-
Mossotti) relation (see, e.g., (38)) as

Ri ¼ 1
ri

n2i � 1
n2
i þ 2

: (10)

We note that taking the mass averages over the
amino acid residue refractivities per gram in combina-
tion with the Lorentz-Lorenz relation Eq. 10 leads to
the Lorentz-Lorenz mixing rule of RIs Eq. S8.

However, assuming dilute solutions (n/n1) and vol-
ume additivity, the authors of (25) computed the RI
increment for each protein (denoted by the index p)
by employing the Wiener mixing rule of RIs (see, e.g.,
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(28)) and Eq. 10 to compute the RI of each protein
np from the mass averaged refractions per gram and
PSVs of the respective amino acid sequences, as
described earlier. Repeating this procedure for all pro-
teins presumed to be abundant in the different organ-
isms under study, they obtained the bivariate
distribution of RI increment and PSV. Zhao et al. (25)
then fitted normal distributions to the univariate
histograms to obtain the means and SDs for different
organisms, of which we depict two in Table 1. We
repeated the computations presented in (25) (see Sup-
porting Material) for the updated human and zebrafish
proteomes obtained from (37). Besides computing the
RI increment from the Wiener relation for dilute solu-
tions, we also employed the Biot Eq. 7 in combination
with the volume additivity assumption to obtain an
expression of the RI increment as given in Eq. 8.

Additionally, different from (25), we employed the
consensus averages for the amino acid residue molec-
ular volumes of (30) instead of the ones of Cohn and
Edsall (39). The full list of parameters employed here
is given in Table S1. The resulting bivariate distribu-
tions Pða; qÞ are given in Fig. 1. The corresponding
mean values and SDs of the fits of the univariate histo-
grams with a normal distribution are given in Table 1.
Evidently, the PSV and RI increment values obtained
here, using the Wiener equation for dilute solutions,
coincide well with the values from (25). We note that
the RI increments obtained using Eq. 8 are systemati-
cally higher than the ones obtained from the Wiener
equation for dilute solutions.

Although it is not clear why the calculations pro-
posed in Zhao et al. (25) result in distributions
Pða; qÞ that resemble uncorrelated bivariate normal
distributions for the proteomes of different species,
they facilitate the idea of taking the whole distribution
Pða; qÞ into account when estimating the MD via Eq. 9.
Consistently, to obtain a reliable estimate of the MD
distribution, a precise characterization of the solute
composition is needed.

We note that, although relations similar to Eq. 9 can
be found for different (phenomenological) RI mixing
rules (see, e.g., (40–42)), or effective (nonlocal) RI de-
scriptions based on light scattering theory (see, e.g.,
(32,43–46)), we expect limited additional qualitative
insight compared to the Biot Eq. 7; ultimately, for
each theory one may compute the RI increment
aðc2Þ, (numerically) solve the expression for the solute
concentration c2, and substitute it in Eq. 6 to find a
relationship rðdnÞ for the given RI mixture rule. To illus-
trate this procedure, we derive such an expression for
the Lorentz-Lorenz mixing rule in the Supporting Mate-
rial (see Eq. S11).

In the following, we construct and employ a theoret-
ical framework in which the information of the solute



TABLE 1 Mean and SD of the RI increments ai
p and PSVs qp Distributions Based on Amino Acid Sequences of the Proteome of the Human

and Zebrafish, and the Trunk Tissue of the Larval Zebrafish at 96 hpf

aW
p in mL/g DaW

p in mL/g aB
p in mL/g DaB

p in mL/g qp in mL/g Dqp in mL/g

Human
Proteomea 0.1899 0.0030 N/A N/A 0.735 0.010
Proteomeb 0.188 0.004 0.197 0.004 0.734 0.012

Zebrafish
Proteomea 0.1904 0.0030 N/A N/A 0.735 0.010
Proteomeb 0.1887 0.0031 0.1974 0.0034 0.732 0.010
Trunk tissueb 0.1883 0.0029 0.1971 0.0033 0.734 0.009

The calculation of aB
p employed the Biot equation given in Eq. 7, whereas aW

p was derived from the dilute limit of the Wiener mixing rule of
refractive indices (28).
aZhao et al. (25)
bThis work
composition is incorporated into the prediction of the
MD. For that purpose, we employ the Biot Eq. 7 for the
majority of our further considerations and denote
a ¼ aB.
RESULTS

Extension of the binary mixture model

When dealing with biological matter, the complexity of
the solute composition should be taken into account
to obtain reliable estimates of the MD. To that aim,
we first extend Eq. 9 to the case of different solute
constituents (e.g., proteins of the human proteome,
lipids, and sugars) being dissolved in a solvent with
corresponding RI n1 and MD r1.

We describe this problem by discretizing the total
sample volume into Nv voxels with volumes vv

v ¼ Nvvv: (11)

Furthermore, we discretize the voxels into N0 “voxeli-
nos” with volumes v0 as
FIGURE 2 2D visual interpretation of a voxel with volume
vv ¼ N0v0 consisting of N0 voxelinos with volumes v0. Each number
stands for one type of voxelino; 1 corresponds to the solvent voxe-
linos and 2 � 5 correspond to the solute voxelinos, e.g., four
different proteins. Each voxelino is characterized by its PSV qi ,
refraction per gram Ri and has a corresponding mass of mi ¼
v0=qi . This illustrative depiction is based on (47).
vv ¼ N0v0: (12)

The motivation to divide a voxel into N0 voxelinos is
to obtain small, yet macroscopic, volume fractions
with a constant volume v0 that contain one and only
one solution constituent. Hence, each voxelino can
be either a solvent or solute voxelino and is inherently
characterized by its respective PSV qi and refraction
per gram Ri (i.e., its MD and RI). The number of solvent
voxelinos in the voxel, N1, is given by N1 ¼ N0 � Ns,
where Ns is the number of solute voxelinos (see
Fig. 2 for a visual interpretation).

Accordingly, the solvent volume fraction of a voxel
is given by

41h1 � Ns

N0
: (13)

Accounting for multiple types of solute molecules
(e.g., proteins, lipids, sugars) being present in the solu-
tion, we chose the PSVs and refractions per gram of
the solute voxelinos qiþ1 and Riþ1 to be random values,
drawn from a weighted mixture distribution

PmixðR; qÞ ¼
X
j

xjP jðR; qÞ; (14)
where j denotes the solute constituents. Further, the
P ðR; qÞ represent the bivariate probability distribu-
j
tions of the refraction per gram and PSV of the respec-
tive constituents, and the associated weights xj are
given by the relative volume fractions as xjhNj=Ns.
We note that Eq. 14 should be seen as a way of denot-
ing that Nj out of Ns solute voxelinos of constituent
j are present in a voxel. Consequently, Nj solute
voxelinos have the RI nj and MD rj and we have that
Ns ¼ P

jNj , i.e.,
P

jxj ¼ 1.
Employing Eqs. 6 and 7, we readily obtain the rela-

tion between the MD r and the RI n of one voxel
Biophysical Reports 4, 100156, June 12, 2024 5



r ¼
XNs

i ¼ 1

ciþ1 þ r1

 
1 �

XNs

i ¼ 1

qiþ1ciþ1

!

h
dn
aeff

þ r1

�
1 � qeff

dn
aeff

�
;

(15)

where we defined the effective RI increment aeff and
PSV qeff. The RI of the solution n is then given by the
Biot Eq. 7, where the RIs of the individual solute voxe-
linos niþ1 could be known directly from RI measure-
ments, or may be computed by employing the
Lorentz-Lorenz relation, given in Eq. 10.

It can be shown (see Eqs. S17 and S18) that the
effective parameters may be expressed by the mass
averages of the respective parameters of the solute
voxelinos as

qeff ¼
XNs

i ¼ 1

yiþ1qiþ1;

aeff ¼
XNs

i ¼ 1

yiþ1aiþ1;

(16)

where we denoted the relative mass fraction of a so-
lute voxelino by yihmi=ms; with ms being the total

solute mass. Hence, the effective parameters absorb
the complexity of the mixture, whereas the functional
relationship of Eq. 6 is obeyed. With this at our
disposal, we are able to compute the MD r and the
corresponding RI n of a voxel, given a distribution
PmixðR; qÞ and a solvent volume fraction of the voxels
41 (i.e., the ratio Ns=N0). Repeating this procedure for
Nv voxels provides a map of RI values in resemblance
of an ODT measurement alongside the corresponding
MDs.

Since the framework introduced above is strongly
dependent on a priori assumptions of the individual
model parameters (41, xj , aj , qj) for different complex
mixtures, in the next step, we discuss the impact of
these assumptions on the uncertainties of the RI
and MD predictions.
Uncertainty quantification of the extended model

Given access to experimental data (i.e., ODT tomo-
grams of a sample of interest), we may compare not
only the mean values of the measured and predicted
RI distributions but also their widths. This in turn en-
ables a more reliable estimate of the MD distribution.
Hence, in the next step, we study the dependence of
the uncertainty of the MD estimate r, defined in Eq.
15, and the RI n on the sample properties, namely,
the solvent volume fraction 41, the effective RI incre-
ment aeff, the effective PSV qeff, and their respective
associated uncertainties.
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To that aim, we investigated the impact of the pres-
ence of a second type of macro molecule in the
mixture of proteins and water. Since lipids make up
for about 13% of the solute mass fraction in mamma-
lian cells (20) and typically exhibit an MD lower than
water, they merit detailed scrutiny. In the following,
we assume that the lipids are present in the form of
lipid droplets and form an emulsion in the waterþ pro-
tein phase. For the sake of simplicity, we further as-
sume that the lipid droplets consist only of the
neutral lipid triolein, neglecting sterol esters, triacylgly-
cerols, and phospholipids (48–50). The corresponding
values of the RI, refraction per gram, PSV, and RI incre-
ment of the two types of solute molecules under inves-
tigation are given in Table S2.

Throughout this study, we assume that both RI and
MD of the solvent are precisely known. We further
point out that we implement the values given in
Table S2 in our calculations as follows: if a quantity
is stated as mean5 SD, we account for it as normally
distributed with respective mean and SD. For the
cases where we could not estimate an uncertainty,
we assume the quantity to be delta distributed.

Effective RI increment and PSV

Examining the definitions of aeff and qeff, given in Eq.
16, we observe a dependence of both quantities on
the number of solute voxelinos per voxel Ns, given
as the upper limit of the sum. To obtain an intuition
about the implications on the respective uncertainties,
we first consider the case of proteins dissolved in wa-
ter, which may be approximated by uncorrelated
normal distributions N ðm; sÞ of the RI increment and
PSV, as shown in Fig. 1

aN � N ða;DaÞ;
qN � N ðq;DqÞ; (17)

with respective mean values and SDs (see, e.g., Ta-
ble 1). Applying Gaussian propagation of uncertainty

to Eq. 16, we have

Dqeff ¼ Dqffiffiffiffiffiffi
Ns

p ;

Daeff ¼ Daffiffiffiffiffiffi
Ns

p ;

(18)

in which the relative mass fraction of each solute vox-
elino is given by y ¼ 1=Ns. The result of Eq. 18 is in
iþ1
concordance with the central limit theorem. In other
words, the SD of the effective distributions corre-
sponds to the SE of the mean of the initial distribu-
tions, given that the voxel contains Ns protein
voxelinos. Thus, considering that, in biological matter,
the number of voxelinos per voxel would be typically
larger than � 108 for experimentally accessible voxel



sizes in the order of 1 mm3, the deviations of the effec-
tive RI increment and PSV for the case of proteins dis-
solved in water are negligibly small.

Next, we study the impact of lipids in the protein þ
water mixture. In this scenario, Eq. 14 takes the form

PpþlipðR; qÞ ¼ �
1 � xlip

�
PpðR; qÞ þ xlipP lipðR; qÞ: (19)

Assuming that Pp and P lip follow uncorrelated bivar-
iate normal distributions, using Eq. 18, we find that the
distributions of the effective PSV and RI increment
follow normal distributions as

qeff � N
�
qeff;Dq

0
eff

. ffiffiffiffiffiffi
Ns

p �
;

aeff � N
�
aeff;Da

0
eff

. ffiffiffiffiffiffi
Ns

p �
;

(20)

where the respective mean values of effective PSV
and RI increment are given in Eq. 16 and the SDs

Dq0eff, Da

0
eff follow the SD of a mixture distribution

(see Eq. S14).
With this, we further examine the implications of de-

viations of the relative lipid volume fraction Dxlip from
voxel to voxel. Such deviationsmay be interpreted as a
form of inhomogeneity of the system, which have
been experimentally quantified in cells and tissues
by stimulated Raman spectroscopy (SRS) measure-
ments (22). Employing Gaussian propagation of un-
certainty, we find the following analytical expression
of the deviation of the mean effective PSV and RI
increment with respect to Dxlip as

Dqeff ¼
24 Dq0effffiffiffiffiffiffi

Ns
p

!2

þ
�
vqeff
vxlip

Dxlip

�2
351=2

;

Daeff ¼
"�

Da0
effffiffiffiffiffiffi
Ns

p
�2

þ
�
vaeff

vxlip
Dxlip

�2
#1=2

:

(21)

The partial derivatives in Eq. 21 are given in the Sup-
porting Material (Eqs. S19 and S20). A visual depiction
of Eq. 21 in dependence of the number of voxelinos
per voxel N0 ¼ Ns=ð1 � 41Þ and the corresponding re-
sults of MC simulations for certain parameter configu-
rations are shown in Fig. 3 A.

As becomes apparent, the analytical solution em-
ploying Gaussian propagation of uncertainty is in
concordance with the simulated values. However, we
note that this is due to the assumption of normal dis-
tributions for the individual effective RI increments
and PSVs. For nonnormal distributions, Gaussian
propagation of uncertainty might not be applicable.

By assuming the mixture distribution given by
Eq. 19, consequently, the deviations Daeff and Dqeff
are maximized for xlip ¼ 0:5. Secondly, although for
nonfluctuating xlip (i.e., Dxlip ¼ 0) the respective devi-
ations of the effective RI increment and the PSV
exhibit the 1=

ffiffiffiffiffiffi
N0

p
proportionality, for Dxlip > 0 we

obtain nonvanishing deviations for a large number of
voxelinos per voxel N0.

Throughout this study we assume that all volume
fractions, in particular xlip, follow a normal distribution,
truncated in the domain ½0;1�, since values outside of
this interval are nonphysical under the assumption of
volume additivity. For a normal distribution with mean
m and SD s, the corresponding truncated distribution is
denoted by T ðm; sÞ (see Supporting Material). We note
that another choice of distribution could be given by
the beta distribution Bða; bÞ with shape parameters a
and b, which is inherently bounded between 0 and 1.
However, the interpretation of the shape parameters
in this context is not as straightforward as the trun-
cated normal distribution. Alternatively, a uniform dis-
tribution with a certain domain ½xmin

lip ; xmax
lip � could be

employed. For more than two types of macro mole-
cules, the Dirichlet distribution could be of use. How-
ever, we expect a similar qualitative behavior for all
mentioned distributions.
Solvent volume fraction

Next, we study the uncertainty associated to the sol-
vent volume fraction 41, defined in Eq. 13, in depen-
dence of the number of solute voxelinos Ns per
voxel. By employing Gaussian propagation of uncer-
tainty we find

D41 ¼ ð1 � 41Þ
DNs

Ns
; (22)

where we used the presumption that the number of
voxelinos per voxel N is constant. From Eq. 22, we
0

obtain that a change in the solvent content from voxel
to voxel is directly proportional to a relative change in
the number of solute voxelinos per voxel DNs=Ns.
However, it is not clear whether Ns follows a statistical
distribution and, if so, how this distribution would be
governed by active/passive processes in biological
matter. An ingenuous guess is given by the equilib-
rium assumption that the number of solute voxelinos
per voxel Ns is binomially distributed as

Ns � BinðN0; ð1 � 41ÞÞ; (23)

which may be interpreted as finding Ns out of N0 vox-
elinos in a voxel with a probability of 1 � 4 .
1

Besides a statistical argument, we may also
compute a change in the number of solute voxelinos
from voxel to voxel by considering Ns ¼ ðmsqeffÞ=v0.
Herewith, Eq. 22 may be written as

D41 ¼ ð1 � 41Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD40

1Þ2 þ ðD4N
1 Þ2

q
; (24)
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with

D40
1 ¼

8<: 1
N0ð1 � 41Þ

2441 þ
 
Dq0eff
qeff

!2
359=;

1=2

;

D4N
1 ¼

"�
Dms

ms

�2

þ
�
vqeff
vxlip

Dxlip
qeff

�2
#1=2

;

(25)

using the presumption of a constant voxelino volume
Dv0 ¼ 0. This indicates that, similar to the effective RI

increment and PSV, given by Eq. 18, the deviation of
the solvent volume fraction D41 has two components;
for once D40

1, which shows the 1=
ffiffiffiffiffiffi
N0

p
dependence,

following the central limit theorem. Second, D4N
1 ,

which connects fluctuations in the solvent volume
fraction to fluctuations in the solute mass and/or fluc-
tuations in the solute composition. Hence, D4N

1 may
be interpreted as quantification of the degree of inho-
mogeneity of the sample connected to the amount of
solute and its composition. Consequently, for a large
number of voxelinos per voxel N0, these inhomogene-
ities become the dominant contribution to the devia-
tion of the solvent volume fraction.

We note that the presumption of a constant voxe-
lino volume Dv0 ¼ 0 and a constant number of voxe-
linos per voxel DN0 ¼ 0 from voxel to voxel is
necessitated by the experimental boundary condition
that all voxels have the same volume, i.e., Dvv ¼ 0.

RI

Considering the previous derivations of the uncer-
tainties of the effective PSV and RI increment and
the water volume fraction, we now examine the refrac-
tive index of the solution. Based on Eq. 7, we readily
obtain an estimate of the uncertainty of n by employ-
ing Gaussian propagation of uncertainty (neglecting
potential correlations) as

Dn ¼
"X

i

�
vn
vbi

Dbi

�2
#1=2

; (26)

where the sum is taken over all b ¼ faeff; qeff;41g and
the respective deviations Db are given in Eqs. 21 and
i
24. The graphical representation of Eq. 26 in depen-
dence of N0 is given in Fig. 3 A.

As a consequence, for a vanishing relative deviation
of the solute Dms=ms, the 1=

ffiffiffiffiffiffi
N0

p
scaling behavior of

the effective RI increment and PSV determines the
scaling behavior of the deviations in the RI Dn. Howev-
er, for Dms=ms >0, we obtain a constant deviation of
the RI for large N0, consistent with the broad RI distri-
butions obtained by ODT measurements of different
cells and tissues (12,16,21,51) and fluctuations in
the water volume fraction measured by SRS (22).
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Furthermore, although the dependence of Dn on the
mean relative lipid volume fraction xlip is determined
by the deviations of the effective RI increment and
PSV, we observe a vanishing impact of the deviation
of the relative lipid volume fraction Dxlip. This fact is
due to the numerically small differences of the
mean refractions per gram of the particular choice
of proteins and the lipid

		Rlip � Rp
		z0:05 in combina-

tion with larger differences of the mean PSVs		qlip � qp
		z0:35 (see Fig. S1).

MD

Finally, we investigate the uncertainty associated
with the MD. From Eq. 15 we obtain the corresponding
deviation, employing Gaussian propagation of uncer-
tainty, as

Dr ¼
24�qeffr1 � 1

qeff
D41

�2

þ
 
41 � 1
q2eff

Dqeff

!2
351=2

;

(27)

displayed in Fig. 3 A. As discussed for Dn, the
magnitude of Dr is affected by the mean relative lipid
fraction xlip as a consequence of the mixture distribu-
tion, given in Eq. 14. Furthermore, we have a nonvan-
ishing deviation of the MD for Dms=ms >0 and large
N0. To no surprise, we observe a remarkable impact
of deviation of the relative lipid fraction Dxlip on Dr
due to the strong scaling with the deviation of the
effective PSV Dqeff.

Correlation of RI and MD

Having studied the deviations associated with RI and
MD, we next sought to illuminate the correlation be-
tween the distributions of the RI contrast dn, and the
MD r, denoted by Pðr;dnÞ, in dependence of the model
parameters introduced earlier. To that aim, we per-
formed MC simulations of Eq. 15 for the case of hu-
man proteins and triolein in water for a range of
different mean relative lipid and water volume frac-
tions, as shown in Fig. 3 B.

Besides the intuitive behavior of rðdnÞ for the cases
of xlip ¼ 0 (MD increases with increasing RI) and
xlip ¼ 1 (MD decreases with increasing RI), for
xlip ¼ 0:8 the MD is roughly constant for all RI values.
This feature is quite remarkable since it demonstrates
that, for certain solute compositions, the MD is de-
coupled from the RI for all possible water volume frac-
tions, i.e., vr=vn ¼ 00qeffðxlipÞ ¼ 1=r1. Furthermore,
as motivated earlier, and shown in Fig. 3 C, measuring
a RI distribution (e.g., via ODT) may correspond to a
range of different water and relative lipid volume frac-
tions, resulting in drastically different estimates on the
distribution of the MD from case to case. This in turn
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FIGURE 3 Results of MC simulations and
according analytical solutions for the mixture
of human proteins and the neutral lipid triolein
in water. (A) Relative deviations of the MD r,
the RI n, the effective RI increment aeff, and
PSV qeff in dependence of the number of
voxelinos per voxel N0 obtained from MC sim-
ulations (symbols) and analytical solutions
(dashed lines) for different mean relative lipid
volume fractions xlip, associated deviations
Dxlip, and relative deviations of the number
of the solute mass Dms=ms. The MC simula-
tions were performed for a mean water
volume fraction of 41 ¼ 0:9 and Nv ¼ 103.
(B) MD r in dependence of the RI contrast dn
for different mean relative lipid volume frac-
tions xlip and mean water volume fractions
( 41 ¼ 0:1, 41 ¼ 0:3, 41 ¼ 0:5,

41 ¼ 0:7, 41 ¼ 0:9) for Dxlip ¼ 0,
N0 ¼ 103 and Nv ¼ 102. The dashed lines
indicate the analytical solutions of Eq. 15.
(C) Correlative distribution of the MD r and
the RI contrast dn (the solid and dashed lines
indicate the 68% and 95% confidence con-
tours) with the corresponding normalized
marginal probability density distributionscMðrÞ and cMðdnÞ, respectively (the solid line

represents the median, the dash-dotted and dashed lines indicate the 68% and 95% CIs), for the exact relative lipid volume fraction xlip ¼
0:5 (purple) and the relative lipid volume fraction following a truncated normal distribution xlip � T ðxlip ¼ 0:5;Dxlip ¼ 0:1Þ (cyan; see main
text). The MC simulations were performed for a water volume fraction following a truncated normal distribution 41 � T ð41 ¼ 0:9;D41 ¼
0:1Þ, N0 ¼ 105 and Nv ¼ 103.
strongly motivates the necessity for detailed knowl-
edge about not only the solute composition but also
the solvent content of the sample.

In light of the theoretical implications delineated
above, in the next step we want to examine the predic-
tive capabilities of the model for a set of physiological
complex mixtures that are well characterized in terms
of their solute composition.
Experimental validation and application

In the following, we scrutinize the applicability of pre-
vious findings to a set of well-characterized physiolog-
ical substances: bovine SM (Millipore 70166) and 20%
IL (Sigma-Aldrich I141), commonly used as com-
pounds in tissue-mimicking samples because of their
optical properties (52–57).

To that aim, we measured the solute-concentra-
tion-dependent RI and MD with an Abbe refractom-
eter and a pycnometer, respectively. Both samples
are particularly intriguing since they should exhibit
different rðdnÞ dependencies; SM mainly consists
of lactose and milk proteins, whereas IL is a stabi-
lized emulsion of soybean oil (see Fig. 3 B for a
reference).

According to the chemical certificate of analysis pro-
vided by the manufacturers, the SM exhibits ySM1 ¼ 4%
and the IL exhibits y IL1 ¼ 76% of water. Hence, we
computed the respective solute concentrations as
cks ¼ yksrk, where rk is the measured MD of the
sample (SM or IL) at a given dilution, yks ¼ mk
ð1 � yk1Þ=ðmk þmk

wÞ is the solute mass fraction, mk de-
notes the mass of the sample, and mk

w is the mass of
water added to the sample. The results of the measure-
ments are shown in Fig. 4 A and B, where each point
represents N ¼ 5 technical repetitions.

Using Eqs. 6 and 8, we fitted the data to obtain
experimental values of qeff and aeff with according un-
certainties, respectively, for both SM and IL. Exam-
ining the fitting residuals, the RI contrast and MD
scale linearly with the solute concentration, justifying
our model assumptions of the Biot Eq. 7 rule and vol-
ume additivity.

We then employed the information about the chemi-
cal composition of the respective substances, as pro-
vided by the manufacturers (see Table S2), to compute
the correlative RI contrast and MD according to Eq. 15,
employing MC sampling. A graphical representation of
the respectiveRI incrementsandPSVsofall substances
considered, as well as the experimentally determined
and predicted values of SM and IL, is given in Fig. 4 C.

As becomes apparent, the measured and predicted
values of the SM and IL are in good agreement,
whereas potential uncertainties regarding the exact
chemical composition might be underappreciated
here, as we have no means of estimating them. To
Biophysical Reports 4, 100156, June 12, 2024 9
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FIGURE 4 Results of the concentration-
dependent measurements of the MD and RI
of bovine SM and 20% IL in water as well as
the theoretical predictions based on the
chemical composition using Eq. 15. (A) RI
contrast dn in dependence of the solute con-
centration cs of SM (O, N ¼ 5 technical rep-
etitions, mean 5 SD) and IL (,, N ¼ 5
technical repetitions, mean 5 SD) with the
respective fits of Eq. 8 (solid lines) and fit re-
siduals. (B) MD r in dependence of the solute
concentration cs of SM (O, N ¼ 5 technical
repetitions, mean 5 SD) and IL (,, N ¼ 5
technical repetitions, mean 5 SD) with the
respective fits of Eq. 6 (solid lines) and fit re-
siduals. (C) Effective RI increment aeff and
PSV qeff of various substances that compose
SM and IL, as well as the measured and pre-
dicted values for SM and IL. (D) MD r in depen-
dence of the RI contrast dn for different
concentrations of SM in water and IL. The
symbols represent measured values (N ¼ 5
technical repetitions, mean 5 SD) and the
predicted values using the Biot mixing rule
(Eq. 7) for N0 ¼ 104 and Nv ¼ 103. The
dashed lines indicate Eq. 15 for the predicted
values of the effective RI increment and PSV.
further examine the goodness of our model, we
compared the solute RIs obtained from fitting the
data with various RI mixing rules and the according
prediction, based on the chemical composition of the
samples, as described in the Supporting Material
(Table S3). By this analysis, we found the Biot Eq. 7
to yield the best agreement among a selection of RI
mixture rules.

Furthermore, matching the experimental water vol-
ume fractions 41 ¼ ðrk � cksÞ=r1, we obtained a pre-
diction of the MD in dependence of the RI, which
was found to coincide well with the measurements
for both SM and IL, as shown in Fig. 4 D.

Larval zebrafish trunk tissue

Having delineated the validity of Eq. 9 in the context of
complex mixtures, we examined the capability of the
proposed model in an in vivo scenario. To that aim,
we chose the larval zebrafish model system at 96 h
post fertilization (hpf), for which MS and RI data
(employing ODT) of the trunk tissue were recently ob-
tained (21). The RI data are given in Table S4. Because
the MS data provide the protein content, we are able to
estimate the RI increment and PSV distribution of the
proteins present in the tissue, as demonstrated earlier,
following Zhao et al. (25) (see Table 1).

In the following, we assume that the larval zebrafish
trunk tissue primarily consists of mentioned proteins,
lipids, and water, based on the findings of (58,59).

Long et al. (58) determined the wet mass mwet and
dry mass mdry of larval zebrafish at 96 hpf by weight-
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ing (dried) pooled larvae (see their Table 1). Further-
more, they estimated the protein mass mp and
lipid mass mlip of larvae by measuring the optical
absorbance using bovine serum albumin and corn oil
as calibration materials, respectively. Notably, the
measurements of Long et al. (58) were performed on
whole animals, including the yolk sac, which is rich
in lipids. Hence, the assumed relative volume fraction
of the lipids and the water volume fraction are likely to
be different from the trunk tissue.

The lipid composition of zebrafish larvae was deter-
mined by Hachicho et al. (59), from which we adopted
the four phospholipid fatty acids (PLFAs) with the
highest abundance. The respective relative volume
fractions of the PLFAs for zebrafish larvae at 96 hpf
were roughly digitally obtained from Fig. 3 of Hachicho
et al. (59) and are provided in Table S2. These four
PLFAs make up about 72% of the total PLFA amount
in the zebrafish larva. Additionally, based on (59), we
assumed that the overall lipid composition of the tis-
sue is only given by triolein and mentioned PLFAs.

Using these estimations of the biochemical composi-
tionof the larvaeand the correspondingmaterial proper-
ties given in Table S2, we inferred the distributions of
the relative lipid volume fraction xlip ¼ 0:22050:022
and the water volume fraction 41 ¼ 0:86050:006
(Eqs. S23 and S24)). Employing Eq. 15, we obtained
the correlative RI and MD distribution Pðdn; rÞ by
MC sampling shown in Fig. 5. We then computed the
marginalizeddistributionscMðdnÞandcMðrÞ fromwhich
we obtained the following median values and 68%



confidence intervals (CIs)r ¼ ð1:034150:0024Þ g=mL
and nB ¼ 1:367550:0017. Comparing nB with the
RI measurements nmeas ¼ 1:3655þ0:0028

�0:0032, evidently,
although both values coincide within the 68% CIs, our
prediction yields a narrower distribution compared to
the measurement, which may be attributed to the nar-
row assumed distribution of 41. Using the Lorentz-
Lorenz mixing rule of RIs (Eq. S8), we obtained nLL ¼
1:365050:0014, which coincides better with the
measured value. However, as pointed out earlier, the
Lorentz-Lorenz mixing rule did not yield results that
coincided well with the measurements of the validation
samples shown above.

In essence, at present, it is not clear which RI mixing
rule should be employed in this in vivo scenario without
a more comprehensive and quantitative understanding
of thebiochemical compositionof the sample.However,
once this insight becomes available (e.g., by measuring
(S)RS), differentmixing rules couldbecompared toeach
other, as presented earlier. This in turn would also allow
us to study whether the best-fitting RI mixing rule is
conserved across different specimen.

Finally, we want to point out that, if we use the
customary simplifying assumption that the solute
composition of the trunk tissue is only given by
proteins, employing Eq. 9, the RI increment and
PSV given in Table 1 and the measured RI data
(Table S4), we obtain rp ¼ ð1:04050:004Þ g=mL, us-
ing Gaussian propagation of uncertainty. Apparently,
this value does not coincide well with the value deter-
mined above. In fact, as outlined earlier, not taking
 [g
/m

L]

FIGURE 5 Results of MC simulations and according analytical so-
lutions for the trunk tissue of larval zebrafish. Predicted correlative
distributions of the MD r and the RI contrast dn of larval zebrafish
trunk tissue with the corresponding normalized marginal probability
density distributions cMðrÞ and cMðdnÞ, respectively (the solid line
represents the median, the dash-dotted and dashed lines indicate
the 68% and 95% CIs). The ellipsoids indicate the predictions using
Eq. 9 (blue) and the Lorentz-Lorenz mixing rule of RIs Eq. S8 (or-
ange). The green band indicates the RI measurement of (21). The
MC simulations were performed for N0 ¼ 105 and Nv ¼ 103.
lipids into account results in a systematic overestima-
tion of the MD of biological matter.
DISCUSSION

Considering the complexity of the chemical composi-
tion of biological matter, to infer the optical MD from
an RI measurement is not well established in contem-
porary literature. Here, we present a theoretical macro-
scopic model that is capable of describing the
problem, employing a minimal set of assumptions,
namely the Biot mixing rule of RIs and the assumption
of volume additivity.

We evaluated the possible sources of uncertainties
associated with the model and showed that, based on
the chemical composition of the sample and the asso-
ciated degree of inhomogeneity, the resulting RI and
MD distributions might drastically differ from the
customary assumption of biological matter consisting
of proteins and water only. For that purpose, we pro-
vided analytical solutions and consistent simulation
results for the case of a binary solute composed of
proteins and lipids.

Although it is shown that, for singular proteins in so-
lution, the assumption of volume additivity might not
be justified (60) (see SupportingMaterial), we provided
experimental evidence that, for the set of validation
samples under investigation (bovine SM and 20% IL),
it holds well within the measurement uncertainties.

Further, we provided evidence that the predictions of
the correlative MD and RI based on our model agree
with the experimentally obtained values of the valida-
tion samples, thus establishing confidence in the appli-
cation of the theoretical considerations presented here
to estimate MD in dependence of the RI, given the
chemical composition of the sample under study.

When applying the model to an in vivo specimen
(i.e., the trunk tissue of the larval zebrafish), we
observed that the mean value of RI measurements
of (21) coincides within the 68% CIs of our predictions,
which were based on the estimations of the biochem-
ical composition of the tissue, employing the mea-
surements of Long et al. (58), where the authors
determined the masses of water, proteins, and lipids
of whole animals. The lipid composition of the tissue
was estimated based on the measurements of Hachi-
cho et al. (59). Although our initial predictions are
remarkably close to the measurements, given the
multitude of assumptions and simplifications about
the biochemical composition of the tissue employed,
we cannot completely exclude crude uncertainties.

Going forward, the estimation of the MD of biological
matter from RI measurements, as outlined in this
study, will have interesting implications for inferring
the mechanical properties from opto-acoustical
Biophysical Reports 4, 100156, June 12, 2024 11



measurements (e.g., viaBrillouinmicroscopy).Theprob-
lem of a varying solute composition within a sample is
well appreciated (see, e.g., (12)) but is not resolved in a
cohesive manner. Evidently, combining Brillouin micro-
scopy not onlywithODT but also incorporating the local
biochemical composition (e.g., via (S)RS measure-
ments) allows for a better estimation of the longitudinal
(elastic) modulus. We note that the aforementioned
problem could also be resolved by performing stimu-
lated Brillouin microscopy in combination with ODT.
Here, the MD can be obtained directly from measure-
ments of the Brillouin resonance gain factor, which in
turn is connected to the Brillouin gain and the pump
laser power, as well as the RI, Brillouin frequency shift,
and Brillouin line width (61). Accurately determining
the local (in vivo)MDwill conceivably enable amorepro-
found interpretationof functionalmechanismsatplay in
biological matter.

To make the application of the findings of this study
more accessible, we delineate strategies on how to es-
timate MD, given certain experimental paradigms, in
the Supporting Material (see Fig. S2).
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