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Abstract
Cooperation is at the heart of life on Earth. It binds together organisms, families, and societies.
One of the most ubiquitous tools for studying cooperation is game theory, which has revolu-
tionised the field of social behaviour research. This thesis explores how theoretical and exper-
imental methods can contribute to our understanding of the differentmechanisms and benefits
by which cooperation evolves.

The first three chapters focus on a core mechanism of cooperation: direct reciprocity. When
individuals know that there is a high probability of future interactions, they benefit from main-
taining a cooperative relationship. These repeated interactions allow individuals to exchange
favours and build a mutually beneficial relationship that leaves everyone better off. Chapter 2
begins with a review of the theoretical and experimental literature, which highlights some im-
portant gaps in our understanding of direct reciprocity. In particular, we argue that theoretical
studies often fail topredictwhich reciprocal strategies humansuse tomaintain cooperation. One
possible reason may be that most of these models and experiments study interactions in isola-
tion,whereasmost of humansocial life ismuchmore complex. Thus, inChapter 3,we investigate
direct reciprocity in multi-game settings, where individuals take part in two concurrent interac-
tionswith the sameor different partners. Using both evolutionary simulations and a behavioural
experiment, the results showthat individuals areable to linkgameswhen itmakes strategic sense.
We also show that cognitive biases are crucial for predicting human behaviour. Chapter 4 devel-
ops a different type of reciprocal strategy that does not rely on explicit and exact memory of the
gamehistory. Instead, it embodiesmore realistic cognitive abilities of humanplayers, as revealed
by a behavioural experiment.

The last two chapters examine how the importance of finding cooperative partners can ex-
plain different social behaviours. Chapter 5 reviews the literature on how different types of cues
signal cooperativeness. Behavioural cues based on past behaviour have been found to be ac-
curate predictors of cooperativeness and they are perceived as such by third parties. One such
behaviour is acting according to moral values. A behaviour is considered principled if individu-
als display it consistently, regardless of the costs and without compromise. The Chapter 6 builds
on this finding by developing a signallingmodel to analyse principled behaviour. The act of con-
sistently abiding to one’s principles enhances an individual’s reputations for trustworthiness and
makes them a preferred cooperative partner. Given the social benefits of principled behaviour,
game theory and evolutionary principles can show how the dynamics of partner choice can lead
individuals to display seemingly maladaptive behaviour.

Overall, the thesis offers a comprehensive examination of cooperation in reciprocal relation-
ships, bridging theoretical insights with empirical observations to deepen our understanding of
human social interactions.
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Zusammenfassung
Kooperation ist das Herzstück des Lebens auf der Erde. Sie schweisst Organismen, Familien und
Gesellschaften zusammen. Eines der am weitesten verbreiteten Instrumente zur Untersuchung von
Kooperation ist die Spieltheorie. Sie verbindet theoretische und experimentelleMethoden. Damit erlaubt
sie es ein breites Spektrum sozialer Verhaltensweisen zu erklären, darunter auch Kooperation. In dieser
Arbeit wird untersucht, wie theoretische und experimentelle Methoden dazu beitragen können, die
verschiedenenMechanismen und den Nutzen der Kooperation zu erklären.

Wenn Individuenwissen, dass es einehoheWahrscheinlichkeit für zukünftige Interaktionengibt, prof-
itieren sie von der Aufrechterhaltung ihrer kooperativen Beziehungen. Diese wiederholten Interaktio-
nen ermöglichen es den Individuen, Gefälligkeiten auszutauschen und eine für beide Seiten vorteilhafte
Beziehung aufzubauen, aus der alle Beteiligten Nutzen ziehen. Kapitel 2 beginnt mit einem Überblick
b̈er die theoretische und experimentelle Literatur, der einige wichtige Lücken in unserem Verständnis
der direkten Reziprozität aufzeigt. Insbesondere zeigt dieses Kapitel auf, dass theoretisch vorhergesagte
StrategiendieempirischnachgewiesenenVerhaltensweisennurungenügendwiedergeben. Einmöglicher
Grund dafür könnte sein, dass die meisten dieser Modelle und Experimente Interaktionen isoliert unter-
suchen, während der grösste Teil des menschlichen Soziallebens sehr viel komplexer ist. Daher wird in
Kapitel 3 die direkte Reziprozität in einer Mehrspielumgebung untersucht, in der Individuen an zwei gle-
ichzeitigen Interaktionen mit demselben oder verschiedenen Partnern teilnehmen. Es wird gezeigt, dass
Individuen in der Lage sind, Spielemiteinander zu verbinden, wenn dies strategisch sinnvoll ist, und dass
kognitive Verzerrungen entscheidend sind, ummenschliches Verhalten genau zumodellieren. In Kapitel
4wird eine andereArt von reziproker Strategie entwickelt, die nicht auf einer explizitenund genauenErin-
nerungandenSpielverlauf beruht, sondern stattdessen realistischere kognitive Fähigkeitenmenschlicher
Spieler verkörpert, wie ein Verhaltensexperiment zeigt.

Die letztenbeidenKapitel gehendarüberhinaus, indemsieuntersuchen,wiedieBedeutungderSuche
nach kooperativen Partnern verschiedene soziale Verhaltensweisen erklären kann. In der Literatur wird
untersucht, wie die Kooperationsbereitschaft durch verschiedene Arten von Hinweisen signalisiert wird.
Es hat sich gezeigt, dass vergangenes Verhalten, ob direkt kooperativ oder mit Kooperation verbunden,
ein verlässlicher Prädiktor für Kooperationsbereitschaft ist und vonDritten auch sowahrgenommenwird.
EinBeispiel für solches Verhalten ist dasHandeln nachmoralischenWerten. Das 5. Kapitel baut auf dieser
Erkenntnis und einer neuen Theorie des prinzipientreuen Verhaltens auf, um ein Signaling-Modell zu en-
twickeln. Es zeigt, wie die konsequente Befolgungmoralischer Grundsätze das Ansehen des Einzelnen in
Bezugauf seineVertrauenswürdigkeit steigert und ihnzueinembevorzugtenKooperationspartnermacht.
In Anbetracht der weitreichenden sozialen Vorteile prinzipientreuen Verhaltens, können die Spieltheorie
und die Prinzipien der Evolution zeigen, wie die Dynamik der Partnerwahl dazu führen kann, dass Indi-
viduen scheinbar unangepasstes Verhalten zeigen.

Insgesamt bietet die Arbeit eine umfassende Untersuchung der Kooperation in reziproken Beziehun-
gen. Sie verknüpft theoretische Erkenntnisse mit empirischen Beobachtungen, um unser Verständnis
menschlicher sozialer Interaktionen zu vertiefen.
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Chapter 1

Prologue

When friends ask me what my PhD is about, I always struggle to come up with good, concise
answer. I usually say that I study cooperation, but people immediately ask me if I mean it in
the sense of international relations. I say yes, and explain that I study it at a more abstract level,
trying to understand the mechanisms that allow cooperation to emerge, and why it is odd that
we humans cooperate somuch when it seems to defy evolutionary pressures.

At this point, I usually mentionmy true love and the subject that brought me to a small town
in northern Germany: Game theory. The core of my research is to use the ideas, methods, and
principles of game theory to understand human social behaviour. I explain that this fascinating
mathematical tool fromeconomicshas spread throughbiology,where itmixedwith evolutionary
theory, before infiltrating back into research on human behaviour. The moment the outcome
of your action also depends on the actions of others, game theory can be used to find the best
strategy. Cooperation is a strategy, and I want to understand the mechanisms that make it
possible. In our lives, cooperative relationships are crucial because they are beneficial. How do
we keep track of cooperation in our interactions? How dowe perceive others? cooperation? How
do we reciprocate cooperation across the many social relationships that make up our world?
And what other behaviours do we display in the hope of attracting cooperative partners?

To lay the foundation of my thesis, let me walk you through what game theory is, why it’s so
powerful, howwell it works with evolutionary theory, howwe can use experiments, evolutionary
simulations, and mathematical models to explain reciprocity and cooperation, and why all
scientists who study human social behaviour should learn about it.

1.1 How cooperation shapes our lives

Humans are world-class cooperators. We help strangers in need, work together to build civilisa-
tions, pair up to produce children, and unite to defend our territory. Cooperation is everywhere,
it is woven into the very fabric of our society. It is also observed in a wide range of organisms
[1]: from single cells to primates, including us humans. But humans cooperate on amuch larger
scale and with greater variability than has ever been seen in the animal world [2]. Remarkably,
the underlying mechanisms that sustain cooperation between nation states [3] and within a
village of hunter-gatherers [4] are essentially the same.

Cooperation is a puzzle as old as Darwin’s theory of evolution. At its core, a cooperator
is an individual who pays a cost c to give a benefit b to another individual, where c > 0 and
b > c. Since only behaviours that increase the fitness of organisms are favoured by natural
selection, how could such costly actions have evolved? In humans, and many non-human
animals, cooperation is advantageous because we are social species. Cooperation may appear
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Introduction

to be immediately costly, but when interacting with other cooperators in a social group, it pays
off. Cooperation can be seen as adaptive problem solving for the hunter-gatherer lifestyle [5].
Cooperative breeding and foraging were key features of the social lives of our ancestors and
are still common in small-scale societies scattered around the globe. Hunts tend to have a low
success rate, with even the most skilled hunters often returning empty-handed. However, a
successful hunt can feed many, and given the perishable nature of meat, sharing becomes the
logical choice. In sharing, individuals can offset the risks associated with hunting by pooling
both risk and benefits collectively. Humans have distinctly long childrearing periods, with
short intervals between births and extended childhoods during which juveniles depend on
their mothers for survival. This model is only sustainable if mothers receive help to care for
their children and create future healthy and productive adults. These examples illustrate why
cooperation is crucial to the evolution of complex societies that we see today, and also how
cooperation can be beneficial when the costs and benefits are shared in a group.

However, where there is cooperation, there are cheaters [6]. In a group of cooperators, it pays
to be a defector and reap the benefits of cooperation without paying the associated costs. This
“free-rider problem”, where defectors free-ride on the benefits of others’ cooperation, can lead to
the collapse of cooperation, as cooperators stop cooperating to avoid being exploited. How can
cooperation evolve under these conditions? It is clear that cooperation can be highly beneficial
to the species and to the self, but it is not obvious how it is sustained.

The evolution of cooperation has kept scientist of many fields busy: anthropologists [5],
economists [7],biologists [8], political scientists [9, 10], psychologists [11, 12], sociologists [13]
and even mathematicians [14] have all contributed to different aspects of this age-old puzzle.
From them, a handful of core mechanisms have been uncovered. One of the first and most
primal answers is kin selection [15]. When we cooperate with family members, we help our
own genes to survive. But humans routinely engage in cooperative acts with non-related kin,
so what mechanisms can explain this? For cooperation to evolve, any solution must ensure
compliance and deter cheating. For pairwise interactions, direct reciprocity does just that.
Reciprocal relationships, where individuals repay cooperation and defections in kind, can
thrive in a population with cheaters [16]. But reciprocity in large groups is a different matter.
When one person in the group cooperates but another free-rides, should we withdraw our own
cooperation or continue? In such cases, punishments and rewards can maintain cooperative
behaviour in large groups [17]. Individuals can bear the cost of punishing themselves, or it can
be enforced by an external third party [18]. Third-party punishment ensures that defectors have
an incentive to comply and leads to the formation of institutions to enforce such behaviour.
Another mechanism that can bypass institutions is reputation [19, 20], where reciprocators and
punishers develop a positive reputation [21–23], while defectors develop negative ones. In turn,
cooperative individuals will assort among themselves and only cooperate with those who have a
good reputation. This form of partner choice ensures that cooperative individuals are favoured,
while defectors are excluded from cooperative relationships. Whatever the mechanism, to
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Chapter 1

understand cooperation, we need two things: Evolution and game theory.

1.2 Game theory and cooperation

1.2.1 Game theory

Game theory is the branchof economics that studies strategic decision-making [24, 25]. Strategic
means that decisions aremade in an interactive setting,wherewhat others domatters asmuchas
what individuals do themselves. As such, it applies to individuals, groups, firms, or nation states
1, as long as there are interactions between the decisions of the different actors. We represent
these strategic interactions as games with players, actions, and payoffs. As an example, let’s con-
sider the prisoner’s dilemma [26], a static gamewith complete information. Staticmeans that the
playersmove simultaneously, and complete informationmeans that the players have full knowl-
edge of all the parameters of the game. The prisoner’s dilemma is the most widely studied game
in the field of cooperation and a popular tool in this thesis [27–29]. The prisoner’s dilemma pits
self-interest against social interest: players can cooperate and gain a mutual benefit, or defect
and gain a higher benefit for themselves at the expense of the other player. We have seen above
that cooperation, at its core, is the act of paying a cost c to provide a benefit b to another individ-
ual. This is exactlywhat the simplest formof the prisoner’s dilemmadoes, as shown in Figure 1.1:
both players simultaneously decidewhether or not to pay this cost. If they pay it, the other player
gets the benefit, otherwise they do not.

b

b-c
b-c b

-c
-c

0
0

Cooperate Defect

Player 2

Player 1 Defect

Cooperate

Figure 1.1: Payoffmatrix for the two-players prisoner’s dilemma. Each cell in-
dicates the payoff for each player based on their respective choice. For example,
if player one defects (bottom row) and player 2 cooperates (left column), player 1
gets the benefit b and player 2 the cost -c. Blue represents the actions and payoffs
for player 1 and red the actions and payoffs of player 2.

This game is a prisoner’s dilemma because b > b − c > 0 > −c and b − c > (b − c)/2. The
second inequality ensures that players cannot gainmore than the reward ofmutual cooperation
by alternating defecting and cooperating with each other.

In economics, and therefor game theory,models assume that players are rational. Thismeans
that players have preferences about the possible outcomes that are complete and consistent,
and that they will choose the action from a set of alternatives that leads to their most preferred

1People are indeed correct when linking cooperation to international relations, andwewill see that the underlying
dynamics are similar
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Introduction

outcome. In our prisoner’s dilemma, players want the highest payoff. Theymust now choose the
action that will lead to this preferred outcome. Since all players are rational and have complete
information, each knows that they are themselves rational, and that the other player is rational,
and they know that the other player knows that they are rational, and so on. We say that the
players have common knowledge. With these assumptions, it becomes evident that the solution
to the game, the action rational players will choose, is to defect. Let’s say player 1 chooses
to cooperate, then player 2 should defect since the benefit b is greater than the reward b − c.
Similarly, if player 1 chooses to defect, then player 2 should also choose to defect, since 0 is better
than−c. The strategy 2 defect is the only rational solution.

The outcome {defect; defect} is whatwe call aNash equilibrium [30]. This concept fromgame
theory means, by analogy with physics, that the system is in a stable state. The internal forces
balance each other out and the system is at rest unless perturbed by a new external force. In
game theory, the Nash equilibrium is the solution concept of a game. A set of strategies is a Nash
equilibrium if no player can improve their payoff by changing their strategy. In our prisoner’s
dilemma, if player 1 changes her strategy to “cooperate’, she will be worse off. The same applies
to player 2. The system is at rest. This means that in situations that can be modelled with a
prisoner’s dilemma, individuals will not be willing to pay the cost to send a benefit, and so there
will be no cooperation.

Game theory is historically and predominantly a mathematical tool. Nonetheless, because it
makes predictions about behaviour, it should be tested experimentally. The prisoner’s dilemma
is one of many economic games or “social dilemmas” that have been adapted to be played
by human participants [31]. Perhaps unsurprisingly, the results were not what game theory
predicted. In the prisoner’s dilemma, participants routinely deviate by choosing to cooperate:
they are able to achieve the mutually beneficial outcome. These results have been replicated in
a wide range of strategic games [32] and across cultures [33].

Does this mean that game theory is wrong? Rationality as described by economists maynot
be representative of how humans reason and make decisions [34]. 3 First, most of our so-called
preferences and beliefs are not directly chosen by us. We do not decide that we like chocolate, or
value fairness, or believe in equality. It is strange to have models that assume we have done the
necessary calculations to arrive at them [36]. Second, economics as a field chose many decades
ago to abstract from psychological factors and focus on normative mathematical approaches
[37]. These discrepancies between observed behaviour and theoretical predictions led to a
revolution in the field of economics and the beginning of behavioural economics [38]. The aim
of this new approach is to incorporate knowledge of psychological factors such as loss aversion

2An action is what the player does, while a strategy tells the player what to do given the information he has. Wewill
see that the distinction becomes important when games are repeated.

3For those curious about the “anomalies" of rational choice theories, I warmly recommend reading the series of
papers published in “The Journal of Economic Perspectives” by theNobel laureate Richard Thaler [35]. In each article
he focuses on a traditional effect in economics and shows how the real numbers don’t match themodel.
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and inequality aversion tomakemodels more predictive of actual behaviour.

1.2.2 Direct reciprocity

Beyond kin selection, one of themost fundamentalmechanisms for the evolution of cooperation
is reciprocity. Developed by Trivers [16] to explain what was coined “reciprocal altruism”, direct
reciprocity is the act of repaying another individual’s cooperation. You scratchmy back, I scratch
yours. The term altruism was quickly lost as there is there is nothing altruistic about reciprocity
if actions are conditional on returning the favour [39]. Examples of direct reciprocity in animals
are not nearly as common as they are in humans (notable exceptions: the Norway rat [40], the
vampire bat [41], and the stickleback [42]), but even some of these examples are contested [43]

However, most of life is not one-shot. We rarely interact with someone once, never to see
them again. Repetition is a core feature of social interactions [39]. It is part of our language: the
french verbs “rendre service” and “rendre visite” literallymean “to return service” and " to return
visit" and are commonly used when providing help or when visiting someone. Friends who offer
a drink one night expect to be offered the next one. Parents take turns watching each other’s
children and academics review each other’s grant applications. Reciprocity can only work if
interactions are repeated.

Does this mean that cooperation can be sustained in equilibrium when the prisoner’s
dilemma is played repeatedly? Well, it depends. According to game theory, there is no coop-
erative equilibrium in finite games with a known end. This is because, if the end of the game
is known, by backward indiction, players will defect in the last round; knowing this, they will
also defect in the penultimate round, so they will defect on the round before that as well, and so
on, until the first round of the game is reached, leading to full defection. The Nash equilibrium
is once more to defect on all rounds. This result may seem counterintuitive, and indeed, in
experimental games, participants tend to cooperate for a few rounds, even if they eventually
stop as they near the end of the game, indicating some awareness of the backward induction
solution. This strategy of cooperating until the last few rounds of the game yields a higher payoff
than a full defection, and participants are mostly likely aware of this fact and know that the
other players know it too. 4. However, infinitely repeated games are a different story. People do
cooperate in infinite games. But this is not surprising, because in infinite games, anything goes:
since there is an infinite number of rounds, there is an infinite number of strategies and thus
an infinite number of equilibria. This is the Folk-theorem, so called because it was known long
before it was formally proved. The Folk-theorem applies as long as the likelihood of another
encounter is sufficiently high [45]. Theoreticians model this as a continuation probability δ
which represents the shadow of the future. The higher δ, the higher the probability that the
two individuals will meet again [46, 47]. So what kind of cooperative strategies are feasible in
infinitely repeated games?

4The literature on the centipede gameprovides an excellent discussion on the paradox of backward induction [44].
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Typical strategies that support cooperation are conditional [6], meaning that actions are
based on the outcome of previous rounds. For example, the strategy "cooperate in all rounds"
is not conditional. A strategy that says "If the other player cooperates, then cooperate. If they
defect, then defect." is conditional. How many past rounds are considered varies, but the vast
majority of the theoretical literature focuses on strategies that only remember the previous
round, also called memory-1 strategies [48, 49]. A variation of the above strategy which is
memory-2 would be be "only defect after the other player defected twice in a row".

The strategy described above is one of the most famous and successful strategies in the re-
peated prisoner’s dilemma: Tit-for-Tat (TfT). In Axelrod’s seminal tournament paper, when pit-
ted against other strategies, TfT ended up with the highest payoff [50]. TfT is a highly reciprocal
strategy that veryclosely resembles theadage“aneye for aneye”. Axelrod’s analysisof this strategy
and the other successful ones revealed some key characteristics of what makes a winning strat-
egy. 1) Be nice, by starting with a cooperation. 2) Beg forgiving, by restoring cooperation after a
defection. 3) Be retaliatory, by punishing defection. 4) Be clear, by having a simple set of compre-
hensive rules. These characteristics demonstrate that it pays to be cooperative [51], but that it’s
important not to not be taken advantage of. This tournament paved the way tomany decades of
research on direct reciprocity, especially through evolutionary models. 5

1.3 Evolutionary biology and (social) behaviour

1.3.1 From economics to biology

In the 1970s, biologists realised that game theory was the perfect tool to study the evolution of
behaviour in animals [52, 53]. There are many situations in animal lives where the best course
of action depends on what other individuals do. Animal conflict and territoriality [54, 55], sex
allocation [56], bird mating [57], kin selection and inclusive fitness [15]. Organisms are the new
players, and fitness is the new payoff. Several types of games are used to reflect the different
problems that organisms face. We can see which strategies can survive and reproduce as natural
selection drives organisms towards optimisation.

Importantly, biologists have realised two things: 1) Seemingly "altruistic" behaviours benefit
the individual just as much as the species. We have seen that when it comes to cooperation, if
the recipient of the help is kin or likely to reciprocate in the future, then it is advantageous for
the individual to cooperate, even if the whole group benefits. This means that group selection
is not necessary to explain these behaviours – individual self-interest can lead to widespread
cooperative strategies. 2) Decisions need not be conscious and rationality is not required,
[52, 58]. Players do not need to understand the game structure or have the ability to engage in
complex reasoning (e.g. by using backward induction). Nash equilibria can be reached as long
as players gather information about the relative advantages of different strategies simply by trial
and error! The mechanism of natural selection naturally rewards the best strategies that have

5SeeChapter 2 for a reviewof theoretical andexperimental results of reciprocity in the repeatedprisoner’s dilemma
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the ability to survive and reproduce. In this way, game theory can be applied to biology and
animal behaviour without making any assumptions about the level of cognitive complexity of
the organisms. It can even be used tomodel plant growth [59]. Strategies can simply be inherited
rather than chosen.

With these two insights, evolutionary game theory was born [60, 61]. By applying game
theory to evolving populations, a whole range of biological phenomena, not just behavioural
ones, can be explained. We know from classical game theory that the success of a strategy
in a game depends on the strategy of the other players. Just in the same way, the fitness of a
phenotype depends on the other phenotypes present in the population [62]. Game theory is par-
ticularly well suited to modelling biological systems because such systems are often frequency
dependent, meaning that the frequency of each phenotype matters as much its mere presence
in the population. As we have seen in the tournaments in subsection 1.2.2, the environment
selects the strategies, but the strategies are what make up the environment, meaning that they
shape the environment themselves.

Different mechanisms exist to model evolutionary dynamics in a game, relying on processes
of natural selection, mutation, or drift [62]. A population of strategies is simulated over genera-
tions that replicate through a particular mechanism: individuals interact in a game, the winner
reproduces, the loser does not. Evolutionary games also have their equilibrium state. The classi-
cal Nash equilibrium is a state in which no player can benefit from deviating from their strategy,
provided that others stick to theirs. This concept can be extended to a dynamic population of
competitors. An evolutionary stable strategy (ESS) is a strategy that can survive all possible “mu-
tant” strategies, meaning that no othermutant strategy can successfully invade the current state
[54]. We find again the concept of stable state.

Returning to the case of cooperation, evolutionary game theory can help us identify the
strategies that evolve, just like as in a tournament. Strategies can evolve through competition in
apopulation, aswedescribedabove. Players interact repeatedly in a gameandcancompare their
strategies against amutant strategy. The strategy yielding the highest payoff is implemented and
the process is repeated over many cycles. This is the method we use in Chapter 3 to investigate
which strategy evolves when players interact in two games concurrently.

Nevertheless models of direct reciprocity make some simplifications that can be problem-
atic: first, most of the literature on repeated games has focused on two-person interactions, but
research on humans requires considering larger groups of interacting individuals [7]. There is
some experimental and theoretical evidence that direct reciprocity fails in large groups [28, 63].
As group size increases, it becomes more difficult to target cooperation at those individuals
who cooperate and to avoid free riders. Indeed, the only cooperative ESS is to respond with
cooperation when everyone else cooperates – the basin of attraction is extremely small be-
cause a few defectors will undermine it. Second, these models assume forced interactions
over fixed repetitions: players have no other choice but to interact with each other. In human

10



Introduction

social life, the option to stop interacting is often present, meaning that individuals can simply
choose not to interact at all, or end a relationship mid-game. Third, all common reciprocal
strategies such as TfT are what is referred as “bookkeeping” strategies. However, in reality,
favours may not be so quantifiable. Individuals often differ in their possession of resources
and personal traits, making it sometimes difficult for players to agree on what constitutes fair
reciprocation [64, 65]. Also, in species with socially complex environments where individuals
navigate multiple partners, reciprocity can often cross domains [66, 67], leading to the same
difficulties. There is little evidence that animals have the cognitive capacity to preform such
bookkeeping. Even in humans, many cooperative relationships are in the form of friendships
or long-termpartnerships inwhichpeopledonot keepanexact countof cooperative actions [68].

Wehave seen that the cooperative strategies favouredby evolutionarymodels all toooften fail
to replicate in experiments. One of the aims of this thesis is to investigate cooperation and recip-
rocalmechanisms in domains closer to the richness of humans social life. Chapter 3 adresses the
first problem of multiple interactions, while Chapter 4 explores a new strategy that is less cog-
nitively demanding for players. Finally, Chapter 5 and Chapter 6 go beyond direct reciprocity to
understand which behaviours are chosen for cooperative relationships.

1.3.2 Beyond cooperation: From biology back to human behaviour

Wehave seen that people rarely play the rational solution to the game in economic experiments.
They are much more cooperative than predicted. A new generation of economists went back to
incorporating human psychology into their models, taking into account cognitive mechanisms
[69, 70], social preferences [71, 72], and beliefs [73, 74]. Through biology, however, game theory
took a different route to predict behaviour, particularly social behaviour such as cooperation.
As we have seen in our examples of non-human animals, individual self-interest can lead to
group-beneficial strategies, even in the absence of conscious decision making. This gives us an
entirely new lens though which to study human social behaviour. Game theory allows us to get
to the ultimate function of a behaviour. Biologists are very familiar with the concept of different
levels of analysis to explain behaviour [75]. Relevant to us, they distinguish between proximate
explanations – the How?, and ultimate explanations – the Why?. How questions refer to the
mechanism of the behaviour, our thoughts, feelings, beliefs, and preferences. Why questions
refer to the underlying adaptive function of the behaviour, reproductive success, survival, fitness
maximisation. The whole concept of ultimate answers comes from evolution.

When we relax the assumption of rationality and apply game theory with an evolutionary
lens, we find that it has real predictive power. Evolution has shaped our behaviour to be optimal
and is able to lead equilibrium [76]. Just as with non-human animals, we can explain complex
behaviours without any conscious decision making on the part of the players. In this sense, it is
worth thinking of human behaviour as “adaption-executioner” rather than “fitness-maximiser”
[77]. People don’t maximise themselves, they simply execute the strategy that has adapted
to their lives. Individuals do not consciously compute the payoffs of their actions. Evolution
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leads them to behave as if they did, simply because behaviours that are not adapted to the
environment have been selected against. Evolution is the fitness maximiser, not us 6. We
have evolved a psychology that makes us prefer fairness, and that does not magically disap-
pear in the lab. Is it really so strange that participants still cooperate in a one-shot prisoner’s
dilemma when it is the mutually beneficial outcome? Is it really so strange that, in an ultima-
tum game, people choose to split the money equally rather than take the money themselves?
Is it really so strange that people behave this way even when there is no chance of a future
encounter and no opportunity for reputation? Game theory is a tool, and the parameters we
input determine the output it gives. To quote computer scientists: it’s garbage in, garbage out.
If we startwith assumptions that havenobasis in reality, the resultwill not bepredictive of reality.

When investigating the ultimate functions of social behaviour, it often comes down to co-
operation and communication which are inherently game-theoretic [62]. Cooperative relation-
ships are highly beneficial and therefore valuable. Being a good reciprocator, whatever shape
reciprocity take, makes it more likely to interact with other cooperative individuals. There is a
large body of literature on reputation-based partner choice [79–81], where people with a reputa-
tion for being cooperative or altruistic are favoured as social partners [81, 82], and receive more
help even from people that they have not previously helped [83, 84]. By the same logic, can we
show that other types of behaviour that confer a good reputation are sought by potential cooper-
ative partners? Myfinal two chapters address this very question from twodifferent angles: Chap-
ter 5 reviews which cues individuals use to infer the cooperativeness of others, and whther such
cues are reliable. Chapter 6 uses game theory to find the ultimate function of a type of puzzling
human behaviour through concepts of cooperation and communication.

1.4 Methods and objectives

This thesis consists of five chapters, each of which represents a project I worked on during my
PhD. They range from the very basic of the mechanisms of reciprocity in social cooperative
relationships, to themore complex use of evolution and game theory to explain how other types
of social behaviour emerge to help individuals form these relationships. In Chapter 2, we review
the experimental and theoretical literature on reciprocity in the repeated prisoner’s dilemma. In
the third and fourth chapters, we consider two projects on direct reciprocitywhich blend the two
approaches; in Chapter 3, we investigate conditional cooperation across multiple concurrent
interactions, while in Chapter 4 we look at a different kind of reciprocal strategy: cumulative
reciprocity. The last two chapters look beyond the prisoner’s dilemma and direct reciprocity to
focus on how different social behaviours can be used as cues for cooperative and trustworthy
types. Chapter 5 reviews the literature on social dilemmas to highlight the different cues people
might use to infer the cooperativeness or trustworthiness of others, andwhether such inferences
are reliable. Finally, Chapter 6 shows that certain behaviours, such as principled behaviour, can

6It is worth noting that in the case of humans, natural selection canbe replacedbymechanisms of cultural learning
[36, 78]
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be explained as signalling devices that have evolved to make a principled individual appear
more trustworthy, and therefore preferred as a cooperative partner.

Inmy research, I use adiverse skillset. I runevolutionary simulations, economic experiments,
andanalyse game theorymodels. Thismixedmethodapproachhelpsmeachievemore complete
answers inmy research. In the following, I describe each chapter inmore detail.

1.4.1 Direct reciprocity in the prisoner’s dilemma

Chapter 2 is a review, written with Christian Hilbe, of the literature on direct reciprocity in the
repeated prisoner’s dilemma. We chose to focus on this two-player game because it is by far the
most widely studied game. As highlighted in subsection 1.2.1, studying idealised scenarios such
as the prisoner’s dilemma can help to capture the core features and dynamics of a behaviour. In
this review we were particularly interested in contrasting results from theoretical analysis and
experimental methods, as bothmake extensive use of the game.

We consider the environments inwhich reciprocal strategies can evolve and inwhich partici-
pants play cooperative strategies. The parameters of the game, such as the cost/benefit ratio, the
continuation probability and the presence of errors, have a strong influence on cooperation. The
effects on players predicted by theoretical methods are largely supported by empirical results.
However, when it comes to predicting the exact strategy people use in this game, the results are
moremixed.

1.4.2 Cooperation in concurrent interactions

Chapter 3 is based on the observation thatmost research on reciprocity examines a single type of
interaction in isolation. However, human social life is far richer andmore complex, with individ-
uals engaging in multiple interactions simultaneously with many different partners. Studies on
cooperation in networks do not allow participants to target their reciprocity to one neighbour,
forcing them to interact in the same way with all game partners. A few papers investigate how
reciprocity might spill over from one interaction to another when played concurrently, or how
players learn to reciprocate across two different relationships. We combine these studies to
investigate reciprocity inmultiple interactions both theoretically and experimentally.

We consider two scenarios beyond the standard two-players prisoner’s dilemma. In the first,
players interact in two games simultaneously with the same partner, while in the second, they
interact with a different partner in each game. To compare different levels of cooperation, and
to see if our concurrent interaction design of two simultaneous repeated games is able to push
cooperation up or down from a baseline, each game has a different benefit to cooperation (while
the costs remain the same). We first run evolutionary simulations in which the players have the
opportunity to update their strategy in each time step by comparing their current strategy to a
new, randomly generated, mutant strategy. We complement these simulations by investigating
how cognitive biases ofmemory errors andmistakes can influence behavioural spillovers across
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two games. In parallel, we run an online behavioural experiment based on the same design and
analyse the conditional strategies used by the participants.

We find that playing two games lowers cooperation from the first round, even though people
use different reciprocal rules in the two treatments. Cognitive biases play a crucial role in pre-
dicting actual player behaviour. This highlights the need to account for errors in evolutionary
simulations.

1.4.3 Cumulative reciprocity: new strategy of direct reciprocity

In Chapter 2, we highlighted the different strategies that evolutionary models find capable of
supporting cooperation. We pointed out two limitations: that the strategies favoured by theoret-
ical models do not seem to be the ones people use when playing the games themselves, and that
most of the literature focuses on a handful of strategies and their memory depth extensions. In
Chapter 4, we collaborate with a team led by Prof. Haoxiang Xia to provide empirical evidence
for a new strategy for the prisoner’s dilemma: Cumulative Reciprocity (CURE).

CURE differs from the common strategies in the literature because it does not follow the
standard structure of memory-1 strategies. Instead of remembering the exact actions of the
players in previous rounds, the players only keep a tally of the imbalance in the interaction.
If this counter is zero or low enough, they continue to cooperate. Once it reaches a certain
threshold, they start defecting. This rule captures the dynamics of reciprocity in a novel way, as
players will only start cooperating again once the counter goes back below the threshold, when
the other player has started cooperating again. It also allows reciprocity to unfold over a longer
period of time and without the need to closely the exchange. These features make CURE a very
realistic strategy for people to use in everyday life. In close relationships, humans rarely keep
an exact count of who owes whom a favour. Rather, they have a general sense of whether the
relationship is equal and fair, or whether they are being cheated.

Theoretically, CURE is very strong. The strategy supports cooperation even in the presence of
errors, enforces fair outcomes, and is able to evolve in hostile environments. Most importantly,
these results are supported by empirical evidence from an economic experiment. To implement
CURE experimentally, we created two versions of a repeated prisoner’s dilemma: a standard one
and one with errors. The treatment with errors is important because CURE is particularly robust
to the presence of errors. The results show that CURE is better able to predict the behaviour of
most participants in every round compared to other standard strategies. Cumulative reciprocity
may be amore valid way to encapsulate reciprocity when taking into account the type of players
humans are (error-prone) and the shape cooperation takes in our world (norms of fairness).

1.4.4 Cues that (reliably) signal cooperativeness

In the previous three chapters we have seen how reciprocity can sustain cooperation in a wide
variety of situations. Chapter 5 goes beyond the mechanisms of reciprocity by reviewing how
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players perceive the cooperativeness of others. Reciprocating cooperation, unsurprisingly,
makes individuals appear cooperative themselves. However, there are many other cues that can
lead to different degrees of perceived cooperativeness. Other types of altruistic actions, such as
donating to charity or punishing defectors, are generally perceived as indicators of good charac-
ter. Sometimes, even seemingly more arbitrary cues are also used to infer cooperativeness, such
as wealth, gender, or religious affiliation. Towhat extent do people rely on such cues and to what
extent are they reliable indicators of how cooperative someone is?

In this chapter, we review the literature on perceptions of cooperativeness through different
types of economic games. We look at how either a third party participant or the interacting part-
ner rates the level of cooperativeness or trustworthiness of players displaying a range of cues.
More importantly, we pay particular attention to studies that also test the reliability of such cues.
Incentivised (or sometimes hypothetical) economic games are perfect for this, as they allow for
the actual behaviour of players to be tested in parallel with how the other participant perceives
that behaviour. Our review shows that behavioural cues based on past actions are strong predic-
tors of cooperativeness and are correctly perceived as such. On the other hand, personal cues are
much less reliable and can lead people to make incorrect assumptions, perhaps linked to pre-
exisiting stereotypes. Nevertheless, it seems that people are aware of the unreliability of personal
cues and only rely on themwhen no other cues are available. People are a good judges of others
and are willing to infer cooperativeness from many different sources. As cooperative relation-
ships are highly beneficial, the ability to find good cooperative partners is crucial.

1.4.5 A signallingmodel of principled behaviour

Chapter 5 shows how cooperativeness is often inferred from our actions, even when they are
not directly related to reciprocating. In particular, cues that may not be directly associated
with cooperative behaviour can still be perceived as such by others, such decisions in a moral
dilemma, religious affiliation or pro-environmental preferences. If individuals have learned to
use this information to infer cooperativeness, could it be that the performers have learned to
display this behaviour to signal cooperativeness? The literature on reputation-based partner
choice discussed in subsection 1.3.2 shows how individuals can acquire a reputation for being
cooperative through their actions. One such action is the display of principled behaviour.

Principled behaviour is the act of abiding to certain moral and social principles. Individuals
who behave in a principledmanner display a number of characteristic behaviours, such as con-
sistency at all costs, prioritisation beyond instrumental value, and rejection of any compromise.
In Chapter 6, we show that the ultimate function of principled behaviour is to build a reputa-
tion for trustworthiness. This, in turn, makes themmore likely to be chosen as cooperative part-
ners. One of the key characteristics of principled behaviour is consistency: always sticking to the
principle regardless of the situation or the cost. By acting consistently in cooperative contexts,
individuals increase their trustworthiness with each iteration of the principle. Using a signalling
model, we show that highly selective receivers lead senders to exhibit key features of consistency:
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complementarity (themore I cooperated in the past, themore likely I am to cooperate again) and
discontinuity (if I defect once, allmy reputational capital is lost and further cooperation is futile).
We compare this equilibrium with a competing equilibrium: moral licensing. Individuals who
license are more likely to act morally ambiguously after an initial principled action.
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Direct Reciprocity in the Prisoner’s
Dilemma

This chapter is published under the title: Rossetti, C. S. L., Hilbe, C. (2023). Direct reciprocity
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Abstract

Direct reciprocity is the tendency to repay others’ cooperation. This tendency can be crucial to
maintain cooperation in evolving populations. Once direct reciprocity evolves, individuals have
a long-run interest to cooperate, even if it is costly in the short run. Themajor theoretical frame-
work to describe reciprocal behavior is the repeated prisoner’s dilemma. Over the past decades,
this game has been themajor workhorse to predict when reciprocal cooperation ought to evolve,
and which strategies individuals are supposed to adopt. Herein, we compare these predictions
with the empirical evidence from experiments with human subjects. From a theory-driven per-
spective, humans represent an ideal test case, because they give researchers the most flexibility
to tailor the experimental design to the assumptions of amodel. Overall, we find that theoretical
models describe well in which situations people cooperate. However, in the important case of
“indefinitely repeated games," they have difficulties to predict which strategies people use.

2.1 Introduction

Cooperation is a fundamental component of many social interactions [1, 86]. It occurs when in-
dividuals share food and other commodities [40], contribute to a collective action [87], or when
they use public resources responsibly [10, 88]. The common pattern behind these examples is
that individuals incur a personal cost to benefit others. Such seemingly altruistic behaviors war-
rant an explanation: if cooperation is to evolve, it needs to give a fitness advantage to the coop-
erating individual or its kin [12]. Importantly, however, such a fitness advantage does not need
to arise immediately. Instead it suffices if there is some advantage eventually, over the course of
an individual’s lifetime. This insight provides the basis for direct reciprocity [16], one of the key
mechanisms for cooperation [14, 60]. When individuals interact in stable groups, their cooper-
ative acts today may lead other group members to cooperate with them in future. Once future
benefits are sufficiently valuable, (conditional) cooperation is what evolution selects for.

In nature, cooperation can come in various degrees, and it can involve many individuals. Yet
when modeling behavior, it is often useful to consider idealized scenarios that capture a behav-
ior’s central features in the simplest possible way. One frequently used paradigm to study co-
operation is the prisoner’s dilemma [26]. It describes an interaction among two individuals (in
theoretical studies, theprisoner’s dilemma isoftendescribedas a “game," individuals are referred
to as “players," and outcomes are called “payoffs”; however, the framework covers scenarios that
are less innocent than these names might suggest). The rules of the interaction are as follows.
Each individual can choose to cooperate or to defect. Mutual cooperation yields the highest pay-
off to the pair, yet defection yields a higher payoff to each individual. Because choices are made
independently, the only reasonable and consistent outcome of the prisoner’s dilemma – the only
Nash equilibrium – is mutual defection. The prisoner’s dilemma is widely used because it cap-
tures the essence of cooperation: the conflict between self-interest and group interest. At the
same time, it is arguably the most simple model to do so: there are only two players (instead of
many), and players can only choose among two discrete actions (there are no different shades of
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good and bad behavior).
While defection is the only equilibrium in a single interaction, predictions change when

players interact over multiple rounds. In that case, players can adopt reciprocal strategies to
enforce cooperation. They can cooperate with other cooperators, and they can stop cooperating
against defectors. Importantly, this form of reciprocity can evolve even when individuals do not
consciously compute the payoffs of their actions. In the end, evolution leads them to behave as
if they did, simply because it wipes out behaviors that are not well-adapted to an individual’s
environment. After decades of research, there is by now a vast theoretical literature on evolution
in the repeated prisoner’s dilemma [89]. This literature explores how evolving cooperation rates
depend on the parameters of the game and on the exact setup of the evolutionary process [90].

Importantly, these models in evolutionary game theory typically take an ultimate, not a
proximate, perspective. They ask in which kinds of environments cooperative behavior would
be adaptive. To this end, the models neglect any specific emotions that individuals might feel
when making their decisions, or any values that individuals might hold. Rather the models
ask which kinds of strategies allow for stable cooperation in a given environment, irrespective
of the proximate mechanisms that might lead individuals to implement those strategies. Real
behavior might not perfectly resemble the strategies predicted by this theory. Yet, we would
hope that evolutionary theory can give us some clues on which behavioral patterns are essential
for reciprocity to succeed. At the same time, it should be noted that evolutionary models do
not have the aim of exactly predicting cooperation levels. Rather they allow us to explore which
qualitative features of an interaction are favorable to cooperation and which are not.

In this article, we compare the theoretical predictions for the prisoner’s dilemmawith empir-
ical evidence from behavioral experiments with humans. Humans represent an ideal test case
for evolutionary models for various reasons. First, humans develop the capacity for reciprocity
already at an early age [91], and a majority of adults engage in behaviors consistent with condi-
tional cooperation [6, 92]. Second, online and laboratory experiments with human subjects are
straightforward to implement and comparably cheap. Third, the experimental design and the
instructions can be easily tailored to explore the impact of different payoff parameters, stopping
conditions, and learning horizons. For some results, it is also useful that humans are capable to
respond to hypothetical scenarios. For example, by letting participants interact with computer-
ized opponents, one can explore how they would react to certain predefined strategies that are
relevant for the theoretical literature [93–95]. Of course, the resulting insights on human subjects
cannot be easily extrapolated to other species. can they be easily extrapolated to human inter-
actions in real life, where reciprocity is more difficult to quantify (for a recent exception, see [3].
However, due to the flexibility of experiments with human subjects, they can serve as a first test
case to determine which models of reciprocity might be sensible in principle. We use these in-
sights to reflect on the successof evolutionarymodels, and to identify openproblems that require
more work.

The remainder of this article is organized as follows. In the next section, we briefly review the
theoretical literature on the repeated prisoner’s dilemma. We then comment on typical experi-
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mental implementations and describe their impact on observed average cooperation rates. Af-
terwards, we review common conditional strategies observed in human reciprocal interactions,
and we discuss cognitive constraints and their impact on reciprocity. Finally, we provide a brief
overview of reciprocal interactions captured by models different from the standard prisoner’s
dilemma.

2.2 Theoretical background

2.2.1 The repeated prisoner’s dilemma

The prisoner’s dilemma is a game among two players who independently decide whether to co-
operate (C) or to defect (D), as illustrated in Fig.2.1a. Mutual cooperation yields a reward of R to
both players, whereas mutual defection results in the punishment payoff P. If one player defects
whereas the other cooperates, the defector obtains the temptation payoff T whereas the cooper-
ator ends upwith the sucker’s payoff S. For the game to be a prisoner’s dilemma, the payoffs have
to satisfy the inequalities T > R > P > S. When these inequalities hold, game theory tells us that
the rational choice for both players is to defect although mutual defection yields a lower payoff
than mutual cooperation. This is because defection is the only “safe” choice where both play-
ers cannot do anything else that will make them better off. In addition to the above inequalities,
mostmodels also assume that 2R> T + S. This latter assumption ensures that it is the symmetric
outcome of mutual cooperation that yields the highest total payoff, rather than the asymmetric
outcome in which one player cooperates and the other defects.

There are two particular instantiations of the prisoner’s dilemma that are often used as base-
line examples. One is based on the payoffs R = 3, S = 0, T = 5 and P = 1 (Fig.2.1b). From
a theoretical viewpoint, there is nothing special about these particular parameter values, other
than that they were used in the seminal study of [50]. From an experimental viewpoint, however,
it must be noted that all these payoffs are non-negative. While mathematical predictions typ-
ically only depend on the relative magnitudes of payoffs, not on their absolute values or signs,
humans are known to be sensitive to negative framing. The other instantiation is the so-called
donation gamewith payoffsR = b− c, S = −c, T = b, andP = 0, where b> c> 0 denote the ben-
efit and the cost of cooperation, respectively (Fig.2.1c). While these two instantiations satisfy all
of the above inequalities, they do not generate the entire space of all prisoner’s dilemmas (which
instead would require using the general payoffs R,S, T, P ). However, in many cases the specific
payoffs of Axelrod and of the donation game are easier to work with, which explains their wide
use inmany evolutionary models [90].

To explain direct reciprocity, we are interested to see what happens when the game is re-
peated. In a repeated prisoner’s dilemma, we now have a social interaction with multiple en-
counters, such that players interact for several rounds (such iterated interactions are sometimes
referred to as “supergames"). From a theoretical perspective, it is useful to distinguish two dif-
ferent kinds of repeated interactions. They are referred to as the finitely and the indefinitely re-
peated game, respectively. In the finitely repeated game, the two players interact for a commonly
known number n of rounds (Fig.2.1d). Perhaps somewhat surprisingly, the standard prediction
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Figure 2.1: Dynamics of cooperation in concurrent games. Basic setup of the repeated prisoner’s dilemma. (a) In
the prisoner’s dilemma, two individuals (here depicted as blue and red) independently decide whether to cooperate
or defect. Mutual cooperation gives a rewardR to both, whereasmutual defection yields the lower punishment payoff
P to both. If one player cooperates and the other defects, the defector gets the highest payoff T (temptation), whereas
the cooperator gets the smallest payoff S (the sucker’s payoff). (b) Axelrod and Hamilton (1981) studied a particular
variant of this game with payoffs T = 5, R = 3, P = 1, and S = 0, which has become a baseline since. (c) Another
popular representationof theprisoner’s dilemma is thedonationgame, inwhichpayoffsare framed in termsofbenefit
b and cost c of cooperation. In the theoretical literature, it is common to distinguish two variants of repeated games:
(d) In the finitely repeated prisoner’s dilemma, the two players interact for a knownnumber n of rounds. In particular,
in the last round, players are aware that no further interactions will occur. (e) In the indefinitely repeated prisoner’s
dilemma, there is a constant chance that a further round occurs. In particular, players can never be sure that they will
not interact again.

for finitely repeated game is the same as for the (one-shot) prisoner’s dilemma (the one with n
= 1). This result follows from backward induction: in the very last round n, players no longer
have any incentive to cooperate, and hence they should both defect. However, given both play-
ers defect in roundn anyway, it becomes optimal to already defect in roundn -1, and by the same
logic, in all previous rounds. This race-to-the-bottom logic no longer applies in the indefinitely
repeated game (Fig.2.1e). Here, there is no commonly known last round. Instead, after any inter-
action, there is always a probability δ > 0 of a further encounter. According to an equivalent in-
terpretation, onemay also imagine two players who interact for infinitelymany rounds, but who
discount future payoffs with a discount factor of δ. For this reason, indefinitely repeated games
are sometimes also referred to as “infinitely repeated games" [27], even if δ < 1. Once there is
no predetermined last round, reciprocal cooperation becomes feasible. Hence it is the indefi-
nitely repeated game that is considered inmost (but not all) theoretical studies on the evolution
of reciprocity.

Whenwe study behavior in games, we look atwhat strategies players use. In a one-shot game,
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Table 2.1: Some archetypical strategies of the repeated prisoner’s dilemma.

Abbreviation Name Desciption Type Memory 
length

Reference

AllD Always Defect Play defect in all rounds Unconditional 0

AllC Always 
Cooperate

Play cooperate in all rounds Unconditional 0

TfT Tit-for-Tat Cooperate on the first round, then copy the previous 
action of the other player

Conditional 1
Rapoport & Chammah, 

1965; Axelrod and 
Hamilton , 1981

Grim Grim trigger
Cooperate on the first round and continue to cooperate as 
long as the other player cooperates. If the other player 
defects once, then defect forever.

Conditional 1

WSLS Win-Stay/ 
Lose-Shift

Cooperate on the first round. Then if both players chose 
the same action in the previous round, choose cooperate. 
If both player chose different actions in the previous 
round, choose defect.

Conditional 1 Kraines & Kraines, 1993, 
Nowak & Sigmund, 1993

STfT Suspicious- 
Tit-for-Tat

Defect on the first round, then copy the previous action of 
the other player

Conditional 1 Boyd & Lorberbaum, 
1987 

Tf2T Tit-for-Two-
Tats

Cooperate on the first round. Then play TfT but only 
defect after two defections.

Conditional 2

CURE Cumulative 
Reciprocity

Cooperate on the first round. Then on each round, add 
one point to your tally if the other player defected when 
you cooperated. Remove one point if you defected when 
the other player cooperated. Neither remove nor add 
points if both players did the same. When the tally 
exceeds some predetermined threshold, say 3, defect.

Conditional ∞ Li et al., 2022

Note: We describe some strategies that have been highlighted by the previous theoretical literature, either because
they have important properties, or because of they represent interesting extreme cases.

there are as many pure strategies as there are actions: players can either cooperate or defect. In
contrast, when the game is repeated, the number of strategies can be vast (it becomes infinite
when the game is itself infinite). This is because strategies for the repeated game correspond to
contingent plans of action. They tell the playerwhat to do in any round, depending onwhat hap-
pened in all previous rounds. For example, always defect (ALLD) is a strategy. Choose at random
is also one. Cooperate all the time but defect every fourth round as well. Only some strategies
are interesting, either because they are played by human subjects or because of their theoretical
properties. In particular, researchers tend to look at conditional strategies. Unlike the examples
given just above, this set of strategies take into account the co-player’s previous behavior. For ex-
ample, a player may cooperate as long as the other co-player does, then defect every time. This
strategy is calledGRIM [60]. Another example is the strategyTit-for-Tat (TFT),whereplayers sim-
ply copy what the other player did on the previous round.

Because the space of possible strategies of the prisoner’s dilemma is enormous, it is common
in the evolutionary literature to artificially restrict the space of strategies that players can use.
For example, some studies assume that players only react to the outcome of the last round, or
more generally the last k rounds [51, 96–99]. Some other studies assume that individual strate-
gies need to be representable by a so-called finite-state automaton [100]. The states of such an
automaton can be thought of as the players’ different mental states (such as being “satisfied" or
being “angry"). The players’ states in the current round determine which actions they choose,
which in turn determine the players’ state in the next round. A few instances of such strategies,
including the strategies ALLD, GRIM, and TFT, are described in Table2.1. Restricting the players’
feasible strategies (to either have finitememory or finitelymany states) serves two purposes. On
the one hand, it captures that humans rarely act as perfectly calculatingmachines that condition
their behavior on the entire previous history of interactions. On the other hand, these restric-
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tions allow researchers to more efficiently explore which strategies might evolve. For example,
only when players are restricted to choose from a reasonably small set, one can hope to explore
the dynamics with computer simulations.

A final modeling assumption that is often made is that people may commit errors. For ex-
ample, they may commit implementation errors: in situations in which players would usually
cooperate, they might instead defect with some probability ε, possibly because of a “trembling
hand" [101]. Alternatively, it is sometimes assumed that individuals misremember past events,
possibly due to a “fuzzymind" [102]. Again, the assumptionof errors serves twopurposes. On the
one hand, it makes models more realistic. After all, chance events do sometimes interfere with
people’s decisions: sometimes we misinterpret an action, or we simply forget what we meant to
do, or wemeant to do that in another interaction. As a response, people seem to have developed
ways to copewith these different kinds of noise [103, 104]. On the other hand,models with errors
are sometimes easier to tract mathematically and statistically [60]. For example, without noise it
can be difficult to infer a player’s strategy solely based on the player’s previous sequence of ac-
tions. This problem arises, for example, when two players both cooperate in all rounds. Such a
sequence of actions is consistent with the assumption that both players are unconditional coop-
erators (ALLC).However, it is equally consistentwith the assumption that bothplayers cooperate
conditionally (e.g., TFTorGRIM). Gameswith noisemake it easier to distinguish these two cases:
once one player defects (possibly bymistake), the other player can show her true colors.

2.2.2 Theoretical predictions

After defining the rules and parameters of the game, we briefly discuss what kind of predictions
havebeenderived fromthismodel. Thesepredictions canbebasedon several differentwayshow
toanalyze the repeatedprisoner’sdilemma, seeBox1. In the following,we summarize thegeneral
patterns that follow fromthis analysis, both for thefinitely and for the indefinitely repeatedgame.
In each case, we ask: how does a given parameter or assumption affect cooperation? In addition,
we ask: which strategies are players predicted to adopt?

For the finitely repeated game, we have noted earlier that backward induction predicts that
players fully defect eventually. This equilibrium prediction holds for all parameters (i.e., it is in-
dependent of the exact payoffs, or the exact number of rounds). There are, however, alternative
models that predict some cooperation to emerge. These alternative models are based on the as-
sumption that there is always a positive chance that a given co-player is conditionally coopera-
tive — either because the co-player has social preferences [105], or because such strategies are
occasionally introducedbymutations [106]. Once there is even a small chance that the opponent
might cooperate, conditional cooperation can become self-enforcing: Rather than trying to pre-
empt the co-player’s defection, it becomes rational to adopt a conditionally cooperative strategy,
and toonly defect once the co-player did so. Thismechanismcan lead to a substantial increase in
predicted cooperation rates, especially if cooperation yields high benefits and if players interact
for many rounds.

For the indefinitely repeated game, evolutionary and equilibrium arguments suggest that
game parameters should affect cooperation in intuitive ways, see also Table2.2. For example,
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Table 2.2: Basic predictions for the repeated prisoner’s dilemma.

Parameters Effect Desciption Theoretical findings Experimental 
evidence

Benefit
As the benefit of 
cooperation increases, 
cooperation increases.

For a given continuation probability, the game's payoffs determine 
whether or not cooperation is feasible. Intuitively, both theory and 
experiments find that  the higher the benefit in comparison to the 
cost, the more cooperation. 

van Veelen et al., 2012; 
Akin, 2016; Stewart and 

Plotkin, 2015

Dal Bó and Fréchette, 
2019;  Gill and 
Rosokha, 2020;

Continuation 
probability

As the probability of 
another round increases, 
cooperation increases.

Reciprocity is strongly influenced by the length of the interaction, 
or the likelihood that the current interaction will continue. High 
continuation probabliity lead to higher cooperation rates, especially 
for payoffs in equilibrium. 

Hilbe et al, 2015; 
Schmid et al, 2022

 Dal Bó́ and Fréchette, 
2018

Error rate
As noise increases, 
cooperation first increases, 
then it decreases.

Several studies already find a decrease in cooperation at small 
levels of noise. However, when players are allowed a longer 
memory (take more than just the last round into account), they 
learn to be more forgiving to compensate this issue, maintaining 
cooperation.

Zhang 2018
Aoyagi et al., 2003; Fu- 
 denberg et al., 2012; 

Li et al., 2022 

Note: In evolutionary models of the repeated prisoner’s dilemma, themain parameters are the payoffs, the
continuation probability, and the error rate. Here we summarize their predicted effects. The two last columns
provide some references for the suggested relationships.

the larger the benefit-to-cost ratio b/c, the more profitable cooperation becomes, and hence
individuals should be more likely to cooperate [107, 108]. A similar argument holds for the
continuation probability δ. The more likely it is that people interact for many rounds, the more
important it becomes to maintain cooperative relationships, and hence cooperation should
increase (e.g. [109]. The effect of errors is predicted to be ambivalent. Small error rates ε
can sometimes enhance cooperation [110], but frequent errors rates tend to be detrimental
[111]. Moreover, cooperation can be further promoted if interactions are assorted rather than
well-mixed (that is, when players aremore likely to encounter co-players with the same strategy,
[100]).

On the level of predicted strategies, there is a curiousmismatch in predictions. Studies based
on round-robin tournaments (when each contestant, here strategy, competes one-to-one with
all others) often predict reciprocal strategies like TFT to bemost successful (e.g., [50]). TFT coop-
erates if and only if the co-player did so in the previous round. This strict form of reciprocation
can be advantageous in heterogeneous populations; by using TFT, a player can enforce that out-
comes are fair, nomatterwhat strategy theopponent adopts [112]. On theother hand, TFT is very
sensitive to errors. When two TFT players interact, already one (mistaken) defection is sufficient
for mutual cooperation to break down. For this reason, studies based on evolutionary simula-
tions often find that TFT only plays a transient role, and that players eventually learn to adopt
a strategy of win-stay lose-shift (WSLS, [99]). WSLS prescribes to repeat the previous action if
the player’s payoff was at least R, and to switch to the opposite action otherwise. Compared to
strict reciprocation, WSLS has the strong advantage that it is robust with respect to errors. In-
deed, even when one player defects by mistake, two WSLS players recover mutual cooperation
after two rounds. Due to this property the strategy of WSLS is a Nash equilibrium in games with
errors,whereasTFT isnot [97]. As a result,most evolutionary simulationspredict that individuals
should useWSLS, not TFT, to enforce cooperation.
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Box 1: Theoretical methods to explore optimal play in the repeated prisoner’s
dilemma. Most previous research uses one of three different methods to explore opti-
mal behavior in the repeated prisoner’s dilemma: equilibrium analysis, computer tour-
naments, or evolutionary simulations.
Equilibrium analysis is a direct application of game theory and uses analytical meth-

ods to characterizewhichNash equilibria are possible [113]. These equilibria are impor-
tant because they give us some indication about which outcomes may occur in princi-
ple (strategies that are not equilibria are unlikely to persist). In the case of indefinitely
repeated games, however, the equilibrium approach is surprisingly inconclusive. The
celebrated “folk theorem" guarantees that almost any outcome might arise as an equi-
librium if only the continuation probability is sufficiently large. The only requirement is
that each player at least receives the mutual defection payoff P (see, e.g., [45]. In some
cases, however, the required continuation probability might be prohibitively large in
practice.
Round-robin tournaments represent another way to gain insights into the repeated

prisoner’s dilemma. Here, the assumption is that we can pit all strategies against each
other and see which ones finish with the highest payoffs. This approach has been pio-
neered by [50], who found Tit-for-Tat (TFT) to succeed. Their study has since been re-
peated (and challenged) by several other groups [114, 115]. In particular, whether or not
TFT succeeds depends on the strategies that are allowed to take part in the tournament,
and on the game’s parameters— such as the error rate [49].
Finally, through evolutionary simulations, researchers can testwhich strategies emerge
in evolving populations. Here, researchers assume that individuals repeatedly play
against other populationmembers, and successful players aremore likely to reproduce.
By exploring which strategies evolve eventually, researchers aim to identify behaviors
that optimally support cooperation. Such evolutionary simulations often predict that
WSLS or related strategies succeed [51, 96, 99, 116]. The evolutionary approach is natu-
rally connected to the other two. For example, in large populationswith strong selection
and rare mutations, the strategies that emerge correspond to the Nash equilibria of the
game [117]. On the other hand, whenmutations are frequent, such that all strategies are
played in almost equal frequencies, evolution favors the strategy that would also suc-
ceed in the round-robin tournament [118].

2.3 Impact of design choices and parameters on human cooperation

After discussing the central predictions of the theoretical literature, we compare them to the ex-
perimental evidence. Herein, we focus on data from controlled experiments with human sub-
jects. These subjects have either been invited to interact in games in a laboratory, or they have
been recruited through online platforms like Amazon Turk or Prolific [119]. In each case, partici-
pants are asked to repeatedlymake decisions in a repeated prisoner’s dilemma and they are paid
inproportion to theirperformance in thegame(for similar evidenceon the repeatedpublicgoods
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game, see for example [72]. Moreover, in some of the studies, individuals do not only engage in
one repeated prisoner’s dilemma (one supergame). Rather they consecutively act in several su-
pergames with changing partners. In this way, the corresponding studies can disentangle two
concurrent effects that both lead to behavioral change: strategic conditional play (within each
supergame) and learning (across supergames).

2.3.1 Dynamics in the finitely repeated prisoner’s dilemma

For our summary of the experimental literature, we start with the finitely repeated prisoner’s
dilemma. Here, participants know the length of the game beforehand. Experimental outcomes
seem to critically depend on how many rounds participants play. When there are only a few
rounds, like two rounds or four, people seem to learn the logic of backward induction. As a re-
sult, they eventually start to defect early on in the game [46]. This picture changes, however, once
there are more rounds. In that case, subjects seem to robustly cooperate until 3 – 4 rounds prior
to the known ending of the game; only then there is a notable drop in cooperation [120, 121]. Co-
operation does not seem to further unravel even if subjects havemany opportunities to learn the
specificsof thegame. Inanonlinegame,participants interacted in10–roundprisoner’sdilemmas
with changing co-players over 20 days. Even by the end of the experiment, cooperation rates in
each game remained high until round eight [122]. Such results impose strong limits on backward
induction. However, they agree with models suggesting that people cooperate conditionally be-
cause they assumeothersmight do so aswell [105, 106]. In linewith this view, cooperation is even
more pronounced if participants are told that some of their interactions may take place against
computerized opponents who implement TFT [123].

2.3.2 Dynamics in the indefinitely repeated prisoner’s dilemma

Next, we consider experiments on the indefinitely repeated prisoner’s dilemma. After every
round, the game will stop there with some (known) probability 1 – δ, or continue for at least
one more round with probability δ. If the game continues, the same termination rule applies
to the new round. A probability of δ = 0 means there is no other round, whereas a probability
of 1 means there will be another round for sure. A probability of 0.5 means that there is a 1/2
chance of another round, and hence the expected number of rounds is 1/ (1 – δ) = 2. All existing
theoretical models suggest that cooperation ought to become more likely as δ becomes larger.
Confirming this basic expectation, [27] find in an analysis of 15 new studies that cooperation
increases with the probability of another round.

In addition to the continuation probability, cooperation is predicted to depend on the ex-
act payoff parameters of the prisoner’s dilemma. Most often payoffs are chosen to test a mathe-
matical model [124]. A specific combination of continuation rule and payoff matrices allow for
different possible equilibria. Economists are interested to see how the availability of different
equilibria affects behavior [27]. But even if the set of possible equilibria is unchanged, different
payoff matrices can lead to different choices from players. For example, research suggests that
cooperation ismore abundantwhen it is risk-dominant; in this case, risk-dominancemeans that
players prefer to cooperate when they think it is equally likely that the co-player adopts ALLD or
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GRIM [125, 126]. In particular, a higher reward R leads to more cooperation [127], and a higher
temptation T leads to less cooperation. [128] noted that when the reward is low, players aremore
likely toopenwith adefectionon thefirst round. This indicates thatwhen the gains frombilateral
cooperation are not very high, players are more suspicious. They start by defecting even though
they may still try to establish cooperation afterwards. In addition to these expected effects of
payoffs, we note that there aremany factors that can influence cooperation in games playedwith
human subjects that are difficult to account for with standard evolutionary models. We already
mentioned the effect of negative payoffs, as individuals are notoriously loss averse [129]. But also
the value of the payoffs, which can bemanipulated through the conversion rate into real money
payments, can have an effect.

The last component that has a significant impact on behavior is the addition of noise through
errors. Experimentally, errors can be implemented by having a choice be executed as its oppo-
site. While any participant can find out that their own actions have beenmisimplemented, they
have no way of finding out whether the co-player’s choice was intentional. Instead, participants
are only informed about the general rate with which errors occur. The presence of such noise
changes how people play and which strategies they use. Already with a small level of noise, co-
operation decreases [130–132]. This might be because strategies in treatments with noise tend
to look further backward in time. That is, players condition not only on the previous round but
also on older rounds. For example, players in [131] stated that they tended to give their co-player
a benefit of the doubt. They would attribute the first defection to an error, and they would only
start defecting themselves after the co-player defectedmultiple times. The authors describe this
“leniency" and “forgiveness" as key components of strategies in noisy treatments.

2.4 Evolving strategies

After having looked at the emerging cooperation rates, in the next stepwewish to describewhich
strategies participants use. This endeavor, however, is non-trivial. After all, strategies are contin-
gent plan— they tell a playerwhat to do after any possible history of previous play. In contrast, in
experiments participants oftenmakedecisions for oneparticular history, whichmakes it difficult
to estimate how they would react to alternative scenarios.

In the literature, therehavebeendifferentways todealwith this problem. First, insteadof ask-
ing participants to choose an action each round, we can ask them to choose their repeated-game
strategies. Participants are informed that these elicited strategies are thenused todeterminehow
they act in the subsequent experiment. This is the so-called strategy method [133]. Here, partic-
ipants either chose from a menu of predefined strategies, or they define their memory-1 con-
ditional strategies (i.e., for any outcome of the previous round, participants define with which
probability they wish to cooperate in the next round, see [127, 128]. This method has the advan-
tage that the results are clear; we can see which existing strategies are preferred. However, we
lose a lot of nuance as individuals are usually more messy and hardly stick to one such strategy
completely. By letting subjects choose from a finite strategy set, we also risk missing a strategy
that would be popular had it existed in the menu of possible strategies. The other, more com-
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mon approach is to infer strategy from actual choices [27, 121, 122, 126, 131, 132, 134–138]. This
method is more cumbersome and different techniques exist. One is to use Bayesian inference
to ask which strategy (out of a given set) is most likely to reproduce a participant’s observed be-
havior. Because the set of possible strategies is determined by the researcher, this approach is
subject to similar criticisms as the strategy method. The other option is to estimate conditional
responses based on previous play (most often assuming that individuals react to the last round
only). This approach, however, requires that participants in fact experience all possible game
outcomes for which a response is to be estimated.

2.4.1 Strategies in the finitely repeated prisoner’s dilemma

Afterhighlighting thedifficulties that arisewhenestimating theparticipants’ strategies, in the fol-
lowingwediscusswhich conclusions havebeendrawnwith the abovemethods. In thefinitely re-
peatedprisoner’s dilemma, conclusions are surprisingly clear. Here, thedata suggests that a large
fraction of participants canbe accurately describedby aparticular class of conditional strategies.
For a game of length n, these strategies define a threshold of rounds k ≤ n up to which they co-
operate — unless the co-player defects before, in which case they defect for the remainder of
the game [121, 122]. These estimated strategies are in good agreement with previous models of
cooperation in finitely repeated games [105, 106].

2.4.2 Indefinitely repeated prisoner’s dilemma

In games in which there is always a probability of another encounter, results are more mixed. It
seems that the dominating strategies are TFT (including some variants thereof), ALLDandGRIM
[27, 126, 128, 131, 136, 138, 139]. Papers that allow for longermemory either find that it is not nec-
essary [128], or that players simplyprefer amore lenient versionof TFT. This canbemodulatedby
the payoffs chosen as demonstrated by [127]: the higher the reward, the more lenient the strate-
gies. One drawback of these results, especially when strategies are estimated from behavior, is
that when players cooperate from beginning to the end of an interaction, there is no way to dis-
tinguish among several possible strategies. Adding noise can force amore diverse history of play,
which makes it easier to tell strategies apart. When that is the case, longer-memory strategies
andmore lenient strategies becomemore popular [131, 132]. Surprisingly, however, these exper-
iments give little support to WSLS, which usually emerges in evolutionary simulations [96, 99].
These observations suggest that when evolutionary simulations predict cooperation to evolve
based onWSLS, theymight not reflect the true dynamic that underlies human cooperation. One
aspect of WSLS that might be particularly counter-intuitive to human subjects is how it contin-
ues after a deviation from mutual cooperation (possibly because of an error). In that case, the
strategy comes back to co- operation only after the interaction fell intomutual defection, not be-
fore. As such it is a little bit more forward looking than GRIM or TFT, which either never return
to cooperation (GRIM), or only after the other player cooperated (TFT). This subtlety of WSLS
might make it hard for humans to understand the true intentions of someone using this rule of
behavior, even though it makesWSLSmore robust to errors.
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2.5 Memory constraints

Asdiscussed above,memoryplays a key role in the strategies people play in aprisoner’s dilemma.
When strategies are constructed, we have a choice over how much memory we allow. Real hu-
mans are not so straightforward and simple. Already when estimating strategies, some papers
limit memory by only considering memory-1 strategies. To some extent, there is a good argu-
ment to be made to limit memory, as many people would fail to remember exactly what hap-
pened in all previous rounds as length increases. In addition, in a real-life setting, interactions
can spanweeks,months, years, and people interact withmany other interaction partners during
that time-frame. All of this places some constraints on what can be realistically remembered of
the details of the interaction.

A few papers have tested memory for cooperative actions explicitly. [102] and [140] have the
participants take part in a memory task where pictures of hypothetical partners as well as their
action in a hypothetical game is displayed on screen. Treatments vary the number of total part-
ners in amemory set or the number of “in-between" partners between two viewings of the same
partner [102]. These studies suggest that overall,memory is extremelypoor. Moreover, error rates
further increase drastically as the number of “in-between" partners increases. As a consequence,
when the researchers perform evolutionary simulations based on these error rates, the dominat-
ing strategies tend to be ALLD and GRIM. Interestingly, the total number of different partners
does not influence memory. The authors conclude that traditional conditional strategies such
as TFT are not realistic because in a setting with multiple partners, memory is not sufficiently
accurate.

However, these studies look at memory without having subjects actually interact in a game.
The results are quite different when participants must recognize and type hypothetical partners
that they actually played a prisoner’s dilemmawith (computer partnerswith photographs). [141]
find thatmemory is highly accurate for recognition and categorization as cooperator or defector
both immediately and 1 week after playing. The amount of cooperation with each typematches
participants’ memory performance: subjects cooperate less with partners that defected before.
They also highlight that memory is best for rare types in the population, rather than best for de-
fectors as previous literature has suggested. Similarly, [142] find that memory for both defec-
tors and cooperators is accuratewhenplaying a repeated prisoner’s dilemma against 16 different
computer partners they encountered six times. These studies show that even if exact actionsmay
notbe rememberedperfectly, humansubjects have anaccurate feelingof the kindofpartner they
are facing.

Thesepapers testedmemory for partners and their actions. Another aspect ofmemory is sim-
ply how a high load might affect cooperative behavior and strategies. [135] investigated if strat-
egy complexity is affected by memory load, which they find to be the case. When subjects play
amemory game in parallel to the repeated prisoner’s dilemma, theymove from playingWSLS to
TFT. However, the methods of this paper might not pass the test of time. Interactions were not
anonymous and the entire lab saw the decisions of the participants. A more recent experiment
by [143] using the same distracting memory task finds that low load subjects are better able to

29



Chapter 2

condition their strategy on previous outcomes. Players in both the low and high load condition
conditioned their strategies onprevious actions, but only low loadplayers seem to consider older
actions.

These empirical results demonstrate that individuals remember the information they need in
order to reciprocate cooperation. When the interaction is real, they are attentive to player types
even when encountering dozens of multiples partners in one session and can remember these
playersaccurately fordays. At the same time,when thedemandsonmemoryarehigh, player tend
to use simpler strategies but still maintain a similar level of cooperation. Sophisticated strategies
that require long memory do not seem crucial to the emergence of reciprocity. Instead, simple
rules of behavior relying on remembering types of players is often sufficient.

2.6 Beyond the standard prisoner’s dilemma

In the previous sections, we restricted our attention to a particular class of experiments on reci-
procity. In all cases, participants interacted with a fixed co-player in a prisoner’s dilemma over a
series of multiple (discrete) rounds. In the following, we briefly mention two natural extensions
that highlight the particular flexibility that researchers have when conducting experiments with
humans. One extension deals with cooperation in networked populations; the other extension
explores how people cooperate when theymake decisions in real time.

Most human interactions happen within a social network where individuals have relation-
ships with many others. Abundant theoretical work suggests that such non-trivial interaction
structures can have an impact on cooperation through the mechanism of network reciprocity
[144, 145]. This form of reciprocity argues that different network shapes and connectivity pat-
terns allow players to cluster into cooperative groups. This natural occurring assortment makes
cooperators less susceptible to exploitation. Several papers have tested this theory with human
players in large to very large networks [146–148]. Assuming that individuals have to choose the
same action (cooperate or defect) against all their neighbors (as in the models), these studies
find little evidence of clustering. Moreover, they find a similar decay in cooperation independent
of the size and exact shape of the network, unless the benefit of cooperation is sufficiently large
[149]. As for strategies, a re-analysis of the three main papers found that players seem to ignore
the payoffs of their neighbors when making decisions. Instead they simply chose their action
based on howmany cooperators are among their neighbors, as well as what they themselves did
in theprevious round [92]. These resultshighlight the importanceofdirect reciprocity, evenwhen
interacting with several connected players. However, when the number of interaction partners
is more than just one, cooperation systematically decays, which is a common theme in multi-
player social dilemmas [72, 150]. Evenwhen players use conditional cooperation and attempt to
reciprocate, when the number of partners is too large, they struggle [151].

However, most social networks are not static. Humans are usually able to end relationships
with defectors and instead initialize interactions with other cooperators. Direct reciprocity in
large networks of connected individuals can lead to cooperation if players can adjust their ties.
To address this, [152] and [153] investigate cooperation in dynamical networks. Here, players
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can cut their link to their neighbors when they are not satisfied with the relationship. Under this
setup, cooperation is greatly enhanced as players learn to break ties with defectors. Moreover,
this positive effect persists even if participants need to pay a substantial cost to cut ties [154].
These results suggest that the mere possibility to quit an interaction is effective in promoting
cooperation.

Dynamic networks can be realized in many different ways. [155] allowed players to choose
their new partner. Any new link had to be accepted by both parties and there was no upper limit
on the number of connections of a player. The authors find that if the benefit of cooperative rela-
tionships is large enough compared to the cost of cooperating with a defector, players make the
rational decision to create new cooperative ties rather than sever defective ones. Interestingly,
this leads to a proliferation of defectors and lowers overall cooperation in the network. [156] look
at players’ movements in a grid where they can choose their location relative to their neighbors.
They find that cooperators do indeed cluster together. However, those cooperators at the bound-
aries get tired of being exploited by their defecting neigbors and start defecting, too. This leads
cooperation to unravel. Nevertheless, in the vastmajority of network experiments, subjects have
to choose one action for all neighbors (see [152] , for an exception). This design choice does not
allow for proper one-to-one direct reciprocal relationships and does not treat the interactions as
independent. The results of those studies could be very different if subjects were allowed to give
targeted responses to each neighbor.

Another interesting variation on the classical prisoner’s dilemma arises when people can
make their decisions in real time [134, 150]. In corresponding experiments, players no longer
make decisions in well-defined rounds. Rather they can choose with which action to start
(cooperation or defection). After that, the game unfolds in continuous time, and people can
revise their chosen action at any given point. Compared to the classical setup, this experimental
design has several features that make it particularly attractive. For one, games tend to last
shorter; players no longer need to make a sequence of decisions after which they need to be
informed of the co-player’s last decision. Rather decisions aremade and information is provided
in real time, such that supergames are typically finished in 1 or 2 min. At the same time, results
from continuous-time experiments seem to be comparable to the classical setup. For example,
for the finitely repeated prisoner’s dilemma, [134] find that individual behavior is consistentwith
a conditional cutoff strategy. Participants cooperate until almost the end of the game, unless
their opponent defected first, recovering similar results in the conventional repeated prisoner’s
dilemma [121, 122].

2.7 Discussion

Over the last decades, the repeated prisoner’s dilemma has become the standard model for the
evolutionofdirect reciprocity. It encapsulates the idea that individuals canmaintain cooperation
when they repeatedly interact in stable pairs, or small groups. By now, there is a rich theoretical
literature that describes inwhich environments cooperation is to evolve, andwhich strategies are
most effective in sustaining cooperation. In this article we compare these theoretical results to
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the empirical literatureonhumancooperation. Because the empirical literatureon theprisoner’s
dilemma is vast, here we only present a selection of works. For a more comprehensive overview
on the empirical literature, we recommend the invaluable resource of the cooperation databank
[157], as well as other review articles [27, 158]. Perhaps somewhat surprisingly, our comparison
shows that the predictive value of theoretical models is somewhat ambivalent.

On the onehand,models seem todescribe reasonablywell forwhichparameters cooperation
ismost likely to evolve. Inparticular, the effect of parameter changes is oftenaccuratelypredicted
by these models: for example, increasing the expected length of the game does tend to increase
cooperation; and similarly, increasing the payoffs formutual cooperationmakes people on aver-
age more cooperative. On the other hand, models seem to be far less successful when it comes
to predict the particular strategies that humans would use. For example, in indefinitely repeated
games (those without a known end), evolutionary models often stress the success of strategies
like WSLS [51, 96, 99, 117, 159]. In fact, this strategy has a number of appealing theoretical prop-
erties. It can resist invasion by unconditional cooperators, it is robust with respect to occasional
errors and mistakes, and it is evolutionary stable when cooperation is sufficiently valuable[97].
However, most empirical studies find little evidence for behavior consistent with WSLS, even in
parameter regions in which this strategy is supposed to be strongly favored (e.g., [131, 132].

There is anumberof reasons thatmight account for thismismatch. For example, evolutionary
simulations are often run under rather restrictive parameters assumptions. Most importantly,
many studies assume thatmutations are rare, which allows researchers to simulate evolutionary
processesmore efficiently [160]. Whenmutations are assumed to be rare,most populations tend
to bemonomorphic, which favors the evolution of equilibriumstrategies likeWSLS.On the other
hand, data fromexperiments suggests that there is quite some variation in humanbehavior [131,
132]. In populationswithmany different strategies, more reciprocal strategies like TFTmay have
an advantage, because they are less prone to be exploited by any given opponent.

Another limitation ofmost evolutionarymodels is that people are often assumed to play each
repeated game in isolation. In contrast, most human interactions do not happen in a strict unin-
terrupted sequence. Rather we engage in games with one individual at one time, only to interact
with another groupmember a fewminutes later. To date, there is little theoretical work that can
describehow individuals keepanoptimal recordof their social interactions, andhow they should
react based on their record. While our discussion of memory constraints suggest that humans
tend to remember the general nature of their co-player, there might be interesting interactions
between the exact way how peoplememorize past interactions, and which strategies they use in
response.

More generally, much of the previous research, both theoretically and experimentally, is
restricted to constrained strategy sets. In particular, researchers often focus on memory-1
strategies, or on some of the simple strategies taken from the classic set described in Table 1.
Evenwhenmore complex strategies are considered, they are typically longermemory extensions
of essentially the same rules (for example, [131], considers nine variants of TFT out of a total
set of 20 different strategies used in their analysis). Research might benefit from testing a more
heterogenous set of strategies when investigating human behavior in the repeated prisoner’s
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dilemma. These strategies should be explored in different environments, with different error
rates and game lengths. [161] and [136] specifically look at very long games and find that the way
players punish, exploit, or forgive can be predicted by how long the interaction has the potential
to last. Longer games and the presence of errors allow for richer behaviors and strategies, and
couldmake for interesting future research into the dynamics of reciprocity.
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Chapter 3

Cooperation in Concurrent Games

This chapter is currently a draft manuscript titledDynamics of cooperation in concurrent games.
It is supported by a supplementary information in the appendices, with the details of the evo-
lutionary simulations, empiricalmethods, statistical analysis, and screenshots of the online task.
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Abstract

Humans frequently encounter situations in which individually optimal decisions run counter to
the interests of the group. To navigate such social dilemmas, people often use simple heuristics
based on direct reciprocity. They cooperate when others do and stop cooperating once interac-
tion partners defect. Yet most of this work assumes that individuals only interact in one game
at a time, or that they treat each game as independent. However, in most real examples, people
engage in several games concurrently. In concurrent games, the outcome of one interactionmay
affect how individuals subsequently behave in a different one. Herein, we introduce a theoretical
framework to study the resulting cross-over and spill-over effects. Individuals repeatedly engage
in two independent stage games, eitherwith the sameorwithdifferent partners. They adapt their
strategies over time according to an evolutionary learning process. We find that individuals of-
ten link their behavior across the two games. This linkage is particularly pronounced when we
allow for cognitive constraints, such as imperfect recall or narrow-bracketing. Our theory shows
that linkage can have both a positive or a negative effect on cooperation, compared to the stan-
dard case of independent games. An additional behavioral experiment, however, suggests that
the overall effect of two concurrent games on cooperation tends to be negative. These results
highlight how different kinds of strategic motives and spillovers jointly affect and interfere with
reciprocity in concurrent games.

3.1 Introduction

Direct reciprocity is one of the core mechanisms enabling cooperation among unrelated indi-
viduals [14, 16]. This mechanism is at work when neighbors take turns picking up each others’
children from school, when students correct each others’ work, or when couples share domestic
chores. Experimental work shows that reciprocal relationships emerge naturally if interactions
occur repeatedly, provided theprobabilityof anotherencounter is sufficientlyhigh [27, 136]. Rep-
etition allows individuals to condition their current actions on their interactionpartner’s past be-
havior [162]. When they adopt conditionally cooperative strategies such as Tit-for-Tat [50, 163,
164], Generous Tit-for-Tat [165, 166], or generalizations thereof [132, 167–171], even selfish op-
ponents have an incentive to cooperate. Usingmodels of evolutionary game theory, researchers
have explored which kinds of strategies evolve, and in which environments reciprocal coopera-
tion is stable [100, 107, 116, 117, 172–175].

Yet most of this work assumes that individuals either only engage in one repeated game at a
time, or that they treat each game as independent. This means that both theoretically and ex-
perimentally, each ongoing strategic interaction is studied in isolation [27]. This assumption of
independence greatly facilitates a theoretical analysis. It allows researchers to consider a compa-
rably small set of possible strategies [176]. Once this assumption is dropped, a player’s strategy
does not only depend on the opponent’s previous actions in the respective game any more. In-
stead, it may depend on the previous actions of all opponents, across all games. As a result, the
cooperation dynamics needs to be described at a different level: instead of the standard game-
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perspective,models nowneed to take apopulation-perspective. This change inperspectivedras-
tically increasesamodel’s computational complexity [177]. Tocircumvent thesedifficulties,most
research is based on the implicit assumption that by analyzing different games individually, one
can extrapolate (or at least approximate) how people behave when they engage in many games
in parallel. Our aim is to explore to which extent this assumption is justified. We make two key
contributions. First, we refute, both theoretically and experimentally, that people generally treat
their different games as independent. Second, by taking into account linkage between games,
we introduce a novel theoretical framework that gives rise to a richer and more realistic class of
game-theoretic models.

Our inquiry isbasedon thenotionof a concurrent game. Aconcurrent gameariseswhenplay-
ers engage in several, formally independent, repeated games in parallel. Players may have their
different repeated games eitherwith the same orwith different interaction partners (Fig.3.1). We
ask to which extent behavior in the concurrent game can be inferred from the constituent re-
peated games. While this question has received some attention before, respective models typi-
cally take a static equilibrium approach [178, 179]. This research shows, for example, that if play-
ers implement an equilibrium for each isolated repeated game, the resulting strategy profile also
constitutes an equilibrium of the concurrent game. When all games are identical, symmetric,
and played with the same partner, one can even derive a stronger result. In that case, full coop-
eration is feasible in the concurrent game if and only if it is feasible in each repeated game [178].
In the Supplementary Information, we provide a more detailed summary of the relevant litera-
ture. These studies greatly illuminate which behaviors are possible in equilibrium. Yet, they do
not address which of these equilibria (if any) are most likely to emerge when strategies are not
consciously chosen, but learnt over time. Moreover, this existing work does not attempt to study
the consequences of several cognitive constraints and behavioral heuristics thatmight affect hu-
man play in concurrent games. For example, effects arising from imperfect recall [102, 135, 141],
or from a drive to act consistently, may naturally introduce spillovers between games. Once such
spillovers occur, behaviormay spread fromone game to another [180]. Herein, we study a simple
but comprehensive theoretical framework to describe these effects.

Weconsider three idealized scenarios, towhichwe refer as treatments. In all treatments, play-
ers engage in two different repeated social dilemmas. The two dilemmas either result in a high
or a low benefit of cooperation (Fig.3.1a). The three treatments differ in whether or not players
treat each repeated game as independent, and in whether or not the two games are played with
the sameorwithdifferent interactionpartners. In thefirst treatment, the control, we consider the
baseline case typically studied in the literature (Fig.3.1b). Here, individuals play each repeated
game in isolation. Hence they treat each repeated game as independent by design. Second, in
the same-partner treatment, the two games are played simultaneously, and with the same oppo-
nent (Fig.3.1c). This setuphas beenpreviously termed a ‘multichannel game’ [176], since players
can interact and influence each other through multiple channels. As a result, players can react
to an opponent’s defection in one game by defecting in the other. In this way, we aim to capture
a players’ strategic motives to link their behavior across different games. This linkage may pro-
videplayerswitha stronger leverage toenforce cooperation. Third, in thedifferent-partners treat-
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Figure 3.1: A framework of concurrent games. a, In concurrent games, players engage in
two or more games simultaneously. Herein, we consider the case that players engage in two
games, one with a high benefit of cooperation (‘high game’) and one with a smaller benefit
(‘low game’). Each payoffmatrix describes the payoff of the player who picks a row, depending
on the co-player’s choicewho picks a column. b, In the control treatment, players only engage
in one repeated game at a time, as usually assumed in the literature. c, In the same-partner
treatment, each player engages in both games but with the same co-player. d, In the different-
partners treatment, players engage in both games but with different co-players. e,Concurrent
games allow for linkage. Players might respond to a co-player’s defection in one game by de-
fecting in both games. Such linkage may arise both in the same-partner treatment (depicted
here) and in the different-partners treatment.

ment, individuals play the two games simultaneously, butwith a different co-player in each game
(Fig.3.1d) . By comparing the control with the other treatments, we explore in which case play-
ers treat each game as independent. By comparing the same-partner with the different-partners
treatment, we explore how strategic motives contribute to the evolution of cross-game effects.
Finally, with various model extensions, we study the impact of several plausible cognitive con-
straints and behavioral heuristics.

In the same-partner treatment, and to a far lesser extent in the different-partners treatment,
we find that a player’s behavior in one game is linked to the previous outcome of the other game.
This linkage can either result inmore or less cooperation compared to the control, depending on
the treatment and on the presence of cognitive constraints. To further explore these theoretical
results, we have run a behavioral experiment that implements our three treatments, based on
a similar design as in previous empirical studies [181, 182]. In the experiment, both the same-
partner treatment and the different-partners treatment result in less cooperation than the con-
trol. For the same-partner treatment, our empirical data not only rules out that players treat each
game as independent, but also calls into question a previous prediction that concurrently ongo-
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ing games among the same partners would enhance cooperation [176]. Our results have impor-
tant implications for the effectiveness of direct reciprocity. People in their daily lives often en-
gage in several games concurrently. For such concurrent games, we find that strategic motives,
spillovers, and cognitive constraints can easily affect, and often undermine, cooperation.

3.2 Results

3.2.1 Amodel of concurrent games

We study cooperative interactions based on a variant of the prisoner’s dilemma, the donation
game [60]. In this game, players either cooperate (C) or defect (D). Cooperation means to pay
a cost c for the partner to get a benefit b. Defection means to pay no cost and for the partner
to get no benefit. We consider two different implementations of this game (Fig.3.1a). In one
implementation, the benefit is high, and we accordingly speak of the high-benefit game, or high
game (H). In the other implementation, the benefit is smaller, and we call it the low game (L).
Assuming bH ≥ bL > c throughout, the dominant action if players only meet once is to defect in
either game. However, we assume players interact for infinitely many rounds (an extension to
finitely repeated games will be discussed later). We refer to each iterated donation game as a
repeated game. When players engage in both donation games in parallel, such that playersmake
two choices each round (one for each game), we speak of a concurrent game. A large literature
shows that cooperation is feasible in repeated games [162]. This result naturally extends to
concurrent games. Here, we are interested in how likely cooperation is to evolve in concurrent
games, and which strategies are used to sustain it.

To this end, we discuss three different idealized scenarios (treatments) of how these games
unfold. In each case, we consider four players. In the control treatment, players only engage in
a single repeated game at a time, with a fixed partner (Fig.3.1b). One pair of players repeatedly
engages in the high game, whereas the other pair plays the low game. Players use reactive strate-
gies to make their decisions. This means that a player’s choice whether or not to cooperate in a
given round only depends on the co-player’s decision in the previous round. Reactive strategies
take the following form [60],

p = (pkC , p
k
D)∈ [0, 1]2. (3.1)

Here, pka is the player’s probability to cooperate in game k ∈ {H, L}, depending on the co-player’s
previous action a ∈ {C,D}. For example, a player with strategy p = (1, 0) implements Tit-for-
Tat (TFT). A player with p= (1, pD) and 0<pD < 1 uses Generous Tit-for-Tat [GTFT, see 165, 166].
Finally, a player with p=(0, 0) defects unconditionally (ALLD).

We contrast this control treatment with two different kinds of a concurrent game. In the first
one, the same-partner treatment, players are again matched with a single partner, but the two
players interact in both repeated games simultaneously (Fig.3.1c). In particular, their decision
in either gamemay depend on how the co-player acted in the other game. Reactive strategies for
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the same-partner treatment take the form

p = (pHCC , p
H
CD, p

H
DC , p

H
DD; pLCC , p

L
CD, p

L
DC , p

L
DD)∈ [0, 1]8. (3.2)

Here, pkaHaL is the player’s probability to cooperate in game k∈{H, L}, depending on the co-player’s
previousdecisions inboth thehighand the lowgame, aH, aL∈{C,D}. We say sucha strategy treats
both games as independent if the entries satisfy

pHCC =pHCD, p
H
DC =pHDD and pLCC =pLDC , p

L
CD=pLDD. (3.3)

That is, the strategy only reacts to the co-player’s previous action in the respective game, irre-
spective of the outcome of the other game. In the case of independence, strategies of the control
treatment naturally map to strategies in the same-partner treatment. For example, if a player
in the control were to use TFT in the high game and ALLD in the low game, that player could
implement p = (1, 1, 0, 0; 0, 0, 0, 0) in the concurrent game. Thus, the same-partner treatment
permits all strategic behaviors that are feasible in the control. In general, however, the set of
feasible strategies is strictly larger in the same-partner treatment. For example, players with
p = (1, 0, 0, 0; 1, 0, 0, 0) only cooperate in either game if the co-player previously cooperated in
both games. When the constituent games are not treated as independent, we say players link
their behavior across games. Accordingly, we also speak of linkage. Examples like the one above
illustrate that linkage might arise because of strategic motives. By doing so, players may be
able to enforce cooperation more effectively, by threatening to defect in both games after any
deviation of the co-player (Fig.3.1e).

The last treatment is the different-partners treatment. Here, players again engage in both the
high and the low game simultaneously, but now with different co-players (Fig.3.1d). Reactive
strategies for this treatment have the same complexity as in the same-partner treatment, see
Eq. (3.2). Also the definition of independence is the same, see Eq. (3.3). From a strategic view-
point, however, this treatment differs from the same-partner treatment. With different partners
involved, there is less of an immediate strategic motive to link behavior across games, unless
players wish to adopt a strategy of community-enforcement [183, 184].

For all three treatments, we can compute the players’ payoffs explicitly. To this end, we
represent the interaction as aMarkov chain that depends on the players’ strategies. We describe
the respective procedure in the Methods and in the Supplementary Information. However,
we do not regard the players’ strategies as fixed. Rather, as usual in evolutionary game theory,
players update their strategies over time based on their payoffs. Tomodel this updating process,
we use introspection dynamics [64, 185]. According to this process, players regularly compare
their current payoff with the payoff they could have obtained by using a (randomly sampled)
alternative strategy. The higher the payoff of the alternative, themore likely players are to switch.
If we apply this learning process to the three treatments, and if we artificially require players
in the last two treatments to treat each repeated game as independent, all treatments yield
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equivalent results (Fig. S1). In particular, all treatments recover the qualitative findings of the
previous literature on direct reciprocity [90]. In the following, we systematically explore the
effect of linkage, by no longer imposing that players treat each game as independent.

3.2.2 Introspection dynamics of concurrent games

To get a first impression, we simulate the learning dynamics in the three treatments for fixed
parameter values (in particular, we set bH = 5, bL = 3 and c= 1). Results in the control treatment
recover the conventional wisdom established by previous work in direct reciprocity [90]. Repeti-
tion allows players to achieve some cooperation, and players aremore cooperative when there is
ahighbenefit (Fig.3.2a). These intuitive results differ fromwhatwefind inbothother treatments.
In the same-partner treatment, individuals frequently cooperate in both games (Fig.3.2b). These
results confirm work by Donahue et al. [176] where players adopt strategies based on social
comparisons. In contrast, in the different-partners treatment, cooperation rates are consistently
low (Fig.3.2c). Because all three treatments yield equivalent results if players are artificially
restricted to treat each game as independent (Fig. S1), these results indicate that linkage affects
the cooperationdynamics. This effect is predicted tobe favorable in the same-partner treatment,
whereas it is detrimental when people play their games with different partners.
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Figure 3.2: Dynamics of cooperation in concurrent games. a-c,We use introspection dynamics [64, 185] to model
how people learn to cooperate in the three treatments. Here, we show average cooperation rates for both the high
and the low game over time, averaged over 100 simulations. In the control treatment, there is substantially more co-
operation in the high game than in the low game, as expected. In the same-partner treatment, players are generally
more cooperative, whereas in the different-partners treatment, players tend to cooperate less. d-f,We have recorded
which strategies players use when they cooperate in both games (at least 2/3 cooperation rate). In the control treat-
ment, players adopt strategies consistent with Generous Tit-for-Tat [165, 166]. In the same-partner treatment, they
only cooperate if the co-player previously cooperated in both games. In the different-partner treatment, individuals
are still most cooperative after receiving cooperation in both games, but there is overall less cooperation (and very
little linkage). g,h,Our qualitative results remain valid for a wide range of parameter values (see also Fig. S3).
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To explore the magnitude of linkage, we record the players’ strategies during the learning
process. In Fig.3.2d-f, we report results for cooperative players (those with a cooperation rate of
at least 2/3 in each game theyparticipate in). In the control treatment, suchplayers use strategies
similar to Generous Tit-for-Tat [165, 166], as one may expect. They tend to fully reciprocate a
co-player’s cooperation, and they show some leniency with defecting co-players (Fig.3.2d). In
contrast, evolving behaviors in the same-partner treatment are more strict. Here, players only
fully cooperate in either game if the co-player previously cooperated in both games (they still
show some leniency with respect to partial or full defectors, Fig.3.2e). Importantly, these strate-
gies exhibit linkage. Players condition their behavior in one game on actions that occurred in
the other. Further simulations suggest that such strategies evolve in the same-partner treatment
because they are more stable, compared to a strategy that just uses Generous Tit-for-Tat in each
game (Fig. S2). Finally, for the different-partners treatment, players are unlikely to cooperate in
both games altogether. Even when both co-players cooperated in the previous round in their
respective games, players are on average less likely to reciprocate, and there is also little linkage
overall (Fig.3.2f).

Overall, the same-partner treatment results in more cooperation whereas the different-
partners treatment leads to reduced cooperation rates. These qualitative findings are robust,
independent of the exact benefit of cooperation (Fig.3.2g,h), of whether or not players commit
implementation errors (Fig. S3a), or whether or not the game is infinitely repeated (Fig. S3b).
These framework can be extended to describe scenarios beyond the donation game, and be-
yond the prisoner’s dilemma more generally (Fig. S4). We conclude that linkage in concurrent
gameshas substantial effectsoncooperation, even for themostbasicmodelsofdirect reciprocity.

3.2.3 Incorporating cognitive constraints and different learning heuristics

Our framework allows us to go beyond a mere comparison between concurrent games and
classical models of direct reciprocity. Instead, we can also explore the consequences of several
cognitive constraints that are impossible to study (or have no analogue) in classical single
repeated games. In the following, we discuss four constraints and heuristics that may conceiv-
ably affect behavior in concurrent games. In each case, we briefly summarize how they can be
incorporated into our framework and how they affect our results. For all derivations and amore
detailed discussion, we refer to the Supplementary Information.

The first model extension addresses the impact of imperfect recall. Everyday experience
and previous experiments [102, 135, 141] suggest that people with several interactions may
confuse past outcomes. A co-player’s cooperation in one game may be misremembered as
having happened in a different game, possibly with a different co-player. To capture this form
of imperfect recall across games, we assume players confuse past outcomes with probability
εIR ≥ 0. When such an error occurs, instead of correctly recollecting the previous actions in the
high and the low game as (aH, aL) ∈ {C,D}2, the player takes them to be (aL, aH) ∈ {C,D}2. As
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Figure3.3:Modelling the effect of cognitive constraints in concurrent games. Our framework allowsus to study the
effect of various constraints, biases, and heuristics on cooperation in concurrent games. Here, we explore the impact
of a, imperfect recall, b, spillovers, c, preferential updating in the game with lower payoffs, and d, narrow bracketing.
In eachcase,we record the impact onaverage cooperation rates (upperpanel). In addition,wealso record the evolving
average strategies in themost extremecase (lower twopanels). For the same-partner treatment, wefind that spillovers
andnarrowbracketingaremostdetrimental to cooperation. In that case, averagecooperation ratesmayevenbebelow
the cooperation rates of the baseline control treatment (Fig.3.2a).

a result, the player cooperates with probability pkaL,aH instead of pkaH,aL . Errors of this kind have
no effect if the previous outcome is either (C,C) or (D,D), or if the player’s strategy happens
to satisfy pkCD = pkDC . In the first case, no confusion between the two games can arise, whereas
in the second case, any confusion proves to be inconsequential. Errors of imperfect recall can
arise both in the same-partner treatment and the different-partners treatment. Yet they may
have more of an effect when interacting with different partners, as they might lead players to
give misdirected responses [102, 141]. In line with this intuition, we find that such errors have
a weakly negative effect on cooperation in the different-partners treatment (Fig.3.3a). Perhaps
surprisingly, however, we find that imperfect recall reinforces cooperation in the same-partner
treatment. Here, errors provide further incentives for players to link their behavior across games,
and to only cooperate if the co-player previously cooperated in both games (Fig.3.3a).

The second model extension addresses (exogenous) behavioral spillovers. A spillover arises
when an individual’s action in one domain leads that individual to take the same action in a
different domain. Such spillovers have been reported in various contexts, and they can have
important policy implications [186, 187]. In our context, spillovers introduce additional cor-
relations into a player’s behavior. For any given history, they increase the chance that a player
chooses the same action in each of the two games (rather than cooperating in one game and
defecting in the other). For the same reason as before, such correlations seem particularly
harmful when interacting with different partners because they undermine a player’s ability to
give targeted responses. Indeed, simulations again suggest a weakly negative effect of spillovers
in the different-partners treatment (Fig.3.3b). In contrast, in the same-partners treatment, the
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effect can be both positive and negative, depending on how frequent spillovers are. Indeed,
in some cases the resulting cooperation rates may even be below the cooperation rates of the
control treatment (Fig.3.2a).

The next twomodel extensions address different ways how peoplemight update their strate-
gies in the two games. In our previous simulations, we assume that players are equally likely to
update their strategy in either the high or the low game. Instead, playersmay bemore inclined to
update their strategy in the game in which they currently receive the smaller payoff (relative to
themaximum feasible payoff in that game). Simulations suggest that such preferential updating
has weakly positive effects in the different-partners treatment. In the same-partner treatment, it
increases cooperation in thehigh gamebut it destabilizes cooperation in the lowgame (Fig.3.3c),
presumably because players now update their low-game strategies more often.

Our lastmodel extension addressesnarrowbracketing. Narrowbracketing refers to situations
in which people make decisions in one domain, without fully internalizing the consequences
of those decisions in a different domain [188]. Such a bias may also affect how people learn in
concurrent games. When players update their strategies in one game (high or low), they may
not anticipate how these changes affect the dynamics of the other game. Narrow-bracketing has
limited effects when people naturally treat their games as independent. In that case, changes in
one game’s strategy have no effect on the dynamics of the other. As a result, simulations suggest
that narrow bracketing has no discernible impact in the different-partners treatment (Fig.3.3d).
However, in the same-partner treatment, in which players naturally learn to link their behavior
across games, the effects can be considerable. Here we find that narrow-bracketing undermines
cooperation, both in the high and the low game.

Overall, our framework can readily capture each of the four cognitive constraints and learn-
ing heuristics discussed above. These model extensions highlight the additional complexities
that arise when individuals engage in several repeated games in parallel.

3.2.4 Human behavior in concurrent games

These theoretical results indicate that concurrent games alter the dynamics of reciprocal
interactions. But whether concurrent games lead to more or less cooperation depends on
how they update their strategies, whether their decision-making is influenced by biases and
heuristics, and whether they interact with the same or with different partners. To explore
the actual cooperation dynamics among human participants in more detail, we conducted a
behavioral experiment. The experiment directly implements the three treatments illustrated in
Fig.3.1b-d. Participants are randomly assigned to treatments, and in the control treatment, they
are randomly assigned to either play the high or the low game. In the high game, players can pay
2 points to give 4 points to the other player. In the low game, a player’s 2 points are translated into
3 points for the co-player. Participants interact for at least 20 rounds, with a stochastic stopping
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rule implemented thereafter.

Fig.3.4a shows the resulting average cooperation rates across three treatments. In contrast
to the predictions of the baseline model, but in agreement with some of our model exten-
sions, we find that people are most cooperative in the control treatment. More specifically,
the average cooperation rate in the high game is 78.6% in the control, compared to 60.5%
in the same-partner and 62.4% in the different-partners treatment (p = 0.004 same-partner,
p = 0.006 different-partners). Similarly, cooperation rates in the low game are 70.3% in the
control, compared to 54.0% for the same-partner treatment and 52.2% for the different-partners
treatment (p= 0.056 same-partner, p= 0.007 different-partners). Interestingly, these differences
in cooperation rates are already present in the first round and they are stable throughout the
experiment (Fig.3.4b). These results suggest that the simultaneous presence of two games
interferes with the emergence of reciprocal cooperation in either game.

Dependent variable:
Cooperation

Same-partner Different-partners
High game Low game High game Low game

Partner’s previous decision
in the high game (CH,t−1) 0.450∗∗∗ 0.157∗∗ 0.637∗∗∗ 0.023

(0.050) (0.041) (0.103) (0.059)

Partner’s previous decision
in the low game (CL,t−1) 0.189∗∗∗ 0.264∗∗ 0.095∗ 0.513∗∗∗

(0.042) (0.055) (0.055) (0.082)

Interaction
(CH,t−1)× (CL,t−1) 0.068 0.275∗∗ −0.079 0.070

(0.050) (0.058) (0.105) (0.090)

Constant 0.198∗∗∗ 0.181∗∗∗ 0.205∗∗∗ 0.210∗∗∗

(0.040) (0.040) (0.044) (0.033)

Observations 1,368 1,368 2,432 2,432
R2 0.401 0.395 0.375 0.327
Adjusted R2 0.400 0.394 0.374 0.326
Residual Std. Error 0.379 (df = 1364) 0.388 (df = 1364) 0.384 (df = 2428) 0.410 (df = 2428)
Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.1: A linear regression to estimate the magnitude of linkage in human participants. Based on
the data of our behavioral experiment, we estimate how likely participants are to cooperate, depending
on their partner’s previous behavior. In total, we have run six regressions (three treatments, in which two
games are played each round). If participants treat each game as independent, we would expect that only
the constant term and the partner’s previous decision in the respective game affect a player’s cooperation
probability. However, in the same-partners treatment, weobserve that also previous decisions in the other
game have a significant impact (in addition, in the low gamewe observe a significant interaction of coop-
eration in the two games). In the different-partners treatment, we only observe a weak impact of the low
game on high-game decisions. All other indicators for linkage are insignificant.

To explore to which extent linkage might drive these results, we infer the participants’
reactive strategies based on the experimental data. For any possible outcome of the previous
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Figure 3.4: Concurrent games amonghumans. Toexplore howpeople act in concurrent games,wehave
implemented a behavioral experiment using the three treatments in Fig.3.1. Participants are randomly
matched and interact for at least 20 rounds. After that, the game continues with 50% probability each
round. a, Across all rounds, people were most cooperative in the control treatment, in both the high and
the low game. Cooperation rates in the same-partner and the different-partner treatment are not signifi-
cantly different fromeachother. b,These qualitative results are alreadypresent in thefirst round, and they
are stable throughout the experiment. c,d, We use a linear regression to estimate the players’ strategies
based on the co-player’s behavior in the previous round (Table 3.1). Here, we visualize the resulting con-
ditional cooperation probabilities. In the same-partner treatment, participants link their behavior across
games. As a result, a player’s cooperation probability depends on the previous outcome of both games. In
comparison, behaviors in the different-partners treatment are largely independent across the two games.
In a, error bars depict standard errors and dots represent individual data points; in b, shaded areas depict
standard errors.

round, we estimate how likely participants are to cooperate in the next round, both for the
high and the low game. The results are summarized in Fig.3.4b and Table 3.1. In line with our
earlier simulations, linkage is more pronounced in the same-partners treatment. For example
in the high game, a linear regression suggests that participants cooperate with 90.5% probability
if the co-player previously cooperated in both games. If the co-player only cooperated in
the high game, this cooperation probability drops to 64.8%. In comparison, linkage is much
weaker in the different-partners treatment. For example, people cooperate with 85.8% prob-
ability in the high game after receiving cooperation in both games. This number drops only
marginally, to 84.2% when a player only received cooperation in the high game. More generally,
Table 3.1 suggests that linkage only has a minor effect in the different-partners treatment.
Still, overall cooperation rates are below the control treatment, because players generally have
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lower cooperationprobabilities (seeTable S1 for the regression results for the control treatment).

Overall, and in line with our theoretical results, we observe the strongest linkage effects in
the same-partner treatment. However, we also find that participants do not benefit from this
linkage. Instead of using it to better enforce cooperation, participants end up cooperating less
often than participants in the control treatment. As a consequence, concurrent games result
in reduced cooperation rates, independent of whether people have their games with the same
partner or with different partners.

3.3 Discussion

People routinely engage in several social interactions at once [189]. They cooperate with their
friends, their colleagues, and their families, possibly all at the same time. Moreover, with any
given interaction partner, people often have several independent interactions in parallel. Col-
leagues might work on several projects concurrently, and whole nations routinely interact and
negotiate over a wide array of different policies [3]. Despite this prevalence of concurrent games,
the main paradigm for direct reciprocity is to study cooperation in (isolated) repeated games.
Such an approach is justified (and from a computational perspective even preferred) when
people treat each game as independent. However, herein we present a theoretical framework
and experimental data that cast serious doubt on that assumption of independence.

For our theoretical analysis, we compare three idealized scenarios. In one scenario—the
control—individuals only engage in one repeated game at a time, just as previously assumed by
most of the literature. In the other two scenarios, individuals engage in two repeated games si-
multaneously, either with the same partner or with different partners. If individuals in these last
two scenarios indeed were to treat each of their games as independent, all three scenarios yield
indistinguishable results (Fig. S1). Yet as individuals learn to adopt more profitable strategies
over time in an evolutionary process, we often find that they learn to link their behavior across
games. This linkage is particularly pronounced when the different games take place among the
same partners (Fig.3.2), in which linkage can come with explicit strategic benefits [176–179].

By shifting the perspective from individual to interconnected games, our framework serves
as a starting point to better describe the effects of different cognitive constraints and biases
(Fig.3.3). The previous literature on direct reciprocity focuses on implementation errors, or
‘trembling hands’ [60]. Such errors occur when individuals intend to cooperate but fail to do so,
perhaps because of a lack of attention or of resources. Previous empirical research, however,
has documented a plethora of other constraints that conceivably affect how humans cooperate.
For example, the work of Stevens and colleagues [102, 141] shows how imperfect recall can
undermine a person’s ability to give directed responses. Our work suggests that the effects of
imperfect recall depend on the previous history of interactions. People are only susceptible
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to this kind of error when they have made conflicting experiences, with cooperation in one
game and defection in another. Moreover, the precise effects of imperfect recall also depend
on an individual’s strategy. While some strategies are sensitive to false recollections, others
remain completely unaffected. In addition to imperfect recall, our framework can also capture
several other plausible constraints and heuristics, such as spillovers between games, preferential
strategy updating, andof narrow-bracketing. In thisway, our framework systematically increases
the scope of models of direct reciprocity.

While thesemodel extensions add further realism, theymake predictionsmore complex. For
example, cooperation rates in concurrent games may be higher or lower than in classical single
repeated games, depending on whether games take place among the same or with different
partners, and depending on the constraints that affect individual play. To explore the impact
of concurrent interactions on human behavior we conducted a behavioral experiment. In line
with recent work by Laferrière and colleagues [182], we find that overall cooperation rates in the
same-partner and different-partners treatments are surprisingly similar. Yet the strategies that
people apply are markedly different (Fig.3.4, Table 3.1 ). While participants in the same-partner
treatment routinely learn to link their behavior across games, linkage is comparably weak if
games take place among different partners. Moreover, both of these treatments result in less
cooperation than the controlwith a single repeated game (a treatment that Laferrière et al. donot
consider). These empirical results suggest that strategic considerations, spillovers, and cognitive
constraints in concurrent gamesmay overall hamper the evolution of reciprocal relationships.

These empirical results also put some natural bounds on previously suggested mechanisms
for cooperation. First, in contrast to previous models of games among the same partners,
concurrent games do not seem to promote reciprocity [176–179]. They rathermake cooperation
more fragile. Second, in contrast to previous work on generalized reciprocity and community
enforcement [183, 184], people in the different-partners treatment do not seem to be prepared
to exploit their network structure to promote cooperation in the group. Here, too, the effect of
multi-game contact appears to be negative.

Overall, our results suggest that models of direct reciprocity based on (single) repeated
games only provide an incomplete picture of the reciprocal interactions around us. In con-
current games, individual experiences in one game can affect future behaviors in another.
Such linkage between games lead to a richer dynamics, but they also make the emergence of
reciprocal altruismmore complex.

3.4 Methods

In the following, we briefly summarize our theoretical and experimentalmethods. All details can
be found in the Supplementary Information.
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3.4.1 Calculation of payoffs

For each treatment, we compute theplayers’ payoffsby representing the gameas aMarkov chain.
The possible states of this Markov chain are the possible outcomes of a given (repeated or con-
current) game. For example, in the control treatment, consider players 1 and 2, who interact in
a repeated donation game with high benefits. The possible outcomes of a given round are the
four possible realizations a=(a1, a2)∈{C,D}2. Given the players’ strategies, and given the action
profile a of the previous round, we can compute the probabilityma,ã that players choose actions
according to the profile ã= (a1, a2) in the next round, for each ã∈{C,D}2. By computing all the
possible transition probabilities, we derive a 4× 4 transitionmatrixM=(ma,ã) that captures the
dynamics of the repeated game. The respective invariant distribution v = (vCC , vCD, vDC , vDD)

describes howoftenweare to observe eachpossible outcome (a1, a2)∈{C,D}2 onaverage. Given
this invariant distribution, payoffs are given by

π1 = (vCC + vDC)bH − (vCC+vCD)c.

π2 = (vCC + vCD)bH − (vCC+vDC)c.
(3.4)

In the other treatments, payoffs can be calculated similarly, even though they require more
computation. In the same-partner treatment, the possible outcomes of an interaction between
players 1 and 2 are now given by a 4-tuple a = (a1H, a2H, a1L, a2L). Here, an entry aik ∈ {C,D}
represents player i’s action in game k. Because each entry can take one of two values, there are
now 16 possible outcomes. Hence the corresponding transitionmatrix is of size 16×16.

In the different-partner treatment, all four players need to be considered simultaneously.
Therefore, thecurrent state isnowrepresentedbyan8-tuplea=(a1H, a2H, a3H, a4H, a1L, a2L, a3L, a4L)∈
{C,D}8. It follows that the state space has 28 = 256 elements. Hence, calculating the players’
payoffs requires the invariant distribution of a 256×256 transitionmatrix.

Throughout the main text, our model is based on the assumption that people use reactive
strategies to make their decisions, and that each game is infinitely repeated. Neither of these
assumptions is strictly required. In fact, the computational complexity of the model is un-
changed if we assume players to use so-called memory-1 strategies instead [60]. In that case,
a player’s action does not only depend on the co-players’ actions in the previous round, but
also on the own previous actions. Similarly, the computational complexity is unchanged if we
assume games are repeated with a constant continuation probability δ. Also in that case, payoffs
follow from computing the invariant distribution of a 4×4, 16×16, and 256×256 matrix. The
respective algorithm for the case of the control treatment is described, for example, in Ichinose
andMasuda [190]. In Fig. S3, we show simulation results for δ<1.
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3.4.2 Description of the learning process

For our theoretical analysis, we take anevolutionary approach. Players adapt their strategies over
time, depending on their payoffs (which in turn depend on the strategies of the other players).
To model this adaptation process we use introspection dynamics. Compared to other processes
such as pairwise imitation [191], introspection dynamics has computational advantages and
it is easier to simulate [64, 185]. Moreover, it is the more natural dynamics when players are
asymmetric (for example, because they differ in the co-players they interact with). In such cases,
strategies that yield a high payoff for one player are not necessarily advantageous for another
player, whichmakes pairwise imitation less plausible.

In the following, we describe our learning dynamics in detail. Learning happens in discrete
time steps. For a given treatment, we assume that at time t= 0, players defect unconditionally,
pi=(0, . . . , 0) for all players i. At each subsequent timepoint t, the following elementaryupdating
procedurehappens. First, oneof theplayers, sayplayer j, is chosenat random. This player is then
given an opportunity to revise its current strategypj in one of the two games. In the control treat-
ment, the revision occurs in the one game the player is involved in. In the other two treatments,
this is done by randomly choosing one of the two games k∈{H, L}. In each case, we replace player
j’s strategy for game k with a random strategy sampled from a uniform distribution (j’s strategy
for the other repeated game is left unchanged). The player then compares this alternative strat-
egy p̃j to the current strategy pj . To this end, let πj be the payoff the player obtained with the
current strategy. Similarly, let π̃j denote the payoff player j would have got in the previous inter-
actionwhenadopting strategy p̃j instead (keeping the strategies of the other players unchanged).
Player j switches to the new strategy with a probability given by the Fermi-function [192, 193],

ρ =
1

1+exp
[
−β(π̃j−πj)

] . (3.5)

The parameter β ≥ 0 is the strength of selection. It measures to which extent strategy updates
depend on payoffs. For β → 0, payoffs are irrelevant and the updating probability approaches
one half. In this limit of ‘weak selection’, updating occurs at random. In the other limit of ‘strong
selection’, β → ∞, only those alternative strategies are adopted that yield at least the payoff of
the original strategy.

We iterate this elementary updating procedure for many time steps. For any finite selection
strength β, this generates an ergodic stochastic process. In particular, the players’ average
cooperation rates (over the course of the learning process) converge in time, and they are
independent of the players’ initial strategies. For our study, we use simulations to numerically
estimate these average rates for all three treatments.
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3.4.3 Computational methods used for the figures

For the simulations in the main text, we use the following default parameters. The benefits
in the two games are bH = 5 and bL = 3, respectively, and the cost is c = 1. In addition, we
consider a selection strength of β = 200, and no trembling-hand (implementation) errors,
εTH = 0. In Fig.3.2a-c we show average trajectories. To this end, we have run 100 independent
simulations for each treatment. To keep timescales comparable, simulations are run for 20,000
elementary time steps in the control treatment, and for 40,000 elementary time steps in the
other two treatments. This implies that there are 5,000 updating events per player and game
on average in each treatment. In Fig.3.2d-e, we display which strategies cooperative players
tend to use. To this end, we use the data of the simulations in Fig.3.2a-c. We define a player’s
strategy to be cooperative if the player’s cooperation rate in each game is at least 2/3 against
the given co-player (other cut-offs give similar results). The panel then shows the arithmetic
mean of all strategies classified as cooperative. Finally,Fig.3.2g,h shows the impact of the
benefit of cooperation in the high game. Here, each point corresponds to the time average of
one long simulation (106 time steps). We explore the impact of othermodel parameters inFig. S3.

In Fig.3.3, we explore four model extensions that describe the impact of different cognitive
constraints and heuristics. The top row in Fig.3.3 describes how the evolving cooperation rates
are affected as we change (A) the probability εIR of experiencing imperfect recall, (B) the proba-
bility εSP of experiencing a spillover, (C) the weight κ that measures the strength of preferential
updating, and (D) the likelihood λ that a player engages in narrow bracketing. Each data point
is the average of a simulation run for 106 updating steps. The middle and the bottom row of the
figure show the player’s average strategies. This figure is based on all strategies used during the
simulation (not only the cooperative strategies). For a more detailed discussion of each model
extension and the respective results, see Supplementary Information.

3.4.4 Experimental methods

For our experiment, we recruited 316 participants (161 females, mean age: 21) from the Univer-
sity of Exeter student pool FEELE (Finance and Economics Experimental Laboratory at Exeter).
The experimentwas implemented in oTree [194]. Sessionswere programmed for one of the three
treatments and players only participated in one session. Participants were matched in groups
of four all playing the same treatment. All participants were anonymous and only referred to by
numbers from1 to 4. Each treatment lasted for aminimumof 20 rounds of the repeated game(s).
After the 20th round, each subsequent round had a 50% chance of occurring, to avoid end-game
effects. Participants received £3 for participating and could earn a bonus payment based on
their decisions in the game. The points earned during the game were converted at a rate of 20
points = £0.26. The average bonus payment across all treatments was £1.39. The experiment
was approved by the Ethics Committee of the Medical Faculty of Kiel University (D 571/20). In
the same-partner and different-partners treatment, participants make their decision for both
repeated games simultaneously, round by round. In the baseline treatment, they only take part
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in one repeated game. Payoffs in each repeated game are based on the payoff matrix of the
donation game, with b = 4 points and c = 2 points in the high game, and b = 3 points and c = 2

points in the low game. These values were chosen based on preliminary simulations and pilots
to avoid ceiling effects and to obtain the largest difference in cooperation rates between the two
games in the control treatment.

We analysed the data using two-tailed non-parametric tests as well as statistical regressions,
using interacting pairs as statistical units, with the exception of the different-partner treatment
where groups of four interacting participants are used (due to the nature of the design, these
groups cannot be separated into pairs). This gives us 36 groups of 2 for the same-partner treat-
ment, 32 groups of 4 for the different partners treatment, and 29 groups of 4 for the baseline con-
trol. The sample size was estimated from past research [182]. Four participants dropped out
during the repeated game, two in the same-partner treatment and two in the control treatment.
We calculated the average value for each pair/grouping of players and we then compared this
average value between treatment with a Mann-Whitney U-test, or within each treatment with
a Wilcoxon signed-rank test. We report the outcome uncorrected for multiple testing. We only
use the first 20 rounds of each game for our analysis and only take into account groups without a
drop-out. For more details on the experimental setup, see Supplementary Information.
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Cumulative Reciprocity

This chapter is published under the title: Li, J., Zhao, X., Li, B., Rossetti, C. S. L., Hilbe, C., Xia,
H. (2022). Evolution of cooperation through cumulative reciprocity, Nature Computational
Science, 2(10), 677–686. https://doi.org/10.1038/s43588-022-00334-w [132]. It is supported by
a supplementary information in the appendices, with the details of the theoretical analysis and
empirical methods and analysis.
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Abstract

Reciprocity is a simple principle for cooperation that explains many of the patterns of how
humans seek and receive help from each other. To capture reciprocity, traditional models
often assume that individuals use simple strategies with restrictedmemory. Thesememory-one
strategies aremathematically convenient, but theymiss important aspects of human reciprocity,
where defections can have lasting effects. Here, we instead propose a strategy of cumulative
reciprocity. Cumulative reciprocators count the imbalance of cooperation across their previous
interactions with their opponent. They cooperate as long as this imbalance is sufficiently small.
With analytical and computational methods, we show that this strategy can sustain cooperation
in the presence of errors, it enforces fair outcomes, and it evolves in hostile environments.
With an economic experiment, we confirm that cumulative reciprocity is more predictive of
human behavior than several classical strategies. The basic principle of cumulative reciprocity
is versatile and can be extended to a range of social dilemmas.

4.1 Introduction

Evolutionary game theory provides a formal framework to study the evolution of cooperation,
which is a far-reaching problem that has attracted great attention [14, 16, 50]. The simplest and
mostwidely usedmodel to study this problem is the prisoner’s dilemma [26, 50]. In the prisoner’s
dilemma, two individuals independently decide whether to cooperate. Mutual cooperation is
optimal for the pair, yet each individual is tempted to defect. Although the basic premise of the
game is simple, it approximates the logic of many cooperative interactions in biological, societal
and artificial worlds, including friends who exchange favors [195], animals who exchange food
or other services [196], or nations that coordinate their policies [197]. When there is only a single
round of the prisoner’s dilemma, defection is the only Nash equilibrium. However, if individuals
interact repeatedly, they can sustain cooperationwith conditionally cooperative strategies [162].
The respective mechanism of cooperation is called direct reciprocity [14, 16].

The key to sustain cooperation in a repeated prisoner’s dilemma is to act like a ’partner’
[198]. As long as the opponent is cooperative, a partner should go along. However, once an
opponent defects, a partner strategy needs to make sure that the opponent cannot gain a
lasting advantage. Examples of such partner strategies comprise tit-for-tat (TFT) [50], gener-
ous tit-for-tat (GTFT) [145, 165], or win-stay-lose-shift (WSLS) [99, 199], among many others
[96–98, 107, 117, 117, 151, 200]. Although each of the above strategies can succeed in certain
environments [50, 99, 145], they also have well-known weaknesses. For example, TFT is unable
to sustain cooperation in the presence of errors [201] 22. GTFT typically fails to evolve when
individuals have access to a richer strategy space [48]. Finally, WSLS is stable only when the
benefit of mutual cooperation is sufficiently large [99]. The problem of identifying successful
strategies of direct reciprocity becomes evenmore complex when interactions take place among
more than two individuals [94, 96], or when the benefit of cooperation can change in time
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[90, 202].

Traditionally, much of the existing work on direct reciprocity is confined to individuals
with restricted memory. The most common assumption is that all individuals have one-round
memory [60], but researchers have also identified several promising strategies that take into
account the last twoor three rounds [97, 98, 203]. While someof these strategies have remarkable
robustness properties (especially when errors can be assumed to be vanishingly rare), strategies
with a pre-defined memory length often fail to capture certain important aspects of human
behavior. For example, individuals might often find it easier to forgive a defecting opponent if
this opponent is generally cooperative. To encode these more nuanced responses, individuals
need to resort to an opponent’s cumulative behavior, during the entire course of their previous
interactions.

Perhaps the most natural way to introduce such behaviors is to let individuals count how
often each of them has defected so far. To formalize this idea, consider a repeated prisoner’s
dilemmabetween two individuals named ’Alice’ and ’Bob’. Suppose during their first k-1 interac-
tions, Alice defected in nA rounds, whereas Bob defected in nB of the rounds. Alice may choose
to cooperate in round k, unless Bob defected substantially more often in the past than she did.
In other words, Alice would cooperate unless nB − nA > ∆A, where ∆A ≥ 0 can be interpreted
as Alice’s tolerance level. Herein, we refer to this kind of strategy as ’cumulative reciprocity’, or
more briefly, as CURE.

While cumulative reciprocity is straightforward to define, analytical results are more
difficult to obtain, compared with the case of memory-one strategies. Nevertheless, such
results are feasible. First, we show that CURE is indeed a partner strategy in the absence
of implementation errors. Second, similar to previous work on zero-determinant strategies
[111, 112, 177, 190, 204, 205], individuals can use CURE to enforce fairness: if one player is a
cumulative reciprocator, both players are guaranteed to get the same payoff, independent of the
opponent’s strategy. Third, even in the presence of (rare) errors, the payoff of CURE against itself
is approximately optimal. At the same time, unconditional defectors cannot invade. Further
simulations suggest that individuals are most likely to adopt CURE when most well-known
memory-one strategies fail. We further support these theoretical findings with a behavioral
experiment. According to this experiment, cumulative reciprocity is better able to explain
human behavior than many classical strategies like TFT [50] , WSLS [99, 199], or previously
proposedmemory-k strategies [97, 98, 203].

Overall, our findings suggest that when cooperation is particularly costly, simple strategies
basedonanopponent’s last behavior donot suffice. In such environments, it takes amore cumu-
lative assessment of the players’ past actions to sustain cooperation. Here, we combine various
mathematical, computational, and experimentalmethods to facilitate the analysis of cumulative
reciprocity. Although many of our analyses focus on the classical prisoner’s dilemma, the main
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TFT C D C D C D C …

TFT C C D C D C D …

CURE C D D D C C C …

CURE C C C C D C C …

CURE and TFT in noisy environmentc

Round number 1 2 3 4 5 6 7 …

Alice (CURE) C C C C D D C …

Bob C D D D D C C …

d(k) 0 1 2 3 3 2 2 …

CURE strategy (Δ=2)b

Bob

Alice

Prisoner’s dilemmaa

C D

C (R,R) (S,T)

D (T,S) (P,P) 0

Figure 4.1: CURE in the repeated prisoner’s dilemma. a, The payoff matrix of a prisoner’s dilemma game. For
simulations, we useR = 3, S = 0, T = 5 and P = 1, unless specified otherwise. b, CURE defects when the defection
difference statistic d(k) exceeds the tolerance threshold (in this case, ∆ = 2). Otherwise, CURE keeps cooperating. c,
When two TFT playersmeet and one playermakes an error, cooperation breaks down. When twoCURE playersmeet,
cooperation is robust evenwhenone playermistakenly defects in three of the rounds (∆ = 2). The blue circle indicates
the occurrence of an error, and the red letter indicates the defection caused by the error.

principles of CURE extend to multiplayer interactions, as well as to stochastic games in which
payoffs fluctuate in time. In all these applications, cumulative reciprocity proves to be a simple
mechanism to sustain fairness and cooperation.

4.2 Results

4.2.1 The repeated prisoner’s dilemmawith cumulative reciprocity

We first consider pairwise interactions between only two individuals, as shown in Fig.4.1a. We
refer to the players as Alice and Bob. In each round, both Alice and Bob independently decide
whether they want to cooperate or defect. If they both cooperate (denoted by CC), they get
the reward R. If they defect (DD), they both receive the punishment payoff P. Finally, if one
player cooperates and the other defects (CD or DC), the cooperator gets the sucker’s payoff S
whereas the defector gets the temptation payoff T. Payoffs satisfy the characteristic conditions
of the prisoner’s dilemma, S < P < R < T and 2R > T + S. That is, mutual cooperation is
the best outcome for the pair, yet each player individually prefers to defect. For our numerical
simulations, we use the payoffs of Axelrod2 (R = 3, S = 0, T = 5, P = 1), unless stated otherwise.

The players’ actions may be subject to ’trembling hand’ errors [201, 206]. That is, a player
who intends to cooperate may instead defect with some probability 0 ≤ ε < 1/2 (similarly, a
player who wishes to defect may cooperate with the same probability). For analytical results, we
suppose the game is infinitely repeated; after each round, there is another round. We comple-
ment these analytical results with simulations for long but finitely repeated games. The overall
payoffsofAlice andBobaredefinedas their expectedpayoffsper round. Fordetails, seeMethods.

Traditionally, much of the work on reciprocity assumes that players either have finite recall
[97, 170, 173, 207, 208] 20,36-39, or that their decisions can be encodedwith finite state automata
[100, 209]. Instead, here we propose a strategy of cumulative reciprocity. We formalize this strat-
egy by introducing two counter variables, nA(k) and nB(k). These variables record how often
Alice andBobhave defected before round k. Let d(k)denote the difference, d(k) = nB(k)−nA(k).
We refer to d(k) as the defection difference statistic. We say Alice adopts the strategy CURE if
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in any given round k she cooperates if and only if this defection difference statistic is below a
pre-defined threshold d(k) ≤ ∆A. We interpret ∆A ≥ 0 as Alice’s tolerance level. If it is zero,
Alice demands that Bob is at least as cooperative as Alice. For larger values of∆A, Alice becomes
increasingly more lenient. Fig.4.1b depicts the basic logic of CURE.

In contrast tomemory-one strategies, a cumulative reciprocator takes the entire history of the
game into account. As a result, the mathematics becomes more intricate. Whereas games be-
tween two memory-one players can be represented as a Markov chain with four possible states
(the possible outcomes of any given round), the state variable d(k) of a cumulative reciprocator
can assume arbitrary integer values. Perhaps somewhat surprisingly, it is still possible to derive
analytical results. To this end, we represent the dynamics between a CURE player and its oppo-
nent by an infinitely dimensional linear system. In many important cases, this system can be
solved. We summarize our results in the following. All details and proofs are in Section 1 of the
Supplementary Information.

4.2.2 Payoffs against selected strategies

To gain some first insights into the performance of cumulative reciprocity, we first study games
between two CURE players. In case they both use the same tolerance level ∆ ≥ 1, each player’s
average cooperation rate ρCURE becomes

ρCURE = 1− (2− 3ε+ 2∆(1− 2ε))

(1− 2ε2 + 2∆(1− 2ε))
ε. (4.1)

In particular, the cooperation rate approaches one as errors become rare, ε → 0. Therefore,
although CURE follows a similar basic principle as TFT, it is much more robust with respect to
noise [60] (Fig.4.1c). Overall, the resulting average payoff π(CURE,CURE) is

π(CURE,CURE) = (1−ε)2×(1−2(1−ε)ε+2∆(1−2ε))
1−2ε2+2∆(1−2ε)

×R

+ 2ε(1−ε)×((1−ε)2+∆(1−2ε))
1−2ε2+2∆(1−2ε)

× (T + S)

+ ε2×(3−2(3−ε)ε+2∆(1−2ε))
1−2ε2+2∆(1−2ε)

× P.

(4.2)

As onemay expect, this payoff ismonotonically decreasing in the error rate, but increasing in
the strategy’s tolerance level: themore tolerant the two players are, the better they can copewith
each other’s unintentional errors. Analogous formulas can also be derived if the two cumulative
reciprocators use different thresholds∆A and∆B .

Of course, a strategy’s payoff against itself is only one possible measure of a strategy’s ability
to sustain cooperation. In a next step, we consider interactions between CURE and other
well-known strategies. We start by matching a cumulative reciprocator with an unconditional
defector (ALLD).We find that in that case, both players’ cooperation rates assume the theoretical
minimum ε (which is also how often ALLD cooperates against itself). The result is intuitive: if
Alice adopts CURE and Bob adopts ALLD, Alice is only expected to cooperate in the first ∆A
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rounds. From then on, both players effectively implement an ALLD strategy. At that point,
either of them only cooperates in case of an error. Because the first ∆A rounds are negligible in
infinitely repeated games, both players obtain the same payoff. As a result, we find that CURE
weakly dominates ALLD for all error rates and all tolerance levels (see Supplementary Informa-
tion Section 1). Cumulative reciprocators can therefore cope with unconditional defectors even
better than TFT (TFT never dominates ALLD in the presence of errors [201]). Similarly, we can
also consider games between cumulative reciprocators and unconditional cooperators (ALLC).
Here, cooperation rates are maximal, 1 − ε, which is also the cooperation rate of ALLC against
itself. In the absence of errors, ε → 0, the payoff of two CURE player thus matches the payoff
of ALLC against CURE. For positive error rates, unconditional cooperators have a slight payoff
advantage when they interact with a CURE opponent, compared to the interaction between two
CUREplayers. Wediscuss the consequences of this advantage inmore detail in the next sections.

In addition to ALLCandALLD,weuse a similar approach to derive the payoffof CUREagainst
arbitrary memory-one opponents. We no longer solve the respective infinitely dimensional sys-
tem explicitly, but use the equations to approximate payoffs numerically (Section 1 of Supple-
mentary Information and Supplementary Tables 1–6). To validate these results, we implement
independent computer simulations to estimate the players’ payoffs and cooperation rates. To
this end, we consider a CURE player and an opponent who adopts one of nine selected strate-
gies. The simulation results match our analytical calculations (Section 2 of Supplementary In-
formation and Supplementary Tables 1–8). The results also suggest that although CURE is gen-
erally cooperative, it does not cooperate with any other cooperative strategy in the presence of
errors. As an example, we show that when CURE interacts with WSLS, all four game outcomes
(CC,CD,DC,DD) occur equally often over time (Supplementary Fig.1).

4.2.3 Fairness and stability of cumulative reciprocity

The previous analysis implies that when cumulative reciprocators either interact with ALLC or
ALLD, both players obtain the same payoff. This holds more generally. We can prove that for
arbitrary 2 × 2 games, CURE always enforces an equal outcome. More precisely, irrespective of
the co-player’s strategy σ, a cumulative reciprocator always reacts in such a way that eventually

π(CURE, σ) = π(σ,CURE). (4.3)

Equation (4.3) holds irrespective of the precise error rate and CURE’s tolerance level. Using
the terminology of Duersch et al [164, 210], we conclude that cumulative reciprocity is unbeat-
able: no opponent is able to gain a lasting advantage in a direct interaction with a cumulative
reciprocator. CURE shares the property of enforcing fairness with another classical strategy for
the prisoner’s dilemma, TFT (for which an equation like Eq. (4.3) has been first derived by Press
andDyson [112]). This similarity between CURE and TFT is not a coincidence. As an illustration,
consider a game without errors, and suppose Alice adopts CURE whereas Bob uses an arbitrary
strategy. Then Alice cooperates until the defection difference statistic d(k) hits her tolerance
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level. At that point, Alice effectively implements a TFT strategy; she cooperates as long as Bob
does, and she switches to defection once Bob defects. If Bob then again resumes to cooperate,
so does Alice.

By combining the previous results, we show that in the absence of errors, CURE forms aNash
equilibrium in the repeated prisoner’s dilemma. To see this, we note that for ε = 0, the payoff
of CURE against itself simplifies to the mutual cooperation payoff R. If a single deviating player
could achieve a larger payoff than R, Eq. (4.3) would imply that also the remaining CURE player
obtains a payoff larger than R. However, because 2R is the maximum payoff that the two players
can possibly achieve, this yields a contradiction (in the Supplementary Information, we slightly
strengthen this result, by showing that CURE is in fact a subgame perfect equilibrium [25]).

For positive error rates, the above argument is no longer true. Here, players can gain a payoff
advantage by deviating to ALLC. However, the respective payoff advantage is often negligible. In
particular, for sufficiently small error rates CURE remains an approximateNash equilibrium (see
Section 1 of Supplementary Information). This means that the payoff advantage from deviating
to any other strategy is bounded from above, and it vanishes completely as errors become rare.

4.2.4 CURE and population dynamics

For the previous results, we considered games among players with fixed strategies. This kind of
analysis is useful to explore a strategy’s basic properties. However, it does not take into account
whether players have an incentive to adopt their respective strategies in the first place. To
explore this latter question, we now consider a large population of players and let their strategies
evolve (seeMethods for the precise setup of our evolutionary simulations).

We first examine whether cumulative reciprocity has an evolutionary advantage when pop-
ulations only contain two strategies. We compare CURE with a tolerance level of ∆ = 1 to nine
well-known strategies for the repeated prisoner’s dilemma (Fig.4.2, Supplementary Figs.2-7 and
Supplementary Information Section 3; for exact descriptions of the nine strategies, see Supple-
mentary Information Section 2). In the simulations in Fig.4.2, CURE is initially adopted by 0.1%
of the population (accordingly, we speak of the other strategy as the ’resident’). The results show
that cumulative reciprocity invades six of the nine considered resident populations (Fig.4.2a-f).
AgainstWSLS, we observe CURE is risk-dominant (Fig.4.2g) [62]: the critical frequency of cumu-
lative reciprocators required to invade is below 50%. Only in resident populations that tend to
cooperate unconditionally, CURE does not evolve (Fig.4.2h,i). Here, CURE suffers from its slight
payoff disadvantage discussed earlier. However, once we additionally include defectors into the
population, CUREbecomes again essential. In that case, we observe that ALLC, ALLD, andCURE
can stably coexist (Supplementary Figs.8,9; see Section 4 of the Supplementary Information for
a detailed analysis).

To explore the evolutionary performance of CURE when many strategies compete, we have
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Figure 4.2: CURE in the repeated prisoner’s dilemma. a, The payoff matrix of a prisoner’s dilemma
game. For simulations, we use R = 3, S = 0, T = 5 and P = 1, unless specified otherwise. b, CURE
defects when the defection difference statistic d(k) exceeds the tolerance threshold (in this case, ∆ = 2).
Otherwise, CURE keeps cooperating. c, When two TFT playersmeet and one playermakes an error, coop-
eration breaks down. When two CURE players meet, cooperation is robust even when one player mistak-
enly defects in three of the rounds (∆ = 2). The blue circle indicates the occurrence of an error, and the red
letter indicates the defection caused by the error.

run additional simulations for arbitrary memory-one strategies. Each memory-one strategy is
represented by a four-dimensional vector, (p1, p2, p3, p4). Here, p1, p2, p3, p4 refer to the player’s
probability to cooperate given that the outcome of the previous round is CC, CD, DC, DD,
respectively. For each entry of the vector, we consider eleven possible values, equally dis-
tributed between 0.01 and 0.99 (corresponding to a noise rate of 1%). Overall, we thus allow for
114 = 14, 641memory-one strategies, towhichwe add a single strategy of cumulative reciprocity.
Initially, all strategies are equally abundant. We use the same parameters and simulation
techniques as before (seeMethods).

We examine the evolutionary dynamics under different scenarios, as shown in Fig.4.3. When
individuals can only choose among memory-one strategies (not CURE), evolution eventually
leads to a coexistence of different GTFT-like strategies (Fig.4.3a). The respective strategies are of
the form (0.99, g1, 0.99, g2), with g1, g2 ≥ 0.1. That is, all of them aim to reciprocate a co-player’s
cooperation, but they would occasionally also cooperate against defectors. The dynamics
change completely if CURE is added. After an initial transitionary period, we observe that a vast
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Figure 4.3: Evolution of CURE in populations of memory-1 players. We consider the evolutionary dy-
namics when individuals can choose among a general set of memory-1 strategies and CURE. Initially, all
available strategies are equally abundant in the population. As the simulation proceeds, we first often ob-
serve the emergenceofTFT-like strategies. The long-rundynamicsdependson the scenario considered. a,
Without CURE, players eventually tend to adopt GTFT- like strategies. These players always reciprocate a
co-player’s cooperation, but they occasionally also cooperate if the co-player defected. b-d, Once CURE is
available, it becomes predominant, irrespective of the tolerance threshold∆ values of 1 (b,d) or 2 (c), with
overall payoffs remaining stable and close to the theoretical maximum (d). e,f, While the previous results
allow for (rare) mutations, we obtain similar results if there are either no mutations at all (e) or if players
are unable to learn CURE by mutation (f). For clarity, we only depict strategies that reach a frequency of
at least 0.1 at some point during the process. We represent the evolving memory-1 strategies as vectors
(p1, p2, p3, p4). The entries correspond to the player’s cooperation probability after CC, CD, DC and DD,
respectively.

majority of players engages in cumulative reciprocity, irrespective of CURE’s tolerance level or
of the exact mutation scheme used (Fig.4.3b-f). Although both GTFT and CURE are overwhelm-
ingly cooperative, CURE seems to be more robust with respect to subsequent invasions, and it
leads to slightly larger average population payoffs.

In a next step, we explore how the dynamics depend on the exact payoffs. To this end, we vary
the reward formutual cooperationRbetween (T+S)/2andT . We identify threedifferent regimes
(Fig.4.4 and Supplementary Figs.10-17; see Sections 5 and 6 of Supplementary Information for
a detailed description). (i) When mutual cooperation yields substantial rewards (R ≥ 3.675),
WSLS dominates the population. This result is largely in line with earlier work. In the presence
of errors, WSLS becomes evolutionarily stable once R is sufficiently large20. In that case, it also
readily evolves among memory-one players13. (ii) For a small window of intermediate rewards,
3.625 ≤ R < 3.675, GTFT-like strategies are predominant. Among those strategies, most of
them have a generosity of 0.6 (i.e., after a co-player’s defection, they cooperate with around 60%
probability, see Inset of Fig.4.4). (iii) When mutual cooperation only generates a comparably
modest reward (R < 3.625), CURE is most abundant. CURE is thus particularly likely to succeed
in those environments that are traditionally consideredashostile to theevolutionof cooperation.
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Figure 4.4: CURE, GTFT and WSLS dominate the population in different payoff regions.
Our previous results are based on the classical payoffs used by Axelrod (ref 2). Here, we use the
same basic setup as in Fig.4.3 to explore which strategies are most successful as we vary the
reward R for mutual cooperation. For each value ofR, we record the final frequency of CURE,
WSLS and the class ofGTFT-like strategies of the form (0.99, p2, 0.99, p4). Wedenote byGTFTx

the setof all such strategies forwhichp2andp4are atmost x. These sets arenested,GTFT0.5 ⊂
GTFT0.6 ⊂ ... ⊂ GTFT0.9. The graph suggests that there are two transitionpoints,R1 = 3.625
and R2 = 3.675. When R < R∗1 , CURE dominates the population. When R∗1 ≤ R < R∗2 ,
GTFT-like strategies are predominant. WhenR ≥ R∗2 , WSLS ismost abundant. For details and
depictions of some of the evolutionary trajectories, see Supplementary Information Section 6.

These evolutionary results are remarkably robust with respect to various model extensions.
For example, in Sections 7-9 of the Supplementary Information, we additionally discuss the evo-
lutionarydynamicswhendifferent variants ofCUREcompete, orwhenCUREcompetes against a
selection of memory-2 andmemory-3 strategies, or competitions between a discounted version
of CURE and selected memory-one strategies. Moreover, in Fig. 5, we illustrate how the concept
of cumulative reciprocity extends to stochastic games25,26 inwhichpayoffscanfluctuate in time,
and to repeated games that involvemore than two players [173, 208] 38,39 (see also Section 10 of
the Supplementary Information).

4.2.5 CURE and human play

The above results highlight the strong theoretical properties of CURE. In a next step, we explore
the relevance of cumulative reciprocity for human decision making, by implementing a simple
behavioral experiment with two treatments (see Methods). In the treatment without errors, the
decisions of the human participants are executed perfectly. In the treatment with errors, the
decisions are mis-implemented with a 10% probability. The basic results of this experiment are
as one may expect [128, 131]. The game without errors yields more cooperation, and in both
treatments, cooperation rates slightly decrease in time (Fig.4.6a,b).

To explore to which extent human decisions are accurately predicted by cumulative reci-
procity, we consider one particular instance of CURE (with threshold ∆ = 3; other thresholds
yield similar results). For comparison, we consider the four purememory-one strategies that can
sustain cooperation in the absence of errors [107], namely GRIM [190], TFT [50], firm-but-fair
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Figure 4.5: CURE in stochastic games and the repeated public goods game. In addition to the repeated
prisoner’s dilemma,we also explored examples inwhich individuals interact in a stochastic game [90, 202]
or in a public goods game [173, 208]. a, As an example of a stochastic game, we suppose that players can
be in one of two possible states. In both states, they interact in a donation game. The benefit of cooper-
ation bs depends on the current state s, with cooperation in state 1 being more valuable, b1 > b2. Players
only find themselves in state 1 if they both cooperated (i.e. 2C) in the previous round. Also in this stochas-
tic game, CURE is able to enforce equal payoffs, independent of the co-player’s strategy. b,c, When the
benefit of cooperation in the first game is comparably small, cooperation cannot evolve amongmemory-
1 players. It evolves readily when CURE is added to the population. d, As an example of a multiplayer
game, we explore a public goods game with four players. Again, CURE enforces fairness. Irrespective of
the strategies of the other group members, a cumulative reciprocator gets the same payoff as the other
group members obtain on average. e,f, As before, CURE is particularly strong when cooperation is diffi-
cult to achieve otherwise (for small multiplication factors r). The parameter values in the stochastic game
(unless explicitly varied) are b1 = 1.5 and b2 = 1.01 with a threshold of ∆ = 1. In the public goods game,
we use n = 4, r = 1.5, c = 1,∆ = 0.5.In both cases, the noise is ε = 0.001 and strategies are subject to
mutations for the entire simulation. See Supplementary Information Section 10 for details on how these
games were implemented and our respective implementation of CURE.

[60], and WSLS [99, 199]. In addition, we also include three memory-2 and memory-3 strate-
gies that have been highlighted recently, AON220, TFT-ATFT [203], and CAPRI [98]. For every
participant in the experiment, we compare the participant’s actual decisions with the decisions
the participant would have made when using any of these eight strategies. For the treatment
without errors, we find that all eight strategies predict human behavior equally well. However,
these results change in the treatment with errors, in which even cooperative participants defect
occasionally. Here, only CURE correctly predicts the behavior of a substantial number of par-
ticipants across all rounds (Fig.4.6c; Section 11 of the Supplementary Information). Compared
to traditionally considered rules of reciprocity, cumulative reciprocity thus seems to be a more
sensible guiding principle for cooperation.
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Figure 4.6: CURE in an economic experiment. To explore the relevance of CURE for human decision-
making, we implemented an economic experiment based on the repeated prisoner’s dilemma (seeMeth-
ods for details). The experiment consists of two treatments: one treatment without errors, and one treat-
ment with a 10% error rate. For each treatment, we report data from n = 43 pairs of participants. Here, we
show the results with respect to the players’ implemented decisions. a, As one may expect, there is more
cooperation in the absence of errors (73.3% versus 62.7%, Mann’Whitney U test, P = 0.018). b, In both
treatments, cooperation rates are slightly decreasing in time. c, To capture the participants’ behaviour, we
explore how many of their 20 decisions are explained by one of eight possible strategies. Without errors,
all the considered strategies predict the participants’ behaviour equally well. With errors, only CURE cor-
rectly predicts the behaviour of a substantial proportion of the subjects for all 20 rounds (this difference
is significant, see Supplementary Information Section 11 for details). In a, dots represent the outcome
of individual groups, error bars represent s.e.m. and the asterisk represents significance at P < 0.05. In
b, the thick line represents averages, whereas the thin lines again represent s.e.m. All statistical tests are
two-tailed and non-parametric. We do not adjust for multiple comparisons.
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4.3 Discussion

Reciprocal cooperation requires that individuals are prepared to help others; yet they also
need to be ready to fight back when their help is exploited2. Most of the previously known
strategies with these properties, including TFT [50] or WSLS [99, 199], only react to the very last
round, while ignoring the entire previous history of interactions. In contrast, friends are often
comfortable with temporary imbalances, as long as they are on equal terms on average [211].
To capture reciprocal behaviors that unfold on such a longer timescale, we have introduced a
strategy of cumulative reciprocity. Individuals with that strategy keep a mental record of how
often each party has defected in the past. They cooperate as long as this record is sufficiently
balanced, and they defect otherwise.

The strategy of cumulative reciprocity has a number of remarkable properties: its payoff is
robust with respect to errors, it enforces fairness, and it is a Nash equilibrium in the absence of
errors. Yet it does not satisfy the notion of evolutionary stability [54]. Evolutionary stability is
generally difficult to achieve in repeated games [172, 212, 213]. However, in large and hetero-
geneous populations, the notion of evolutionary stability seems overall less important. In such
populations, the success of a strategy may be rather determined by how well it performs against
a wide variety of strategies. Our simulations suggest that CURE fares particularly well in that
regard. These positive results are largely independent of how often errors occur, or how frequent
mutations are. In this way, CUREmay revive a more general discussion on the effect of memory
on the stability of reciprocity. As Press and Dyson [112] pointed out, longer memory does not
give a player an immediate advantage against shorter-memory opponents. Although their
assertion holds for pairwise interactions, it is no longer true when players need to find strategies
that respond well to many different co-players [49]. In such mixed populations, cumulative
reciprocity can be remarkably successful.

The analytical properties of cumulative reciprocity are perhaps less straightforward to derive
than the properties ofmore conventional strategies with finite recall. For example, the dynamics
among twomemory-one players can be captured by solving a comparably simple formula [112].
In contrast, a mathematical description of the average cooperation rate of CURE leads to an
infinite system of linear equations (see Section 1 of Supplementary Information). It is probably
for this reason that related previous work either completely relied on simulations [167], or
focused on a simpler case in which players always execute their actions without errors [214].
With our study, we offer a mathematical framework to analyze cumulative reciprocity in more
general environments. Our results are applicable to classical two-player repeated games like the
prisoner’s dilemma, but they also apply to multiplayer games, or games in which the feasible
payoffs vary in time. Futurework could explore, for example, howcumulative reciprocity extends
to gameswith continuous degrees of cooperation, or it could identify alternative strategies based
on cumulative assessments of the players’ past history.
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Even though the mathematical analysis of CURE may be elaborate, the strategy itself is
straightforward to implement. Cumulative reciprocators do not need to memorize the exact
outcome of the last k rounds [97], let alone the precise history of all past interactions. Instead,
players only keep trackof a single variable, thedefectiondifference statistic. This statistic is easily
updated, and it has an intuitive interpretation: It simply counts the imbalance in the players’
past cooperative actions. A comparable bookkeeping strategy seems to be at work when people
keep a loose record of obtained favors that need to be repaid. Such bookkeeping strategies may
be rare among close friends, but they can play an important role in the early stages of a social
relationship [68]. Especially when no mutual trust has been established, a mental record of the
overall cooperation balance can be important to avoid exploitation. At the same time, it allows
individuals to forgive peers who only defected by mistake. With these advantages, cumulative
reciprocity serves as an effective mechanism tomaintain fairness andmutual cooperation.

4.4 Methods

The theoretical aspects of our study raise no ethical concerns. For our behavioral experiments,
we have obtained IRB approval by the Ethics Committee of theMedical Faculty of the University
of Kiel (D 613/21, October 29, 2021).

4.4.1 Simulation-based estimation of payoffs and cooperation rates

In addition to our analytical results and numerical approximations (Supplementary Tables 1-6),
we employ simulations to estimate the players’ payoffs and cooperation rates (Supplementary
Tables 7,8). For these simulations, we conducted 1,000 independent computer experiments be-
tween any given pair of players (repeated prisoner’s dilemma games) and any given group of
four players (repeated public goods games). In each experiment, players interact in the game
for 10,000,000 rounds. We calculate the average payoffs of the players across all rounds and we
count how often each player cooperates. The payoffs and cooperation rates are then averaged
over the 1,000 experiments (over 100 experiments in the case of stochastic games). We have run
these simulations for different parameter combinations. Unless noted otherwise, we implement
CUREwith a tolerance threshold of∆ = 1. For the payoffs of the repeatedprisoner’s dilemma,we
take the values used by Axelrod2 as a default (i.e., T = 5, R = 3, P = 1, and S = 0). Furthermore,
we considered three different noise rates – low (1%), medium (5%), and high (10%). The param-
eters of the stochastic games and the multiplayer games are illustrated in Fig.4.5; for the exact
setup of the simulations used for this model extension, see Supplementary Information Section
10.

4.4.2 Simulating the frequency dynamics of strategies

To explore the evolution of strategy frequencies in populations of players, we consider several
different scenarios: (i) Pairwise competitions between CURE and one other strategy (Fig.4.2,
Supplementary Figs.2-7). The other strategy is either ALLC, ALLD, TFT, GTFT, CTFT, WSLS,
an extortionate strategy, SoftMajority, or HardMajority. (ii) A 3-strategy competition between
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ALLC, ALLD, and CURE (Supplementary Fig.8,9). (iii) Simulations of heterogeneous populations
consisting of memory-one strategies and CURE in repeated games (Figs.3,4, Supplementary
Figs.10-17). (iv) Simulations of heterogeneous populations consisting of memory-one strategies
and CURE in stochastic games (Fig.4.5b,c). (v) Simulations of heterogeneous populations con-
sisting ofmemory-one strategies and CURE inmultiplayer games (Fig.4.5e,f). (vi) Simulations in
which different variants of CURE (with different tolerance levels) compete (Supplementary Fig.
18) (vii) Simulations inwhich CURE competes with selectedmemory-2 andmemory-3 strategies
(Supplementary Fig. 19).

Each simulation consists of two steps. First, we obtain the payoffs π(σi, σj) between two
strategies σi and σj . The previously described simulation-based estimation is used to obtain
the payoffs in most cases, including the payoff between two cumulative reciprocators, and
those between a cumulative reciprocator and a player who uses either an arbitrarymemory-one
strategy or one of the 9 strategies selected in 2-strategy competitions. For the payoffs between
twomemory-one strategies we use the analytical solution of Press & Dyson [112].

Second, we calculate the strategies’ frequencies during the process through the “survival of
the fittest” in a noisy environment based on the obtained payoffs between pairs of strategies.
In each generation, the evolutionary fitness of each strategy is calculated. Following Nowak &
Sigmund’s approach [145], the fitness of a strategy σi is defined by its cumulative payoff when
playing the repeated game with the entire population (i.e., f(σi) =

∑n
j=1 xjπ(σi, σj)), where

n is the number of strategies in the population, and xi and xj are the frequencies of σi and
σj , respectively. We denote the overall fitness of all strategies by f̄ =

∑
( i = 1)nxif(σi). The

frequency of σi in the next generation is determined to be x′i = xi ∗ f(σi)

f̄
. This elementary

updating process is repeated for many generations.

To simulate evolution in2-strategypopulations, each simulationends if the frequencyof each
strategy no longer changes, indicating two possible steady states (i.e., either the full invasion of
one strategy into the other or the coexistence of the two strategies). Onemillion generations are
executed in each simulation for 3-strategy populations and populations of multiple strategies.
When simulating the frequency dynamics of strategies in heterogeneous populations, we some-
times allow for mutations. In that case, mutations are introduced after 2,000 generations of a
simulation. The mutation rate is set to 10%. When a mutation happens, all other strategies de-
crease their proportions to 99.9%,while a strategy is randomly selected to increase its proportion
by 0.1%.

4.4.3 Behavioral experiments

The data in Fig.4.6 displays results from an economic experiment. For this experiment, we
recruited subjects through the online platform Prolific (www.prolific.co). In total, we report
data from 172 subjects, who all gave their informed consent to participate. Participants were
randomly allocated to one of two possible treatments. In both treatments, participants engage
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in a repeated prisoner’s dilemma based on our baseline payoff values (in UK pence: R=15p,
S=0p, T=25p, P=5p, which corresponds to the values by Axelrod multiplied by a factor of five).
Moreover, in both treatments, participants engage for at least 20 rounds. After the 20th round,
there is a constant stopping probability of 1/2 after each round, to avoid end-game effects. For
better comparison, we only use data of the first 20 rounds for our statistical analysis.

The two treatments differ in how the players’ intended actions are implemented. In the
treatment without errors, all the players’ decisions are implemented faithfully. In the treatment
with errors, the players’ decisions are mis-implemented with a probability of 10%. In case of an
error, an intended cooperation is executed as a defection, and vice versa. Participants know the
overall error probability, and they learn if their own decision was mis-implemented. However,
they do not knowwhether or not the co-player’s decision was implemented faithfully.

In each round, participants learn how often each player has cooperated so far (in the
treatment with errors, this number refers to how often a player’s decision was implemented
as cooperation). Thereafter, they make their decision whether or not to cooperate in the next
round. After both players have made their decisions, the (implemented) outcome of that round
is displayed.

To explore to which extent human play is predicted by various well-known cooperative
strategies, we consider eight possible template strategies. These eight strategies are GRIM,
tit-for-tat (TFT), firm-but-fair (FBF), win-stay lose-shift (WSLS), AON2, TFT-ATFT, CAPRI, and
CURE (with threshold ∆ = 3). The first four strategies cooperate in the first round; thereafter,
their response is given by thememory-1 vectors

pGRIM = (1, 0, 0, 0), pTFT = (1, 0, 1, 0), pFBF = (1, 0, 1, 1), pWSLS = (1, 0, 0, 1).

For the higher-memory strategies AON220, TFT-ATFT28, and CAPRI21, we provide the
definitions of the implemented strategies in Section 11 of the Supplementary Information. For
each participant, we compute howmany of the participants’ decisions are correctly predicted by
each of these eight template strategies. The corresponding results are displayed in Fig.4.6c. For
a more detailed description of the experimental methods, see Supplementary Section 11. The
collected data and screenshots of our interactive game software are available online.

Statistics and reproducibility. For our behavioral experiment, all statistical tests are two-
tailed and non-parametric. No statistical methodwas used to predetermine sample size. Results
are based on the data of all 172 subjects that finished the experiment, not considering fifteen
subjects who dropped out during the instructions, and twomore subjects who dropped out dur-
ing the experiment. Assignment to treatments was randomized. For further details on the study
design, see Supplementary Section 11. The computer code for our simulations and for our be-
havioral experiments, as well as the resulting data, are available online.
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(Mis)perceiving Cooperativeness

This chapter is published under the title: Rossetti, C.S.L., Hilbe, C., Hauser, O.P. (2022).
(Mis)perceiving cooperativeness, Current Opinion in Psychology, 43, 151–155.
https://doi.org/10.1016/j.copsyc.2021.06.020 [86].
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Abstract

Cooperation is crucial for the successof social interactions. Given its importance, humansshould
readily be able to use available cues to predict how likely others are to cooperate. Here, we review
the empirical literature on how accurate such predictions are. To this end, we distinguish be-
tween three classes of cues: behavioral (includingpast decisions), personal (including gender, at-
tractiveness and groupmembership), and situational (including thebenefits to cooperation, and
the ability to communicate with each other). We discuss (i) how each cue correlates with future
cooperative decisions, and (ii) whether people correctly anticipate each cue’s predictive value.
We find that people are fairly accurate in interpreting behavioral and situational cues. However,
they oftenmisperceive the value of personal cues.

5.1 Introduction

When people cooperate, they make an individual effort to benefit others [215]. Such voluntary
acts of costly cooperation are crucial formost social interactions, affecting thewell-being of fam-
ilies, the success of scientific collaborations, and the output of teamwork. Cooperative behavior
can be explored from various angles. Theoretical studies analyze which social environments are
most conducive to cooperation [5, 60, 216]. Similarly, experimental work explores under which
conditions people actually cooperate, and how they adapt their own behavior to the actual or
expected behavior of their peers [7, 73, 74, 217]. Here, we review this literature, focusing on the
following two questions: How do people use available cues to predict the cooperativeness of
their interactionpartners aheadof an interaction, andwhich cues aremost reliable for predicting
cooperativeness?

We distinguish between three broad categories of cues that may be used to make such pre-
dictions. (i) Behavioral cues refer to the interaction partners’ past actions. Examples of such cues
include whether these partners cooperated on previous occasions, or whether they enforced
cooperative social norms. (ii) Personal attributes comprise of, for example, the interaction
partner’s gender, or perceived attractiveness, among other characteristics. (iii) Situational cues
define the environment in which the individual’s next interaction takes place, including how
costly cooperation will be, and whether pre-play communication is possible. For each of the
three categories, we ask whether the given cue is in fact a reliable predictor of cooperativeness,
aswell as whether people judge the cue’s predictive value accurately. While the existing literature
covers a wide range of relevant cues, there also exist notable gaps in the literature, which we
encourage scholars to explore further.

There are various ways to elicit how individuals perceive each other’s cooperativeness. For
the purpose of this review, we consider evidence from three approaches. The first approach is to
elicit perceived cooperativeness directly by asking participants to estimate how likely others will
cooperate. The two other approaches aremore indirect, by either asking participants to choose a
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groupmember for future interactions (i.e. partner selection), or by askingparticipantshowmuch
money theywould transfer to the respectivegroupmember ina trust game [218]. Ourassumption
is that the more inclined a participant is to choose an interaction partner, or to transfer more
money toapartner,withwhomtheywill interact in the future, themorecooperative theyperceive
the partner to be – and indeed, some empirical work has found this to be the case [219].

5.2 Behavioral cues of cooperativeness

Perhaps the most immediate cue to predict future cooperative behavior is whether, and how
often, the respective individual cooperated in the past. Experimental research suggests that
people exhibit a stable and consistent ’cooperative phenotype’: an individual’s decision in
one cooperative game is indicative of what that individual will subsequently do in different
games [220, 221]. Participants in laboratory experiments, in turn, seem to expect others to be
consistent in their cooperative behavior. When people need to choose an interaction partner,
they strongly prefer partners who have been cooperative in the past [222]. Similar evidence
comes from studies on charitable giving and pro-environment behavior. Donors to charity are
trusted more as well as chosen more often as interaction partners, and in many cases, they in-
deed turnout tobemore cooperative in subsequent social dilemmas [223, 224], but seealso [225].

Another – more indirect – cue of cooperative behavior is whether individuals previously
engaged in the enforcement of social norms. According to this account, people who punish self-
ishnessmay signal that they are not selfish. To test this hypothesis, [226] consider an interaction
that consists of two stages. In the first stage, a ’signaler’ witnesses a transgressor who refuses
to help a recipient. The signaler can then decide whether to engage in third-party punishment
by reducing the payoff of the transgressor. In the second stage, a ’chooser’ decides how much
money to send to the signaler in a trust game. The experiment shows that signalers who punish
transgressors are indeed entrusted with more money, which turns out to be justified: these
signalers also return more money to the chooser. Interestingly, when in the first stage signalers
have a choice between punishing the transgressor or helping the recipient, signalers are less
likely to punish. Instead, helping turns out to be themore frequently chosen (andmore accurate)
signal of trustworthiness. This result is in line with an earlier experiment by [227]: When indi-
viduals need to choose group members for a cooperative task, they place more weight on how
often group members cooperated, rather than how often they enforced cooperation. Overall,
punishment is not necessarily taken as a cue of altruism, as it may also imply aggressiveness. As
a result, punishment is judged more appropriate if it is implemented by the entire group, rather
than by a single individual [228].

Finally, another potential cuemay come fromhowapersonmakes cooperative decisions. For
example, based on a game-theoretic model, [229] suggest that people who collect additional in-
formation to carefully compare the advantages and disadvantages of a cooperative decision are
considered as less reliable and less cooperative. According to this account, people who delib-
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erately refuse to learn payoff-relevant information may seem more committed to cooperation
even when defection happens to be profitable. In line with this view, [226] show that study par-
ticipants who ignore the precise costs of cooperation are indeed (and accurately) predicted to
be more trustworthy. Participants in turn seemed to be well aware of the reputational benefit of
strategic ignorance: when the cooperation costs can be learnt secretly, participants were more
likely to do so. Similar evidence comes from [230] who compare the reputational consequences
of emotion-based versus reason-based decision-making. Players who state having made a deci-
sion based on emotion are perceived as more cooperative by their partner, and indeed turn out
to be more cooperative. Interestingly, however, players who state having used reason where not
perceived as any less cooperative than a control group.

5.3 Personal cues of cooperativeness

A second category of cues pertains to personal characteristics of individuals. The idea that
visible characteristics are used as signals of cooperativeness has its roots in evolutionary biology:
computer simulations and game-theoretic models suggest that individuals can use visible cues
to identify potential cooperation partners. This theoretical work suggests that partner choice
based on visible cues can in turn be an important mechanism for the evolution of cooperation
[231].

Arguably, one of the most salient personal cues is gender. While some scholars document
gender differences in cooperativeness in the Dictator Game [232] and the Prisoner’s Dilemma
[233], the literature remains notoriously mixed [234–236]. Indeed, [237] show that gender only
inconsistently predicts cooperativeness across seven economic games. Nevertheless, across all
economic games, they find robust evidence that people consistently believe that women are
expected tobe fairer,moregenerous, andmorecooperative thanmen, in linewith [238] and [239].

Other cues about a person include their physical appearance, such as an interaction partner’s
face and facial expressions [240–242], their voice [243] and, in particular, their attractiveness
[244, 245]. While there is no evidence that attractiveness is a reliable predictor of cooperative-
ness, good looks nonetheless positively impact people’s perception of others in many domains
of economic life, known as the ’beauty premium’ [61]. Indeed, [244] and [245] find that people
expect more cooperation and reciprocation from attractive partners. Interestingly, when such
expectations are not met, attractive interaction partners incur a ’beauty penalty’, receiving less
reciprocation compared to less attractive players.

Another factor that may affect a partner’s cooperativeness is wealth. Here, the experimental
evidence remains inconclusive. For example, [246] find that subjects who consider their own
socio-economic rank to be low tend to bemore generous and charitable. In contrast, [247] report
that millionaires are considerably more generous in dictator games than usual participants,
especially if they are paired with a low-income partner. A similar conflicting picture emerges
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on the level of perceived cooperativeness. Some experiments find that wealthy participants are
perceived to be more trustworthy and cooperative [248, 249], while at the same time, people
seem to systematically underestimate the generosity of the extremely rich [250].

A person’s political, religious, or ethical convictions can also serve as potential cues of
cooperativeness. Research on political affiliation finds that left-leaning participants tend to
cooperate more than right-leaning participants. However, the effect is small at best [251, 252],
and it seems to be moderated by the fact that left-leaning participants expect more cooperation
from others [253]. Political ideology in turn shapes how people are perceived. [254] find that
among US participants, Democrats are perceived as more cooperative by both sides of the
political spectrum, even though this belief is inaccurate. Similar to political ideology, religiosity
appears to be correlated with prosocial behavior [255, 256]. As a result, when Christians show
overt religious cues (e.g. a necklace with a cross), they are perceived as more trustworthy [257].
Finally, people are considered more trustworthy when they make deontological rather than
consequentialist judgments [258, 259]. Interestingly, however, deontological participants are
not necessarily more cooperative [260].

More often than not, when it comes to social attributes, perceptions of cooperativeness
are partially shaped by in-group bias, as group membership is itself an important cue. A large
literature demonstrates that participants cooperate more with, and preferentially reward,
’in-group’ members over ’out-group’ members, both in the laboratory [261] and in the field
[262]. Democrats and Republicans both tend to cooperate more with in-group members [254],
and participants cooperate more with a partner that shares their nationality [263]. However,
groupmembershipmay largely serve as a coordination device: while participants do not believe
that in-group members are intrinsically more cooperative than others, [264] find that more
cooperation is expected from in-groupmembers.

5.4 Situational cues of cooperativeness

Our final category of cues covers situational aspects surrounding a cooperative decision. These
include factors outside an individual’s control that are often determined by the structure or
context of the interaction. For example, some social interactions create more mutual benefits
to the participants than others. In laboratory studies, these factors can be studied in isolation,
holding everything else constant. For instance, in the repeated Prisoner’s Dilemma, people
tend to be more cooperative when the mutual benefit of cooperation increases [126]. This is
consistent with evidence by [265]: as the mutual benefit of cooperation increases, participants
also expect to see more cooperativeness, especially those participants who later choose to
cooperate. This suggests that individuals are able to “read” a situation, and that they adjust their
willingness to cooperate accordingly.

There has been a debate on whether cooperativeness is affected by whether or not decisions
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need to be made under time pressure. One account holds that when individuals are forced to
decide quickly, they tend to be more cooperative [266]. However, the causal evidence is mixed
[267]. Alternatively, it has been argued that fast decisions may not necessarily result in more
cooperation. Instead, it may result in more extreme outcomes, either towards cooperation or
defection [268]. This is also what participants themselves seem to expect: when asked to predict
the outcome of a fast cooperation decision, participants are more likely to expect an extreme
(but not necessarily a cooperative) outcome [269].

Finally, communication has long been found to enhance cooperation [270]. However, there
is debate as to what is the precisemechanism that allows communication to be favourable. [271]
rule out several potential explanations, namely that communication reduces social distance or
that it offers opportunities to make promises. Instead, they argue that most importantly, com-
munication allows people to recognize the other person as a cooperative type. Indeed, [272] find
that people can accurately predict cooperative behaviour in a prisoner’s dilemma after only a
short in-person interaction, even when participants do not discuss the game itself.

5.5 Conclusion and future directions

People are quick to form an impression, sometimes in just a few milliseconds [240], but these
impressions do not need to be reliable. In this review, we have summarized how individuals
perceive different cues in order to predict others’ cooperativeness. Among the three categories
of cues we considered, people most accurately use behavioral and situational cues to predict
future cooperative behavior. In contrast, predictions seem to be least accurate when they are
based on personal attributes. In fact, with the possible exception of political affiliation and
religiosity, personal attributes are often not a good predictor of actual cooperation behavior,
yet many such attributes’such as gender and attractiveness’are nonetheless (and inaccurately)
perceived as predictors of cooperativeness.

These findings raise a number of interesting questions. For example, theoretical work could
explore which kinds of environments and cues allow people to form reliable expectations.
Similarly, experimental work could investigate how persistent certain misperceptions are,
and whether they disappear with more experience. While we reported results on a number of
different cues, several others seemtohave received limitedattention, includingageandethnicity.

Further interesting problems arise when several (possibly conflicting) cues are available,
or when people need to aggregate cues from different domains. For example, [263] show that
when people learn both their interaction partner’s nationality and gender, the former cue
becomes dominant: people cooperate more with own-nationality partners, and they expect
own-nationality partners to bemore cooperative.

More generally, any given cue seems to become less relevant once more salient information
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– such as actual cooperative behaviour – is available [244, 273–275]. These findings suggest that
people rank different cues according to each cue’s predictive value. They only make use of unre-
liable cues when no other cues are available.
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AModel of Principled Behaviour
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Abstract

In this chapter, we provide a reputation-based theory of principled behaviour. We refer to a be-
haviour as principled if individuals display it consistently, regardless of the associated costs in
each context. Here, we hypothesize that commitment and consistency may function as a signal
of trustworthiness that in turn attracts cooperative partners. Individualswho act principled ben-
efit from these cooperative relationships, which outweigh the costs of such a rigid behaviour. We
create a game-theoretic signalling model with two types of senders. First, there are committed
senders for whom it is generally worthwhile to display consistent behavior. Second, there are
“impersonators” who try to pass as committed individuals to reap the benefits of those coop-
erative relationships. We characterise a “zero-tolerance” profile and show the conditions under
whichprincipled behaviour occurs in equilibrium. We compare these results to another compet-
ing theory ofmoral behaviour,moral licensing. Finally, we discuss how to experimentally test the
predictions from themodel.

6.1 Introduction

Principled behaviour, characterised by unwavering adherence to moral values, presents a
fascinating puzzle oh human behaviour. People who act principled exhibit a range of specific
behaviours: (1) they consistently abide by the principle, (2) they refuse to compromise or
consider trade-offs, (3) they prioritise the principle above all else, even when it is of little value,
and (4) they feel that their principle is right for transcendental reasons rather than material
incentives. People abide by values such as never lying or cheating, never eating pork, or beef, or
any meat at all, never taking the plane, never to monetize love, sex, bodies, etc. In this chapter,
we do not dwell on the philosophical question of what are moral values, what is morality or the
different shapes it might take. We care about the behaviour of consistently abiding by stated
moral principles regardless of costs and benefits and with no intrinsic value or reason for such
behaviour.

Such a strict rule of behaviour is puzzling. Human behaviour is evolved. The same pressure
from natural selection and sexual selection that shape the different functions of an organism
shape the humanmind [276]. Only behaviour that brings fitness benefits through reproduction
or the acquisition of material resources, will evolve. However, all the features of principled
behaviour describe a rigid behaviour that does not vary according to the costs and benefit
of the situation, and as such may lead to direct negative impact. That individuals exhibit a
behaviour that is blind to payoffs and potentially costly to themselves defies evolution. Adding
to the complexity, the values individuals abide by vary considerably within and across cultures
[277]. Different religions and culture proscribe different foods, while people themselves have
different individual values within the same society. The moral values of right and left wing
people are fundamentally different [278], and which set one person adheres to might change
over the lifetime. Despite this variation, which types of values and behaviour individual become
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principled about might not be random.

Why do individuals act principled and what kind of behaviour are they principled about?
To answer these questions, we look at the ultimate function of principled behaviour. Building
on the literature of signalling games [113, 279], we develop a model to test a reputation-based
theory of principled behaviour [280]. Following a growing body of literature that shows that
many puzzling behaviour humans display are signals of trustworthiness aimed at potential
cooperation partners [80, 281–283], we use evolutionary game theory to build a signalling
model [229, 284–286]. Signalling theory has roots in both biology [287, 288] and economics
[289]. Both approaches seek to understand the ultimate cause of a behaviour by analysing
which information is conveyed by a behaviour. In their theory, Singh & Hoffman [280] reason
that by acting principled, individuals signal consistent commitment to cooperative behaviour
regardless of the context. This in turn makes them look trustworthy, as potential partners can
rely on their cooperation even when the costs and benefits of a situation change.

There is evidence that individuals who display features of principled behaviour tend to be
trusted more. Individuals who, in a trolley problem, choose according to moral rules of what
is right rather than weighing the consequences by balancing the cost and benefit of an action,
are rated more trustworthy and are trusted more in trust games [258–260]. Jordan et al [226]
show that individuals who choose not to know the costs of of helping are trusted more and that
players are willing to act in this way to signal trustworthiness. Similarly, individuals who choose
to help intuitively and uncalculatingly are trustedmore [290]. Moreover, we value consistency in
ourselves greatly. Cognitive dissonance is a widely known effect in psychology by which people
will do everything in their power to change actions or ideas that are not psychologically consis-
tent with each other [291] Similarly, foot-in-the-door effects, where individuals are more likely
to agree to a big demand after having accepted a smaller one, stem from a willingness to remain
consistent [292]. These effects can be explained as an aversion to dissonance between one’s
actions and beliefs. But why this aversion? An aversion to inconsistency is only a proximate psy-
chologicalmechanism that evolved to ensure individuals avoid displaying such behaviour. Here,
wehypothesise that its ultimate function is to regulate individuals’ reputationof trustworthiness.

In our model, principled behaviour is a non-conscious impersonation of a ‘committed
individual’ [280]: a committed individual is an individual with a psychology so extreme that
they never deviate from their principles under any circumstances. The “never” is crucial. It
means even in difficult situations or when the stakes change, they can still be trusted. This
leads individuals to interact with them differently as they would with others. If someone never
deviates from being loyal, people will select that person as a cooperative partner over someone
who considers costs and benefits. If someone never deviates from violently retaliating, even at
a cost to themselves, people will avoid attacking them. Those individuals are rare, and most of
the population are simple impersonators who attempt to pass as them to reap the benefits of
this reputation. As such, impersonators should exhibit the same behaviour as committed in-
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dividuals: consistently abidingby theprinciple, refusing trade-offs, andprioritising theprinciple.

In particular, we focus on one key feature of principled behaviour: consistency. It is the rigid-
ity that principled individuals display that specifically garners trust. Consistency in our model
has two manifestations: complementarity and discontinuity. Complementarity means that
the more cooperative one has been in the past, the more cooperative one will be in the future.
Discontinuity means that after one has defected once, one will no longer bother cooperating in
the future. Complementarity is similar to investing in trustworthiness. The more one invests,
themore one has to lose from deviating. Discontinuity implies that once a principle is betrayed,
one has revealed that one is not truly principled and trust can never be fully regained. These
are the mechanisms hiding behind cognitive dissonance and the foot-in-the-door effect. As
people already exhibited principled behaviour once, they already invested in their reputation.
Betraying the principle now will completely and irrevocably undo this reputation, so people
stick with what they already did.

However, there is another recognised effect in consecutive moral decisions known as moral
licensing. This psychological effect occurs when individuals who already behaved morally or
cooperatively feel subsequently entitled to act opposite to themoral values they already upheld,
because they have provided evidence that they abide by them. Essentially, once an individual
has already done something moral, they have a license to do something immoral, as they have
now earned “moral credits”. For example, participants who disagreed with a strongly sexist
statement were more likely to favour a male candidate for a job position [293]. The evidence
for moral licensing is debated, with meta-analyses finding a small but real effect [294] and a
recent study failing to replicate the effect [295]. There is evidence that the effect is sensitive to
several moderators, perhaps explaining why the effect is hard to reproduce. In their review of
the literature, Mullen & Monin [296] highlight a range of moderators which distinguish when
individuals are more likely to be consistent or to license. Overall, the evidence shows that the
likelihood of maintaining consistency in actions increases when individuals demonstrate a
strong commitment to a particular value or strongly identify with the principle underlying the
action. Conversely, actions perceived as less concrete, with tangible consequences or less indica-
tive of moral principles, are more likely to lead to moral licensing. Our model helps to shed light
on the conditions necessary for either consistency or licensing. Our reputation-based theory
states that moral licensing can be explained by a desire not to appear as a negative committed
individual. In the same way that one breach of principle is sufficient evidence to show that one
is truly committed to a positive action, one positive action can demonstrate that a person is not
committed to a negative one. There is evidence that moral licensing is a reputationmechanism:
once an individual has established that they are good, they no longer have to behave as morally
anymore [295]. To summarise, we expect a person who needs to be seen as trustworthy not to
display moral licensing, while an individual who only wishes to establish they are not the worst
possible person will license.
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In this chapter, I present the signalling model and characterise equilibrium conditions for
strategy profiles representing consistency and moral licensing. We hypothesise that principled
behaviour is indirectly beneficial because acting consistently increases trust in potential part-
ners. To explore this hypothesis, I explore under which conditions there is an equilibrium that
features consistent behavior, and how these conditions differ from the respective conditions of
the moral licensing equilibrium. Finally, I sketch a behavioural experiment that can put the re-
sultingmodel predictions to the test.

6.2 Themodel

R Receiver
S Superior sender
I Inferior sender
pS Probability of a receiver to be of superior type
pI Probability of a receiver to be of inferior type
aS Benefit for the superior type if accepted by a receiver
aI Benefit for the inferior type if accepted by a receiver
bS Benefit from accepting superior sender
bI Benefit from accepting inferior sender
ch High cost
cl Low cost
qSl probability for the superior type to face a low cost
qIl probability for the inferior type to face a low cost

Table 6.1: Parameters

Tomodel principled behaviour, we develop a repeated signalling game between a sender and
a receiver. The sender can be one of two types, referred to as superior (S) and inferior (I). The
type of the sender is randomly determined before the game starts according to the probability
distribution p = (pS , pI)with pS + pI = 1. Senders know their own types, whereas receivers only
know the general probability distribution p.

After the sender’s type is determined, the sender faces n rounds in which she can signal
her type to the receiver. Each of these n rounds proceeds as follows: First nature randomly
determines the cost of the signal; this cost can be either low or high, c ∈ {cl, ch} with ch > cl > 0.
The probability of having a high cost is independent of the round number and of previous
realised costs. However, it depends on the type of the sender. Superior senders experience a high
cost with probability qSh , whereas this probability is qIh for inferior types. We use qSl = 1 − qSh and
qIl = 1 − qIh for the probability that the respective cost is low. Moreover, we use c̄θ := qθl cl + qθhch

to denote the expected cost that a sender of type θ ∈ {S, I} experiences in any given round.
In the following we assume qSh ≤ qIh. That is, superior types are less likely to experience a high
cost. The sender (but not the receiver) learns the exact cost. Then the sender decides whether
or not to pay the cost in order to send the signal. After the sender has made her decisions, the
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Figure 6.1: The repeated signalling game. We consider a signalling games between a sender and a re-
ceiver. Sender canbeof two types: superioror inferior. To indicate their type, sendershave theopportunity
to send a signal onmultiple rounds. On each round, theymay pay a cost to send the signal (S). Otherwise
no signal is sent (N). The cost can be either high or low and is randomly selected in each round. Based on
the number of signals they see, the receivers choose to accept or reject the sender for some benefit.

receiver learns in howmany of the n rounds the sender paid the cost. The receiver then decides
whether or not to accept the sender. If the receiver rejects the sender, the payoffs in that final
stage are zero for both players. If he accepts the sender, the payoffs depend on the sender’s type;
the sender’s payoff is aθ and the receiver’s payoff is bθ with θ ∈ {S, I} (Fig.6.1).

For the game to be interesting, wemake the following assumptions on the players’ incentives:

A1 Receivers only want to pair with superior senders

bS > 0 > bI . (6.1)

A2 Senders are generally willing to signal

n·cl < aθ for all θ ∈ {S, I}. (6.2)

A3 Some signalling is required to get accepted

pSbS + pIbI < 0. (6.3)

A4 Inferior senders do not signal at all costs

n·ch > aI . (6.4)

Assumption (A1) states that receivers do not want to accept any sender but only supe-
rior senders. If the benefit from accepting an inferior sender is also positive but still smaller
than the benefit of accepting an superior sender, receivers would simply accept anyone. The
assumptions (A2) and (A3) rule out certain scenarios where no player ever sends the signal.
Sendersmay gain a benefit frombeing accepted and therefore signalling is worthwhile. Assump-
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tion (A4) implies that inferior senderswill not send the signalwhen the cost is high in each round.

Thismodel has two key features: there ismore than one opportunity to signal, and the related
costs are stochastic. There needs to be different cost levels to distinguish a perfect sender –
superior, from an imposter sender – inferior. Specifically, a perfect sender has no or very little
consideration for the costs, while an imposter is incentivised to take the costs into account. The
presence of a high cost gives the inferior sender the opportunity to reveal their true colours.
There also needs to bemultiple rounds so that the effect of previous actions can bemodelled and
consistency tested. Both our behaviours of interest, principled behaviour, and the competing
moral licensing, are about consecutivemoral decisions where past actions influence the current
action. For principled behaviour in particular, we want to test two features of consistency:
complementarity and discontinuity. In the following, we consider the case of n = 2 rounds, as
this is sufficient to test for these two features. In a two-rounds model, complementarity means
that senders send the signal the second round if and only if they already sent the signal in the
first round. Discontinuitymeans that if the sender did not send the signal in the first round, they
will not send it in the second round either.

To analyse the model, we characterise strategies for each type of player in the repeated sig-
nalling game. A strategy is a plan of actions. For example, a strategy for the receiver could be
to never accept regardless of how many signals are observed. Another strategy would be to ac-
cept when at least one signal is sent. We assume the senders’ strategies take the form σθ =

σθ(i, k, c). Here, the input i ∈ {1, . . . , n} is the given round for which a decision is to be made;
k ∈ {0, . . . , i − 1} is the number of times a signal has been sent in the past, and c ∈ {cl, ch} is
the current cost. The output takes the form σθ(i, k, c) ∈ {0, 1} where 0 refers to not sending the
signal for the given input. The receiver’s strategy takes the form ρ = ρ(k), where k ∈ {0, . . . , n}
refers to the number of times the sender has sent the signal. Here, the output again takes values
ρ(k) ∈ {0, 1}, where 0means to reject the sender.

6.3 Equilibrium analysis

Toexplore the implicationsof thismodelwecharacterise the relevantPerfectBayesianNashequi-
libria (PBNE). The notion of PBNE is the standard way game theorists solve signalling games.
They require that at each stage of the game, individuals act optimally given their beliefs. The be-
liefs in turn are formed using Bayes’ rule. In our signalling game, observing that a signal was sent
or not is new information that receivers use to update their beliefs about the type of the sender.
In a PBNE, the strategy of each type of each player is specified in such a way that no player can
gain fromdeviating given her preferences andher information. If a strategy profile is not a PBNE,
then someplayer couldbenefit fromdeviating. Equivalently, if strategies are learnedor evolved, a
mutation or experimentation that leads her to behave differently would succeed and propagate.
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Figure 6.2: The strategy profiles. a. We define a zero-tolerance equilibrium in which receivers only
accept senders who send the signal in all rounds (twice), superior senders send the signal in every round
regardless of the cost, and inferior senders send the signal on the first round if the cost is low or as long as
they have sent it before. b.Wedefine a licensing equilibrium inwhich receiver accept senderwho send the
signal at least once, superior senders will always send the signal in the last round if they have not before,
and inferior sender only send the signal in the last round if they have not before and the cost is low.

Zero-tolerance equilibrium. Wefirst characterise a zero-tolerance equilibriumwhere receivers
only accept “perfect” senders who send the signal in all rounds. Specifically, we consider the
following strategy profile

σS(i, k, c) =

{
1 if k = i− 1

0 otherwise
(6.5)

σI(i, k, c) =

{
1 if (i=1 and c=cl) or (i=2 and k=1)

0 otherwise
(6.6)

ρ(k) =

{
1 if k = n

0 otherwise
(6.7)

Werefer to theabovestrategyprofileas the zero toleranceprofile (Fig.6.2a). In thisprofile, superior
senders send the signal in all rounds, regardless of costs. Inferior senders send the signal in the
first round if the respectivecosthappens tobe low; in the secondround they send it as longas they
sent it in the round before. The receiver only accepts senders who send the signal in all rounds
(twice). The name zero-tolerance refers to the high standards of the receiver as they wish to only
be paired with truly committed individuals.

This strategy profile displays the two features of principled behaviour we are interested in:
complementarity and discontinuity. It shows complementarity because inferior types who send
the signal in thefirst roundalso send it in the second. It showsdiscontinuitybecause senderswho
failed to signal in the first round also send no signal in the second. Inferior senders will signal in
both rounds, and be accepted by receivers, when the conditions (the costs) are right. This way,
the inferior sender can pass as a superior sender and be a successful imposter. By checking all
possible deviations, we characterise when we can expect such behaviour in equilibrium.

Claim 1. There is a perfect Bayesian Nash equilibrium in which players act according to the zero
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tolerance profile if and only if the following conditions hold:

−b
S

bI
≥ 1−pS

pS
(1− qIh),

aS ≥ ch + c̄S ,

ch + c̄I ≥ aI ≥ cl + c̄I .

(6.8)

The first condition states that the receiver finds it worthwhile to accept a senderwho sent the sig-
nal inboth rounds. This condition is harder to satisfy if theprobability of encountering a superior
type is low (i.e., if pS ≈ 0), or if inferior senders are unlikely to face a high signalling cost (i.e., if
qIh≈0). The second condition ensures that superior senders are willing to pay the high cost even
if it occurs in the first round. The last condition ensures that in the first round, inferior senders
are willing to pay the low cost but not the high cost.

Moral licensing equilibrium. Moral licensing is a psychological effect by which individuals do
not bother doing the ‘right thing’ when they already have done so before. The initial good deed
gives them a “license” not to act good a subsequent time. Here, we attempt to capture moral
licensing through the following strategy profile.

σS(i, k, c) =

{
1 if (i=1 and c=cl) or (i=2 and k=0)

0 otherwise
(6.9)

σI(i, k, c) =

{
0 if c=ch or (i=2 and k=1)

1 otherwise
(6.10)

ρ(k) =

{
1 if k ≥ 1

0 otherwise
(6.11)

We refer to the above strategy profile as the licensing profile (Fig.6.2b). With this profile, we cap-
ture the features ofmoral licensing in both senders. The difference between the two sender types
is their sensitivity to the cost. The superior type will always ‘license’ by sending the signal in the
second round regardless of cost if they did not send it before. In contrast, the inferior type only
‘licenses’ in the second round if the cost is low. Receivers now accept senders who sent at least
one signal. For this licensing profile we obtain the following equilibrium condition.

Claim2. There is a Perfect BayesianNash equilibrium inwhich players act according to the licens-
ing profile if and only if the following conditions hold:

−b
S

bI
≥ 1−pS

pS

(
1− (qIh)2

)
,

aS ≥ ch ≥ aI .
(6.12)

Similar to before, the first condition ensures that receivers haveno incentive to deviate. This con-
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dition is now harder to satisfy than the equivalent condition for the zero-tolerance equilibrium,
Eq. (6.8), because the right hand side of the inequality is larger. This is because in the licensing
equilibrium, inferior types find it easier to pool with the superior senders. The only way they are
rejected by the receivers is if they face a high cost in both rounds (whereas in the zero tolerance
equilibrium, they are already rejected if they face a high cost in the first round).

The second condition ensures that senders find it worthwhile to follow the licensing profile.
This condition states that the inferior sender does not have an incentive to pay the high cost,
whereas the superior sender does. Compared to the respective constraints in Eq. (6.8), these con-
ditions on aS and aI are now easier to satisfy.

Zero-tolerance

Moral licensing

Superior sender Inferior sender

Se
nd

er
s’
be
ne
fit
a
θ

Receiver’s benefit ratio− bS

bI

cl

cl + c̄I

ch

ch + c̄I

1−pS

pS (1 − qIh) 1−pS

pS (1 − (qIh)2)

cl

cl + c̄I

ch

ch + c̄I

1−pS

pS (1 − qIh) 1−pS

pS (1 − (qIh)2)

Figure 6.3: Comparison of zero-tolerancewith competing equilibria. The conditions that allow for each
equilibriumconfigurationsdependon thebenefit that the receiver gets (x axis) and thebenefit that senders
get (y axis). In the case of the superior sender, both the zero-tolerance and the moral licensing equilibria
are only possible if the benefit aI is greater than the high cost. For the inferior sender, the benefit aI must
be smaller than the high cost but greater than the low cost. In the case of the receiver, the conditions on
the benefit ratio− bS

bI
are harder to satisfy for themoral licensing equilibrium.

No accepting, no signaling. As a final contrast, consider the profile in which no sender regard-
lessof type sends the signal in any round, and receivers reject everyone independentof the signal,

σθ(i, k, c) = 0 ∀i, k, c, θ (6.13)

ρ(k) = 0 ∀k (6.14)

Such a profile can always arise as a Bayesian Nash equilibrium. Given that receivers reject
anyone, senders have no incentive to pay a cost for the signal. Conversely, given that all senders
behave in the sameway, receivers have no incentive to accept thembecause of assumption (A3).
That is, we have:

Claim 3. Under the assumptions (A1) – (A4), there is always a Perfect Bayesian Nash equilibrium
in which players act according to the no-accepting profile.
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6.4 Discussion

Why do individuals act principled and what kind of behaviour are they principled about? With
thismodel, we sought to explain the ultimate function of principled behaviour. We hypothesised
that individuals engage in principled behaviour because it allows them to gain the trust of poten-
tial cooperation partners. Being accepted by a partner and entering a cooperative relationship
is beneficial, andmust outweigh the costs of acting principled. Our theory also suggests that key
features of principled behaviour, complementarity and discontinuity, arise from the selectivity
of the receivers who only benefit from partnering with someone who is truly principled. Thus,
any transgressionwill irreparably discredit an individual in the eyes of the receiver, whowill now
know the truth. Similarly, consistently abiding by the principle is the only way to demosntrate
one’s commitment to it, and with each abiding action, the reputation capital of trustworthiness
increase. Individuals havemore andmore to lose by deviating, leading to complementarity.

Our results show that there is an equilibrium where senders display consistency while
receivers only accept senders who sent the signal in all rounds. Moreover, it is the only possible
equilibrium with a highly selective receiver. Other sender behaviours that still involve some
signalling are not possible in equilibrium with a maximally choosy receiver. Similarly, the
licensing equilibrium shows that if receivers relax their criteria, senders will not act consistently
in equilibrium, but will license and send the signal in only one round whenever possible. Any
strategy that leads the senders to send in both rounds even once will not be in equilibrium. In
particular, our conditions on the different profiles highlight this push and pull dynamic between
the two players in the game. In the licensing case, conditions on the senders are easier to satisfy,
since they only need to signal once to be accepted. However, the conditions on the receiver are
harder to satisfy as there are more inferior senders in equilibrium. It is easier to fake one signal
than to fake two, hence the importance of qIh. High costs are diagnostic of an inferior type since
both types will pay the low cost, but only the inferior type will pay the high cost under some
circumstances rather than always. If they are unlikely, inferior types have more opportunites
to pass as superior types undetected. On the other hand, if they are frequent, they will have to
reveal themselves. The strain on this probability is greater in licensing, as there aremore inferior
types in equilibrium. Figure 6.2 clearly shows that in the zero-tolerance equilibria, inferior types
are able to pass as superior types only half of the time (2 cost distributions out of 4), while in the
licensing equilibria, they are able to do so three quarter of the time (3 cost distributions out of 4).

For these reasons, the rarity of the superior type and the likelihood of high costs are the key
parameters distinguishing the two behavioural effects. Senders are more likely to act consis-
tently when receivers strongly want to avoid inferior receivers, either because bI is very low or
because pS is small. When pS is 1, the condition on the receiver is easy to satisfy. Things get
trickier when the superior type is rare. The theory relies on extremely rare perfect senders as the
superior type and assumes that most people are imposters trying to appear as perfect. When
we think about ourselves, this makes sense. Even though many people believe in principles
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and claim to follow them, and to some extent they do, in reality principles are often betrayed
[297]. However, for licensing, the superior type is now the more common, normal individual.
It represents individuals who simply do not want to be categorised with a bad reputation, and
doing the bare minimum to exculpate themselves. Here, the inferior type does not bother to
license when the cost is too high and accept their bad reputation.

The next stepwould be to test these predictions experimentally. To do this, it would be useful
to design an experiment that shows complementarity and discontinuity in the behaviour of the
sender, and how this in turn affects the level of trust in an observer (the receiver in our model).
We have a design with a deception task where players can lie or tell the truth about which bonus
bundle is more profitable for a receiver. We vary the cost of telling the truth by implementing
two levels of temptation, one high and one low. This allows us to test whether or not a partic-
ular sequence of high and low costs leads to consistency or not. We test complementarity by
showing that senders are more likely to cooperate/not deceive in the current round if they have
cooperated before, even if the cost is high. The probability of paying the high cost is higher in
the second round than the first round, provided that the sender paid the cost in the first round.
Sincewe condition our effect on the cost of the previous round, thismeans that we are looking at
the effect of an effect. So a significant but small effect in the first roundmay not carry over to the
second round, making our design difficult to calibrate. It is important that we look at previous
costs, not just previous action, to ensure that we are not simply comparing with participants
who are naturally more cooperative.

Our model shows that acting consistent when potential partners have high standards is the
best courseof action,while licensing is sufficient in situationswhereexpectationsare lower, high-
lighting the importance of trust and partner choice. Evolutionary game theory is a powerful tool
for understanding the ultimate causes of behaviour. Using bothmodels and experiments, we can
get to the roots of a behaviour andmake testable predictions about its ultimate function.
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Chapter 7

The title of my thesis “Mechanisms and Benefits of Reciprocal Relationships”, was intended
to highlight how central cooperation is to our social lives, even in areas where we might least
suspect it. The first part of the thesis focused on the mechanisms of cooperation, most notably
direct reciprocity, while the second part used the benefit of such cooperative relationships to
explain other kinds of social behaviour. Evolution and game theory are the binding agent of
these projects: it is in the evolutionary simulations, the implementation of experimental games,
or in the use of a signallingmodel to provide ultimate explanations for observed behaviour.

In Chapter 2, I reviewed of the theoretical and experimental literature surrounding direct
reciprocity, focusing in particular on the repeated prisoner’s dilemma game. This chapter
highlighted the importance of contrasting results from theoretical analyses and experimental
methods to gain insights into the mechanisms of direct reciprocity and identified where po-
tential future research would be fruitful. The next chapter explored reciprocity in concurrent
interactions, acknowledging the complexity of human social life and the limitations of studying
isolated interactions. The results show mixed effects on cooperation, with concurrent games
suggesting a negative effect, while emphasising the complex interplay of strategic motives and
spillovers. Chapter 4 was a collaboration where my skills as an experimentalist were needed
to provide evidence for the validity of a new reciprocal strategy of cumulative reciprocity.
Unlike traditional strategies, CURE relies on a tally of interaction imbalances rather than exact
memories of previous rounds, providing a cognitively realistic account of human reciprocity
in everyday life. Chapter 5 reviews how different cues signal different levels of cooperativeness
and highlights the reliability of past behaviour in predicting cooperation. Finally, Chapter 6
provides a proof of concept for howprincipled behaviour can be interpreted by others as a signal
of trustworthiness and cooperativeness.

Through this array of projects, I have learnedmany skills and contributed to varied aspects of
reciprocal relationships. In this discussion, I will highlight where I want to take my research and
the lessons I learned alongmy Doctoral journey.

7.1 Future avenues for direct reciprocity

I am particularly interested in the extension of work on reciprocity along multiple social ties.
People are embedded in highly dense social networks of simultaneous interactions, yet very
little work has addressed this question beyond fixed games in fixed networks. Our project on
concurrent games took a different approach to study multiple social interactions by restricting
thenetwork to two independent interactions. Comparing two interactionswith the samepartner
or with two different partners are essentially two different dimensions of a network [298]. Our
paper examines two things: whether playing two different games with the same person leads
to strategy linkage, and whether reciprocity spills over from one independent interaction to
another. Looking at a smaller set of linked interactions allows us to answer new questions about
themechanisms of reciprocity in such environments.
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In the case ofmultiple interactionswith different partners, it would be interesting to consider
scenarios where resources need to be distributed along these multiple social ties, especially
when resources are unequal or limited [65, 299]. In such a situation, should efforts be divided
equally or unequally? And should contributions be based on past contributions and remain
purely reciprocal, or should they also take into account the individual characteristics of others? Is
cooperation higher or similar in heterogenous networks? I plan to address these questions with
Maria Kleshnina, a collaborator who is mainly working on the modelling part of this question.
We want to design and run an experiment where participants interact in multiple unequal
interactions with a limited common fund. The results could shed light on how heterogenous
individuals reciprocate in networks of unequal partners.

The effect of inequality can also be studied in our same-partner design, where participants
interact with the same partner in two different interactions. One possible project would vary the
costs and benefits of the two repeated prisoner’s dilemma games as in the original project, but
in such a way that the costlier game is different for each player. This would create a coordination
problemaseachplayerwouldprefer toprioritise adifferent game, but still benefit fromtheirpart-
ner’s cooperation. Another interesting design is to embed players inmultiple interactions across
two dimensions: a different game playedwith the same partner and the same gamewith a differ-
ent partner. Su et al. have already developed a model in a network using this design [298]. They
also apply their model to existing multi-layer social networks from a variety of social settings.
Analysing reciprocity in a real network would be an exciting collaboration with anthropologists
or sociologists.

Lesson 1: Often it doesn’t work. Only one of my experiments worked on the first try and ran
smoothly. The others took months to pilot. For some I have had to try a different game, for oth-
ers I worked on an idea for 8 months only to realise that it doesn’t work and try something else.
Effects that are known to work fail. Two of my projects rely on different stake sizes as a mecha-
nism to influence the likelihood of cooperation. Participants from different subject pools were
not affected by the difference, even when the difference was 10 times larger. Working with hu-
man subjects can be very messy, but not unpredictable. Overall, I am happy that most projects
haveborne fruits. Most importantly, I know that I need tobemorepatient andhavemore realistic
expectations of what can be achieved in a given time frame 1.

7.2 Mixingmethods

All of my projects relied on the use of both computational methods and experimental ap-
proaches. Most ofmy previous training had been in experimentalmethods and Iwanted to learn
more about modelling, in which I had only minimal training. Game theory and its biological
application, evolutionary game theory, are primarily mathematical theories. If I wanted to

1I startedmy first project thinking it would be drafted after 6 months.
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understand, test and learn them, I had to use them. Combining both methods was a great way
to learn new skills and perfect old ones.

In a sense, models are experiments in themselves; they seek to understand the dynamics and
causal relationships of important social behaviours. For a model to arrive at these answers, it
must be fundamentally simple. The price of such simplicity is external validity, as models can
sometimes be poor predictors of behaviour in the wild. We have seen that the most common
strategies in the prisoner’s dilemma do not explain human behaviour in these games very well.
Nevertheless, models remain extremely valuable in providing proofs of concept, showing if a
strategy is even feasible in the first place. Models show in numerous ways how reciprocity can
evolve, and experiments do show that people are mostly reciprocal, even if an exact strategy is
hard to pin down. Behaviour can have many different explanations, and some are difficult or
even impossible to collect data on. Models can help us work out when a theory is internally
consistent, and formalise arguments to find which answers are plausible. The simplicity in turn
helps us understand the consequences of a few key assumptions by breaking down complex
processes into clear and understandable concepts.

I have often heard my fellow theorists complain that “verbal” theories as opposed to math-
ematical ones lack precision. Words are too open to misinterpretation, and too many debates
boils down to defining things properly. Mathematics cannot be misinterpreted. I did not fully
grasp what their point was exactly, until I developed a model myself. The epiphany came
when I realised that there can be two ways of defining a strategy for a player that lead to the
same behaviour in equilibrium, but different responses in out-of-equilibrium scenarios. The
distinction was never made clear to me by mere words, it is only when I did the mathematical
analysis that I understood it.

Nevertheless, it was challenging to accept that effects known to be critical in real life often
have to be excluded. After all, that is exactly what we experimentalists whenwe deliberately con-
trol for confoundingvariables! Ultimately, all scientists in thefieldare trying toexplainbehaviour,
and theorists are just using a more abstract and inexpensive method. But experiments remain
fundamental: they inspire and challenge theories. Once models have made predictions, they
need be tested. Predictions are usually only qualitative: they indicate the direction of change,
rather than theprecisemagnitude of the effect. We know that increasing thenumber of players in
the groupwill eventually leads to a breakdown in cooperation, but we do not predict exactly how
much cooperation will be lost by increasing the number of group members. Sometimes mod-
els are so good that they can predict precise numbers, as in case of the famous early study of sex
allocation [56]. Whetherqualitative orquantitative,model predictions should lead todata collec-
tion, which will often result in somemodel revision, and leads tomore data collection. The cycle
repeats as we gain more knowledge about the system and can start considering more complex
scenarios.
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Lesson2: Sometimes ithurts thebrain. Learning tomodelwithgametheorywasa real exercise
in abstraction. Toquote theprefaceof thebookMathematicalModels of Social Evolution: AGuide
for thePerplexedbyRobertBoydandRichardMcElreath [300]: “[My]algebra skills [had]atrophied
fromdisuse, andeven factoring apolynomial [was] only anancientmemory, as if fromapast life.”
But it was not the algebra itself that was the hardest, it was the ability to read mathematics. To
look at an equation and understand what it means. I used to be amazed when my colleagues
could immediately see how the systemwould behave if some parameter was high or low, while I
had to calculate almost every term inmy head to come to the same conclusion 10minutes later.
It still takes me some time, but I have come to accept that the most valuable to me is the ability
to interpretmodels to understand their implications and how they can be tested empirically. But
the satisfaction of reading an equation and truly understanding what it means is a feeling I will
cherish for a long time.

7.3 An evolutionary lens

In writing this thesis, I dug up some old lecturematerial frommypsychology undergraduate and
was amused to see some now familiar names on my old reading list. 2 In particular, one of my
favourite class was called “Altruism, Cooperation, andHelping” and wasmy first introduction to
the study of human behaviour in light of the theory of evolution. The evolutionary part was not
what stuck with me in those days, it was the use of economic games to study human behaviour.
It was not until I was deep into myMasters in Behavioural and Economic Science that I realised
the breadth of game theory and the methods economists used to answer similar questions to
psychologists. That is when I knew I wanted to work on social behaviour using game theory. It
is what led me to the South African bush to assist graduate students and postdocs studying the
social behaviour of vervet monkeys. It is what led me to apply for a PhD position in the theory
department of a biology institute.

The most important lesson I have learnt from interacting with evolutionary scientists is that
questions have multiple levels of explanation, and that evolution is really a mechanism for only
one of them. I used to say that my degree in psychology made me lose faith in humanity – I had
seen so much evidence of how selfish, stupid, and manipulable we can be. In particular, I did
not believe in true altruism, and was always vehemently oppposed the concept of “social prefer-
ences”. It seemed obvious to me that altruism always has a hidden benefit somewhere: to make
you feel good about yourself or to give you a good reputation. And theword “preference”made it
sound as if the individual choosing a fair split in an ultimatum game did so out of the goodness
of their heart, rather than out of an understanding of the punitive power of the other player. But
here I learned that cooperation is everywhere. So much so that the puzzle of cooperation has
kept scientists frommany different fields busy for decades. We are not selfish, stupid or manip-
ulable. All these proximate effects (mostly) have a good reason for existing. Psychologists and

2I find it particularly funny that in those days I thought that this list was incredibly long. I have now read most of
them andmanymore, and even know some authors personally.
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economists have just not looked at the ultimate cause. Now I understand that even if there is no
such thing as pure altruism, it doesn’t mean that people don’t feel it. Social preferences are just
the proximatemechanisms, something to add to our utility.

Lesson 3: Dig deeper. Psychology research is full of quirky effects and behaviour. As interesting
and important are those first observations and experiments, they often beg the question: but
why? Like a child who asks questions after questions, human social behaviour can only really
be understood if we investigate the underlying incentives and dynamics at play. We are a social
species, as such non of our behaviour happens in a vaccum. Many things (everything?) comes
down to being a good partner.

Behavioural scientists in economics and psychology are relatively unfamiliar with the con-
cept of ultimate functions. However, the accomplished evolutionary game theorists Nowak and
Sigmund [62] say it themselves: themain themes of the research carried in these fields are about
cooperation and communication between individuals, and are therefore inherently game theo-
retic. Evolutionarypsychology andanthropology, fields that are very familiarwith these concepts
and that look at behaviourwith a functional analysis inmind, lack game theory. Economists who
are familiar with game theory, lack often lack an evolutionary lens in their research. My hope for
the field of human behaviour is for researchers from different disciplines to learn the methods
and theories of each other. Economics, psychology, anthropology and biology have so much in
common, and yet some key discoveries take decades to reach the researchers whowould benefit
from them. Some young scientists are crossing the bridge with newmodels of human social be-
haviour, combining evolutionary explanations with existing models of behaviour [76, 301, 302].
I would particularly like to see psychology embrace game theory models and not just economic
games. Now that I understand how useful mathematical models can be to characterise a theory,
I am certain that psychologist should learn to create and interpret their own.

Lesson 4: Cooperation is truly everywhere. The diversity of researchers I have had the privi-
lege of interacting with over the course of this PhD is astounding. Coming from a background
in psychology and economics, I already knew that the field of cooperation was interdisciplinary.
But the overarching field of behaviour and evolution is immense and much broader than I had
realised. I have met some amazing researchers from other fields, sometimes leading to current
and future projects with them. It is fascinating how differently other fields approach the same
questions. I have shown how theorists and empiricists complement each other, and I am proud
to now be an accomplished translator of mathematical models able to transform their insights
into testable experimental designs. Yet there are always more techniques and approaches to ex-
plore and learn form. The vastness of the field is dizzying, and Iwish I hadmore time to read from
all every corner.
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1 Related literature

To a large extent, evolutionary game theory takes a reductionist approach. It aims to understand social

behavior by exploring the dynamics of individual games. This is also the approach of most text books (1–

4) and reviews (5–10). Instead, here we are interested in describing how people act if they are involved in

several games concurrently (possibly with different interaction partners). In the following, we summarize

the previous theoretical and experimental literature on this topic, and we describe how our approach differs

from this literature.

1.1 Theoretical work

We study direct reciprocity in concurrently ongoing repeated games. This work is naturally related to sev-

eral strands of the evolutionary game theory literature.

Evolutionary dynamics of multi-games. Several researchers have explored the evolutionary dynamics in

concurrent non-repeated games (11–14). Here, players engage in two or more one-shot games concur-

rently. This literature asks to which extent the dynamics and the equilibria of such ‘multi-games’ can be

directly inferred from the constituent games. While the equilibria of multi-games are typically directly

related to the equilibria of the individual one-shot games (11), the overall evolutionary dynamics may dif-

fer. In particular, multi-games may lead to evolutionary oscillations that have no analogue in any of the

constituent one-shot games (12). While this work provides important insights into the evolutionary dynam-

ics of one-shot games, it does not extend to reciprocal interactions. In these models, individuals have no

possibility (or interest) to strategically link their behavior across different games. Similarly, these models

do not study the effect of spillovers from one game to another.

Social dilemmas with punishment or rewards. There is also abundant work in which a social dilemma is

coupled with a subsequent game in which individuals can reward or punish each other (15–21). Such social

dilemmas with incentives share some similarities with our same-partner treatment, to the extent that indi-

viduals can use one game (the rewarding or the punishment game) to incentivize additional cooperation in

the other. A crucial difference, however, is that the second punishment/reward stage is explicitly designed

to strategically influence co-players to cooperate. In contrast, we are interested in how people approach

concurrently ongoing games when there is no exogenous indication that behavior in one game might or

even should be tied to the behavior in the other.

Direct reciprocity. While there is a vast literature on the evolution of reciprocal cooperation, most studies

assume that individuals only interact in one repeated game at a time, or that they treat all their games as

independent (22–40). The setup of these studies thus corresponds to the setup of our control treatment.

Compared to these studies, we ask: does the presence of other ongoing games enhance or suppress co-



operation? How can we model the different ways in which behavior in one game may consciously or

subconsciously affect behavior in another game?

Some of these questions have been taken up by the industrial economics literature, when asking how

firms compete in several distinct markets (41, 42). These studies conceptualize the competition across

different markets as formally independent repeated games, similar to our same-partner treatment. Assuming

that markets and firms are symmetric, this literature finds an irrelevance result (41): multi-market contact

does not allow firms to collude more effectively, compared to the possibilities given by each isolated game.

The respective papers, however, take an equilibrium perspective. They characterize optimal behavior among

rational players. In contrast, we are interested in how people learn to play strategically over time (far from

equilibrium). To this end, we also formulate learning processes that aim to capture some of the cognitive

constraints and biases people may be susceptible to.

Two studies from the evolutionary game theory literature are most closely related to what we do. First,

Reiter et al (43) consider players arranged on a network, who interact in a repeated prisoner’s dilemma

with each of their neighbors. The players’ strategies treat each game as independent (as in our control

treatment). That is, the strategies only depend on the previous action of the respective neighbor. However,

the model allows for ‘crosstalk’ between different games. When a crosstalk event occurs, a player who

intends to defect against one neighbor may mistakenly also defect against another neighbor (similarly for

cooperation). In line with the results of our model extension on exogenous spillovers, the study finds that

higher crosstalk rates undermine the evolution of cooperation. Importantly, however, their model does not

study the endogenous evolution of linkage between independent games. Instead crosstalk between games

is included by an exogenous parameter.

Second, Donahue et al (44) describe the equilibria of our same-partner treatment. As in our case, there

are two players who engage in two repeated games in parallel. Players can condition their behavior in either

game on the previous outcome of both games. As in our simulation of the baseline scenario (Fig. 2), they

find that concurrent games can lead to strategic linkage. This linkage in turn can promote cooperation com-

pared to the control treatment. Our model generalizes this work substantially: (i) We introduce a consistent

framework that allows us to compare strategic effects of linking different games with non-strategic effects

(by comparing the same-partner and the different-partners treatment). (ii) We explore the impact of several

plausible biases and psychological constraints (see also Section 2.2). (iii) By designing and analyzing a

behavioral experiment based on our model, we compare the theoretical predictions to empirical evidence.

1.2 Experimental work

Direct reciprocity. Just as in the theoretical papers mentioned above, most experimental studies look at

individual games in isolation (45). One notable exception is spatial games played on a network where

players interact with their neighbors (46–48). In these spatial prisoner’s dilemma, players have been found

to reciprocate cooperation based on the number of their neighbours who cooperated on the previous round



and their own previous action (49). Nonetheless, as the number of co-players increases, cooperation decays

(50–52). However, in these experiments players’ actions are the same for all neighbors, meaning they can-

not tailor their choice of action to each individual neighbor. Further experiments on dynamic networks find

that players are eager to cut ties to non-cooperative neighbors when they are offered the possibility (53, 54),

even when doing so is costly (55).

Spillover in multi-games. There are a few studies that look into the effect of spillovers between games when

played simultaneously (56–59). They look into behavioral spillovers between games, but not reciprocity

and strategic linkage in particular. Angelovski et al (60) consider a setup similar to our different-partners

treatment. They investigate how people interact in two simultaneous 2-players public goods games. Players

are arranged on a circle, meaning that each player interacts with two neighbors. The two games differ in

their incentives: one has a high incentive, the other a low one. In addition, they include three controls where

(1) both games have the high incentive, (2) both games have the low incentive, and (3) both games have

the average of the two incentives. The results show that cooperation in the asymmetric public goods game

matches the level found in the control with high incentives in both games, meaning that the game with

the higher incentive is able to lift cooperation in the game with lower incentive. They also check whether

contributions in one game depend on how much the neighbor in the other game contributed on average.

Average contributions to each neighbor correlate with each other and are behaviorally interdependent.

Finally, one paper contemporaneous to ours, on the repeated prisoner’s dilemma, uses a similar design to

us. Laferrière et al (61) look at cooperation in repeated games with different payoffs played simultaneously

with either the same or two different co-players. The games only differ in their temptation and sucker

payoff while the reward and punishment payoffs stay the same. The paper is focused on experiments and

has no evolutionary game theory component. In line with our results, they find that average cooperation is

the same whether the interactions are with the same or different co-players. However, they do not include a

single game control to understand the effect of playing two games simultaneously. Our experiment includes

such a control where players interact in a standard repeated prisoner’s dilemma with either a high or low

benefit of cooperation.



2 Theoretical methods

2.1 Baseline model

We consider two stage games, the high-benefit game (high game, H) and the low-benefit game (low game, L).

In either game, players can either cooperate (C) or defect (D). A cooperator pays a cost c>0 in order for

the co-player to get a benefit bk>c. This benefit bk depends on the type of game, k∈{H,L}. As implied

by their names, the high game has a larger benefit bH≥bL. Overall, each stage game has the payoff matrix

C D( )
C bk − c −c
D bk 0

[1]

In particular, both games have the characteristics of a prisoner’s dilemma. Mutual cooperation yields the

highest total payoff for the two players, but for each individual player, cooperation is dominated. Players

engage in these donation games for infinitely many rounds. We refer to each individual iterated game as a

repeated game. Overall, we analyze three treatments that differ in two aspects:

1. Players either engage in one repeated game, or in both repeated games.

2. When they engage in both games, they either face the same co-player in both games, or a different

co-player in each game.

In all cases, players use reactive strategies to make their decisions (62, 63). This means a player’s action in

any game only depends on the co-players’ actions in the previous round (independent of all earlier actions).

When players engage in both games, we refer to the resulting supergame as a concurrent game. Here

players need to make two decisions each round, one for each stage game. Decisions that happen in one

repeated game may influence decisions in the other. In the following, we introduce the three treatments in

detail and we explain how to compute the players’ payoffs in each case.

2.1.1 Control treatment

Setup and strategies. In the control treatment, players only engage in one repeated game at a time. This is

the case that is usually considered in the literature. To be consistent with the other treatments, we assume

the control treatment involves four players. Players 1 and 2 interact in the repeated game with high benefits;

players 3 and 4 engage in the low-benefit game. For either repeated game k ∈ {H,L}, strategies take the

form pk = (pkC , p
k
D) ∈ [0, 1]2. Here, pka refers to the player’s probability to cooperate depending on the

co-player’s previous action a∈{C,D}. For example, pk=(0, 0) refers to the strategy ALLD. As another

example, pk=(1, 0) implements the strategy TFT (Tit-for-Tat).



While we assume for the control treatment that each player only engages in one game at a time, we

obtain equivalent results if they play both games (either with the same partner or with different partners),

provided players can be assumed to treat both games as independent (see Fig. S1). That is, we obtain an

equivalent formulation of our control treatment if we assume players engage in both games simultaneously,

but strategies are restricted to take the form p = (pHC , p
H
D; p

L
C , p

L
D). Here, pka is the player’s cooperation

probability in game k, depending on the co-player’s previous action in the respective game only. The the-

oretical results of this alternative formulation might be somewhat easier to compare to the other treatments

(because then all treatments would involve two repeated games for each player). However, this alternative

formulation is more difficult to implement experimentally. Therefore, we use the first formulation through-

out, as depicted in our Fig. 1b.

Calculation of payoffs. We describe how to compute payoffs for players 1 and 2. Payoffs for the other

two players are computed equivalently. Suppose player 1 uses strategy p1 = (p1C , p
1
D), whereas player 2

uses strategy p2=(p2C , p
2
D). To compute payoffs, we represent the repeated game as a Markov chain (see,

for example, Ref. 3). The possible states of the Markov chain are the possible outcomes of a single stage

game, (C,C), (C,D), (D,C), (D,D). Here, the first and the second letter refer to the actions of player 1 and

player 2, respectively. Given the players’ strategies, the transition matrix takes the following form (3),

M(p1,p2) =




p1C p
2
C p1C (1−p2C) (1−p1C) p2C (1−p1C) (1−p2C)

p1C p
2
D p1C (1−p2D) (1−p1C) p2D (1−p1C) (1−p2D)

p1D p
2
C p1D (1−p2C) (1−p1D) p2C (1−p1D) (1−p2C)

p1D p
2
D p1D (1−p2D) (1−p1D) p2D (1−p1D) (1−p2D)



. [2]

As the two players interact in this game for many rounds, play converges to an invariant distribution v =

(vCC , vCD, vDC , vDD). Each entry va1,a2 gives the long-run probability to observe rounds in which the first

player chooses a1 whereas the second player chooses a2. For p1,p2∈ (0, 1)2, this invariant distribution is

unique. By the theorem of Perron-Frobenius, it is given by the solution of the eigenvector problem

v = vM(p1,p2). [3]

Based on this invariant distribution, we can compute the players’ average cooperation rates as

γ1=vCC+vCD and γ2=vCC+vDC . [4]

In the control treatment, these cooperation rates can be computed explicitly (3), as a function of the players’

reactive strategies p1k and p2k,

γ1 =
p1D + (p1C − p1D) · p2D

1− (p1C − p1D)(p2C − p2D)
and γ2 =

p2D + (p2C − p2D) · p1D
1− (p1C − p1D)(p2C − p2D)

. [5]



As a result, we can compute the players’ average payoffs for the repeated game as

π1=bH ·γ2−c·γ1 and π2=bH ·γ1−c·γ2. [6]

2.1.2 Same-partner treatment

Setup and strategies. Here, again we consider two pairs of players, players 1 and 2, and players 3 and 4.

However, this time each pair engages in both repeated games in parallel. It follows that one player’s ac-

tion in one game may affect the co-player’s next action in the other game. Such a situation has been

previously referred to as a ‘multichannel game’ (44). A player’s strategy for repeated game k is a 4-tuple

pk = (pkCC , p
k
CD, p

k
DC , p

k
DD) ∈ [0, 1]4. An entry pkaH,aL refers to the player’s cooperation probability in

game k, depending on the co-player’s previous actions in both the high and the low game. We note that

this strategy space contains the strategy space of the control treatment as a special case. For example, a

strategy pH = (pHC , p
H
D) of the control treatment can be represented as pH = (pHC , p

H
C , p

H
D, p

H
D) within the

same-partner treatment. This reflects a case in which a player could, in principle, react to the co-player’s

previous actions in both games but decides to only react to the actions in the respective game. A strategy

for the concurrent game is a pair p=(pH,pL)∈ [0, 1]8 that tells the player what to do in each repeated game.

Calculation of payoffs. As in the first treatment, we compute payoffs with a Markov chain approach.

Without loss of generality, consider the first two players, with strategies p1k and p2k, respectively. Because

players no longer treat each game as independent, a state is now a 4-tuple a=(a1H, a2H, a1L, a2L) with aik∈
{C,D}. Each state corresponds to a possible outcomes of a single round, with the entries describing the

players’ actions in each game. For example (C,C,D,C) refers to a state in which both players cooperated

in the high game, but only player 2 cooperated in the low game. There are 24 = 16 states in total. For

two possible states a = (a1H, a2H, a1L, a2L) and ã = (ã1H, ã2H, ã1L, ã2L), we can compute the transition

probability that players move from state a to ã within one round. The respective transition probability is a

product of four factors,

ma,ã = y1Ha2Ha2L · y2Ha1Ha1L · y1La2Ha2L · y2La1Ha1L . [7]

These four factors correspond to the decisions that the two players make in each of the two games. The first

factor is the probability that player 1 chooses the action required by ã in the high game,

y1Ha2Ha2L :=





p1Ha2Ha2L if ã1H = C

1−p1Ha2Ha2L if ã1H = D.
[8]

The three other factors in Eq. [7] are defined analogously. Again, we collect these transition probabilities

in a 16×16 matrix M(p1,p2)= (ma,ã). By computing the invariant distribution v=(va) of this matrix,

we infer how often the two players visit each state a=(a1H, a2H, a1L, a2L)∈{C,D}4 over the course of the

game. Based on this invariant distribution, we compute the average cooperation rate of player i in game k.



To this end, we sum up over all possible states in which player i cooperates in game k,

γik =
∑

a∈{C,D}4
va · 1{aik=C}. [9]

Here, 1P is an indicator function. Its value is one if the statement P is true, and it is zero otherwise. Based

on these cooperation rates we define the player’s payoffs in repeated game k∈{H,L as

π1k=bk ·γ2k−c·γ1k and π2k=bk ·γ1k−c·γ2k. [10]

We define the payoffs for the concurrent game by adding up the payoffs for each repeated game,

π1=π1H+π1L and π2=π2H+π2L. [11]

The payoffs for players 3 and 4 can be computed with the same algorithm.

2.1.3 Different-partners treatment

Setup and strategies. In this treatment, players have different interaction partners for the high and the low

game. Specifically, we consider four players, with interactions as displayed in Fig. 1 of the main text.

For example, player 1’s interaction partner in the high game is player 2, whereas the interaction partner

in the low game is player 3. Similar to the same-partner treatment, a player’s action in one game may

depend on the previous outcome of the other game. That is, a strategy for game k again takes the form

pk=(pkCC , p
k
CD, p

k
DC , p

k
DD) ∈ [0, 1]4. Each entry pkaH,aL indicates the player’s probability to cooperate in

game k, depending on the previous action aH of the co-player in the high game, and on the action aL of the

co-player in the low game. Again, a strategy for the concurrent game is a pair p=(pH,pL)∈ [0, 1]8. It tells

the player what to do in each of the two games.

Calculation of payoffs. As before, payoffs are computed with a Markov chain approach. However, because

we no longer have two distinct pairs of players, the state space is yet again bigger. This time, the set of

states consist of all 8-tuples a= (a1H, a2H, a3H, a4H, a1L, a2L, a3L, a4L)∈ {C,D}8. For example, a tuple a

with a3L=C refers to a round in which player 3 cooperates in the low game with the respective interaction

partner (player 1). Because there are now eight (independent) decisions made each round, the transition

probability from state a to ã is a product of eight factors,

ma,ã = y1Ha2Ha3L · y2Ha1Ha4L · y3Ha4Ha1L · y4Ha3Ha2L · y1La2Ha3L · y2La1Ha4L · y3La4Ha1L · y4La3Ha2L . [12]

The entries yikaHaL are defined the same way as before, see Eq. [8]. The respective transition matrix

M(p1,p2,p3,p4)=(ma,ã) that summarizes all these transition probabilities is now of size 256×256 (in

particular, the players’ payoffs are now more computationally expensive to derive). However, the remaining



steps are analogous to the previous treatments. Again, we first compute the players’ average cooperation

rates in each game by summing up over all relevant states a=(a1H, a2H, a3H, a4H, a1L, a2L, a3L, a4L),

γik =
∑

a∈{C,D}8
va · 1{aik=C}. [13]

Based on these eight cooperation rates, we can compute the players’ payoffs in each game as follows,

π1H = bH ·γ2H − c·γ1H, π1L = bL ·γ3L − c·γ1L,

π2H = bH ·γ1H − c·γ2H, π2L = bL ·γ4L − c·γ2L,

π3H = bH ·γ4H − c·γ3H, π3L = bL ·γ1L − c·γ3L,

π4H = bH ·γ3H − c·γ4H, π4L = bL ·γ2L − c·γ4L.

[14]

The overall payoff of player i in the concurrent game is the sum πi=πiH+πiL.

2.1.4 Trembling-hand errors

The strategies introduced above describe which actions the players wish to take. However, actions may be

subject to errors. For example, players may intend to cooperate, but they may fail because of a lack of at-

tention. Similarly, players may misimplement their intended action because of a trembling hand (64). The

assumption of trembling-hand errors is fairly common in the evolutionary literature on repeated games (9).

In addition to making the model more realistic, errors have two useful mathematical implications. First,

errors ensure that all finite histories of a repeated game are visited with a positive probability. As a con-

sequence, each entry of a player’s strategy has an effect on the player’s payoff (there are no entries that

are neutral merely because the respective history is never visited). Second, errors ensure that the Markov

chains described in the previous sections are ergodic, irrespective of the players’ strategies. This implies

that payoffs are well-defined even when the unperturbed Markov chain has multiple absorbing states.

We assume trembling-hand errors occur with a constant probability εTH, and they affect cooperative and

defective actions alike. As a result, a player’s nominal strategy pk for game k translates into an effective

strategy pk
ε , with

pk
ε := (1−εTH)p

k + εTH(1−pk). [15]

Here, 1 is a vector that has the same size as pk, but with all entries being equal to one. As an example,

under this transformation, the repeated-game strategy Tit-for-Tat (1,0) in the control treatment is mapped

to the effective strategy (1−εTH, εTH). More generally, this transformation takes a strategy pk ∈ [0, 1]n,

and maps it into the interior of this strategy space, pk
ε ∈ [εTH, 1−εTH]

n. The above strategy transformation

works for all three considered treatments. We can compute the players’ (effective) payoffs by simply taking

the effective strategies (instead of the nominal strategies) as the input in the respective payoff algorithms.



2.2 Modelling cognitive constraints and alternative behavioral processes

Once players interact in several games in parallel, their behavior may be subject to cognitive constraints

that cannot be studied within the classical framework of (independently) repeated games. In the following,

we consider some of these constraints, and we discuss how they can be incorporated into our framework

for the same-partner treatment and the different-partners treatment, respectively.

2.2.1 Imperfect recall

Motivation. When engaging in several interactions in parallel, people may confuse the outcome of one

interaction with the outcome of another. This effect is best documented in studies where participants need

to memorize the outcome of different social dilemmas with changing interaction partners (65, 66). As one

may expect, these studies find that it is more difficult to correctly recollect one interaction partner’s past

decision when several other interactions (with different outcomes) occurred in the meanwhile.

Imperfect recall can undermine reciprocal cooperation because it restricts the players’ ability to give

targeted responses. This may also affect the predictions of our baseline model. As an example, consider

a player whose co-player in the high game defected in the previous round, and whose co-player in the

low game cooperated. With perfect recall, such a player would react by cooperating with probability pHDC
and pLDC , respectively. With imperfect recall, this player may confuse the outcomes of the last round,

and choose to cooperate with probability pHCD and pLCD instead. The impact of this cognitive constraint

depends on the exact values of the cooperation probabilities. The impact is small when pkCD ≈ pkDC for

both k∈{H,L}. It can be substantial when the cooperation probabilities differ considerably.

Incorporating this kind of imperfect recall into our model is not as straightforward as incorporating

trembling-hand errors in Section 2.1.4. There we assumed that trembling-hand errors affect each game of a

player independently. An error in one game does not increase or decrease the likelihood that a similar error

occurs in the other game. As a result, we can model the effect of errors by simply replacing nominal strate-

gies by effective strategies, see Eq. [15]. In contrast, imperfect recall affects both games simultaneously. In

the following, we describe how confusion can be integrated into our framework, both for the same-partner

and the different-partners treatment.

Same-partner treatment. We suppose that in any given round, each player may be subject to imperfect

recall with probability εIR≥ 0. Let a=(a1H, a2H, a1L, a2L) and ã=(ã1H, ã2H, ã1L, ã2L) be the current and

the next state, respectively, with a, ã∈{C,D}4. We distinguish four cases.

1. With probability (1−εIR)
2 no player commits an error. In that case, the transition probability from a

to ã is the same as in the baseline case, y1Ha2Ha2L ·y2Ha1Ha1L ·y1La2Ha2L ·y2La1Ha1L , with each factor yikaHaL being

defined as in Eq. [8].

2. With probability εIR(1−εIR) player 1 commits an error but player 2 does not. In that case, the relevant



transition probability is y1Ha2La2H·y2Ha1Ha1L·y1La2La2H·y2La1Ha1L (i.e., the first and the third factor are modified).

3. With the same probability εIR(1−εIR) player 2 commits an error but player 1 does not. The respective

transition probability is y1Ha2Ha2L ·y2Ha1La1H ·y1La2Ha2L ·y2La1La1H (the second and fourth factor are modified).

4. With probability ε2IR both players commit an error simultaneously. In that case, the transition proba-

bility becomes y1Ha2La2H ·y2Ha1La1H ·y1La2La2H ·y2La1La1H (all factors are modified compared to the baseline).

The overall transition probability from a to ã is the weighted sum of these four conditional transition

probabilities.

Equivalently, we can also write the respective transition matrix more explicitly. For a given repeated-

game strategy pk = (pkCC , p
k
CD, p

k
DC , p

k
DD), define a perturbed strategy by p̃k := (pkCC , p

k
DC , p

k
CD, p

k
DD)

(i.e. the second and third entry change their position). For a concurrent-game strategy p=(pH,pL), define

p̃ := (p̃H, p̃L) as the strategy with perturbed components. Based on this notation, let p1 and p2 be the

strategies of the two players in the same-partner treatment. Then the respective transition matrix for the

case of imperfect recall can be written as

MIR = (1−εIR)
2 ·M(p1,p2) + εIR(1−εIR)

(
M(p̃1,p2) +M(p1, p̃2)

)
+ ε2IR ·M(p̃1, p̃2). [16]

The matrices M(x,y) on the right hand side are defined as in the baseline model, Eq. [7]. In particular, as

errors vanish, εIR→ 0, the matrix MIR recovers the baseline transition matrix. For positive error rates, we

can use the matrix MIR in Eq. [16] to compute the invariant distribution, the players’ average cooperation

rates, and their expected payoffs as before.

Different-partners treatment. The logic of integrating imperfect recall into the different-partners treatment

is analogous to the same-partner treatment. However, because there are now four players, there are more

cases to consider. In a given round, the number of players who are subject to imperfect recall may be any

number between zero and four.

Using the same notation as before, the respective transition matrix becomes

MIR = (1−εIR)
4 M(p1,p2,p3,p4)

+ εIR(1−εIR)
3
(
M(p̃1,p2,p3,p4)+M(p1, p̃2,p3,p4)+M(p1,p2, p̃3,p4)+M(p1,p2,p3, p̃4)

)

+ ε2IR(1−εIR)
2
(
M(p̃1, p̃2,p3,p4)+M(p̃1,p2, p̃3,p4)+M(p̃1,p2,p3, p̃4)

+M(p1, p̃2, p̃3,p4)+M(p1, p̃2,p3, p̃4)+M(p1,p2, p̃3, p̃4)
)

+ ε3IR(1−εIR)
(
M(p̃1, p̃2, p̃3,p4)+M(p̃1, p̃2,p3, p̃4)+M(p̃1,p2, p̃3, p̃4)+M(p1, p̃2, p̃3, p̃4)

)

+ ε4IR M(p̃1, p̃2, p̃3, p̃4)

[17]

Again, given this transition matrix, it is straightforward to compute the players’ cooperation rates and their

payoffs, as described by Eqs. [13] and [14].



2.2.2 Behavioral spillovers

Motivation. Behavioral spillovers occur when an individual’s action in one domain leads that individual to

take a similar action in a different domain. Such spillovers may occur consciously or subconsciously, and

they can have important policy implications (67, 68). In the context of our framework, spillovers induce ad-

ditional correlations in a player’s behavior across the two games. For any given history, spillovers increase

the chance that a player cooperates in both games (rather than cooperating in one game and defecting in

the other). Similarly, they also increase the chance that players defect in both games. In the following we

describe how (exogenous) behavioral spillovers can be integrated into our framework.

Same-partner treatment. We assume spillovers occur with a constant probability εSP and they affect each

player independently. Moreover, we assume that both cooperative and defective actions are equally likely

to spill over to a different context. To describe the effects of such spillovers formally, we consider two

players with strategies p1 and p2. We aim to describe the probability that they make the transition from

state a=(a1H, a2H, a1L, a2L)∈{C,D}4 in one round to state ã=(ã1H, ã2H, ã1L, ã2L)∈{C,D}4 in the next

round. Again we need to distinguish several cases. For example, there are different ways that would lead

player 1 to cooperate in both games in the next round:

1. Player 1 may decide to cooperate in both games from the outset. Given the previous actions of the

second player, this happens with probability p1Ha2Ha2L · p1La2Ha2L .

2. Player 1 initially decides to cooperate in the high game but to defect in the other; but due to a spillover,

the player ends up cooperating in both games. The respective probability is εSP
2 · p1Ha2Ha2L(1−p1La2Ha2L).

The factor of one half indicates that spillovers could equally lead the player to defect in both games.

3. Similarly, player 1 may wish to defect in the high game, to cooperate in the low game, but ends up

cooperating on both games due to a spillover. This probability is εSP
2 · (1−p1Ha2Ha2L)p1La2Ha2L .

4. If player 1 wishes to defect in both games, spillovers cannot affect the player’s decision.

Overall, in the presence of spillovers, the transition probability from state a to ã takes the form

ma,ã = z1a2Ha2L · z2a1Ha1L . [18]

Here the two variable ziaHaL for i∈{1, 2} describe the decisions of the two players in both the high and the



low game. For example, for the first variable,

z1a2H,a2L :=





p1Ha2Ha2Lp1La2Ha2L +
εSP
2

[
p1Ha2Ha2L(1−p1La2Ha2L) + (1−p1Ha2Ha2L)p1La2Ha2L

]
if ã1H=C, ã2H=C

(1−εSP)p
1H
a2Ha2L(1−p1La2Ha2L) if ã1H=C, ã2H=D

(1−εSP)(1−p1Ha2Ha2L)p1La2Ha2L if ã1H=D, ã2H=C

(1−p1Ha2Ha2L)(1−p1La2Ha2L) +
εSP
2

[
p1Ha2Ha2L(1−p1La2Ha2L)+(1−p1Ha2Ha2L)p1La2Ha2L

]
if ã1H=D, ã2H=D

[19]

The variable z2a1H,a1L for the second player is defined analogously. In the limiting case that exogenous

spillovers are rare, εSP = 0, the transition probability [18] simplifies to the formula [7] of the baseline

model, which is reassuring. However, as εSP increases, each player becomes increasingly unlikely to choose

different actions in the two games. In particular, in the limiting case εSP =1, there is a perfect correlation

between a player’s actions. Each player either cooperates in both games, or defects in both games.

By collecting the transition probabilities [18] and writing them as a matrix MSP=(ma,ã), we can again

use the methods from the baseline model to compute expected cooperation rates and payoffs.

Different-partners treatment. Spillovers can be incorporated in the same way as in the same-partners treat-

ment. If p1, p2, p3, p4 are the strategies of the four players, and a and ã are the current and the next state,

respectively, the transition probability takes the form

ma,ã = z1a2Ha3L · z2a1Ha4L · z3a4Ha1L · z4a3Ha2L . [20]

The individual factors ziaHaL are defined analogously as in the previous section, see Eq. [19]. Based on the

resulting transition matrix MSP=(ma,ã), we can again compute cooperation rates and payoffs.

2.2.3 Preferential updating

Motivation. The two previous subsections dealt with two plausible kinds of errors. These errors affect how

people with given strategies act in a concurrent game. The next two subsections describe two behaviorally

plausible modifications of the learning process. These modifications affect how people choose their strate-

gies in the first place. The baseline model assumes that in each step of the learning process, players are

equally likely to update their strategy for the high game and for the low game. In the following, we discuss

a model extension that allows for preferential updating. Here, players are more likely to update the strategy

in the game that currently yields the lower relative payoff.

Implementation of the learning process. We incorporate preferential updating as follows. As in the baseline

model, we assume that in any given time step t, one individual, say player j, is picked at random. This

player is then given a chance to generate an alternative strategy, by either modifying their strategy in the

high or the low game. However, in this case, the high-game strategy is modified with a probability given



by the Fermi-function,

ξj =
1

1 + exp[κ(π
jH

bH
− πjL

bL
)]
. [21]

The parameter κ≥0 measures to which extent updating is biased towards one game or the other. For κ=0,

we obtain ξj = 1/2, irrespective of the value of the other variables. In that case, we recover the baseline

model where both games are equally likely to be modified. For positive κ, the player is more likely to

modify the strategy that currently yields a lower payoff, relative to the maximum achievable payoff bk in

the respective game. Once an alternative strategy is generated, the further process is the same as described

in the main text. As described there, the player is more likely to adopt the generated strategy p̃j, the higher

the hypothetical payoff π̃j is compared to the player’s current payoff πj . If p̃j yields a high payoff, it is

likely to be adopted. If p̃j yields a low payoff, it is likely to be discarded and the player continues to use

their current strategy pj.

2.2.4 Updating under narrow bracketing

Motivation. Narrow bracketing refers to situations in which people make decisions in one domain without

fully taking into account its consequences on decisions in other domains (69). Such a bias may also unfold

in concurrent games. Players who update their strategies for a given repeated game k∈{H,L} may neglect

the impact of this strategy change on the other game. As a result, a strategy change that is beneficial in

the respective game may be detrimental overall. In the following, we describe a simple model of narrow

bracketing in the context of concurrent games.

Implementation of the learning process. The learning process under narrow bracketing follows along the

same lines as the baseline learning process described in the main text. As before, a randomly chosen focal

player updates its strategy in a randomly chosen game k∈{H,L}. When deciding whether to adopt the new

concurrent strategy p̃j, with probability 1− λ, the player compares the total payoffs π̃j and πj . With the

converse probability λ, however, the player only compares the payoffs π̃jk and πjk of the particular game

k in which the strategy p̃j got updated. In particular, a player may adopt the alternative strategy because

π̃jk>πjk even though the total payoff effect is negative, π̃j= π̃jH+π̃jL<πjH+πjL=πj . The total effect

may be negative because in concurrent games, a player’s strategy in one game can affect the co-player’s

response in the other game. We refer to λ as the probability of narrow bracketing. When λ=0, decisions

are made as in the baseline model. As λ increases, updating decisions are increasingly based on the payoff

effects in repeated game k only.



3 Experimental methods

3.1 Experimental procedures

Experimental setup. Our experiments has three different treatments, matching those of the theoretical

model Fig. 1. The treatments differ in the number of games played simultaneously and in the number

of co-players. The control treatment is a standard 2-player game. The same-partner treatment is also a

2-player game, but now both players interact through two games simultaneously. The different-partners

treatment also involves two games, but now each participant interacts with two different co-players, one for

each game.

Treatment Number of games Number of co-players
Control 1 1

Same-Partner 2 1

Different-Partner 2 2

Each stage game is a donation game. Players choose between paying a cost to send a benefit to the co-player

or do nothing. The games differ only in the benefit b sent to the other player; the cost c remains constant.

In the high game, b=4 points and c=2 points, whereas in the low game, b=3 points and c=2 points.

Participants interacted for a minimum of 20 rounds with their respective co-player(s). To avoid end-

game effects, after the 20th round, each subsequent round had a 50% chance of occurring. Participants

in the multi-game treatments (same-partner and different-partners) made decisions for both games simul-

taneously (i.e. on the same page) on every round. The decisions for each game were separately elicited

from each other. Participants were told what the other player(s) had chosen after every round, and they

were reminded of their co-players’ previous decisions when making their next one. Once all rounds had

been played, each participant was informed of their total payoff across the whole game in points as well as

the converted amount (in GBP). They were asked to fill a demographics form, were thanked for their time

and informed that the money would be paid to them by the lab manager at a future date. The games are

built with the python package oTree (70) and ran online. oTree was developed specifically to run real-time

interactive sessions with multiple participants.

Participant recruitment. We recruited 363 participants between April and October 2021 from the Uni-

versity of Exeter pool of subjects. Participants received a baseline payment of £3 for participating in our

experiment. In addition, they were able to receive a bonus payment based on their performance during

the experiment. To earn this bonus, participant accumulated points from one or two games that were con-

verted to British pounds (£) at the end. One point was worth £1/75 (or 20 points = £0.26) and the average

bonus earned was £1.66, £1.62, and £0.88 in the Different-Partners, Same-partner and Control treatments,

respectively. The sample size was estimated from a rough power analysis and based on previous similar

research, given constraints on the size of the FEELE subject pool. The student pool showed lower dropout



rates than most online recruiting platforms. The experiment was approved by the faculty of Medicine of

the Christian-Albrechts-Univeristy in Kiel (ID number D 571/20)

Experimental procedures. The design of the experiment was between-subjects, meaning that participants

only took part in one treatment. Fifteen sessions of up to 32 participants were run sequentially. Each

session was for one treatment only. Participants signed up for an open slot on the FEELE platform of the

University of Exeter without prior knowledge of the experiment or treatment. Ten minutes prior to the start

of the session, the experimenter opened a room in oTree so that participants could connect and wait until

everyone had arrived. Once the room was full, the experimenter started the study. Once participants entered

the study, the first page was a consent form describing their rights. Clicking on the button to continue was

explained to mean they gave their consent to take part in the study. Then the instructions were provided

along with a series of comprehension questions. If they gave a wrong answer, a message appeared on the

screen asking them to reread the instructions and change their answer. They could only continue once they

gave the correct answer to each question. After these steps were completed, participants entered a virtual

waiting room.

Once at least four participants were in the virtual waiting room, they would be paired together to form

a group and proceed to the main task. Players were always grouped together in fours, but they only play

as an interactive group of four in the different-partners treatment. This constraint comes from the design

of the different-partners treatment, but to ensure consistency in waiting times throughout the experiment, it

was implemented for all treatments. In the other two treatments, two pairs go through the game at the same

time but are unaware of the other pair’s existence. Participants waited for a maximum of seven minutes.

If not enough players showed up in that timeframe, participants were considered unmatched and instructed

to leave the study and receive their participation fee, but no bonus. If after pairing one player in a group

dropped out, all others were informed and asked to leave the study. They were paid a fixed bonus of £1.

3.2 Statistical methods

For our data analysis, we only considered groups where all participants completed their total number of

rounds, resulting in 316 subjects in 79 groups. To increase power, in the same-partner treatment, we

separate the two independent pairs into subgroups. We use these smaller denominations for our group level

analysis. This means we have 36 groups of 2 for the same-partner treatment, 32 groups of 4 for the different

partners treatment, and 29 groups of 4 for the control. Since all considered groups played at least 20 rounds

but differed in the total number of rounds, we used only rounds 1-20 for the main analysis. All averages are

aggregated at the group level for all our analysis so that we get the average cooperation across all rounds of

interest and all group participants.



3.3 Additional results

We looked at cooperative decision on the first round only. Given that cooperation levels in the two multi-

game treatment do not differ significantly despite difference in conditional behavior, we wanted to see if

this difference was already significant on the first round. Cooperation rates are already significantly lower

in the first round for the same-partner treatment compared to the control (p = 0.021) and close to significant

for the different-partners treatment compared to control (p = 0.052). There is no difference between the

same-partner and different-partners treatments (p = 0.902) (see Fig. 4.)
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Figure S1: Learning dynamics among players who treat each game as independent. This figure uses the same
setup and the same parameters as in Fig. 2. However, this time, players in the same-partner and the different-partners
treatment are artificially restricted to treat each repeated game as independent. That is, for these simulations, we only
allow those mutant strategies that satisfy Eq. [3] in the main text. In this case, all three treatments are equivalent.
They lead to the same cooperation dynamics, and they generate the same cooperative strategies.
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Figure S2: Invasion dynamics across the three treatments. To gain further insights into the learning dynamics, we
have run simulations assuming that players start out with predefined strategies. Here, we allow for three such strate-
gies. ALLD cooperates with probability 0.01 each round, corresponding to a noisy variant of always defect. GTFT
treats each game as independent and cooperates with probability 0.99 after cooperation, and 0.50 after defection.
LTFT corresponds to a version of GTFT with linkage. It cooperates with probability 0.99 if the co-player previously
cooperated in both games; otherwise it cooperates with with probability 0.50. Note that this strategy only exists in
the same-partner and the different-partners treatment. Initially, all players are assumed to adopt the same strategy (we
refer to the strategy as the ‘resident’). Then we simulate the learning dynamics until there has been a ‘regime shift’
(meaning that the average cooperation rate among the four players exceeds 50% after starting from ALLD, or that it
falls below 50% after starting from GTFT or LTFT). We record the time it takes for a regime shift to occur (panels a
–c). In addition, we record the first strategy that a player adopts instead of the resident strategy (to which we refer as
the ‘first invading mutant’, panels d–k). In the same-partner treatment, LTFT is the most robust resident strategy with
respect to regime shifts. In the different-partners treatment, the most robust strategy is ALLD. In general, we find that
ALLD is typically invaded by conditionally cooperative strategies (which show a very small cooperation probability
after full defection). In contrast, both GTFT and LTFT are typically invaded by strategies similar to LTFT in the last
two treatments. All bars represent averages of 1,000 independent simulations, using the parameters of Fig. 2.
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Figure S3: Robustness of evolutionary results. To explore the robustness of our results, we systematically vary
three key parameters. a, In previous figures, we have assumed that players always perfectly implement their intended
actions. Here, we explore the impact of trembling-hand errors, see Section 2.1.4. Overall, such errors make it more
difficult to sustain cooperation. b, In our previous theoretical analysis, we have assumed for simplicity that the game is
infinitely repeated. However, it is straightforward to analyze repeated games in which after each round, the game only
continues with a probability δ < 1, see for example Ref. (71). Here, we report the corresponding simulation results,
as a function of the expected number of rounds, 1/(1−δ). As one may expect, players become more cooperative
when there are more rounds. c, Finally, we have also varied the selection strength of the evolutionary process (in the
main text we use β=200). The stronger selection, the more we see a difference between the three treatments. Across
all conditions, our results suggest that one should expect most cooperation in the same-partner treatment, in line with
Ref. (44). Parameters are the same as in Fig. 2.
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Figure S4: Concurrent games beyond the prisoner’s dilemma. a, In our previous analysis, we assumed players
engage in different donation games. The respective result of Fig. 2 is reproduced here. In addition, we consider three
cases in which the low-benefit game is replaced by b, the payoffs used by Axelrod (23), c, a snowdrift game, and d, a
coordination game. Across all games, we observe that the same partner-treatment should result in more cooperation
than the different-partners treatment. Yet in the case of a coordination game, the control treatment seems to be best
able to single out the most efficient equilibrium. Except for the low-game payoffs, all parameters are as in Fig. 2.























Dependent variable:

Cooperation
High game Low game

Partner’s previous decision 0.673∗∗∗

in the high game (0.043)

Partner’s previous decision 0.651∗∗∗

in the low game (0.034)

Constant 0.222∗∗∗ 0.216∗∗∗

(0.034) (0.025)

Observations 2,470 2,470
R2 0.452 0.424
Adjusted R2 0.452 0.424
Residual Std. Error (df = 2468) 0.344 0.369

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table S1: Conditional cooperation in the control treatment. Similar to Table 1, here we report the results of a
linear regression for the players’ conditional cooperation probability in the control treatment.
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Supplementary Section 1. Mathematical analysis of cumulative reciprocity 1 

In this section we report a detailed analysis of the basic properties of the CURE strategy to support 2 

the main text sections “Payoffs against selected strategies” and “Fairness and stability of cumulative 3 

reciprocity”. 4 

a. CURE vs. CURE 5 

Consider an infinitely repeated prisoner’s dilemma between two players, ‘Alice’ and ‘Bob’. For a 6 

given round 𝑡, let 𝑛  and 𝑛  denote how often each player has defected up to round 𝑡. Let 𝑑 = 𝑛 −7 

𝑛  denote the difference, to which we refer as the defection difference statistic. As in the main text, if 8 

Alice adopts CURE with some predefined threshold ∆  ∈ ℕ , she cooperates if and only if 𝑑 ≤ ∆  . 9 

Sometimes it will prove useful to highlight Alice’s threshold, in which case we refer to her strategy as 10 

𝐶𝑈𝑅𝐸∆ . Similarly, when Bob adopts CURE with threshold ∆  ∈ ℕ, he cooperates if and only if −𝑑 ≤11 

∆ . We get the following result when both players use the same threshold. 12 

Proposition 1. Consider an infinitely repeated prisoner’s dilemma with possible payoffs R, S, T, P, 13 

respectively. Let 𝜀 > 0 denote the probability that a given player makes an error in any given round. 14 

Suppose the two players use CURE with an identical threshold ∆ ≥ 1 . Then, each player’s average 15 

cooperation rate is 16 

𝜌 = 1 −
2 − 3𝜀 + 2∆(1 − 2𝜀)
1 − 2𝜀2 + 2∆(1 − 2𝜀)

𝜀. (1.1) 

The payoff of each player becomes 17 

𝜋(CURE, CURE) =  
(1 − 𝜀)2 ∙ 1 − 2(1 − 𝜀)𝜀 + 2∆(1 − 2𝜀)

1 − 2𝜀2 + 2∆(1 − 2𝜀)
∙ 𝑅 

+ 
2𝜀(1 − 𝜀) ∙ (∆(1 − 2𝜀) + (1 − 𝜀)2)

1 − 2𝜀2 + 2∆(1 − 2𝜀)
∙ (𝑇 + 𝑆)    

+ 
𝜀2 ∙ 3 − 2(3 − 𝜀)𝜀 + 2∆(1 − 2𝜀)

1 − 2𝜀2 + 2∆(1 − 2𝜀)
∙ 𝑃. 

(1.2) 

 18 

As an important special case of a prisoner’s dilemma, we apply these results to the donation game1. Here, 19 

cooperation means to pay a cost 𝑐 > 0 to provide a benefit 𝑏 > 𝑐 to the co-player. As a result, 𝑅 =20 

𝑏 – 𝑐, 𝑆 = −𝑐, 𝑇 = 𝑏, 𝑃 = 0, and the payoffs simplify to  21 

𝜋(CURE, CURE) =
1 − 𝜀 + 2Δ(1 − 2𝜀)
1 − 2𝜀2 + 2Δ(1 − 2𝜀)

(1 − 𝜀)(𝑏 − 𝑐).  (1.3) 

In particular, for any positive error rate, the self-payoff of CURE is arbitrarily close to the theoretical maximum 22 

(1 − 𝜀)(𝑏 − 𝑐), provided the strategy’s tolerance ∆ is sufficiently large. 23 
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Proof of Proposition 1. For a given round 𝑡 , denote 𝑥 (𝑡)  as the probability that by round 𝑡 , the 24 

difference in how often the players have cooperated is 𝑑 = 𝑛 − 𝑛 . Assuming we know 𝑥 (𝑡) for all 25 

𝑑 ∈ ℤ, we can recursively compute 𝑥 (𝑡 + 1), 26 

⋮  ⋮  

(1.4) 

𝑥−∆− (𝑡 + 1) = 2𝜀(1 − 𝜀)𝑥−∆− (𝑡) + 𝜀2𝑥−∆− +1(𝑡) + (1 − 𝜀)2𝑥−∆− −1(𝑡) for 𝑘 ≥ 2 

𝑥−∆−1(𝑡 + 1) = 2𝜀(1 − 𝜀)𝑥−∆−1(𝑡) + 𝜀(1 − 𝜀)𝑥−∆(𝑡) + (1 − 𝜀)2𝑥−∆−2(𝑡) 

𝑥−∆(𝑡 + 1) = ((1 − 𝜀)2 + 𝜀2)𝑥−∆(𝑡) + 𝜀(1 − 𝜀)𝑥−∆+1(𝑡) + (1 − 𝜀)2𝑥−∆−1(𝑡) 

⋮  ⋮  

𝑥 (𝑡 + 1) = ((1 − ε)2 + 𝜀2)𝑥 (𝑡) + 𝜀(1 − 𝜀)𝑥 −1(𝑡) + 𝜀(1 − 𝜀)𝑥 +1(𝑡) for −∆< 𝑘 < ∆ 

⋮  ⋮  

𝑥∆(𝑡 + 1) = ((1 − ε)2 + 𝜀2)𝑥∆(𝑡) + 𝜀(1 − 𝜀)𝑥∆−1(𝑡) + (1 − 𝜀)2𝑥∆+1(𝑡) 

𝑥∆+1(𝑡 + 1) = 2𝜀(1 − 𝜀)𝑥∆+1(𝑡) + 𝜀(1 − 𝜀)𝑥∆(𝑡) + (1 − 𝜀)2𝑥∆+2(𝑡)  

𝑥∆+ (𝑡 + 1) = 2𝜀(1 − 𝜀)𝑥∆+ (𝑡) + 𝜀2𝑥∆+ −1(𝑡) + (1 − 𝜀)2𝑥∆+ +1(𝑡) for 𝑘 ≥ 2 

⋮  ⋮  

This recursion holds for all 𝑡 > 0. By summing up the respective equations for 𝑡 ∈ {1,… , 𝜏}, dividing 27 

both sides by 𝜏, and taking the limit 𝜏 → ∞, we obtain 28 

⋮  ⋮  

(1.5) 

𝑥−∆−  = 2𝜀(1 − 𝜀)𝑥−∆− + 𝜀2𝑥−∆− +1 + (1 − 𝜀)2𝑥−∆− −1 for 𝑘 ≥ 2 
𝑥−∆−1 = 2𝜀(1 − 𝜀)𝑥−∆−1 + 𝜀(1 − 𝜀)𝑥−∆ + (1 − 𝜀)2𝑥−∆−2 
𝑥−∆ = ((1 − 𝜀)2 + 𝜀2)𝑥−∆ + 𝜀(1 − 𝜀)𝑥−∆+1 + (1 − 𝜀)2𝑥−∆−1 
⋮  ⋮  
𝑥  = ((1 − ε)2 + 𝜀2)𝑥 + 𝜀(1 − 𝜀)𝑥 −1 + 𝜀(1 − 𝜀)𝑥 +1 for −∆< 𝑘 < ∆ 
⋮  ⋮  
𝑥∆ = ((1 − ε)2 + 𝜀2)𝑥∆ + 𝜀(1 − 𝜀)𝑥∆−1 + (1 − 𝜀)2𝑥∆+1 
𝑥∆+1 = 2𝜀(1 − 𝜀)𝑥∆+1 + 𝜀(1 − 𝜀)𝑥∆ + (1 − 𝜀)2𝑥∆+2  
𝑥∆+  = 2𝜀(1 − 𝜀)𝑥∆+ + 𝜀2𝑥∆+ −1 + (1 − 𝜀)2𝑥∆+ +1 for 𝑘 ≥ 2 
⋮  ⋮  

where 𝑥 ≔ lim →
1∑ 𝑥 (𝑡)=0  is the average time to observe difference 𝑑 over all rounds 𝑡. Now, 29 

because both players apply the same strategy, it follows by symmetry that 𝑥− = 𝑥  for all 𝑑 ∈ ℕ. 30 

Therefore, the above (double infinite) recursion simplifies to the following (single infinite) recursion 31 

𝑥0 = ((1 − 𝜀)2 + 𝜀2)𝑥0 + 2𝜀(1 − 𝜀)𝑥1  

(1.6) 

⋮  ⋮  
𝑥  = ((1 − 𝜀)2 + 𝜀2)𝑥 + 𝜀(1 − 𝜀)𝑥 −1 + 𝜀(1 − 𝜀)𝑥 +1 for 0 < 𝑘 < ∆ 
⋮  ⋮  
𝑥∆ = ((1 − 𝜀)2 + 𝜀2)𝑥∆ + 𝜀(1 − 𝜀)𝑥∆−1 + (1 − 𝜀)2𝑥∆+1  
𝑥∆+1 = 2𝜀(1 − 𝜀)𝑥∆+1 + 𝜀(1 − 𝜀)𝑥∆ + (1 − 𝜀)2𝑥∆+2  
𝑥∆+  = 2𝜀(1 − 𝜀)𝑥∆+ + 𝜀2𝑥∆+ −1 + (1 − 𝜀2)𝑥∆+ +1 for 𝑘 ≥ 2 
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⋮  ⋮  
By consecutively solving each equation for 𝑥0 starting from the top, we obtain 32 

𝑥 =
𝑥0 𝑖𝑓 |𝑑| ≤ ∆

𝑥0
𝜀

1 − 𝜀

2(| |−∆)−1
𝑖𝑓 |𝑑| > ∆

 (1.7) 

In addition, because all probabilities must end up to one, 33 

1 = 𝑥 = 𝑥0 + 2 𝑥 = 𝑥0 + 2 𝑥0

∆

=1

+ 2 𝑥0
𝜀

1 − 𝜀

2( −∆)−1

=∆+1=1∈ℤ

. (1.8) 

By solving this equation for 𝑥0 and plugging the solution into equation (1.7), we get 34 

𝑥 =

1 − 2𝜀
1 + 2∆ − 4∆𝜀 − 2𝜀2

𝑖𝑓 |𝑑| ≤ ∆

1 − 2𝜀
1 + 2∆ − 4∆𝜀 − 2𝜀2

𝜀
1 − 𝜀

2(| |−∆)−1
𝑖𝑓 |𝑑| > ∆

 (1.9) 

Now, to calculate the players' average cooperation rates, we note the following: When |𝑑| < ∆ , the 35 

probability that both players cooperate is (1 − 𝜀)2 , whereas the probability that exactly one player 36 

cooperates is 2𝜀(1 − 𝜀). Similarly, when |𝑑| > ∆, the probability that both players cooperate is 𝜀(1 −37 

𝜀), whereas the probability that exactly one player cooperates is  (1 − 𝜀)2 + 𝜀2. As a result, we obtain 38 

𝜌 = 𝑥 (1 − 𝜀)2 +
1
2
2𝜀(1 − 𝜀) + 2 𝑥 𝜀(1 − 𝜀) +

1
2
((1 − 𝜀)2 + 𝜀2)

=∆+1

∆

=−∆

. (1.10) 

Using the expressions for 𝑥  in (1.9), we can explicitly compute 𝜌 , yielding Eq. (1.1). To calculate 39 

the players’ average payoffs, we proceed similarly, yielding the equation 40 

𝜋(CURE, CURE) = 𝑥 (1 − 𝜀)2𝑅 + 2𝜀(1 − 𝜀)
𝑇 + 𝑆
2

+ 𝜀2𝑃
∆

=−∆

+ 2 𝑥 𝜀(1 − 𝜀)𝑅 + ((1 − 𝜀)2 + 𝜀2)
𝑇 + 𝑆
2

+ 𝜀(1 − 𝜀)𝑃
=∆+1

. 

(1.11) 

Again, by using the explicit expressions for 𝑥  in Eq. (1.9), we can compute this payoff explicitly, 41 

yielding Eq. (1.2).  42 

 43 

Using Proposition 1, we can compute exact payoffs and cooperation rates, as displayed in the following 44 

two tables.  45 

Supplementary Table 1. Payoffs of CURE vs. CURE when both players apply the same threshold 46 

∆. 𝑅 = 3, 𝑆 = 0, 𝑇 = 5 and 𝑃 = 1 unless otherwise specified. 47 

Payoffs No noise 1% noise 5% noise 10% noise 

CURE (∆= 1) 3 2.98656 2.93068 2.85651 
CURE (∆= 2) 3 2.98789 2.93727 2.86933 
CURE (∆= 3) 3 2.98846 2.94015 2.87505 
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CURE (𝑅 = 4, ∆= 1) 4 3.96017 3.80411 3.61628 
 48 

Supplementary Table 2. Cooperation rates of CURE vs. CURE when ∆=1. Payoff parameters: 𝑅 =49 

3, 𝑆 = 0, 𝑇 = 5 and 𝑃 = 1. 50 

Cooperation rates 1% noise 5% noise 10% noise 

CURE 0.986722 0.934705 0.872093 
 51 

Using a similar methodology, we can also compute the players’ payoffs if their thresholds ∆A and ∆B 52 

are different.  53 

Proposition 2. Under the assumptions of Proposition 1, suppose the two players now use different 54 

thresholds ∆  and ∆  when implementing CURE. Then both players have the same cooperation rate 55 

𝜌 = 1 −
2 − 3𝜀 + (∆ + ∆ )(1 − 2𝜀)
1 − 2𝜀2 + (∆ + ∆ )(1 − 2𝜀)

𝜀. (1.12) 

Moreover, both players obtain the same payoff, π CURE∆ , CURE∆ = π CURE∆ , CURE∆ , given by 56 

the expression 57 

 𝜋 =  
(1 − 𝜀)2 ∙ 1 − 2(1 − 𝜀)𝜀 + (∆ + ∆ )(1 − 2𝜀)

1 − 2𝜀2 + (∆ + ∆ )(1 − 2𝜀)
∙ 𝑅 

+ 
𝜀(1 − 𝜀) ∙ (∆ + ∆ )(1 − 2𝜀) + 2(1 − 𝜀)2

1 − 2𝜀2 + (∆ + ∆ )(1 − 2𝜀)
∙ (𝑇 + 𝑆)

+ 
𝜀2 ∙ 3 − 2(3 − 𝜀)𝜀 + (∆ + ∆ )(1 − 2𝜀)

1 − 2𝜀2 + (∆ + ∆ )(1 − 2𝜀)
∙ 𝑃. 

(1.13) 

Proof of Proposition 2. The proof is similar to the proof of Proposition 1, with the only exception being 58 

that the resulting system of recursions is no longer symmetric with respect to 𝑑 = 0, but with respect to 59 

𝑑 = (∆ − ∆ )/2. As a result, the average probability that the defection difference statistic is d is now 60 

given by 61 

𝑥 =

{
  
 

  
 

1 − 2𝜀
1 + (∆𝐴 + ∆𝐵)(1 − 2𝜀) − 2𝜀2

𝜀
1 − 𝜀

2(− −∆ )−1
   𝑖𝑓 𝑑 < −∆       

1 − 2𝜀
1 + (∆𝐴 + ∆𝐵)(1 − 2𝜀) − 2𝜀2

                     𝑖𝑓 − ∆ ≤ 𝑑 ≤ ∆

1 − 2𝜀
1 + (∆𝐴 + ∆𝐵)(1 − 2𝜀) − 2𝜀2

𝜀
1 − 𝜀

2( −∆ )−1
     𝑖𝑓 𝑑 > ∆          

 (1.14) 

With these probabilities, we can compute the respective average cooperation rate of the two players with 62 

respective thresholds ∆  and ∆  as 63 

𝜌 = (1 − 𝜀)𝑥𝑑 +
∆𝐴

𝑑=−∞

𝜀 ∙ 𝑥𝑑
∞

𝑑=∆𝐴+1

,     (1.15) 
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𝜌 = 𝜀 ∙ 𝑥𝑑 +
−∆𝐵−1

𝑑=−∞

(1 − 𝜀)𝑥𝑑

∞

𝑑=−∆𝐵

. 

By plugging the values of 𝑥  according to Eq. (1.14) into Eq. (1.15), one can verify that 𝜌 = 𝜌 = 𝜌. 64 

The respective result for the players’ payoffs follows analogously, by considering  65 

𝜋 = ((1 − 𝜀)2𝑆 + 𝜀(1 − 𝜀)(𝑅 + 𝑃) + 𝜀2𝑇)𝑥
−∆ −1

=−

+ ((1 − 𝜀)2𝑅 + 𝜀(1 − 𝜀)(𝑇 + 𝑆) + 𝜀2𝑃)𝑥
∆

=−∆

+ ((1 − 𝜀)2𝑇 + 𝜀(1 − 𝜀)(𝑅 + 𝑃) + 𝜀2𝑆)𝑥
=∆ +1

, 

(1.16) 

and similarly,  66 

𝜋 = ((1 − 𝜀)2𝑇 + 𝜀(1 − 𝜀)(𝑅 + 𝑃) + 𝜀2𝑆)𝑥
−∆ −1

=−

+ ((1 − 𝜀)2𝑅 + 𝜀(1 − 𝜀)(𝑇 + 𝑆) + 𝜀2𝑃)𝑥
∆

=−∆

+ ((1 − 𝜀)2𝑆 + 𝜀(1 − 𝜀)(𝑅 + 𝑃) + 𝜀2𝑇)𝑥
=∆ +1

. 

(1.17) 

Again, by plugging in the values of 𝑥 , it follows that 𝜋 = 𝜋 = 𝜋.   67 

 68 

We can use Proposition 2 to compare the payoffs of different versions of CURE∆ against each other, as 69 

displayed in the following payoff tables:  70 

Supplementary Table 3. Payoff matrix for different variants of CURE for 1% noise. Each value is 71 

the payoff of the row strategy in the row-column strategy game. Parameters: 𝑅 = 3, 𝑆 = 0, 𝑇 =72 

5 and 𝑃 = 1. 73 

Payoffs CURE1 CURE2 CURE3 CURE4 

CURE1 2.98656 2.98739 2.98789 2.98822 
CURE2 2.98739 2.98789 2.98822 2.98846 
CURE3 2.98789 2.98822 2.98846 2.98864 
CURE4 2.98822 2.98846 2.98864 2.98878 

 74 

Supplementary Table 4. Payoff matrix for different variants of CURE for 10% noise. Each value is 75 

the payoff of the row strategy in the row-column strategy game. Parameters: 𝑅 = 3, 𝑆 = 0, 𝑇 =76 

5 and 𝑃 = 1. 77 
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Payoffs CURE1 CURE2 CURE3 CURE4 

CURE1 2.85651 2.86444 2.86933 2.87265 
CURE2 2.86444 2.86933 2.87265 2.87505 
CURE3 2.86933 2.87265 2.87505 2.87687 
CURE4 2.87265 2.87505 2.87687 2.87829 

 78 

According to these payoff matrices, all of the considered variants of CURE obtain approximately the 79 

same payoff against each other, with more tolerant variants obtaining slightly higher payoffs than less 80 

tolerant ones. 81 

b. CURE vs unconditional strategies 82 

Next, let us explore how CURE fares against the two unconditional strategies (ALLC and ALLD). 83 

Proposition 3. Consider an infinitely repeated prisoner's dilemma with error rate 𝜀 > 0. 84 

1. If one player adopts the CURE strategy and the other player adopts ALLD, both players have the 85 

same average cooperation rate 𝜌 = 𝜖, and they obtain the same payoff given by 86 

𝜋(CURE,ALLD) = 𝜋(𝐴𝐿𝐿𝐷, CURE) = 𝜀2𝑅 + 𝜀(1 − 𝜀)(𝑇 + 𝑆) + (1 − 𝜀)2𝑃 (1.18) 
2. If one player adopts the CURE strategy and the other player adopts ALLC, both players have the 87 

same average cooperation rate 𝜌 = 1 − 𝜖, and they obtain the same payoff given by 88 

𝜋(CURE,ALLC) = 𝜋(𝐴𝐿𝐿𝐶, CURE) = (1 − 𝜀)2𝑅 + 𝜀(1 − 𝜀)(𝑇 + 𝑆) + 𝜀2𝑃 (1.19) 

Proof of Proposition 3. We only show the first case; the second case then follows from symmetry 89 

considerations. Suppose Alice adopts CURE, whereas Bob uses ALLD. Then, similar to the proof of 90 

Proposition 1, the average probability to observe a round in which the player's difference in cooperation 91 

is 𝑑 satisfies an infinite linear system given by 92 

 ⋮   

(1.20) 

𝑥  = (1 − 𝜀)2𝑥 −1 + 2𝜀(1 − 𝜀)𝑥 + 𝜀2𝑥 +1 for 𝑑 < ∆ 
 ⋮   

𝑥∆ = (1 − 𝜀)2𝑥∆−1 + 2𝜀(1 − 𝜀)𝑥∆ + 𝜀(1 − 𝜀)𝑥∆+1  
𝑥∆+1 = (1 − 𝜀)2𝑥∆ + ((1 − 𝜀)2 + 𝜀2)𝑥∆+1 + 𝜀(1 − 𝜀)𝑥∆+2  

 ⋮   
𝑥  = 𝜀(1 − 𝜀)𝑥 −1 + ((1 − 𝜀)2 + 𝜀2)𝑥 + 𝜀(1 − 𝜀)𝑥 +1 for 𝑑 > ∆ + 1 

 ⋮   
This homogeneous system has the following solution 93 

𝑥 =  𝛼
𝜀

1 − 𝜀

2( −∆)+1
for 𝑑 ≤ ∆

 𝛼 for 𝑑 > ∆,
 (1.21) 

where 𝛼 ∈ ℝ is some arbitrary parameter. Denote 𝐴 = ∑ 𝑥∆  as the probability to observe the two 94 
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players in a state in which the CURE player would cooperate. If 𝐴 was positive, it would follow from 95 

Eq. (1.21) that 𝛼 = 𝐴 (1 − 2𝜀) (𝜀(1 − 𝜀)) > 0⁄ . Again, by Eq. (1.21), this would, in turn, contradict the 96 

normalization condition ∑ 𝑥 = 1∈ℤ . Therefore, we conclude that 𝐴 = 0, and thus, the CURE player 97 

behaves like an ALLD player almost surely. However, the cooperation rates and payoffs of ALLD versus 98 

ALLD are straightforward to calculate, and are given by Eq. (1.18).                             99 

 100 

Using Proposition 3, we can calculate the payoffs of CURE against ALLC and ALLD for various error 101 

rates, as depicted in the following table.  102 

 103 

Supplementary Table 5. Payoffs of CURE vs. unconditional strategies. 𝑅 = 3, 𝑆 = 0, 𝑇 = 5, 𝑃 = 1, 104 

and the tolerance level ∆= 1. 105 

Payoffs 1% noise 5% noise 10% noise 

CURE 2.9899 2.9475 2.8900 
ALLC 2.9899 2.9475 2.8900 

CURE 1.0299 1.1475 1.2900 
ALLD 1.0299 1.1475 1.2900 

The above results imply that CURE is, in general, not a Nash equilibrium. 106 

Corollary 1. Consider an infinitely repeated prisoner's dilemma with 2𝑅 >  𝑇 + 𝑆. Then, for any error rate 107 

such that 0 < 𝜀 < 1/2, CURE can be invaded by ALLC. 108 

Proof. By combining Propositions 1 and 3, we obtain 109 

𝜋(ALLC, CURE) − 𝜋(𝐶𝑈𝑅𝐸, CURE) =
𝜀(1 − 𝜀)(1 − 2𝜀)

1 − 2𝜀2 + ∆(2 − 4𝜀) [
(1 − 2𝜀)(2𝑅 − 𝑇 − 𝑆) + 2𝜀(𝑅− 𝑃)] (1.22) 

Because of the conditions 2𝑅 >  𝑇 + 𝑆 and 𝑅 >  𝑃 of the prisoner’s dilemma, this difference is 110 

positive for any 0 < 𝜀 < 1/2.   111 

c. An approximation for CURE vs an arbitrary memory-one strategy. 112 

Next, suppose Alice adopts CURE and Bob adopts some memory-one strategy 𝐩 = (𝑝 , 𝑝 , 𝑝 , 𝑝 ). 113 

For a given error rate 𝜀 > 0 , let 𝐩 = (1 − ε)𝐩 + ε(𝟏 − 𝐩)  denote Bob's effective strategy in the 114 

presence of errors. For an interaction between the two players, let 𝑥 , ,  denote the probability that in 115 

a randomly picked round, 𝑑 is the cumulative difference in how often the players have cooperated and 116 

that players have chosen actions 𝑎1, 𝑎2 ∈ {𝐶,𝐷}, respectively, in the previous round. Here, 𝑎1 refers to 117 

Alice’s previous action, and 𝑎2 refers to Bob’s previous action. Similar to the previous analysis, we can 118 

derive a system of equations for 𝑥 , 1, 2, given by the following four cases: 119 
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Case 𝑑 < ∆ 120 

𝑥 , = 𝑥 , , (1 − 𝜀)𝑝
, ∈{ , }

 

(1.23) 
𝑥 , = 𝑥 −1, , (1 − 𝜀)(1 − 𝑝 )

, ∈{ , }
 

𝑥 , = 𝑥 +1, ,  𝜀 𝑝
, ∈{ , }

 

𝑥 , = 𝑥 , , 𝜀(1 − 𝑝
, ∈{ , }

) 

Case 𝑑 = ∆ 121 

𝑥 , = 𝑥 , , (1 − 𝜀)𝑝
, ∈{ , }

 

(1.24) 
𝑥 , = 𝑥 −1, , (1 − 𝜀)(1 − 𝑝 )

, ∈{ , }
 

𝑥 , = 𝑥 +1, , (1 − 𝜀)𝑝
, ∈{ , }

 

𝑥 , = 𝑥 , ,  𝜀 (1 − 𝑝
, ∈{ , }

) 

Case 𝑑 = ∆ + 1 122 

𝑥 , = 𝑥 , ,  𝜀 𝑝
, ∈{ , }

 

(1.25) 

𝑥 , = 𝑥 −1, , (1 − 𝜀)(1 − 𝑝 )
, ∈{ , }

 

𝑥 , = 𝑥 +1, , (1 − 𝜀)𝑝
, ∈{ , }

 

𝑥 , = 𝑥 , ,  (1 − 𝜀)(1 − 𝑝
, ∈{ , }

) 

Case 𝑑 > ∆ + 1 123 

𝑥 , = 𝑥 , ,  𝜀 𝑝
, ∈{ , }

 

(1.26) 

𝑥 , = 𝑥 −1, ,  𝜀 (1 − 𝑝 )
, ∈{ , }

 

𝑥 , = 𝑥 +1, , (1 − 𝜀)𝑝
, ∈{ , }

 

𝑥 , = 𝑥 , ,  (1 − 𝜀)(1 − 𝑝
, ∈{ , }

) 

As a very crude approximation for this infinitely dimensional linear system we solve a truncated system. 124 

To this end, we fix some 𝐾 ≫ ∆ and set 𝑥− , , = 𝑥 , , ≔ 0 for all actions 𝑎1, 𝑎2 ∈ {𝐶, 𝐷} and 125 

𝑑 > 𝐾. This yields 4(2𝐾 + 1) equations. From these equations, we drop the equation for 𝑥 , , and 126 

replace it by the following normalization condition, 127 

𝑥 , ,
,

= 1.
−

 (1.27) 

If 𝑥 , ,  is the (typically unique) solution to this truncated linear system, we can calculate the players' 128 

approximate cooperation rates as 129 
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𝜌 = 𝑥 , + 𝑥 ,
−

 and 𝜌 = 𝑥 , + 𝑥 ,
−

. (1.28) 

Similarly, we can compute approximate payoffs as 130 

𝜋 = 𝑥 , 𝑅 + 𝑥 , 𝑆 + 𝑥 , 𝑇 + 𝑥 , 𝑃
−

 

(1.29) 
𝜋 = 𝑥 , 𝑅 + 𝑥 , 𝑇 + 𝑥 , 𝑆 + 𝑥 , 𝑃

−

 

 131 

The following table shows the approximated payoffs for ∆= 1  and 𝐾 = 5 ∙ 103 . The results are in 132 

remarkably good agreement with the corresponding simulations shown in Supplementary Table 8. 133 

Supplementary Table 6. Payoffs of CURE vs an arbitrary memory-one strategy. Parameters: 𝑅 =134 

3, 𝑆 = 0, 𝑇 = 5 and 𝑃 = 1, and the tolerance level ∆= 1. 135 

Payoffs 1% noise 5% noise 10% noise 
CURE 2.2500 2.2500 2.2500 
TFT 2.2500 2.2500 2.2500 

CURE 2.9081 2.6676 2.5153 
GTFT(0.1) 2.9081 2.6676 2.5153 

CURE 2.9671 2.8466 2.7211 
GTFT(0.3) 2.9671 2.8466 2.7211 

CURE 2.9800 2.9008 2.8056 
GTFT(0.5) 2.9800 2.9008 2.8056 

CURE 2.2500 2.2500 2.2500 
WSLS 2.2500 2.2500 2.2500 

 136 

d. Fairness and stability of CURE 137 

An important property of CURE is that it always enforces a fair outcome between the two players in the 138 

following sense. 139 

Proposition 4. Consider a repeated 2-player 2-action game with symmetric payoffs such that T ≥ S, and 140 

suppose players are subject to errors at rate 𝜀 ≥ 0. Suppose Alice adopts the CURE strategy, whereas 141 

Bob adopts an arbitrary strategy such that the resulting realized payoffs 𝜋  and 𝜋  exist. Then with 142 

probability 1, the payoffs satisfy 𝜋 = 𝜋 . 143 

Proof. For a given instantiation of the game between the two players, denote 𝑒 (𝑡) and 𝑒 (𝑡) as the 144 

indicator function that is equal to 1 if the respective player cooperates in round 𝑡 , and equal to 0 145 

otherwise. Let 𝑛 (𝜏) = ∑ (1 − 𝑒 (𝑡))=1  denote how often Alice has defected up to round 𝜏, and define 146 

𝑛 (𝜏)  analogously. Then  𝑑(𝜏)  =  𝑛 (𝜏) — 𝑛 (𝜏) . Using this notation, we can write the players' 147 
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realized payoffs as 148 

𝜋 = lim
→

1
𝜏

𝑒 (𝑡)𝑒 (𝑡)𝑅 + 𝑒 (𝑡)(1 − 𝑒 (𝑡))𝑆 + (1 − 𝑒 (𝑡))𝑒 (𝑡)𝑇 + (1 − 𝑒 (𝑡))(1 − 𝑒 (𝑡))𝑃
=1

 

(1.30) 
𝜋 = lim

→

1
𝜏

𝑒 (𝑡)𝑒 (𝑡)𝑅 + 𝑒 (𝑡)(1 − 𝑒 (𝑡))𝑇 + (1 − 𝑒 (𝑡))𝑒 (𝑡)𝑆 + (1 − 𝑒 (𝑡))(1 − 𝑒 (𝑡))𝑃
=1

 

It follows that  149 

𝜋 − 𝜋 = lim
→

𝑇 − 𝑆
𝜏

𝑒 (𝑡) − 𝑒 (𝑡) = (𝑇 − 𝑆) lim
→

𝑛 (𝜏)
𝜏

−
𝑛 (𝜏)
𝜏

= (𝑇 − 𝑆) lim
→

𝑑(𝜏)
𝜏

=1

. (1.31) 

Now assume that 𝜋 > 𝜋 . Then, it follows from Eq. (1.31) that there is some 𝑡0 such that 𝑑(𝑡) >150 

∆ for all 𝑡 > 𝑡0. It follows from the definition of CURE, that Alice acts for all but finitely many rounds 151 

like a defector, and therefore, lim →  𝑛  (𝜏)/𝜏 = 1 − 𝜀. However, because lim → 𝑛 (𝜏)/𝜏 ≤ 1 − 𝜀, 152 

Eq. (1.31) yields 𝜋 − 𝜋 ≤ 0, a contradiction. The assumption 𝜋 < 𝜋  yields a similar contradiction. 153 

In that case, the CURE player acts like an unconditional cooperator in all but finitely many rounds.  154 

 155 

Proposition 4 allows us to derive an interesting result about the stability of CURE. As we have shown, 156 

CURE is not a Nash equilibrium in the presence of errors. Instead, players can gain a payoff advantage 157 

by deviating to ALLC. However, the following two results show that nevertheless, CURE has reasonable 158 

robustness properties when the error rate vanishes, or when errors are sufficiently rare.  159 

 160 

Proposition 5. Consider a repeated 2-player game with 2 actions, such that payoffs satisfy the 161 

inequalities 2𝑅 >  𝑇 + 𝑆 > 2𝑃  and T ≥  S. Then, for any threshold ∆, the strategy profile 162 

(𝐶𝑈𝑅𝐸∆, 𝐶𝑈𝑅𝐸∆) is a subgame perfect equilibrium in the limit of rare errors, 𝜀 → 0.  163 

Proof. To show the result, we need to show that no deviation from 𝐶𝑈𝑅𝐸∆ is profitable, after no previous 164 

history of the game. To this end, consider an arbitrary history such that the current round’s defection 165 

difference statistic is 𝑑.  166 

Then the continuation payoff of a focal player who continues to use 𝐶𝑈𝑅𝐸∆ is R. This follows from the 167 

observation that independent of the current value of d, two 𝐶𝑈𝑅𝐸∆ players will reach |𝑑| ≤ ∆ in finite 168 

time with certainty. From then on, the players’ continuation payoff will be given by R; the finitely many 169 

rounds before that do not affect the players’ long-run payoffs.  170 

Now suppose there is a deviation such that the focal player obtains a continuation payoff larger than R. 171 

Then it follows from Proposition 4 that also the co-player gets a payoff larger than R (since the co-player 172 

continues to adopt 𝐶𝑈𝑅𝐸∆). This implies that the joint payoff of both players is larger than 2R, which 173 

contradicts the assumption that 2R is the maximum payoff that is achievable in any single round.  174 

In addition to the previous result for vanishing errors, we can also show a robustness property for CURE 175 

when errors are sufficiently rare. To this end, we say a strategy 𝜎 is an approximate Nash equilibrium 176 
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with respect to some given threshold 𝜀̂ if any other strategy 𝜎 can gain at most a payoff advantage of 177 

𝜀̂ against 𝜎, i.e. if 𝜋(𝜎, 𝜎) − 𝜋(𝜎, 𝜎) ≤ 𝜀̂ for all 𝜎 (such strategies are sometimes referred to as 𝜀̂-178 

equilibria). The following shows that CURE is an 𝜀̂-equilibrium if the error rate 𝜀 is sufficiently small.  179 

Proposition 6. Consider a repeated prisoner’s dilemma with payoffs 𝑅, 𝑆, 𝑇, 𝑃 , and fix an arbitrary 180 

threshold 𝜀̂. Then CURE is an 𝜀̂-equilibrium for all 𝜀 ≤ (2 − − , − ). 181 

Proof. The maximum payoff that two players can jointly achieve in a repeated game with errors is twice 182 

the payoff that they get if they both intend to cooperate in every round,  183 

𝜋(ALLC, ALLC) = (1 − 𝜀)2𝑅 + 𝜀(1 − 𝜀)(𝑇 + 𝑆) + 𝜀2𝑃. (1.32) 

Because for an arbitrary opponent strategy 𝜎, CURE always obtains the same payoff, it follows that  184 

π(𝜎, CURE) ≤ (1 − 𝜀)2𝑅 + 𝜀(1 − 𝜀)(𝑇 + 𝑆) + 𝜀2𝑃. (1.33) 

Therefore, by Eq. (1.2), we obtain the estimate 185 

π(𝜎, CURE) − π(𝐶𝑈𝑅𝐸, CURE) ≤
𝜀(1 − 𝜀)(1 − 2𝜀)

1 − 2𝜀2 + ∆(2 − 4𝜀)
[(1 − 2𝜀)(2𝑅 − 𝑇 − 𝑆) + 2𝜀(𝑅 − 𝑃)]   

(1.34) 
≤ 𝜀max(2𝑅 − 𝑇 − 𝑆, 𝑅 − 𝑃) ≤ 𝜀̂. 

  186 
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Supplementary Section 2. Payoffs and cooperation rates obtained through computer 187 

simulations 188 

To validate the above analytical results, we have implemented independent computer simulations 189 

to estimate the players’ payoffs and cooperation rates. To this end, we consider three different error rates 190 

(1%, 5%, 10%), and we take the payoffs of Axelrod’s tournament2 as a baseline (𝑅 = 3, 𝑆 = 0,𝑇 =191 

5 and 𝑃 = 1). Using these parameters, we explore two scenarios: games between two players who adopt 192 

the same strategies, and games between a cumulative reciprocator and another player who adopts one of 193 

nine well-known strategies for comparison. In addition to ALLC and ALLD, these strategies include tit-194 

for-tat, contrite tit-for-tat3, generous tit-for-tat (with different generosity levels), win-stay lose-shift, and 195 

an extortionate strategy4. Moreover, as two examples of strategies that cannot be implemented with finite 196 

memory, we consider ‘SoftMajority’ and ‘HardMajority’5. A SoftMajority player cooperates in the first 197 

round, and cooperates if the number of times the opponent has cooperated is no less than the number of times 198 

the opponent has defected. Otherwise, the SoftMajority player defects. A HardMajority player defects on the 199 

first move, and keeps defecting unless the number of times the opponent has cooperated is greater than the 200 

number of times the opponent has defected.  201 

a. Games between two players who adopt the same strategy 202 

Supplementary Table 7. Average payoffs when both players adopt the same strategy. From left to 203 

right, payoffs for the repeated prisoner’s dilemma are obtained for no noise, 1%, 5%, and 10% noise 204 

levels. From top to bottom, there are CURE, TFT-type, cooperative and defective strategies.  205 

Gaming Strategy 
Noise rate 

No noise (0%) Low (1%) Medium (5%) High (10%) 

CURE(Δ=0) 3 2.979999 2.900239 2.801839 
CURE(Δ=1) 3 2.986557 2.930680 2.856508 
CURE(Δ=2) 3 2.987889 2.937267 2.869329 
CURE(Δ=3) 3 2.988461 2.940148 2.875050 

CURE (R=4, Δ=1) 4 3.960168 3.804112 3.616276 
TFT 3 2.251015 2.248285 2.250255 

CTFT 3 2.669795 2.619060 2.570005 
GTFT(G=0.1) 3 2.907585 2.667374 2.515275 

GTFT(G=0.3) 3 2.967007 2.846495 2.721121 
GTFT(G=0.5) 3 2.980035 2.900715 2.805665 

ALLC 3 2.989885 2.947495 2.889995 
WSLS 3 2.951255 2.776353 2.601810 

WSLS(R=4) 4 3.911758 3.593417 3.267800 
SoftMajority 3 2.989906 2.929455 2.794111 
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 206 

Supplementary Table 7 shows the average payoff of a player when playing the repeated prisoner’s 207 

dilemma (RPD) with another player who uses the same strategy. The results indicate that CURE copes 208 

well with noise. Cooperation is well-maintained as the noise rate ranges from 1% to 10%. The average 209 

payoffs of both players increase as the tolerance level ∆ increases. In comparison with the performances 210 

of other classic strategies, the payoff of a pair of CURE players is slightly lower than that of a pair of 211 

ALLC players, while it is comparable to the payoff of two SoftMajority players. GTFT performs well at 212 

the low noise rate; but its payoff decreases to a relatively lower level when the noise increases. The 213 

performance of WSLS is very similar to GTFT. CURE has a relatively higher payoff compared to GTFT 214 

and WSLS when the noise rate is medium and high (i.e., at 5% and 10%). The other tested strategies are 215 

less successful in retaining cooperation against themselves in noisy environments.  216 

b. Games between a CURE player and a player who adopts one of the selected strategies 217 

We also test the payoffs and cooperation rates in the RPD between a CURE player and another 218 

player who uses one of several well-known strategies (Supplementary Table 8). 219 

 220 

Supplementary Table 8. Average payoffs and cooperation rates of CURE (∆= 𝟏) against selected 221 

strategies. From left to right, payoffs are obtained for no noise, 1%, 5%, and 10% noise levels. From top 222 

to bottom, there are the payoffs when CURE interacts with several selected strategies, and the difference 223 

in payoffs between the two sides.  224 

Gaming 
Strategy 

Noise rate 

No noise (0%) Low (1%) Medium (5%) High (10%) 

Payoff Cooperation 
rates 

Payoff Cooperation 
rates 

Payoff Cooperation 
rates 

Payoff Cooperation 
rates 

CURE 3 1 2.986557 0.986775 2.930680 0.934694 2.856508 0.872152 

CURE 3 1 2.986557 0.986775 2.930680 0.934694 2.856508 0.872152 

d(CR-CR) 0 0 0.0 0.0 0.0 0.0 0.0 0.0 

CURE 3 1 2.251152 0.500904 2.246734 0.498665 2.250205 0.500318 

TFT 3 1 2.251225 0.500889 2.246815 0.498649 2.250283 0.500302 

d(CR-T) 0 0 -0.000073 0.000015 -0.000081 0.000016 -0.000078 0.000016 

CURE 3 1 2.749441 0.754327 2.691164 0.717555 2.634868 0.688831 

CTFT 3 1 2.749501 0.754315 2.691230 0.717542 2.634920 0.688829 

d(CR-CT) 0 0 -0.000060 0.000012 -0.000066 0.000013 -0.000052 0.000002 

CURE 3 1 2.907732 0.915000 2.667168 0.736632 2.516348 0.643413 

GTFT(0.1) 3 1 2.907778 0.914990 2.667224 0.736620 2.516399 0.643402 

ALLD 1 1.029905 1.147615 1.290415 
HardMajority 1 1.029963 1.147405 1.369848 

Extort2 1.000115 1.136155 1.493630 1.740825 
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d(CR-GT) 0 0 -0.000056 0.000010 -0.000056 0.000012 -0.000051 0.000011 

CURE 3 1 2.966883 0.967980 2.846386 0.864728 2.721007 0.772590 

GTFT(0.3) 3 1 2.966915 0.967974 2.846416 0.864722 2.721049 0.772582 

d(CR-GT) 0 0 -0.000032 0.000006 -0.000030 0.000006 -0.000042 0.000008 

CURE 3 1 2.980097 0.980484 2.900952 0.909250 2.805319 0.833204 

GTFT(0.5) 3 1 2.980099 0.980484 2.900941 0.909252 2.805311 0.833205 

d(CR-GT) 0 0 -0.000002 0.000000 0.000011 -0.000002 0.000008 -0.000001 

CURE 3 1 2.990643 0.989620 2.948772 0.949198 2.892204 0.898982 

AllC 3 1 2.988761 0.989996 2.945226 0.949907 2.886759 0.900071 

d(CR-C) 0 0 0.001882 -0.000376 0.003548 -0.000709 0.005445 -0.001089 

CURE 3 1 2.990475 0.989663 2.948973 0.949215 2.891768 0.898927 

SoftMajority 3 1 2.988948 0.989969 2.945169 0.949975 2.886774 0.899926 

d(CR-SM) 0 0 0.001528 -0.000306 0.003804 -0.000760 0.004994 -0.000999 

CURE 3 1 2.249640 0.499799 2.249858 0.499929 2.249803 0.499883 

WSLS 3 1 2.249717 0.499784 2.249932 0.499914 2.249878 0.499868 

d(CR-W) 0 0 -0.000077 0.000015 -0.000074 0.000015 -0.000075 0.000015 

R=4 
CURE 

4 1 2.498530 0.499530 2.499094 0.499718 2.499895 0.499986 

WSLS 4 1 2.498606 0.499515 2.499169 0.499703 2.499973 0.499970 

d(CR-W) 0 0 -0.000076 0.000015 -0.000075 0.000015 -0.000078 0.000016 

CURE 0.999980 0.000002 1.029555 0.010383 1.146963 0.050810 1.288744 0.100965 

ALLD 1.000080 0.0 1.031416 0.010011 1.150627 0.050077 1.293803 0.099954 

d(CR- D) -0.000100 0.000002 -0.001861 0.000372 -0.003664 0.000733 -0.005059 0.001011 

CURE 1.000202 0.000130 1.115546 0.050590 1.439270 0.187360 1.684724 0.285129 

Extort2 1.000302 0.000110 1.115744 0.050550 1.439440 0.187320 1.684891 0.285096 

d(CR-E2) -0.000100 0.000020 -0.000198 0.000004 -0.000170 0.000040 -0.000167 0.000033 

CURE 2.999970 1 2.970880 0.979892 2.894839 0.922271 2.795762 0.851149 

HardMajority 3.000020 0.999990 2.969422 0.980183 2.891396 0.922959 2.791311 0.852040 

d(CR-HM) -0.000050 0.000001 0.001458 -0.000191 0.003443 -0.000688 0.004451 -0.000891 

In general, CURE ensures an equal outcome against any opponent’s strategy. When the CURE 225 

player encounters a player who uses an exploitative strategy, especially the unconditional exploitation 226 

strategy (ALLD), CURE still restricts the payoff difference. The simulated data shown in Supplementary 227 

Tables 7 and 8 are in good agreement with the analytical and approximated results provided in Section 1 228 

of the Supplementary Information. 229 

The Supplementary Tables 1-8 reveal several remarkable regularities. First, with respect to a 230 

strategy’s payoff against itself, CURE outcompetes almost every strategy other than ALLC 231 

(Supplementary Table 7). Second, when we look at interactions between CURE and any other strategy, 232 

we indeed find that both players obtain the same payoff (Supplementary Table 8). This result is 233 

independent of the error rate and CURE’s tolerance levels. Somewhat surprisingly, we finally note that 234 

even if CURE’s co-player adopts a partner strategy, the resulting dynamics does not necessarily lead to 235 
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full cooperation. Supplementary Fig. 1 illustrates an example. Here, CURE is matched with a win-stay 236 

lose-shift opponent. For positive error rates, the two players yield an approximate payoff of (𝑅 + 𝑆 +237 

𝑇 + 𝑃)/4 (which is below the mutual cooperation payoff R that either strategy achieves against itself). 238 

The same payoff is achieved when CURE interacts with TFT (Supplementary Tables 6,8). These results 239 

suggest that although CURE is generally cooperative, it does not cooperate with any other cooperative 240 

strategy in the presence of errors. 241 

 242 
Supplementary Fig. 1. The competition between CURE and WSLS in the noisy repeated prisoner’s 243 
dilemma. a-c, We have run 100 independent simulations to explore the dynamics among a cumulative 244 
reciprocator and a player adopting win-stay lose-shift (WSLS). The panels show the players’ payoffs for 245 
each simulation. While there are some fluctuations between simulations, the difference between the two 246 
players’ payoffs is negligible in each single simulation. On average, payoffs are close to the theoretically 247 
predicted (𝑅 + 𝑆 + 𝑇 + 𝑃)/4 =  2.25 for the infinitely repeated game. In particular, payoffs are below 248 
the mutual cooperation payoff of R. d, To explain why the two players fail to consistently coordinate on 249 
mutual cooperation, suppose both players initially start with mutual cooperation. Then a single error by 250 
either player can lead to a continuing cycle of alternating defection (i.e., DD → DC → CD → DD → ⋯). 251 
This cycle only stops if there occurs another error in a round in which CURE is expected to cooperate 252 
and WSLS is expected to defect. Simulations are based on the payoffs used in Axelrod’s tournament, 253 
𝑅 = 3, 𝑆 = 0, 𝑇 = 5, 𝑃 = 1. For CURE, we use a tolerance level of ∆ = 1. 254 
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Supplementary Section 3. Evolutionary dynamics in two-strategy populations 256 

So far, we have assumed the players’ strategies to be fixed. In the following, we explore what 257 

happens if players are part of an evolving population in which successful strategies are expected to spread. 258 

We begin with the simplest possible scenario in which there are only two possible strategies in the 259 

population. Specifically, we compare CURE with a tolerance level of Δ = 1 to each of the nine other 260 

strategies that are used in previous strategy comparison (Supplementary Section 2). Fig.2 illustrates our 261 

results. In these simulations, CURE is initially adopted by 0.1% of the population (accordingly, we speak 262 

of the other strategy as the ‘resident’). In this section, the illustrated dynamical processes are generated 263 

through computational simulation under three different values of R (i.e., 𝑅 = 2.6, 3.0, and 4.0), so as to 264 

complement the results of Fig.2 (main text section “CURE and population dynamics”). The results for 265 

different payoff values and other initial frequencies of CURE are illustrated in Supplementary Figs.2-7. 266 

a. CURE invades exploitive strategies (ALLD, HardMajority, and Extort2) 267 

 268 

 269 

0 200 400 600 800 1000 1200

0.0

0.2

0.4

0.6

0.8

1.0

0 300 600 900 1200

0.0

0.2

0.4

0.6

0.8

1.0

0 300 600 900 1200

0.0

0.2

0.4

0.6

0.8

1.0

R=
4.0

1% 5% 10%

CR1 D CR1 D CR1 D

CR1 3.96 1.02988 3.8042 1.1498 3.6163 1.2996

D 1.03045 1.03 1.151 1.145 1.30134 1.3

R=
3.0

1% 5% 10%

CR1 D CR1 D CR1 D

CR1 2.9866 1.02978 2.9307 1.14723 2.8565 1.28963

D 1.03035 1.0299 1.14846 1.1475 1.29136 1.29

R=
2.6

1% 5% 10%

CR1 D CR1 D CR1 D

CR1 2.5971 1.02976 2.5813 1.1462 2.5526 1.2857

D 1.0303 1.02985 1.1475 1.1465 1.2873 1.286

A. CURE(CR1)-ALLD(D)
(a) R=2.6

noise=1%：
 CR1
 D 

noise=5%：
 CR1 
 D 

noise=10%：
 CR1
 D  Pr

op
or

tio
n

Generation

noise=1%：
 CR1
 D 

noise=5%：
 CR1 
 D 

noise=10%：
 CR1
 D  

(b) R=3

Pr
op

or
tio

n

Generation

noise=1%：
 CR1
 D 

noise=5%：
 CR1 
 D 

noise=10%：
 CR1
 D  

(c) R=4

Pr
op

or
tio

n

Generation

1 10 100 1000 10000

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000 10000

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100 1000 10000

0.00

0.20

0.40

0.60

0.80

1.00

R=
4.0

1% 5% 10%

CR1 H CR1 H CR1 H

CR1 3.96 3.9583 3.8042 3.7854 3.6163 3.5490

H 3.9578 1.03 3.7843 1.1797 3.5476 1.3695

R=
3.0

1% 5% 10%

CR1 H CR1 H CR1 H

CR1 2.9866 2.9823 2.9307 2.8958 2.8565 2.7658

H 2.9817 1.0299 2.8946 1.1655 2.7643 1.3316

R=
2.6

1% 5% 10%

CR1 H CR1 H CR1 H

CR1 2.5971 2.5871 2.5813 2.5554 2.5526 2.4873

H 2.5866 1.0298 2.5542 1.1566 2.4859 1.3333

B. CURE(CR1)-HardMajority(H)
(a) R=2.6

noise=1%:
 CR1
 H

noise=5%:
 CR1
 H 

noise=10%:
 CR1
 H

Pr
op

or
tio

n

Generation

noise=1%:
 CR1
 H

noise=5%:
 CR1
 H 

noise=10%:
 CR1
 H

(b) R=3

Pr
op

or
tio

n

Generation

noise=1%:
 CR1
 H

noise=5%:
 CR1
 H 

noise=10%:
 CR1
 H

(c) R=4

Pr
op

or
tio

n

Generation



18 
 

 270 
Supplementary Fig. 2. CURE invades the ALLD (the upper layer A), HardMajority (the middle 271 
layer B), and the Extort2 population (the lower layer C). CURE, with an initial proportion of 0.001, 272 
can invade ALLD and HardMajority populations, regardless of 𝑅 and the noise rate. The lower the level 273 
of noise and the larger the mutual cooperation payoff R, the faster the invasion. It takes less than 100 274 
generations for CURE to fully invade HardMajority. With respect to Extort2, CURE must reach a critical 275 
initial proportion to take over the population, depending on 𝑅 and the noise rate. When 𝑅 = 2.6, the 276 
critical value is 0.008 at 5% noise, and the critical value is 0.006 at 10% noise; when 𝑅 = 3.0, the critical 277 
value is 0.004 at both 5% and 10% noises. In all other conditions, an initial 0.001 proportion of CURE 278 
players can invade the Extort2 population. Invasion is fastest for large values of R and substantial error 279 
rates. Each payoff matrix associating with each frequency curve shows the approximated payoffs. 280 
Double-precision data is used in the simulations. 281 

b. Population dynamics of CURE and highly cooperative strategies (ALLC and SoftMajority) 282 

 283 

0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500

0.0

0.2

0.4

0.6

0.8

1.0

C. CURE(CR1)-Extort2(E2)
(a) R=2.6

noise=1%:
 CR1 
 E2 

noise=5%:
 CR1 
 E2 

noise=10%:
 CR1 
 E2 

Pr
op

or
tio

n

Generation
R=
4.0

1% 5% 10%

CR1 E2 CR1 E2 CR1 E2

CR1 3.96 1.16374 3.8042 1.59993 3.6163 1.89991

E2 1.16376 1.1638 1.59994 1.600 1.89992 1.89997

R=
3.0

1% 5% 10%

CR1 E2 CR1 E2 CR1 E2

CR1 2.9866 1.15847 2.9307 1.54319 2.8565 1.79130

E2 1.15849 1.1592 1.54320 1.5485 1.79131 1.7952

R=
2.6

1% 5% 10%

CR1 E2 CR1 E2 CR1 E2

CR1 2.5971 1.15493 2.5813 1.51114 2.5526 1.73699

E2 1.15494 1.1563 1.51115 1.5189 1.737 1.7418

noise=1%:
 CR1 
 E2 

noise=5%:
 CR1 
 E2 

noise=10%:
 CR1 
 E2 

(b) R=3

Pr
op

or
tio

n

Generation

noise=1%:
 CR1 
 E2 

noise=5%:
 CR1 
 E2 

noise=10%:
 CR1 
 E2 

 (c) R=4

Pr
op

or
tio

n

Generation



19 
 

 284 
Supplementary Fig. 3. Coexistence of CURE with ALLC (the upper layer A) and SoftMajority (the 285 
lower layer B). Initially, the frequency of CURE is 0.001, and that of the other strategy is 0.999. The 286 
frequency of CURE at the steady state decreases when 𝑅 increases from 2.6 to 4.0, as well as when the 287 
noise rate increases from 1% to 10% (except for the coexistence of CURE with SoftMajority under 𝑅 =288 
2.6). The higher the noise rate, the faster the steady state is reached. 289 
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c. CURE invades TFT-family strategies 291 

 292 
Supplementary Fig. 4. CURE invades CTFT populations. (a) - (c) show the evolutionary dynamics 293 
of the two strategies under R=2.6, 3, and 4. In general, it takes relatively few generations for CURE to 294 
invade CTFT. The invasion time decreases with 𝑅. When 𝑅 = 2.6, the invasion time is shorter when the 295 
noise rate is higher; in contrast, when 𝑅 ≥ 3, the invasion occurs more quickly at lower noise (1%). 296 
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 299 
Supplementary Fig. 5. CURE invades GTFT populations. For GTFT, the top row (A) illustrates the 300 
case of a generosity level of 𝑔 = 0.1, the middle row (B) illustrates the case of 𝑔 = 0.3, and the bottom 301 
row (C) illustrates the case 𝑔 = 0.5. In (B), when 𝑅 = 2.6, the critical initial proportion for CURE to 302 
invade is 0.005 under 1% noise, and the critical value under 5% is 0.004. In (C), the critical initial 303 
proportion is 0.004 at 1% noise when 𝑅 = 2.6, and 0.002 at 5% and 10% noise when 𝑅 =  4.0. The 304 
critical value under other conditions is 0.001. 305 

 306 
Supplementary Fig. 6. CURE invades TFT populations. (a) - (c) show the evolutionary dynamics of 307 
the two strategies under R=2.6, 3, and 4. In general, it takes fewer generations for CURE to invade TFT 308 
than invading GTFT, but more generations than invading CTFT. Invasion occurs more quickly when 𝑅 309 
is high. When 𝑅 = 2.6, the required time for invasion is shorter when the noise rate is higher. In contrast, 310 
when 𝑅 ≥ 3, the time for invasion is shorter when there is little noise (1%).  311 
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d. CURE invades WSLS 312 

 313 

Supplementary Fig. 7. CURE invades WSLS populations. (a) The initial critical proportion of CURE 314 
to invade WSLS at different noise rates (accurate to 0.001). Below this value, CURE cannot invade 315 
WSLS. (b) - (f) show the evolutionary dynamics of the two strategies when the initial proportion of 316 
CURE is exactly at the critical point under 𝑅 = 2.0, 2.6, 3.0, 3.5, and 4.0 , respectively. CURE can 317 
invade more quickly when R is large. At 𝑅 = 2.0, this invasion occurs more quickly when there is a high 318 
level of noise. In contrast, when 𝑅 ≥ 3, CURE invades more quickly when there is little noise. When 319 
𝑅 = 2.6, noise has a non-monotonic effect on the speed of invasion. The invasion is fastest for a noise 320 
rate of 1%, and it is slowest for an intermediate noise rate of 5%. 321 
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Supplementary Section 4. Evolutionary dynamics among ALLD, ALLC, and CURE 323 

In this section, we complement the previous simulations among pairs of strategies by analyzing the 324 

evolutionary competition among three strategies, ALLD, ALLC, and CURE. Despite the overall strong 325 

performance of CURE, the previous results suggest that cumulative reciprocity is susceptible to invasion 326 

by unconditional cooperators. Once unconditional cooperators are common, they may in turn facilitate 327 

the emergence of defectors. A similar destabilizing effect has been reported for tit-for-tat; the three-328 

strategy dynamics of ALLC, ALLD, and TFT have been studied, for example, by Imhof et al.6 and Brandt 329 

& Sigmund7. Their analysis suggests that the instability of tit-for-tat against unconditional cooperators 330 

can eventually lead to a complete breakdown of cooperation. In the following, we explore the dynamics 331 

when we replace tit-for-tat by cumulative reciprocity. 332 

a. Simulated dynamics in populations with ALLD, ALLC, and CURE 333 

We investigate the dynamics of ALLC, ALLD, and CURE using the same simulations as in the two-334 

strategy case (see Methods for detailed description). Initially, all three strategies are equally abundant. 335 

When we run simulations without mutations, we first observe cycles between cooperators, defectors, and 336 

reciprocators. Over time, however, defectors are driven to extinction. Eventually, the population consists 337 

of a large majority of unconditional cooperators, stabilized by a small fraction of cumulative reciprocators 338 

(Supplementary Fig.8a). In contrast, in simulations with a positive mutation rate, ALLD persists at small 339 

frequencies. As a result, the remaining population members are more likely to adopt cumulative 340 

reciprocity. Eventually, about 51.7% use CURE, 48.2% use ALLC, and 0.1% of the population use ALLD 341 

(Supplementary Fig.8b).  342 

In addition to these simulation for populations with a uniform initial frequency distribution, we also 343 

explore the influence of different initial distributions. Specifically, we study three different initial 344 

distributions, namely CURE-dominant, ALLC-dominant, and ALLD-dominant. The results show that the 345 

initial distribution of strategies does not affect the strategies’ eventual frequencies when mutations are 346 

introduced. Before the introduction of mutations, we observe the following dynamics. When CURE 347 

dominates the population initially (Supplementary Fig.8c), ALLC invades CURE. When ALLC 348 

dominates initially (Supplementary Fig.8d), ALLD first invades ALLC, but is replaced by CURE. Finally, 349 

when ALLD dominates initially (Supplementary Fig.8e), CURE first replaces ALLD, and then gets 350 

invaded by ALLC. Although ALLC can invade into CURE when the frequency of ALLD is very low, it 351 

does not completely replace CURE. Eventually, CURE and ALLC coexist. 352 
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 353 
Supplementary Fig. 8. Simulated dynamics among cooperators, defectors, and cumulative 354 
reciprocators. Here, we explore the competition between ALLC, ALLD, and CURE with simulations. 355 
Initially, all three strategies are assumed to be equally abundant. a, When strategies reproduce without 356 
mutations, we first observe cyclical dynamics. CURE is invaded by ALLC, which is invaded by ALLD, 357 
which in turn leads to the evolution of CURE (see also the inset that highlights this cyclic pattern at round 358 
the 4,560th generation). Eventually, however, the frequency of defectors approaches zero; the final 359 
population predominantly consists of unconditional cooperators. b, We have repeated the previous 360 
simulations, but this time we allow for mutations after 2,000 generations. Here, ALLC and CURE 361 
eventually coexist in almost equal proportions. We also examine different initial distributions, namely 362 
CURE-dominant (c), ALLC-dominant (d), and ALLD-dominant (e). Mutations are introduced at the 363 
10,000th generation in plots c and d. The final abundance of each strategy is largely independent of the 364 
initial strategy distribution. Parameters: 𝑇 = 5, 𝑅 = 3, 𝑃 = 1, 𝑆 = 0, ∆= 1, and 1% noise. 365 

b. Replicator dynamics among ALLD, ALLC, and CURE 366 

To further explore the evolutionary competition among these three strategies, we conduct a dynamic 367 

analysis between ALLD, ALLC, and CURE in an infinite population. According to the previously 368 

discussed Propositions 1 and 3, payoffs are given by the following payoff matrix: 369 
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𝜋 =
𝜋 𝜋 𝜋
𝜋 𝜋 𝜋
𝜋 𝜋 𝜋

 (4.1) 

with entries  370 

𝜋 = 𝜋 = 𝜋 = 𝜀2𝑅 + 𝜀(1 − 𝜀)(𝑇 + 𝑆) + (1 − 𝜀)2𝑃, 

(4.2) 

𝜋 = 𝜋 = 𝜋 = (1 − 𝜀)2𝑅 + 𝜀(1 − 𝜀)(𝑇 + 𝑆) + 𝜀2𝑃, 

𝜋 = (1 − 𝜀)2𝑇 + 𝜀(1 − 𝜀)(𝑅 + 𝑃) + 𝜀2𝑆, 

𝜋 = (1 − 𝜀)2𝑆 + 𝜀(1 − 𝜀)(𝑅 + 𝑃) + 𝜀2𝑇, 

𝜋 = (1− ) ∙(1−2(1− ) +2∆(1−2 ))
1−2 +2∆(1−2 )

∙ 𝑅 + 2 (1− )∙(∆(1−2 )+(1− ) )
1−2 +2∆(1−2 ) ∙ (𝑇 + 𝑆) +

∙(3−2(3− ) +2∆(1−2 ))
1−2 +2∆(1−2 )

∙ 𝑃. 

We analyze the dynamics in a population of infinite size. Let 𝑥 , 𝑥 , and 𝑥  denote the fraction of 371 

defectors, cooperators, and cumulative reciprocators, respectively. Then, the expected payoff of each 372 

strategy is given by  373 

𝜋 = 𝜋 ∙ 𝑥 + 𝜋 ∙ 𝑥 + 𝜋 ∙ 𝑥  

(4.3) 𝜋 = 𝜋 ∙ 𝑥 + 𝜋 ∙ 𝑥 + 𝜋 ∙ 𝑥  

𝜋 = 𝜋 ∙ 𝑥 + 𝜋 ∙ 𝑥 + 𝜋 ∙ 𝑥 . 

We define the average payoff of the population as 𝜋 = 𝜋 𝑥 + 𝜋 𝑥 + 𝜋 𝑥  . We model the 374 

evolutionary dynamics using the replicator equation: 375 

�̇� = 𝑥 (𝜋 − 𝜋). (4.4) 

That is, we assume the frequency of a strategy increases in time if and only if it performs better than 376 

average in the current population. A rock-scissors-paper-like cycle is inherent in this three-population 377 

game with payoffs obtained from Eq. (4.2). On the edge between ALLC and ALLD (i.e., 𝑥 = 0 ), 378 

defectors succeed. On the edge between ALLD and CURE (𝑥 = 0), CURE takes over. Finally, on the 379 

edge between CURE and ALLC (𝑥 = 0), the cooperators succeed, thereby closing the cycle. It follows 380 

that there is no stable fixed point on the boundary of the state space. 381 

We can find the position of the interior fixed point by setting 𝜋 = 𝜋 = 𝜋  and solving for those 382 

𝑥 , 𝑥 , 𝑥  that satisfy the constraint 𝑥 + 𝑥 + 𝑥 = 1. For a positive error rate and no mutations, 383 

there is a unique fixed point in the interior of the state space. In the limit of rare errors, 𝜀 → 0, we obtain 384 

the following expression for the abundance of defectors, cooperators, and cumulative reciprocators in 385 

this fixed point as 386 

𝑥∗ = 0,    𝑥∗ =
𝑅 − 𝑃
𝑇 − 𝑃

,     𝑥∗ =
𝑇 − 𝑅
𝑇 − 𝑃

. (4.5) 

First, the abundance of strategies is independent of CURE’s threshold ∆. Second, defectors are entirely 387 

missing in the unique equilibrium. For positive error rates, the equilibrium moves into the interior of the 388 

state space, but remains close to the fixed point shown in the Equation (4.5) when errors are rare. Using 389 
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the techniques of Hofbauer and Sigmund (Section 7.7)8, one can show that any such interior fixed point 390 

is surrounded by closed periodic orbits, suggesting that almost all initial populations result in oscillations 391 

between ALLC, ALLD, and CURE, as illustrated in Supplementary Fig. 9(a-f). As 𝜀 increases from 0.01 to 392 

0.2, the fixed point moves away from the edge of ALLC and CURE. As 𝑅 increases from 2.6 to 4.0, the fixed 393 

point moves along the edge of CURE and ALLC, from the vicinity of CURE to the vicinity of ALLC. 394 

When mutations are introduced, by considering the following ordinary differential equation, 395 

�̇� = 𝑥 (𝜋 − 𝜋 − 3𝜇) + 𝜇, (4.6) 

where 𝜇 is the uniform mutation rate for all strategies1, those oscillations around the fixed point break 396 

down. Instead, eventually all initial populations converge to the unique fixed point, and the interior fixed 397 

point becomes globally stable, as shown in Supplementary Fig. 9(g-i). As 𝜇 increases, the fixed point 398 

moves from the edge between ALLC and CURE to the center of the triangle. These results based on 399 

replicator dynamics are in line with our earlier simulation results. 400 

Overall, the evolutionary dynamics among ALLC, ALLD, and CURE are remarkably different from 401 

the ALLC-ALLD-TFT system. Only when discriminators use cumulative reciprocity, cooperation can 402 

persist. Of course, this analysis for three particular strategies does not rule out that other exploitative 403 

strategies (different from ALLD) may eventually take over. However, it illustrates that cumulative 404 

reciprocity can act as an effective mechanism to restrain unconditional defectors.  405 

 406 
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Supplementary Fig. 9. Replicator dynamics of cooperation, defection, and cumulative reciprocity. 407 
Panels a~f display solutions of the classical replicator equation (4.4) using the parameters 𝑅 = 3, 𝑆 =408 
0, 𝑇 = 5, 𝑃 = 1, and ∆= 1, 𝜀 = 0.1 unless otherwise specified. Each corner represents a homogeneous 409 
population; each edge represents a population in which two of the three strategies coexist. The point 410 
indicates the unique fixed point of the dynamics. Curves in the interior indicate representative trajectories. 411 
Panels a-c show that the fixed point moves away from the edge of ALLC and CURE as 𝜀 increases. As 412 
𝑅 increases from 2.6 to 4.0, Panels d-f show that the fixed point moves along the edge between CURE 413 
and ALLC, from close to CURE to close to ALLC, reflecting the result of Eq. (4.5). Panels g-i represent 414 
solutions for the replicator equation with mutations, as defined by Eq. (4.6). Here, all orbits converge to 415 
the interior fixed point. As 𝜇 increases, the fixed point moves away from the edge between CURE and 416 
ALLC, towards the center of the triangle.  417 
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Supplementary Section 5. Evolution of CURE in memory-one populations 418 

In this section, we report simulation results on the performance of CURE in heterogeneous 419 

populations of memory-1 players, as a supplement to the main text section “CURE and population 420 

dynamics”. For these simulations, we let 𝑅 range from 2.6 to 4.0, for a tolerance level ∆= 0, 1 and 2, 421 

and we consider the dynamics with and without mutations, respectively.  422 

423 
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a. The evolution of memory-one strategies without CURE (as a baseline) 424 

 425 
Supplementary Fig. 10. Evolution among memory-one strategies in the presence of mutations. 426 
Panels a, c, e, and g show the dynamics of the population’s average payoff when 𝑅 =427 
2.6, 3.0, 3.5, and 4.0, respectively; whereas Panels b, d, f, and h illustrate the corresponding dynamics 428 
of the strategy frequencies. The winning strategy shifts from the TFT-family to WSLS as 𝑅 increases 429 
from 3.0 to 4.0. When 𝑅 = 2.6 , GTFT-type strategies are predominant in around the first 100,000 430 
generations. These GTFT-type strategies are then gradually replaced by strategies with a stronger 431 
tendency to defect. In general, we observe a declining average payoff during the first stage of the 432 
simulations, followed by a rapid increase, indicating the trend from defection to cooperation. However, 433 
when 𝑅 = 2.6 , cooperation is quite unstable. In Panels b, d, f, and h, the strategies that achieve a 434 
proportion of no-less-than 0.1 are displayed, with WSLS being specifically added. The same is true for 435 
the following figures of this section.  436 

100 101 102 103 104 105 120k 140k 1x106

1.0

1.5

2.0

2.5

100 101 102 103 104 105 120k 140k 1x106

0.0

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105 106
1.0

1.5

2.0

2.5

3.0

100 101 102 103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0

100 101 102 103 104 105 106
1.0

1.5

2.0

2.5

3.0

3.5

100 101 102 103 104 105 106

0.0

0.1

0.2

0.3

100 101 102 103 104 105 106
1.0

1.5

2.0

2.5

3.0

3.5

4.0

100 101 102 103 104 105 106

0.0

0.2

0.4

0.6

0.8

1.0

R=2.6

 Average Payoff

Generation

Pa
yo

ff

a  (0.01, 0.01, 0.99, 0.1)
 (0.99, 0.01, 0.01, 0.99) /  WSLS
 (0.99, 0.01, 0.1, 0.2)
 (0.99, 0.01, 0.01, 0.6)
 (0.99, 0.01, 0.1, 0.6)
 (0.99, 0.01, 0.1, 0.8)
 (0.99, 0.01, 0.3, 0.7)
 (0.99, 0.01, 0.9, 0.9)
 ( -, 0.01, -, 0.1)
 ( -, 0.01, -, 0.2)
 ( -, 0.01, -, 0.3)
 ( -, 0.01, -, 0.4)
 ( -, 0.1, -, 0.1)
 ( -, 0.1, -, 0.2)
 ( -, 0.1, -, 0.3)
 ( -, 0.2, -, 0.2)

Generation

Pr
op

or
tio

n

b

R=3

 Average Payoff

Generation

Pa
yo

ff

c              p1=p3=0.99
  (-, 0.2, -, 0.01)  (0.99, 0.01, 0.01, 0.99) / WSLS
  (-, 0.3, -, 0.01)
  (-, 0.4, -, 0.01)
  (-, 0.5, -, 0.01)
  (-, 0.6, -, 0.01)
  (-, 0.2, -, 0.1)
  (-, 0.3, -, 0.1)
  (-, 0.4, -, 0.1)
  (-, 0.3, -, 0.3)
  (-, 0.3, -, 0.4)
  (-, 0.3, -, 0.6)
  (-, 0.4, -, 0.3)

Generation

Pr
op

or
tio

n

d

R=3.5

 Average Payoff

Generation

Pa
yo

ff

e             p1=p3=0.99
 (-, 0.5, -, 0.1)    (-, 0.5, -, 0.4)
 (-, 0.5, -, 0.2)    (-, 0.5, -, 0.5)
 (-, 0.6, -, 0.1)    (-, 0.5, -, 0.6)
 (-, 0.6, -, 0.2)    (-, 0.6, -, 0.4)
 (-, 0.7, -, 0.1)    (-, 0.6, -, 0.5)

 (0.99, 0.01, 0.01, 0.99) / WSLS

Generation

Pr
op

or
tio

n

f

R=4

 Average Payoff

Generation

Pa
yo

ff

g
 (0.99, 0.01, 0.01, 0.9)
 (0.99, 0.01, 0.01, 0.99) / WSLS
 (0.99, 0.01, 0.1, 0.99)
 (0.99, 0.1, 0.01, 0.99)

Generation

Pr
op

or
tio

n

h



30 
 

b. Incorporating CURE into the pool of memory-one strategies 437 

 438 
Supplementary Fig. 11. Co-evolution of CURE (∆= 𝟏) and memory-one strategies in the presence 439 
of mutations. The wine-colored line in b, d, f, and h indicates the CURE strategy. Panels a and b reflect 440 
the case of 𝑅 = 2.6. Here, TFT-family strategies (0.99, 0.1~0.5, 0.99, 0.01) prevail and the population’s 441 
average payoff rapidly increases in the early stage of simulation. They are then overtaken by more 442 
exploitative strategies of (0.01~0.3, 0.01 0.99, 0.1) and the average payoff decreases around the 1000th 443 
generation. Eventually, CURE invades those strategies and takes over. When 𝑅 = 3.0  and R = 3.5, 444 
CURE tends to  coexist with various highly cooperative strategies. As 𝑅 increases, the frequency of 445 
CURE decreases. When 𝑅 = 4.0, WSLS rapidly dominates.  446 
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 447 
Supplementary Fig. 12. Co-evolution of CURE (∆= 𝟐) and memory-one strategies in the presence 448 
of mutations. The results are generally consistent with those in the previous Supplementary Fig. 11 for 449 
the case of ∆= 1. Panels a, c, e, g show the evolution of population average payoff under R=2.6, 3.0, 450 
3.5, and 4. Panels b, d, f, h reflect the evolution of strategies correspondingly.  451 
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 452 
Supplementary Fig. 13. Co-evolution of CURE (∆= 𝟎) and memory-one strategies in the presence 453 
of mutations. Here, we depict simulations for R = 3, panel a shows the evolution of payoff and b shows 454 
the evolution of strategies. The results show that CURE still occupies around 60% of the population, 455 
although the proportion of CURE is lower than that in the case of higher ∆. 456 

 457 
Supplementary Fig. 14. Evolutionary dynamics without mutations when ∆= 1 . This figure 458 
supplements Panel (f) of Fig. 3 in the main text. The dynamics of the population’s average payoff are 459 
exhibited in Panels (a) and (d), respectively, for 𝑅 = 2.6 and 3.5. Correspondingly, Panels (b) and (e) 460 
represent the evolution of strategies that reach at least a proportion of 10% of the population. Panels (c) 461 
and (f) depict the evolutions of GTFT-type strategies. For R = 2.6, the results show that CURE takes over 462 
the population after the 1,300th generation. By comparison, when 𝑅 = 3.5, the population eventually 463 
adopts WSLS. Here, the entire process is characterized by the continuous competition of a series of 464 
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strategies with the form of (0.99, 𝑝2, 𝑝3, 0.99 ), and WSLS eventually dominates the population. By 465 
comparing the three cases 𝑅 = 2.6, 3.0 [Panel(f) of Fig. 3 in the main text], and 3.5, we see a transition 466 
from the absolute dominance of CURE (for 𝑅 = 2.6) to a high proportion of CURE (for 𝑅 = 3.0) and 467 
then to an absolute dominance of WSLS (for 𝑅 = 3.5). This trend is the same as in the simulations with 468 
mutations.  469 

470 
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Supplementary Section 6. The critical value of 𝑹 for the transition from CURE to 471 

GTFT and WSLS  472 

The previous results show how the most dominant strategy changes as we change the reward R for 473 

mutual cooperation, from CURE to GTFT and then to WSLS. In the following, we explore this transition 474 

in more detail, to support the respective discussion (Fig. 4) in the main text.  475 

a. Strategy CURE dominates the population when 𝑹 < 𝑹𝟏∗ = 𝟑. 𝟔𝟐𝟓 476 

 477 
Supplementary Fig. 15. Frequency dynamics of major strategies in the cases of 𝑹 =478 
𝟐. 𝟓, 𝟑. 𝟎, 𝐚𝐧𝐝 𝟑. 𝟔𝟐. Panels a, c, and e show the frequency dynamics of the major strategies. Panels b, 479 
d, and f show the cumulative proportions for different sets of GTFT strategies (i.e., GTFT0.5, GTFT0.6, …, 480 
GTFT0.9). Here, the major strategies refer to those strategies that are played by at least 10% of the 481 
population during evolution (the same applies to the following figures). When 𝑅 = 2.5 , after 482 
approximately 1,000 generations, CURE is adopted by 99% of the population. When 𝑅 = 3.0, CURE is 483 
still adopted by more than 80% of the population. Finally, when 𝑅 = 3.62, the pattern is similar to the 484 
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case of 𝑅 = 3.0. However, the overall proportion of GTFT-type strategies is now around 50%, while 485 
cumulative reciprocators make up the remaining 50% of the population. The frequency of WSLS is 486 
negligible in this range of 𝑅. 487 

b. GTFT-type strategies dominate the population when 𝑹 ∈ [𝟑. 𝟔𝟐𝟓, 𝟑. 𝟔𝟕𝟓) 488 

 489 
Supplementary Fig. 16. Frequency dynamics of major strategies in the cases of 𝑹 =490 
𝟑. 𝟔𝟐𝟓,𝟑. 𝟔𝟑, 𝐚𝐧𝐝 𝟑. 𝟔𝟕. Panels a, c, and e show the frequency dynamics of the major strategies. Panels 491 
b, d, and f show the cumulative proportions for different sets of GTFT strategies (i.e., GTFT0.5, 492 
GTFT0.6, …, GTFT0.9). When 𝑅 = 3.625 , the advantage of GTFT becomes apparent. GTFT-type 493 
strategies, more specifically the strategies (0.99, 0.6, 0.99, 0.4~0.7), keep prevailing after around 100 494 
generations. CURE and WSLS may temporarily occur through mutation, but they rapidly diminish 495 
afterwards, as shown in the inset of Panel a. When 𝑅 = 3.63 and 3.67, the same pattern can be observed.  496 
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c. Strategy WSLS dominates the population when 𝑹 ≥ 𝟑. 𝟔𝟕𝟓 497 

 498 
Supplementary Fig. 17. Frequency dynamics of major strategies in the cases of 𝑹 =499 
𝟑. 𝟔𝟕𝟓,𝟑. 𝟔𝟖, 𝟒, 𝐚𝐧𝐝 𝟒. 𝟓. In Panels a and b, GTFT-type strategies prevail in the first 26,000 generations, 500 
at which point WSLS takes over. The strategy (0.99, 0.2, 0.01, 0.99) first briefly dominates and is then 501 
replaced by a more retaliatory strategy (0.99, 0.01, 0.01, 0.9). Finally, WSLS dominates with a proportion 502 
of 0.999 at the 150,000th generation. As 𝑅 increases from 3.68 to 4.5 (Panels c-f), WSLS dominates the 503 
population more rapidly, and CURE's short-term advantage in the first 100 steps disappears, as shown in 504 
the insets in Panels a, c, e, and g. 505 
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Supplementary Section 7. Co-evolution of CURE strategies with different thresholds   507 

In our previous evolutionary analyses, we considered one instantiation of CURE at a time. That is, we 508 

assumed that all cumulative reciprocators in a population use the same threshold ∆. In the following, we 509 

explore the case when different variants of CURE compete, similar to the static comparison in 510 

Supplementary Tables 3 and 4. To this end, we consider three kinds of competitions. First, we only 511 

consider the four variants CURE1, CURE2, CURE3, and CURE4. Second, we additionally allow for the 512 

unconditional strategies ALLC and ALLD. And third, we also allow for the strategies WSLS, TFT, GTFT 513 

and Extortion2. The results are displayed in Supplementary Fig. 18.  514 

 515 
Supplementary Fig. 18. Evolutionary competition among different variants of cumulative 516 
reciprocity. To explore the performance of different variants of CURE, we implement simulations similar 517 
to the ones before. Simulations either allow for mutations (Panels a-c), or they do not (Panels d-f). We 518 
consider three scenarios. Either only CURE strategies compete (left column), CURE strategies compete 519 
with ALLC and ALLD (middle column), or CURE strategies additionally compete with WSLS, TFT, 520 
GTFT, and Extortion2 (right column).  521 

We observe the following regularities. First, when only different variants of CURE compete, then the 522 

most tolerant variant is most abundant, as expected from the static payoffs displayed in Supplementary 523 

Tables 3 and 4 (Supplementary Fig. 18a,d). Second, if we additionally allow for unconditional strategies, 524 

we still observe the evolution of high cooperation rates. Here, ALLC tends to co-exist with different 525 

variants of cumulative reciprocity (Supplementary Fig. 18b,e). Finally, we observe the same qualitative 526 

result when we add WSLS, TFT, GTFT, and Extortion2, and when mutations continually introduce rare 527 

strategies (Supplementary Fig. 18c). However, without mutations, WSLS eventually takes over 528 

(Supplementary Fig. 18f). The inclusion of several variants of CURE thus helps to sustain cooperation, 529 

and it can lead to stable coexistences between cumulative reciprocators and unconditional cooperators.  530 
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Supplementary Section 8. Comparison of CURE with selected memory-k strategies   532 

When analyzing the evolutionary performance of CURE, so far we have focused on comparisons 533 

between CURE and memory-1 strategies. The space of memory-1 strategies is arguably among the best 534 

explored strategy spaces for direct reciprocity1. This space is rich enough to include many well-known 535 

strategies (such as ALLD, TFT2, and WSLS9,10). At the same time, the space is small enough to be 536 

explored systematically. While a comparison of CURE to more general memory-k strategies might be 537 

desirable, the mere size of these strategy spaces makes such a comparison difficult. Even if we restrict 538 

attention to deterministic strategies, there are 216 = 65,536 memory-2 strategies and 264 ≈ 1.8 ∙539 

1019  memory-3 strategies. In the following, we thus confine ourselves to compare CURE to a small 540 

number of select memory-2 and memory-3 strategies highlighted by the literature. We describe these 541 

strategies in the following. 542 

One strategy class highlighted previously is the class of so-called All-or-None strategies11,12. An 543 

AONk strategy cooperates initially, and it continues to cooperate as long as both players picked the same 544 

action in each of the past k rounds. However, if the two players chose a different action in one of the past 545 

k rounds, an AONk player defects. These strategies have a number of desirable properties: when two AONk 546 

players meet, they mutually cooperate; when they are exploited, they punish the co-player with k rounds 547 

of defection; and when one player defected by mistake, a group of AONk players restores cooperation 548 

after k rounds. Moreover, it can be shown that All-or-None strategies are a Nash equilibrium of the 549 

(infinitely) repeated prisoner’s dilemma if the parameter k is sufficiently large12. In the special case of 550 

k=1, AON1 reproduces the well-known WSLS strategy.  551 

Another interesting strategy is the memory-2 strategy TFT-ATFT (Tit-for-Tat Anti-Tit-for-Tat), 552 

introduced by Yi, Ki Baek, and Choi13. According to this strategy, a player normally uses TFT; however, 553 

after committing an error, the player turns to ATFT and returns to TFT either when mutual cooperation 554 

is recovered, or when the opponent unilaterally defects twice in a row. Similar to AONk, this strategy has 555 

a number of remarkable properties: it is “efficient” (meaning that two TFT-ATFT players obtain the 556 

mutual cooperation payoff); it is “distinguishable” (it is able to identify ALLC players and to exploit 557 

them); and finally, it is “defensible” (in the absence of errors, it cannot be exploited by any other strategy).  558 

Finally, we also consider the memory-3 strategy CAPRI, first introduced by Murase and Ki Baek14. 559 

CAPRI is an instance of a “friendly rival”: With such a strategy, a player can prevent exploitation by any 560 

other strategy, while making sure that both players get the mutual cooperation payoff when both players 561 

use the CAPRI strategy. CAPRI is defined by the following table14, that describes the focal player’s next 562 

action depending on the outcome of the past three rounds: 563 

 564 

 565 
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Focal player’s actions in 
previous rounds (t-3,t-2,t-1) 

Co-player’s actions in previous rounds (t-3, t-2, t-1) 
CCC CCD CDC CDD DCC DCD DDC DDD 

CCC C D D D C D D D 
CCD C D C D D D D D 
CDC D C D D C D D D 
CDD D D D D D D D D 
DCC C D C D C D C D 
DCD D D D D D D D D 
DDC D D D D C D C C 
DDD D D D D D D C D 

During the first rounds of the game (i.e., when players do not have the outcome of three previous rounds 566 

in memory), one may choose the action as if players always cooperated prior to the first round. To 567 

compare these strategies to CURE, we first use simulations to compute the respective payoff matrix for 568 

three different error rates, see Supplementary Table 9.  569 

 570 

Supplementary Table 9. Payoff matrixes for CURE (∆=1) and selected memory-k strategies. R = 3, 571 

S = 0, T = 5, P = 1.  572 

1% noise CURE AON2 AON3 CAPRI TFT-ATFT 

CURE 2.986557 1.762267 1.607052 2.778874 2.925951 

AON2 1.762268 2.913053 1.268792 1.891112 1.926866 

AON3 1.607053 2.475399 2.875767 1.740724 1.768704 

CAPRI 2.778874 1.891595 1.723237 2.863047 2.308540 

TFT-ATFT 2.925951 1.873180 1.706650 2.275944 2.917400 

 573 

5% noise CURE AON2 AON3 CAPRI TFT-ATFT 

CURE 2.930674 1.807408 1.639563 2.212150 2.714125 
AON2 1.807409 2.621748 1.345135 1.896018 2.059097 
AON3 1.639564 2.385384 2.481695 1.789358 1.921958 
CAPRI 2.212151 1.906516 1.715254 2.493231 2.255157 

TFT-ATFT 2.714126 1.825519 1.641596 2.104119 2.689697 

 574 

10% noise CURE AON2 AON3 CAPRI TFT-ATFT 

CURE 2.856513 1.858170 1.688148 1.942936 2.555169 
AON2 1.858171 2.365837 1.442986 1.898546 2.185789 
AON3 1.688149 2.292817 2.172193 1.841235 2.087034 
CAPRI 1.942937 1.932507 1.723010 2.242920 2.251159 

TFT-ATFT 2.555170 1.795748 1.596147 1.973461 2.528471 

Several remarks are in order. First, we note that the four strategies CURE, AON2, AON3, and CAPRI 575 
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cannot be invaded by any other of these five strategies. In contrast, TFT-ATFT can be invaded by CURE 576 

for all considered error probabilities. This observation suggests that while TFT-ATFT is defensible as the 577 

error rate approaches zero, it ceases to be robust for positive error probabilities. Second, among the first 578 

four strategies, it is CURE that achieves the highest payoff against itself. This advantage is particularly 579 

pronounced in the 10% noise condition. Here, CURE still achieves a payoff close to the social optimum 580 

(𝜋 = 2.856 compared to R = 3), whereas all other strategies obtain a payoff of 2.528 or less. This 581 

observation, together with our result that CURE enforces fairness against any other player (Proposition 4) 582 

implies that CURE is risk-dominant15 in any direct competition with either AON2, AON3, or CAPRI.  583 

 To further explore this latter observation, we have conducted further simulations, following the basic 584 

scheme of the simulations shown in SI Section 3 (“Evolutionary dynamics in two-strategy populations”).  585 

That is, we match CURE in a pairwise competition with each of the other four strategies. In each case 586 

we observe that CURE can evolve even if it is initially adopted only by a relative minority of the 587 

population, as shown in Supplementary Fig. 19a-d. With further simulations, we show that CURE also 588 

evolves when it is simultaneously competing with all four other strategies (Supplementary Fig.19e,f), or 589 

when additionally ALLC and ALLD are added to the population (Supplementary Fig.19g).  590 

 591 

Supplementary Fig. 19. Evolutionary dynamics among CURE, AON2, AON3, CAPRI, and TFT-592 

ATFT. a-d, Using the same simulation scheme as in SI Section 3, we first explore the evolutionary 593 

dynamics when CURE competes with each of the other strategies in isolation. In each case we find that 594 

CURE can evolve even if its initial share is less than 50% of the population. e,f, We also explore the 595 

evolutionary dynamics when all five strategies are present in the population simultaneously. We find that 596 

CURE can evolve even if it is initially played only by 0.1% of the population. g, When the error rate is 597 

large, and when we additionally include unconditional cooperators and defectors, we find that 598 

populations eventually converge to a mixture of CURE, ALLC, and TFT-ATFT.  599 
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Supplementary Section 9. A variant of cumulative reciprocity with discounting   601 

The strategy of cumulative reciprocity that we considered in the main text weighs all past decisions 602 

equally. If Alice adopts CURE and Bob unilaterally defected many rounds ago, this has the same impact 603 

on Alice’s next decision as a unilateral defection in the very last round. Instead, one may consider variants 604 

of cumulative reciprocity in which the most recent events receive relatively more weight. One way to 605 

incorporate this idea is by assuming that Alice updates her defection difference statistic as follows. 606 

Initially, she sets d(0) = 0. After each round, this statistic is then updated according to the rule, 607 

𝑑(𝑡 + 1) = 𝜆𝑑(𝑡) + 𝜌 (𝑡). (9.1) 

In this expression, 𝜆 is a parameter that determines the weight of past decisions, with 0 ≤ 𝜆 ≤ 1. The 608 

second parameter 𝜌 (𝑡) encodes the outcome of the very last round, and it is defined by 609 

𝜌 (𝑡) = 𝜌 (𝑡) = 0,    𝜌 (𝑡) = 1,   𝜌 (𝑡) = −1. (9.2) 

In the special case of no discounting of the past, 𝜆 = 1, this notion of cumulative reciprocity recovers 610 

the version of CURE we have explored throughout. In the other limit, for 𝜆 = 0, and setting the tolerance 611 

level to ∆ = 0, this notion of cumulative reciprocity instantiates the classical strategy Firm-but-Fair. For 612 

intermediate values of 𝜆, this strategy implements a discounted version of cumulative reciprocity, where 613 

past cooperation imbalances are gradually forgotten. We refer to such a strategy as D-CURE.  614 

While a comprehensive analysis of this model extension is beyond the scope of this paper, in the 615 

following we briefly mention results for a particular instance of D-CURE, for which we set 𝜆 = 0.99 616 

and ∆ = 1. In Supplementary Table 10, we report numerically estimated payoffs of this strategy against 617 

itself, against CURE, and against the nine strategies considered in Supplementary Section 2, “Payoffs 618 

and cooperation rates obtained by computer simulations”. The data is obtained by computing an average 619 

of 104 interactions, each running for 107 rounds. For the game parameters, we use the usual values, 620 

𝑅 =  3, 𝑇 =  5, 𝑆 =  0, 𝑃 =  1.  621 

A few aspects of these results are worth highlighting. Perhaps most importantly, D-CURE does no 622 

longer seem to enforce fairness. For example, for an error rate of 10%, the payoff of D-CURE against 623 

ALLD is approximately 1.257, whereas ALLD’s payoff is 1.407. This suggests that D-CURE is less 624 

effective in invading populations of defectors. On the other hand, again for an error rate of 10% the 625 

payoff of D-CURE against ALLC is 2.924, which now exceeds ALLC’s payoff of 2.835. In particular, 626 

while CURE is vulnerable to invasion by ALLC, the discounted version D-CURE is stable against ALLC. 627 

These results suggest that there might be an intermediate value of 𝜆 that optimally balances D-CURE’s 628 

robustness against ALLC and D-CURE’s competitiveness with ALLD. Finding this optimal value of 𝜆 629 

could be an exciting direction for future explorations.  630 

 631 

632 
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Supplementary Table 10. Average payoffs and cooperation rates of D-CURE against selected 633 
strategies. From left to right, payoffs and cooperation rates are obtained for no noise, 1%, 5%, and 10% 634 
noise levels. We consider games between D-CURE and selected alternative strategies.  635 

Gaming 
Strategy 

Noise rates 

No noise (0%) Low (1%) Medium (5%) High (10%) 

Payoff 
Cooperation 

rates 
Payoff 

Cooperation 
rates 

Payoff 
Cooperation 

rates 
Payoff 

Cooperation 
rates 

D-CURE 3 1 2.984906 0.985104 2.922686 0.927441 2.841460 0.859556 

D-CURE 3 1 2.984906 0.985104 2.922686 0.927441 2.841460 0.859556 

d(DCR-DCR) 0 0 0.0 0.0 0.0 0.0 0.0 0.0 

D-CURE 3 1 2.984827 0.985026 2.922678 0.927435 2.841455 0.859547 

CURE 3 1 2.984827 0.985026 2.922678 0.927435 2.841455 0.859547 

d(DCR-CR) 0 0 0.0 0.0 0.0 0.0 0.0 0.0 

D-CURE 3 1 2.730337 0.787254 2.383898 0.580915 2.307247 0.541968 

TFT 3 1 2.759060 0.781509 2.424340 0.572827 2.349237 0.533569 

d(DCR-T) 0 0 -0.028723 0.005745 -0.040442 0.008088 -0.04199 0.008399 

D-CURE 3 1 2.976902 0.980789 2.868607 0.885099 2.716358 0.765742 

CTFT 3 1 2.982879 0.979594 2.880817 0.882656 2.735473 0.761919 

d(DCR-CT) 0 0 -0.005977 0.001195 -0.01221 0.002443 -0.019115 0.003823 

D-CURE 3 1 2.967402 0.970130 2.847221 0.866855 2.721822 0.775022 

GTFT(0.3) 3 1 2.970500 0.969511 2.850922 0.866114 2.726854 0.774016 

d(DCR-GT) 0 0 -0.003098 0.000619 -0.003701 0.000741 -0.005032 0.001006 

D-CURE 3 1 2.997715 0.986073 2.970814 0.938044 2.923798 0.882209 

ALLC 3 1 2.978079 0.989999 2.911036 0.949997 2.834860 0.900001 

d(DCR-C) 0 0 0.019636 -0.003926 0.059778 -0.011953 0.088938 -0.017792 

D-CURE 3 1 2.997714 0.986070 2.970257 0.937180 2.917295 0.879199 

SoftMajority 3 1 2.978079 0.989999 2.910534 0.949098 2.829291 0.896798 

d(DCR-SM) 0 0 0.019635 -0.003929 0.059723 -0.011918 0.088004 -0.017599 

D-CURE 3 1 2.384956 0.606663 2.261643 0.526015 2.245444 0.515243 

WSLS 3 1 2.424920 0.598671 2.305651 0.517214 2.289832 0.506365 

d(DCR-W) 0 0 -0.039964 0.007992 -0.044008 0.008801 -0.044388 0.008878 

D-CURE 0.985673 0.014327 1.013055 0.026676 1.122019 0.074274 1.256928 0.130069 

ALLD 1.057307 0 1.096441 0.009999 1.243369 0.050002 1.407251 0.100002 

d(DCR- D) -0.071634 0.014327 -0.083386 0.016677 -0.12135 0.024272 -0.150323 0.030067 

D-CURE 1.070196 0.052638 1.218306 0.119151 1.572208 0.266847 1.800528 0.352855 

Extort2 1.140360 0.038605 1.291348 0.104542 1.647835 0.251722 1.873336 0.338294 

d(DCR-E2) -0.070164 0.014033 -0.073042 0.014609 -0.075627 0.015125 -0.072808 0.014561 

D-CURE 3.0 1.0 2.990373 0.985114 2.925332 0.913859 2.820449 0.834824 

HardMajority 3.0 1.0 2.971115 0.989021 2.870013 0.924801 2.746344 0.849603 

d(DCR-HM) 0.0 0.0 0.019258 -0.003907 0.055319 -0.010942 0.074105 -0.014779 
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Supplementary Section 10. Cumulative reciprocity beyond the prisoner’s dilemma. 636 

Although the prisoner’s dilemma has become the major paradigm to study cooperation1,16, not all social 637 

dilemmas are readily described by this model. Instead, in many applications, the players’ payoffs in any 638 

given round are not determined by a fixed payoff matrix. Rather, the player’s action today modifies the 639 

feasible payoffs in future17-19. Similarly, many existing social dilemmas involve more than two players. 640 

In the following, we describe how cumulative reciprocity can be extended to these more general scenarios. 641 

Stochastic prison’s dilemma games setup. 642 

We first consider the case that payoffs fluctuate in time, depending on the player’s previous actions. 643 

To this end, we use stochastic games20, in which players can be in different states over time. Fig.5a shows 644 

an example. In this game, there are two players who experience two possible states. In each state, players 645 

interact in a different prisoner’s dilemma. The first state corresponds to a more profitable environment 646 

in which mutual cooperation yields high benefits. The second state corresponds to a depleted 647 

environment with lower payoffs. Players only find themselves in the more profitable state if they both 648 

cooperated in the previous round; if one or both players defected, they experience the depleted 649 

environment.  650 

To extend the definition of cumulative reciprocity to stochastic games, we assume that a cumulative 651 

reciprocator now has separate defection difference statistics 𝑑 (𝑘) for each possible state 𝑠. When the 652 

co-player Bob defects in state 𝑠  while Alice cooperates, 𝑑 (𝑘)  increases by one. In the converse 653 

scenario, in which Alice defects and Bob cooperates, 𝑑 (𝑘) decreases by one. CURE cooperates in a 654 

given state 𝑠 if and only if 𝑑 (𝑘) does not exceed the predetermined threshold ∆. In addition to CURE, 655 

we also consider pure memory-one strategies, (𝑝 , 𝑝 , 𝑝 , 𝑝 ) ∈ {0,1}4. Therefore, there are 24 =656 

16 memory-one strategies and a single CURE strategy in the population. 657 

Repeated public goods games setup. 658 

We can similarly extend the notion of cumulative reciprocity to repeated multiplayer social 659 

dilemmas (Fig.5d). To do so, we consider an example of a public good game among 𝑛 = 4 players. In 660 

this game, cooperation means to make a contribution of 𝑐 > 0 to a public pool. Total contributions are 661 

multiplied by a factor of 𝑟 with 1 < 𝑟 < 𝑛. The resulting amount is then equally divided among all 662 

group members (even those who did not contribute).  663 

Again, it is straightforward to generalize CURE to this scenario. In this case, Alice’s defection 664 

difference statistic 𝑑(𝑘) records how often Alice has defected up to round k, compared to how often all 665 

other group members have defected so far on average. In the public goods game studied in Figure 5, pure 666 

memory-one strategies are defined as 𝑝 = (𝑝 3, 𝑝 2, 𝑝 1, 𝑝 0, 𝑝 3, 𝑝 2, 𝑝 1, 𝑝 0) ∈ {0,1}8. The entries 667 

of this vector give the cooperation probability in the next round depending on the number of cooperating 668 
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co-players j and the focal player’s own action i in the last round. For example, the All-or-None strategy11 669 

is represented by the vector (1,0,0,0,0,0,0,1). For the simulations, we consider 28 = 256 memory-one 670 

strategies and a single implementation of CURE. 671 

Simulation Methods. We explored the evolutionary dynamics of CURE in these scenarios through 672 

computer simulations. Similar to the simulation process in the main text, each simulation consists of two 673 

steps. First, we obtain the payoffs 𝜋(𝜎 , 𝜎 ) between two strategies 𝜎  and 𝜎  (see Methods). Second, 674 

we calculate the strategies’ frequencies during the process through the “survival of the fittest” in a noisy 675 

environment based on the obtained payoffs between pairs of strategies, following Nowak & Sigmund’s 676 

approach21. However, in the stochastic game and the multiplayer game scenarios, since the cumulative 677 

payoff of strategy 𝜎  may be negative, we project the fitness of strategy 𝜎  to the interval [0,1] through 678 

the normalized equation 𝑓(𝜎 ) = (𝑓(𝜎 ) − 𝑓 ) (𝑓 − 𝑓 )⁄ , where 𝑓 , 𝑓  are the highest and 679 

lowest cumulative payoffs of each generation, respectively. We denote the overall fitness of all strategies 680 

by 𝑓̅ = ∑ 𝑥 𝑓(𝜎 )=1 . The frequency of 𝜎  in the next generation is determined to be 𝑥 = 𝑥 ∗ 𝑓(𝜎 )/𝑓̅. 681 

This elementary updating process is repeated for many generations. Mutations are introduced at the 682 

beginning in stochastic games and multiplayer games. The mutation rate is set to 10%. When a mutation 683 

happens, all other strategies decrease their proportions to 99.9%, while a strategy is randomly selected 684 

to increase its proportion by 0.1%. 685 

Results. The results of our simulations are summarized in Fig. 5. For stochastic games, we again observe 686 

that CURE enforces fairness (Fig.5a); it readily evolves among memory-one strategies (Fig.5b); and it is 687 

particularly successful in those parameter regions in which memory-one strategies fail to sustain 688 

cooperation (Fig.5c). We observe similar outcomes for multiplayer games. In particular, CURE is again 689 

able to unilaterally enforce a fair outcome, independent of the co-players’ strategies (Fig.5d). Moreover, 690 

CURE can readily evolve in populations of memory-one players (Fig.5e), and it is particularly strong in 691 

those parameter regions in which memory-one strategies alone cannot sustain cooperation (Fig.5f).  692 

 693 

These results illustrate how CURE can sustain cooperation in social dilemmas with two actions, 694 

cooperation and defection. Future work could explore how this principle can be extended to social 695 

dilemmas with continuous action spaces22,23. Such games are more complex. In particular, there does not 696 

seem to be a consensus on what it means for such games to be a social dilemma. As a first approximation, 697 

one could consider games in which there is a unique Nash equilibrium that is not socially optimal. In that 698 

case ‘cooperation’ might be identified with playing the action associated to the social optimum, whereas 699 

any other action might be considered a ‘defection’. The corresponding version of CURE would again 700 

cooperate as long as the defection difference statistic is below the threshold ∆. Once the statistic is above 701 

∆, CURE would switch and play the action associated with the unique Nash equilibrium. Exploring the 702 

properties of such an extended version of CURE represents an exciting direction for future work.  703 
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Supplementary Section 11. Cumulative reciprocity in an economic experiment  704 

This section supplements the description of “Cumulative reciprocity and human play” in the main text. 705 
 706 
General setup. To explore the relevance of cumulative reciprocity on human decision making, we 707 
designed a simple behavioral experiment. Participants played the repeated prisoner’s dilemma for at least 708 
20 rounds. After that, the game would stop with probability 50% each round, to avoid end-game effects. 709 
For the payoffs per round, we use the payoff matrix by Axelrod scaled by a factor of two (values are in 710 
British pence) 711 

 C D 

(10.1) C 15p 0p 

D 25p 5p 

We consider two different treatments. The first treatment is the treatment without errors. Here, the players’ 712 
decisions are implemented perfectly. The second treatment is the treatment with errors. Here, whenever 713 
a focal participant chooses to cooperate (defect), there is a 10% chance that the decision is mis-714 
implemented as a defection (cooperation). In that case, the focal participant learns that there was an 715 
implementation error; however, the participant’s co-player does not. Hence, the co-player cannot tell 716 
whether an observed defection was intended or the result of an error. 717 
 718 
Experimental methods. To implement the experiment, we created a game software using oTree24. To 719 
recruit participants, we used the online platform Prolific, and we only allowed UK residents to participate. 720 
In total, we recruited 189 participants; 15 out of these participants dropped out during the game’s 721 
instructions. In addition, one group of 2 participants dropped out during the actual experiment (in the 722 
treatment without errors). Overall, we thus report data on 172 participants (43 groups of two players each 723 
for each of the two treatments). Each participant received a fixed show-up fee and a variable bonus. The 724 
show-up fee was £1. The bonus was the sum of all the payoffs the participant received during the repeated 725 
prisoner’s dilemma. On average, it took participants 10-20 minutes to complete the experiment, and the 726 
average bonus paid was £2.65. 727 

Before entering the actual experiment, participants had to read two pages with instructions. The first 728 
page informed participants that their decisions are anonymous, and that they can withdraw from the 729 
experiment at any point. The second page contained the rules of the game and three comprehension 730 
questions. Participants who failed to answer the comprehension questions were asked again (until they 731 
passed all questions). After these introduction pages, participants were randomly assigned to a treatment, 732 
and randomly matched with another participant. Each round, before making their decisions, participants 733 
were reminded about each other’s cumulative past decisions. After interacting in the repeated prisoner’s 734 
dilemma, participants could provide some feedback on the game software and on how they made their 735 
decisions. In addition, we asked some basic demographic questions. Screenshots of the introduction 736 
pages and the general game software, are provided in our online repository. 737 

For these behavioral experiments, we have obtained IRB approval by the Ethics Committee of the 738 
Medical Faculty of the University of Kiel (D 613/21, October 29, 2021). 739 

Statistical methods. Our statistical analysis reports data on the 172 participants who completed the 740 
experiment. To make comparisons across different groups with different game lengths, we only analyze 741 
behavior during the first 20 rounds of the game (for which we have data for all groups). All statistical 742 
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tests reported in the following are two-tailed and non-parametric. For the overall cooperation statistics, 743 
we use pairs of players as our statistical unit (i.e., we have n1 = 43 observations in the treatment without 744 
errors, and n2 = 43 observations in the treatment with errors). For classifying the players’ strategies, we 745 
treat each player as a statistical unit (i.e., in that case we have 86 observations in each treatment). We use 746 
these tests to explore (i) whether the two treatments differ in how cooperative participants are, 747 
(ii) whether there are any significant changes in the participants’ behaviors over time, and (iii) whether 748 
any strategy is better able to predict observed behaviors than the other considered strategies.   749 

To explore the participants’ strategies, we compare each player’s decision in any given round to the 750 
decision the player would have made when using some well-known strategies. The set of well-known 751 
strategies we consider are CURE (with threshold ∆ = 3) and the four memory-one strategies GRIM1, Tit-752 
for-Tat (TFT2, Firm-but-fair (FBF)1 and Win-Stay Lose-Shift (WSLS)9,10. The latter four strategies are 753 
exactly the pure memory-one strategies that can sustain cooperation in a Nash equilibrium in the game 754 
without errors25. All these memory-one strategies cooperate in the first round. Thereafter, their behavior 755 
is described by the conditional probabilities 𝐩 =  (p , p , p , p ) given by 756 

𝐩 R M = (1, 0, 0, 0) 

(10.2) 
𝐩 = (1, 0, 1, 0) 
𝐩 = (1, 0, 1, 1) 
𝐩 L = (1, 0, 0, 1) 

In addition, we also include the strategies AON2, TFT-ATFT, and CAPRI, which are described in SI 757 
Section 8, “Comparison of CURE with selected memory-2 and memory-3 strategies”. For implementing 758 
these strategies, we used the respective definitions given by respective articles, see Eq. [1] in Hilbe et 759 
al12, Table 1 in Yi et al13, and Table 3 in Murase and Ki Baek14. We note that the respective papers 760 
introduce these strategies as memory-2 and memory-3 strategies for infinitely repeated games, without 761 
specifying the players’ actions in the very first rounds of the game. To have a well-defined strategy for a 762 
finitely repeated game, we assume players act in the first few rounds as if they had cooperative decisions 763 
in memory for the missing rounds.  764 
 765 
For each of these strategies, we compare (i) the decision this strategy would predict for the next round, 766 
given the players’ previous (realized) behavior, and (ii) the player’s actual decision in the next round. As 767 
a result of this comparison, we record how many decisions of a player are correctly predicted by the 768 
respective strategy. In particular, we are interested in how often a given strategy is able to correctly 769 
predict all twenty decisions of a participant. 770 
 771 
Results. The results of the experiment are summarized in Fig. 6. We observe the following patterns: 772 

1. As one may expect, we observe more cooperation in the treatment without errors. When we 773 
compare the cooperation rate in the treatment without errors to the realized actions in the 774 
treatment with errors, the difference is significant (without errors: 73.3% versus with errors: 775 
62.7%; Z = 2:371, p= 0:018, Fig. 6a). There is no significant difference if we compare the 776 
treatment without errors to the intended actions in the treatment with errors (cooperation rate 777 
according to intended actions: 66.6%, Z =1:748, p=0:081). 778 

2. The cooperation rates are slightly decreasing over the course of the experiment (Fig. 6b). In 779 
the treatment without errors, this change is significant (cooperation rates during first 10 rounds: 780 
76.7%, last 10 rounds: 69.8%, Wilcoxon matched-pairs test, Z = 2:819, p = 0:005). In the 781 
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treatment with errors, the change is only significant for intended actions (first 10 rounds: 70.1%, 782 
last 10 rounds: 63.1%, Z =2:124, p=0:034). The change is not significant for realized actions 783 
(first 10 rounds: 64.8%, last 10 rounds: 60.5%, Z =1:383, p=16:6%).  784 

3. All considered strategies seem to describe the participant’s behavior equally well in the 785 
treatment without errors (Fig. 6c). Here, each of the eight considered strategies can equally 786 
predict the behavior of approximately 40% of the participants (most of the perfectly predicted 787 
participants happened to cooperate in all 20 rounds). As a result, we do not find significant 788 
differences with respect to the number of correctly predicted participants across the different 789 
strategies (Fisher’s exact test: p > 0.85 for each comparison between pairs of strategies).   790 

The game with errors makes it easier to distinguish between the eight strategies. Here, we 791 
observe that CURE performs best. While CURE perfectly predicts the behavior of 13 subjects, 792 
all other strategies only predict the behavior of 0 participants (WSLS, GRIM, AON2, TFT-793 
ATFT, CAPRI), 1 participant (TFT), or 2 participants (FBF). Based on these numbers, the 794 
number of participants correctly predicted by CURE is significantly larger than the number of 795 
participants correctly predicted by any of the other strategies (Fisher’s exact test, p < 0.006 for 796 
each pairwise comparison between CURE and any other strategy).  797 

 798 
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