
Max-Planck-Institut für Mathematik
Bonn

Formality is preserved under domination

by

Aleksandar Milivojević
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FORMALITY IS PRESERVED UNDER DOMINATION

A. MILIVOJEVIĆ, J. STELZIG, AND L. ZOLLER

Abstract. If a closed orientable manifold (resp. rational Poincaré duality space) X
receives a map Y → X from a formal manifold (resp. space) Y that hits a fundamental
class, then X is formal. The main technical ingredient in the proof states that given a
map of A∞-algebras A → B admitting a homotopy A-bimodule retract, formality of B
implies that of A.
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1. Introduction

A basic relation one can consider among manifolds is that of domination: For equidi-
mensional closed orientable manifolds, one says Y dominates X if there is a non-zero degree
map Y → X. In this situation, a general heuristic says that X is “simpler” than Y . From
a rational homotopy theoretic point of view, a formal space is the simplest space with a
given cohomology ring and it is therefore natural to ask whether the property of formality
is preserved by dominant maps. Formality here refers to the property that the commutative
differential graded algebra of differential forms can be connected by quasi-isomorphisms to
its cohomology equipped with trivial differential. In line with the above heuristic, our main
result is:

Theorem A. If Y dominates X, and Y is formal, then X is formal.

In fact, we prove the result for the following two slightly different generalizations of the
notion of dominance of a map f : Y → X, without assumptions on the dimensions, both in
the spirit of [CT89].

(1) f is a continuous map from a space to a rational Poincaré duality space, inducing a
surjection in top degree rational homology of X.1

(2) f is a proper, smooth map between smooth orientable manifolds, such that a fun-
damental class in rational Borel-Moore homology of X is in the image of f∗.

It is equivalent to require surjectivity in rational (Borel–Moore) homology in all degrees.
Both cases overlap in the case of f : Y → X being a map of smooth closed orientable
manifolds.

For example, f could be a finite (ramified) covering map or an orientable fibration with
surjective restriction mapH(Y ) → H(F ) to the cohomology of the fibre. Applying this to the
twistor fibration of a compact positive quaternion-Kähler manifold, one recovers formality

2020 Mathematics Subject Classification. 55P62, 57N65.
Key words and phrases. Poincaré duality algebras, Massey products, non-zero degree maps, formality.
1Here, formality refers to that of the cdga of piecewise polynomial rational forms in the sense of Sullivan

[S77].
1



2 A. MILIVOJEVIĆ, J. STELZIG, AND L. ZOLLER

of the latter, first proved in [AK12]. Likewise, X could be an algebraic variety satisfying
rational Poincaré duality and f a resolution of singularities, recovering [H86, Theorem 5],
see also [ChCi17, Section 3]. Furthermore, since two-dimensional surfaces are formal, the
fundamental class of any non-formal oriented manifold cannot be mapped to by a product
of surfaces (or any other formal manifolds), confirming a remark of Gromov in these cases
[G99, p.301]; this complements results by Kotschick–Löh [KL09], who exhibited obstructions
to domination by products of a different nature.

Our results are inspired by [DGMS75, Theorem 5.22], see also [Me22], that the ∂∂-
lemma is preserved under dominant holomorphic maps of compact complex manifolds, and
a theorem of Taylor [Ta10] that non-trivial triple Massey products pull back non-trivially
under non-zero degree maps of rational Poincaré spaces. In the case of X and Y being
rational Poincaré duality spaces of dimension ≤ 5n + 2 where X is cohomologically n–
connected, Theorem A follows from the naturality of the Bianchi–Massey tensor constructed
in [CN20].

As the essential argument and computation is contained in the case of Y and X being
closed manifolds of the same dimension n, let us outline how to treat this case: The map f
gives rise to a commutative diagram

(1)
DAX [n] DAY [n]

AX AY ,

1
d (f

∗)∨

ΦX

f∗
ΦY

where AX , AY denote the cdga’s of differential forms and DAX [n], DAY [n] are the (degree
shifted) dual complexes of AX , resp. AY , which are naturally differential graded modules
over AX , resp. AY by precomposition. The vertical maps are the morphisms of differential
graded modules given by wedge-product and integration over a fundamental class. By
Poincaré duality they are in fact quasi-isomorphisms.

We would like to invert ΦX to obtain a module-retract of f∗, at least up to homotopy.
This is not always possible in the world of cdga’s and their modules. It is however, if we
work with A∞-algebras and their bimodules, recalled below. These also have the advantage
of making the obstructions to formality transparent in terms of higher operations (operadic
versions of the classical Massey products). Theorem A then follows from the following purely
algebraic statement:

Theorem B. Let f : A → B be a morphism of A∞-algebras in characteristic 0 admitting
an A∞-A-bimodule homotopy retract. If B is formal, then so is A. More generally, if B is
quasi-isomorphic to a minimal A∞-algebra with mi = 0 for 3 ≤ i ≤ k for some k ∈ N∪{∞},
then the same holds for A.

As another application, we can recover descent of formality in characteristic zero, namely
that formality after field extension implies formality, see Remark 3.7. We note that Theo-
rem B is a generalization of the well-known fact that a retract of a formal space is formal
[FOT08, Example 2.88], where the condition of the retract being, on the algebraic level,
a morphism of (A∞-) algebras has been weakened to only being a morphism of A∞-A-
bimodules.

The structure of the article is as follows: In Section 2 we concisely recall the required
algebraic machinery in the form of A∞-algebras and bimodules. Subsequently, Theorem B
is proved in Section 3. The final Section 4 then has the purpose of transferring the argument
surrounding Diagram 1 outlined above to the more general geometric setups in Theorem A
and proving the latter.

Acknowledgements. A.M. thanks the MPIM in Bonn for its support, together with the
LMU Munich, where part of this work was carried out, for their generous hospitality; the
authors thank Dieter Kotschick for his comments.
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2. Generalities on algebras and modules

We will always work over a field of characteristic zero. For a graded object A, we denote
its suspension by sA. It has the same underlying space, with grading (sA)k = Ak+1.

2.1. A∞-algebras and bimodules. For a vector space V we denote by TV =
⊕

i≥0 V
⊗i

the tensor coalgebra over V . Summing only over i ≥ 1 we obtain the reduced tensor coalgebra
TV . An A∞-algebra structure on a vector space A is a degree 1 coderivation D on TsA
which squares to zero. Equivalently, a coderivation on TsA can be specified by a collection
of maps dk : sA⊗k → sA, k ≥ 1, of degree 1, which can always be extended uniquely to a
coderivation D : TsA→ TsA. The condition D2 = 0 is equivalent to

(2)
∑

a+b+c=n

da+c+1(1
⊗a ⊗ db ⊗ 1⊗c) = 0

for n ≥ 1; here and throughout, the indices of summation are understood to be non-negative,
and furthermore terms with invalid indices, e.g. d0 (or f0, ra,−1) below) are set to zero.
Similarly, given an A∞-algebra (A,D), an A∞-bimodule structure over (A,D) on a vector
space M is a degree 1 codifferential DM on the TsA-cobimodule TsA⊗sM⊗TsA such that
DM ◦DM = 0; here TsA = TsA⊕ ⟨1⟩ inherits its differential from TsA by setting it to be
trivial on 1. This is equivalent to a collection of degree 1 maps dp,q : sA⊗p⊗sM⊗sA⊗q → sM
such that for all p, q ≥ 0 one has

(3)
∑

a+b+c=p+q+1

da,c(1
⊗a ⊗ db ⊗ 1⊗c) = 0,

where this is an equation of maps sA⊗p ⊗ sM ⊗ sA⊗q → sN , and d on the left hand side
is interpreted either in the module or the algebra sense, depending on its position (i.e. as
dMp−a,q−c or dAb , respectively), and similarly for the identity operator 1. An A∞-algebra is a
bimodule over itself by setting dp,q := dp+q+1.

2.2. Morphisms. A morphism of A∞-algebras (A,DA), (B,DB) is given by a morphism
f : TsA → TsB of coalgebras such that fDA = DBf , or equivalently by a sequence of
degree 0 maps fk : sA⊗k → sB such that for every n ≥ 1,

(4)
∑

a+b+c=n

fa+c+1(1
a ⊗ dAb ⊗ 1⊗c) =

∑
i1+···+ir=n

dBr (fi1 ⊗ · · · ⊗ fir )

Analogously, a map of A∞-bimodules M → N over some A∞-algebra A is given by a
morphism between the cobimodules TsA⊗ sM ⊗TsA→ TsA⊗ sN ⊗TsA which commutes
with the codifferentials. Again this is described by a collection of degree 0 maps rp,q :
sA⊗p ⊗ sM ⊗ sA⊗q → sN such that for every p, q ≥ 0,

(5)
∑

a+b+c=p+q+1

ra,c(1
⊗a ⊗ db ⊗ 1⊗c) =

∑
x+i=p
y+j=q

dNx,y(1
⊗x ⊗ ri,j ⊗ 1⊗y),

where again this is an equation of maps from sA⊗p ⊗ sM ⊗ sA⊗q → sN , and d on the
left hand side is interpreted either in the module or the algebra sense, and similarly for the
identity operator 1.

2.3. Signs, suspensions, and the classical notions. One can rewrite all the above equa-
tions without suspensions, at the expense of introducing signs according to the Koszul sign
rule. In this case, the notation mk for the maps s−1 ◦ dk ◦ (s⊗k) : A⊗k → A on the unshifted
spaces is more common, where s : A→ sA is the suspension map of degree −1. Equation 2
then becomes ∑

a+b+c=n

(−1)ab+cma+c+1(1
⊗a ⊗mb ⊗ 1⊗c) = 0.

From this one verifies that the structure of a non-unital, associative differential graded
algebra (dga) on a vector space A is the same as an A∞-structure on A with mi = 0
for i ≥ 3. Indeed m1 takes the role of the differential, while m2 is the multiplication.
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Similar considerations for morphisms show that the category of dgas embeds into that of
A∞-algebras. The analogous statement holds for the category of dg A-bimodules over a dga
A. Throughout the paper all algebraic structures are viewed in their respective non-unital
categories unless stated otherwise.

To minimize sign calculations, we work with the maps dk instead of the mk throughout.

2.4. Restriction of scalars. If f : A→ B is a map of A∞-algebras and M a B-bimodule,
it inherits a structure of an A-bimodule by defining

(6) dM/A
p,q :=

∑
i1+···+ir=p
j1+···+js=q

dMr,s(fi1 ⊗ · · · ⊗ fir ⊗ 1M ⊗ fj1 ⊗ · · · ⊗ fjs).

In particular, one can apply this formula to B itself and then f induces also a map of
A-bimodules by setting fa,b = fa+b+1. For fixed f , restriction defines a functor Rf from
B-bimodules to A-bimodules by sending a map r :M → N of B-bimodules to a map Rf (r)
of the induced A-bimodules defined via

(7) Rf (r)p,q :=
∑

i1+···+ia=p
j1+···+jb=q

ra,b(fi1 ⊗ · · · ⊗ fia ⊗ 1M ⊗ fj1 ⊗ · · · ⊗ fjb)

Given two maps of A∞-algebras A f→ B
g→ C, restriction is compatible in the sense that

Rg◦f = Rf ◦Rg.

2.5. Minimality, quasi-isomorphisms, and formality. Equation (2) in arity 1 implies
that d21 = 0, so (sA, d1) is a complex and one can consider its cohomology. A map of A∞-
algebras f : A→ B is called a quasi-isomorphism if the induced map f1 : (sA, d1) → (sB, d1)
is a quasi-isomorphism.

Similarly a morphismM → N ofA∞-bimodules is a quasi-isomorphism if r0,0 : (sM, d0,0) →
(sN, d0,0) is. Any quasi-isomorphism of A∞-algebras (resp. bimodules) admits a quasi-
inverse, i.e. a quasi-isomorphism in the opposite direction, which induces the inverse map in
cohomology [LH03, p.94] 2. An A∞-algebra is called minimal, if d1 = 0. Any A∞-algebra is
quasi-isomorphic to a minimal one.

An A∞-algebra A is called formal if it is quasi-isomorphic to its own cohomology, i.e.
there is a minimal A∞-model H(A) → A where the di on the left hand side vanish, except
for d2, which is the natural product induced on cohomology thanks to eq. (2) in arity 2.

Remark 2.1. When talking about formality of spaces one traditionally means the formality
of an associated algebra of forms (deRham or piecewise linear) in the category of unital cdgas.
However a unital cdga is formal in its own category (i.e. quasi-isomorphic to its cohomology
through unital cdgas) if and only if it is formal when considered as an A∞-algebra. Indeed,
any quasi-isomorphism (in the category of non-unital A∞-algebras) between A and H(A)
will respect the cohomological units, and is hence homotopic to a strictly unital map [LH03,
Cor. 3.2.4.4]. Thus, by [CPRNW19, 3.3., 3.17], [S17], A is formal as a unital cdga.

3. Proof of Theorem B

3.1. Setup. A map of A∞-algebras f : A→ B is said to admit a (A∞-A-bimodule) homo-
topy retract if there exists a map r : B → A of A∞-A-bimodules such that H(r0,0 ◦f1) = Id.
3

Lemma 3.1. If f : A → B admits a homotopy retract and A′ p→ A, B q→ B′ are quasi-
isomorphisms of A∞-algebras, then the induced map q ◦ f ◦ p : A′ → B′ admits a homotopy
retract.

2This applies in the augmented setting, which we can appeal to by [LH03, p.81].
3We note that this terminology is justified since the A∞ A-bimodule automorphism of A resulting from

r and f will be a quasi-isomorphism and therefore a homotopy equivalence.
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Proof. The algebra map p induces a quasi-isomorphism p̃ : A′ → A of A′-bimodules. Simi-
larly we obtain a B-bimodule quasi-isomorphism B → B′ which we restrict to a map q̃ of
A′-bimodules along f ◦ p. There is an A-bimodule map r as above, which induces a mor-
phism r̃ of the restricted A′-bimodules. Now for A′-bimodule quasi-inverses p̃′, q̃′ of p̃, q̃ the
composition p̃′ ◦ r̃ ◦ q̃′ gives the desired homotopy retract. □

We will prove Theorem B for k ∈ N via an induction over k. Using Lemma 3.1 we may
replace A,B by arbitrary models in their quasi-isomorphism types. For some fixed k ≥ 2 we
assume that B is minimal and DB is such that dBi = 0 for 3 ≤ i ≤ k + 1. We also assume
A to be minimal and that by induction dAi = 0 for 3 ≤ i ≤ k. We note that since A and B
are minimal the homotopy retract condition becomes r0,0 ◦ f1 = IdA. Our aim is to define a
coalgebra automorphism φ : TsA→ TsA such that the transformed differential D̃ := φDφ−1

has vanishing components d̃i for 3 ≤ i ≤ k + 1. In this setup φ : (TsA,D) → (TsA, D̃) will
be an isomorphism of A∞-algebras and hence finish the induction.

To treat the case k = ∞, one can then compose all of these automorphisms. It will be
clear from their explicit form that this composition involves only a finite number of terms
in every arity, so the infinite composition gives a morphism of A∞-algebras.

Remark 3.2. The above induction can be made sense of from an obstruction theoretic
point of view akin to [HS79]: one can view the formality obstruction dk+1 : A

⊗(k+1) → A as
a cocycle in the complex of coderivations on TsA. Our automorphism φ will be defined via
a map φk : A⊗k → A, which can be interpreted as a coderivation making the above cocycle
exact.

3.2. Ansatz. Our Ansatz will be to define the components of φ as φj = 0 unless j = 1, k,
with φ1 = Id and φk to be determined. The transformed differential D̃ := φDφ−1 satisfies
φ◦D = D̃ ◦φ. Breaking down this equation according to its components, we obtain d̃j = dj
for j ≤ k and

(8) d̃k+1 + d2(φk ⊗ 1 + 1⊗ φk) = dk+1 + φk

 ∑
p+q=k−1

1⊗p ⊗ d2 ⊗ 1⊗q

 .

Thus, in order to achieve d̃k+1 = 0, we need to choose φk so that

(9) dk+1 = d2(φk ⊗ 1 + 1⊗ φk)− φk

 ∑
p+q=k−1

1⊗p ⊗ d2 ⊗ 1⊗q

 .

Abusing notation slightly, we will write [d2, φk] for the right hand side of this equation. We
note that [d2, φk] is a linear expression in φk. We define

φ
(i)
k :=

∑
a+b=i

ra,b(1
⊗a ⊗ fk−i ⊗ 1⊗b),(10)

φk :=

k−2∑
i=0

(
1− i

k − 1

)
· φ(i)

k .(11)

3.3. Preliminary calculations. We now do the necessary calculations to verify our Ansatz
works, i.e. that dk+1 = [d2, φk]. Schematically, we use the morphism equations to move the
instances of d between those of r and f , and look for cancellation of terms.
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Lemma 3.3 (Morphism equations for r). For p+ q ≤ k− 1, the morphism eq. (5) for r on
sA⊗p ⊗ sB ⊗ sA⊗q reads

dA2 (rp,q−1 ⊗ 1A + 1A ⊗ rp−1,q) =
∑
a<p

ra,q(1
⊗a
A ⊗ dB2 (fp−a ⊗ 1B)⊗ 1⊗qA )

+
∑
b<q

rp,b(1
⊗p
A ⊗ dB2 (1B ⊗ fq−b)⊗ 1⊗bA )

+
∑

x+y=p−2

rp−1,q(1
⊗x
A ⊗ dA2 ⊗ 1⊗yA ⊗ 1B ⊗ 1⊗qA )

+
∑

x+y=q−2

rp,q−1(1
⊗p
A ⊗ 1B ⊗ 1⊗xA ⊗ dA2 ⊗ 1⊗yA ).

Proof. This follows from eq. (5) and eq. (6), where we use that in our range, all dAj = dBj = 0

unless j = 2. In particular, dB/Ar,s = 0 unless r = 0 or s = 0. In those cases, we have
d
B/A
r,0 = dB2 (fr ⊗ 1B) and dB/A0,s = dB2 (1B ⊗ fs). □

Lemma 3.4 (The first half of the commutator). For i ≤ k − 2, there is an equality

d2(φ
(i)
k ⊗ 1A + 1A ⊗ φ

(i)
k ) =

∑
l≤i

∑
a+b=l

ra,b(1
⊗a
A ⊗ d2(fk−i ⊗ f1+i−l + f1+i−l ⊗ fk−i)⊗ 1⊗bA )

+
∑
a+b=i

∑
x+y=a−1

ra,b(1
⊗x
A ⊗ d2 ⊗ 1⊗yA ⊗ fk−i ⊗ 1⊗bA )

+
∑
a+b=i

∑
x+y=b−1

ra,b(1
⊗a
A ⊗ fk−i ⊗ 1⊗xA ⊗ d2 ⊗ 1⊗yA ).

Proof. This follows by plugging fk−i into the equation in Lemma 3.3 when p+ q = i+1 and
then summing over all these pairs (p, q). □

Lemma 3.5 (The second half of the commutator). For any 0 ≤ i ≤ k − 2, there is an
equality

φ
(i)
k

 ∑
p+q=k−1

1⊗p ⊗ d2 ⊗ 1⊗q

 =
∑
a+b=i

∑
x+y=a−1

ra,b(1
⊗x
A ⊗ d2 ⊗ 1⊗yA ⊗ fk−i ⊗ 1⊗bA )

+
∑
a+b=i

∑
r+s=k+1−i

ra,b(1
⊗a
A ⊗ d2(fr ⊗ fs)⊗ 1⊗bA )

+
∑
a+b=i

∑
x+y=b−1

ra,b(1
⊗a
A ⊗ fk−i ⊗ 1⊗xA ⊗ d2 ⊗ 1⊗yA )

− δi0 · dk+1,

where δi0 = 0 for i ̸= 0 and δ00 = 1.

Proof. The formula in the statement follows by applying the definition to the left hand side
and plugging in the following simplified version of eq. (4) for k+1− i inputs (where we have
only used that most components of d vanish):∑

x+y=k−i−1

fk−i(1
⊗x
A ⊗ d2 ⊗ 1⊗yA ) + δi0 · f1(dk+1) =

∑
r+s=k+1−i

d2(fr ⊗ fs).

Note that to conclude we use r00 ◦ f1 = Id. □

By subtracting the two sides of the commutator, we obtain:



FORMALITY IS PRESERVED UNDER DOMINATION 7

Corollary 3.6 (The full commutator on each component). For any 0 ≤ i ≤ k − 2, there is
an equality

[d2, φ
(i)
k ] =

∑
l<i

∑
a+b=l

ra,b(1
⊗a
A ⊗ d2(fk−i ⊗ f1+i−l + f1+i−l ⊗ fk−i)⊗ 1⊗bA )

−
∑
a+b=i

∑
r+s=k+1−i

r,s≥2

ra,b(1
⊗a
A ⊗ d2(fr ⊗ fs)⊗ 1⊗bA )

+ δi0 · dk+1.

3.4. Computing the commutator. Recall that we need to show that [d2, φk] = dk+1. By
the formula in Corollary 3.6, we obtain

[d2, φk] =

k−2∑
i=0

(
1− i

k − 1

)
· [d2, φ(i)

k ]

= dk+1 +
∑

a+b+r+s=k+1
a,b≥0
r,s≥2

Ca,b,r,s · ra,b(1⊗a ⊗ d2(fr ⊗ fs)⊗ 1⊗b)

for some coefficients Ca,b,r,s ∈ Q. To compute these coefficients, we note that they only
receive contributions from the summands corresponding to i = a+b, a+b+r−1, a+b+s−1.

For the moment, let us assume r ̸= s, so that these are really three distinct summands.
Then, using that a+ b+ r + s = k + 1, we have

Ca,b,r,s = −
(
1− a+ b

k − 1

)
+

(
1− a+ b+ r − 1

k − 1

)
+

(
1− a+ b+ s− 1

k − 1

)
= 0.

In the case that r = s, the summand ra,b(1
⊗a
A ⊗ d2(fr ⊗ fr) ⊗ 1⊗bA ) appears twice in

[d2, φ
(a+b+r−1)
k ], so the same calculation remains valid.

Remark 3.7. From Theorem B we recover descent of formality in characteristic zero, see
[S77, Theorem 12.1]. Namely, let k ⊂ K be an extension of fields of characteristic zero, and
let A be a k-cdga such that A ⊗k K is formal as a K-cdga. Then A ⊗k K is also formal
as a k-cdga. Picking a k-vector space retract for the inclusion k ⊂ K induces an A-module
retract of A ↪→ A⊗k K, so we are in the setting of Theorem B.

4. Proof of Theorem A

It remains to show how to arrive at the setting of Theorem B from Situations 1 and 2.

4.1. Algebraic preliminaries. Let A be a cdga and M a dg-module over A. Since A is
commutative, we will not distinguish between left-, right-, and bimodules. For instance, a
right dg module structure induces a dg bimodule structure via a.m := (−1)|m||a|m.a.

For any closed element m ∈ M0, we obtain a degree 0 map of dg modules A → M via
a 7→ a.m. For any k, the k-shifted dual space DkM , with grading (DkM)l := (Mk−l)∨,
is again a dg module via setting (dφ)(m) := (−1)|φ|+1φ(dm) and (φ.a)(m) := φ(a.m). In
particular, for any closed element ϕ ∈ (DkM)0 = (Mk)∨, we obtain a map of dg modules
A → DkM as above, which we denote by mϕ. The induced map in cohomology depends
only on the class [ϕ] ∈ H0(DkM). If mϕ is a quasi-isomorphism, we call [ϕ] an M -dualizing
class. For example, a cdga A, considered as a module over itself, satisfies Poincaré duality
on its cohomology if and only if there exists an A-dualizing class.4

4We note that in case M = A∨, the map mϕ is an ∞-inner-product in the sense of [T08], [TZS07].
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4.2. Finishing the proof. The following proposition abstracts the algebraic structure un-
derlying Situations 1 and 2:

Proposition 4.1. Let f : A → B be a map of cdga’s and let M ⊆ A, N ⊆ B be A-
submodules such that f(M) ⊆ N . Assume that

(1) There exists an M -dualizing class c ∈ H0(DkM).
(2) There exists a class c′ ∈ H0(DkN) such that f∗c′ = c.

Then, if B is formal, so is A.

Proof. Pick representatives c = [ϕ], c′ = [ψ] such that ψ ◦ f = ϕ. From the assumptions, we
obtain a commutative diagram of dg-A-modules:

DkM DkN

A B

Dkf

mϕ

f

mψ

Indeed, let a ∈ A, m ∈M . Then

Dkf(mψ(f(a)))(m) = (mψ(f(a)))(f(m)) = (f(a).ψ)(f(m))

= ψ(f(am)) = ϕ(am) = mϕ(a)(m).

By assumption, mϕ is a quasi-isomorphism. Therefore, considering this as a diagram of
A∞-A-bimodules, we can find a quasi-inverse to mϕ and so f admits a homotopy retract.
Then by Theorem B, A is formal as an A∞-algebra. This implies formality as a (unital)
cdga by Remark 2.1. □

To prove Theorem A in Situation 1, pick A = APL(X), M = A, B = APL(Y ), N = B. To
prove it in Situation 2, pick A = AX the differential forms on X, M = AX,c the compactly
supported differential forms, B = AY and N = AY,c and use Poincaré duality in the form
[GHV72, 5.12]. Note that HBM

• (X) ∼= H•
c (X)∨, so (2) above is in fact equivalent to the

fundamental class in Borel–Moore homology being hit, as stated in the introduction.
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