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A B S T R A C T   

Optogenetic modulation of adenosine triphosphatase (ATPase) expression represents a novel approach to 
maximize bioprocess efficiency by leveraging enforced adenosine triphosphate (ATP) turnover. In this study, we 
experimentally implement a model-based open-loop optimization scheme for optogenetic modulation of the 
expression of ATPase. Increasing the intracellular concentration of ATPase, and thus the level of ATP turnover, in 
bioprocesses with product synthesis coupled with ATP generation, can lead to increased substrate uptrake and 
product formation. Previous simulation studies formulated optimal control problems using dynamic constraint- 
based models to find optimal light inputs in fermentations with optogenetically mediated ATPase expression. 
However, using these models poses challenges due to resulting bilevel optimizations and complex parameteri
zation. Here, we outline a simplified unsegregated and quasi-unstructured kinetic modeling approach that re
duces the number of dynamic states and leads to single-level optimizations. The models can be augmented with 
Gaussian processes to compensate for model uncertainties. We implement optimal control constrained by 
knowledge-based and hybrid models for optogenetic ATPase expression in Escherichia coli with lactate as the 
main product. To do so, we genetically engineer E. coli to obtain optogenetic expression of ATPase using the 
CcaS/CcaR system. This represents the first experimental implementation of model-based optimization of ATPase 
expression in bioprocesses.   

1. Introduction 

Global challenges such as climate change, depletion of non- 
renewable fossil resources, and a growing population are driving the 
search for sustainable production systems. Microbial cell factories are 
(engineered) microorganisms capable of synthesizing valuable metab
olites from renewable resources. They show potential to substitute, e.g., 
petrochemical production of chemicals, materials, and fuels with bio
based and sustainable alternatives [1,2]. It is often necessary to optimize 
both the production processes as well as the cell’s metabolism to achieve 
product titers, yields, and volumetric productivities that ensure profit
ability [3,4]. The product yield determines how much substrate is 
needed to produce a certain amount of product. Volumetric productivity 
is the rate of product formation per culture volume and determines how 
fast production occurs. 

In traditional genetic and metabolic engineering, the cell is rewired to 
optimize the steady-state metabolic flux distribution, often toward 
maximizing the product yield under a specific cultivation environment. 
Maximizing the product yield diverges resources from biomass synthe
sis, thus frequently decreasing the volumetric productivity [5]. 
Furthermore, the gene expression of enzymes involved in production 
pathways is constitutive in several cases, i.e., always active and 
happening at a constant rate [6–8]. Thus, from a control engineering 
perspective, traditional metabolic engineering follows a static approach. 
That is, the cell metabolism is not a priori engineered to actively respond 
to external or internal signals for steering gene expression and meta
bolism toward desired production modes. Of course, the cell’s meta
bolism naturally reacts to several external/internal signals; this is vital 
for microorganisms. However, in static metabolic engineering, these 
signals are not dynamically exploited for the optimization of 
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metabolism. Since the cell has a static flux distribution for engineered 
pathways, these pathways cannot adapt to changing conditions, hence 
lacking operational flexibility. 

Alternatively, cells can be engineered to express metabolism- 
relevant proteins such as enzymes in an inducible and dynamic fashion, 
following a dynamic metabolic engineering approach [8–11,12]. This 
idea can be exploited for manipulating metabolic fluxes using external 
inputs for online process optimization and control [13,14]. Dynamic 
metabolic control can enable, e.g., optimal shift between growth and 
production metabolic modes. It can also help to minimize the metabolic 
burden associated with the constitutive expression of metabolic enzy
mes/pathways. Dynamic adenosine triphosphate (ATP) turnover is a 
promising metabolic control strategy. In bioprocesses where the product 
synthesis is stoichiometrically coupled with ATP formation, enforce
ment of ATP loss can lead to an increase in product formation and 
substrate uptake (cf. e.g. [15,16,14,17–20]). 

In previous simulation-based studies [13,14], we proposed to put the 
F1-subunit of the adenosine triphosphatase (ATPase) enzyme, respon
sible for the hydrolysis of ATP into ADP, under the regulation of an 
optogenetic gene expression system, i.e., making it inducible by light. 
This would enable one to influence the intracellular amount of ATPase 
by manipulating light and thereby the level of ATP wasting. In this work, 
we interchangeably use the term ATPase to refer to the F1-subunit of that 
enzyme complex. Light can actuate on biological systems in a precise 
spatiotemporal, orthogonal, and reversible way, which is convenient for 
external control of gene expression [21,22]. Finding the optimal light 
trajectories for process optimization imposes, however, several chal
lenges. For instance, for dynamic ATP turnover applications, one needs 
to carefully fine-tune the level of the F1-ATPase, and thus the ATP 
turnover, to avoid driving the cell into unstable states [23]. 

In [13,14], we showed a model-based optimal control problem to find 
the optimal light trajectories for enhanced product yield via optogenetic 
modulation of the ATPase. To model the system, we outlined a dynamic 
constraint-based model that integrates the dynamics of metabolic re
actions, the light-inducible genetic actuator, and resource allocation 
phenomena. The model considers extracellular and intracellular me
tabolites, as well as intracellular biomass components. The extracellular 
metabolites and the intracellular biomass components are the dynamic 
states, while the intracellular metabolites are assumed in a quasi-steady 
state. The latter model is formulated as an optimization problem subject 
to constraints and can be considered an extended version of dynamic 
enzyme-cost flux balance analysis [24]. 

Although the model in [13,14] offers deep insight into metabolism 
and resource allocation, it can be too complex for experimental imple
mentations. It can be technically challenging to gather measurements of 
the dynamic states to parameterize and validate such a model due to, e. 
g., a lack of adequate sensors and the unavailability of analytical tech
nologies. Although one could in principle use soft sensors (cf. e.g. [25, 
26]), their suitability depends on the number of states that can be 
measured and the quality of the underlying mathematical models, which 
are sometimes limited. 

The modeling and optimization framework in [13,14] is also 
computationally expensive. Because the underlying dynamic model is 
formulated as an optimization problem, the resulting model-based 
optimal control problem turns out to be a bilevel optimization. Solving 
bilevel optimizations is not trivial. One often needs to make assumptions 
on the relation between the upper- and lower-level optimization prob
lems, e.g., an optimistic or pessimistic relation (cf. [27–29] for more de
tails). As done in [13,14], we can reformulate the bilevel optimization 
into a single-level optimization, following an optimistic approach, by 
substituting the lower-level problem by its corresponding 
Karush-Kuhn-Tucker conditions. This results in a mathematical program 
with complementarity constraints which becomes non-convex given the 
non-linearity of the complementarity constraints, hence, in general, 
difficult to solve. The Lagrange multiplier or dual variables, coming 
from the Karush-Kuhn-Tucker conditions, further increase the size of the 

optimization problem as they become additional optimization variables. 
Due to the previous reasons, a more straightforward modeling 

approach for fermentations with optogenetic control of the ATPase is 
pertinent. For simplicity of experimental validation and implementa
tion, we seek to minimize the number of dynamic states, without 
sacrificing the model predictability for model-based optimal control of 
metabolism. To this end, we model only the most relevant extracellular 
states and the optogenetically controlled intracellular enzyme. In situ
ations of significant model uncertainty, we outline the use of machine 
learning to learn the error of the a priori known dynamic equations, thus 
rendering a hybrid model. Experiments in biotechnology are, neverthe
less, often expensive and time-consuming; thus, large and high-quality 
training datasets for machine learning are typically scarce. Here, we 
focus on Gaussian processes [30] because they can offer good predict
ability even if small-to-medium datasets are available (cf. e.g. [31–33]), 
as is the case in this work. 

We formulate a single-level model-based dynamic optimization 
problem using the simplified system model. This circumvents bilevel 
optimization schemes, facilitating the numerics and computational 
effort. As a major contribution, we experimentally validate our 
modeling and optimization framework using the anaerobic lactate 
fermentation of an engineered Escherichia coli with optogenetic control 
of the ATPase, the same biological system considered in [13,14]. 
Remark that the latter references are simulation-based studies, while in 
this work also experimental validation is shown. 

A scheme of the dynamic optimization control strategy is presented 
in Fig. 1. Note that the control strategy could be in principle performed 
both in an open-loop or closed-loop manner. For simplicity of experi
mental implementation, this study focuses exclusively on open-loop 
control. Closed-loop control would require real-time sensors for pro
cess monitoring, which were not available to us. The process inputs can 
in principle encompass both intracellular and extracellular degrees of 
freedom, e.g., light intensity to modulate ATPase expression (intracel
lular) and substrate feeding rate in case of fed-batch fermentations 
(extracellular). This study specifically focuses on batch processes, thus no 
feeding rate is considered. Additionally, the model utilized for con
straining the dynamic optimization can be solely based on knowledge or 
of a hybrid nature incorporating machine-learning parts such as 
Gaussian processes. In this study, we consider both of these model 
alternatives. 

The remainder of this paper is structured as follows. First, we offer an 
overview of the biological system and optogenetic setup, which will be 
the basis for introducing our modeling framework and dynamic opti
mization problem. Afterwards, we outline specific model assumptions 
for the lactate fermentation case with optogenetic control of the ATPase. 
Finally, we present the experimental results that support the proposed 
modeling and optimization framework. 

2. Materials and methods 

2.1. Overview of the biological system and experimental setup 

Under anaerobic fermentation of glucose, lactate production is net 
ATP positive. As a basis to showcase the proposed model-based opti
mization strategy of the optogenetically regulated ATPase, we consider 
an E. coli strain with blocked ethanol and acetate pathways (cf. Fig. 2-A) 
[15]. Therefore, lactate synthesis becomes the main fermentation 
pathway to achieve redox balance, making lactate production suitable 
for enforced ATP turnover [14–17]. 

We aim to control gene expression of the ATPase using light as an 
external input. To do so, we utilize the two-component system known as 
CcaS/CcaR (chromatic acclimation sensor/regulator) to establish con
trol over ATPase F1-subunit (atpAGD) expression in E. coli. The CcaS/ 
CcaR system, originated from cyanobacteria, allows for the regulation of 
gene expression by changing the red-to-green light ratio to which the 
cells are exposed (cf. e.g. [34–36]). Green light causes CcaS to 
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autophosphorylate and then phosphorylate CcaR. CcaR dimerizes when 
phosphorylated, becoming an activating transcription factor. Red light 
causes CcaS to dephosphorylate and gene expression is repressed. 

To construct our biological system, we inserted an atpAGD 

expression cassette into the chromosome of E. coli in which all genes are 
regulated by the optimized promoter of cpcG2 [37]. Subsequently, we 
introduced plasmid pPLPCB(S) for the production of phycocyanobilin, a 
cofactor necessary for photo-sensing, as well as plasmid pGB-MPI-23 to 

Fig. 1. Open-loop control of ATP turnover via optogenetic modulation of the ATPase in batch processes. In gray we show other potential configurations such as 
closed-loop control and fed-batch fermentations, although these fall out of the scope of this study. 

Fig. 2. A) Simplified core metabolism of the microorganism used in this study, i.e., E. coli sGB015 with enforced ATP wasting. It shows the conversion of glucose into 
lactate. Relevant redox and energy co-factors are presented. B) The light-inducible ATP wasting is managed by three heterologous genetic elements in E. coli sGB015: 
pPLPCB(S), pGB-MPI-23 and the chromosomal insertion of PcpcG2Δ59-atpAGD-rrnBT1. Plasmids are shown circular, while the chromosome is shown linear. Note 
that genes (italicized) and their related proteins (non-italicized) are shown with the same color. pPLPCB(S) expresses ho1 (dark blue) and pcyA (purple), thereby 
enabling the conversion of heme (red pentagon) into phycocyanobilin (green pentagon), the chromophore necessary for CcaS to detect light. The expression of ccaS 
(orange) and ccaR (pale blue) is enabled through pGB-MPI-23. CcaS autophosphorylates after a conformational change induced by green light with the photon- 
protein interaction enabled through phycocyanobilin. Afterward, CcaS phosphorylates CcaR (phosphate group P is represented by circles), leading to CcaR 
dimerization and functioning as a transcription factor for PcpcG2Δ59 on the chromosome, thereby initiating the expression of atpAGD (red). Promoters are presented 
as arrows on the plasmids and the chromosome. Open reading frames are shown as arrows next to their related genes. Terminators are marked as black perpendicular 
lines. Origins of replication are shown in yellow and antibiotic resistances in pale green. C) Scheme of the fermentation setup with the green and red light delivery 
system based on LEDs. D) Photograph of the actual setup shown in C). The temperature regulation chamber, magnetic stirrer plate, LED arrays, and actuation system 
are labeled. The actuation system is shown with the two tunable regulators for determining the current that is delivered to the green and red LED arrays. 
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express the CcaS/CcaR proteins. This resulted in the final strain E. coli 
sGB015 where ATPase expression is regulated by green and red light (cf. 
Fig. 2-B). Refer to Section 2.1.1 for the detailed genetic engineering 
procedure. 

Anaerobic fermentation experiments with E. coli sGB015 subjected to 
optogenetic manipulation were carried out at 37 ∘C in a Certomat BS-1 
incubator (B. Braun Biotech International) (cf. Fig. 2-C). Red and 
green light outputs were generated through light-emitting diode (LED) 
arrays (Osram OSLON SSL LED green λpeak = 521 nm; Osram OSLON SSL 
LED red λpeak = 660 nm), whereby the emitted light was regulated via 
the supplied current. The corresponding photon flux density in μmol 
m− 2 s− 1 units was determined using an ULM-500 Universal Light Meter 
(Heinz Walz GmbH). All experiments were performed using three bio
logical replicates. For more details on the fermentation procedure and 
analytical measurements, refer to Section 2.1.2. 

2.1.1. Genetic engineering procedure 
The strain KBM10111s (= MG1655 Δ adhE Δ ackA-pta) [15] was 

used as a basis to create an E. coli strain that produces lactate as the main 
fermentation product and portrays a light-inducible expression of 
atpAGD. First, pGB-MPI-035, a modified version of pSKA397 [34], was 
transformed into KBM10111s together with pTNS3 [38] for Tn7-based 
insertion of atpAGD regulated by PcpcG2Δ59 [37], downstream of 
glmS [39]. This resulted in sGB013 (= MG1655 Δ adhE Δ ackA-pta Tn7:: 
cat-PcpcG2Δ59-atpAGD-rrnBT1). The chloramphenicol resistance 
cassette of this strain was removed though FLP activity by trans
formation with pCP20 [40], resulting in sGB014 (= MG1655 Δ adhE Δ 
ackA-pta Tn7::PcpcG2Δ59-atpAGD-rrnBT1). The genes for the 
light-regulated transcription system, ccaS/ccaR controlled through 
PccaR, were introduced in a sfgfp-deficient variant of pSKA413 [34] 
(pGB- MPI-23). Furthermore, the Synechocystis PCC6803 genes ho1 and 
pcyA, enabling the conversion of heme into phycocyanobilin, were 
introduced by transformation with pPLPCB(S) [41]. Both plasmids were 
transformed into sGB014, resulting in the final strain used for all 
experiments, i.e., E. coli sGB015 (= MG1655 Δ adhE Δ ackA 
-pta Tn7::PcpcG2Δ59-atpAGD-rrnBT1 pPLPCB(S) pGB-MPI-23). 
Sequence files for all genetic elements created in this work 
can be found in genebank format through the Edmond repository: 
https://doi.org/10.17617/3.H5GT8I. 

2.1.2. Fermentation experiments and analytical measurements 
Single colonies of E. coli sGB015 were used to start 10 ml aerobic 

cultures with LB0 (10 g/l tryptone, 5 g/l yeast extract, 5 g/l NaCl) in 
100 ml shake flasks with baffles at 37 ∘C and 200 rpm. Next, precultures 
with standard defined medium (4 g/l glucose, 34 mM NaH2PO4, 
64 mM K2HPO4, 20 mM (NH4)2SO4, 9.52 mM NaHCO3, 1 μM Fe(SO4)4, 
300 μM MgSO4, 1 μM ZnCl2, 10 μM CaCl2) [42] with 150 μg/ml spec
tinomycin and 25 μg/ml chloramphenicol were inoculated and grown 
overnight under red light in 50 ml Schott flasks with 25 ml culture 
volume at 37 ∘C and 180 rpm. The main fermentation experiments were 
inoculated from the latter preculture in fresh standard defined medium, 
cultivated in 50 ml flasks with 50 ml culture volume. For sampling 
purposes, the vessels were briefly transferred to a Whitley A25 anaerobic 
workstation (Meintrup DWS Laborgeräte GmbH) with an oxygen-free 
atmosphere (80 % N2, 10 % CO2, 10 % H2). During cultivation, the 
flasks were tightly closed to prevent gas exchange. 

Glucose concentrations were measured with the HK assay kit (Meg
azyme Ltd.). Lactate was measured by reversed phase HPLC utilizing an 
Inertsil ODS-3 column (5 μm, RP-18 100A, 250 × 4.6 mm) (GL Sciences 
Inc.) with a flow rate of 1.0 ml/min, using a running buffer consisting of 
0.1 M NH4H2PO4 at pH 2.6 and 40 ∘C. The injection volume was 10 μl 
and detection was performed with a UV-DAD detector at 210 nm. 

2.2. Modeling of fermentations with optogenetic ATPase expression 

We outline the general structure of our modeling approach for 

fermentations with optogenetic regulation of the ATPase expression. For 
clarity of presentation, we keep for the moment the notation general, 
while in Section 3.1 we elaborate on the specific model assumptions for 
the lactate fermentation case study. Note that we use bold fonts for 
vectors and matrices, and non-bold fonts for scalar variables and 
parameters. 

2.2.1. General model formulation 
We consider the dynamics of biomass B ∈ R, rate-limiting external 

substrates s ∈ Rns , rate-limiting (by)products and products of interest 
p ∈ Rnp , as well as the intracellular ATPase E ∈ R. While B, s, and p are 
expressed in mass per culture volume, E is expressed in mass of ATPase 
per mass of cells. We treat the biomass as a homogeneous population of 
cells, hence the model is unsegregated and the biomass is modeled as a 
single component. Since we lump up intracellular metabolism, except 
for the dynamics of the ATPase expression, the model is also quasi-un
structured. The dynamic input u ∈ R is the green light photon flux den
sity. Based on these considerations, the process dynamics read 

dB
dt

= SBr(x(t), u(t), θ) + QBw(x(t), u(t), τ), (1a)  

dE
dt

= SEr(x(t), u(t), θ) + QEw(x(t), u(t), τ), (1b)  

ds
dt

= Ssr(x(t), u(t), θ) + Qsw(x(t), u(t), τ), (1c)  

dp
dt

= Spr(x(t), u(t), θ) + Qpw(x(t), u(t), τ), (1d)  

x := [B,E, s⊤, p⊤]
⊤
, (1e)  

x(t0) = x0, (1f)  

where t ∈ [t0, tf ]⊂R≥0 is the process time, t0 the initial process time, and 
tf the final process time. 

In the previous equations, r : Rnx × R × Rnθ →Rnr is a vector-valued 
function that comprises the reaction rates of the process, e.g., produc
tion, consumption, degradation, and dilution rates. θ ∈ Rnθ are param
eters of the reaction rates. SB ∈ R1×nr , SE ∈ R1×nr , Ss ∈ Rns×nr , 
Sp ∈ Rnp×nr map the coefficients of the reaction rates to the differential 
equations. The previous terms comprise the knowledge-based part of the 
model. Note that modeling E allows one to capture possible time delays 
in the extracellular rates arising from the lumped transcription/trans
lation dynamics of the ATPase. Furthermore, we consider in the dynamic 
equations model uncertainty due to, e.g., oversimplified or wrong model 
assumptions resulting from the lack of mechanistic description of the 
intracellular metabolism. The model error is defined by the vector- 
valued function w : Rnx × R × Rnτ →Rnw and it aims at capturing the 
dynamics neglected or misrepresented by the knowledge-based part of 
the dynamic equations. τ ∈ Rnτ comprises the parameters of w. 
QB ∈ R1×nw , QE ∈ R1×nw , Qs ∈ Rns×nw , Qp ∈ Rnp×nw map the functions 
describing the model error to the corresponding differential equations. 
Hereafter, we will omit the time dependency of the variables when clear 
from the context. 

Naturally, if the knowledge-based part of the dynamic equations 
describes the real system sufficiently well, i.e., without considering the 
model error w, one can simply neglect w from the final model. However, 
in cases of significant model-plant mismatch, we propose to create 
hybrid models where we learn w from process data with machine 
learning, particularly using Gaussian processes. 

2.2.2. Gaussian processes 
Gaussian processes are classified as probabilistic machine-learning 

methods, whereby the predictions contain a measurement of the pre
diction uncertainty. Gaussian processes render a probabilistic distribution 
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over functions, as opposed to other approaches such as conventional 
neural networks where the predictions are deterministic. In this section, 
we present a general overview of Gaussian processes; we refer the reader 
to [30,43–45] for more information. 

Let l ∈ R be the label (regression output) of one Gaussian process 
regressor and v ∈ Rnv the corresponding features (regression inputs). 
The Gaussian process regressor aims to model an unknown function h :

Rnv →R using noisy observations l of h(v) 

l = h(v) + ϵ, (2)  

where ϵ is Gaussian distributed measurement noise ϵ ∼ N (0, σ2
n) with 

zero mean and variance σ2
n . 

Let us define V ∈ Rnv×nd as the matrix of the supplied training inputs 
and L ∈ R1×nd as the training outputs, where nd is the number of training 
datasets. Furthermore, let vi ∈ Rnv×1 and vj ∈ Rnv×1 be two arbitrary 
input vectors. 

In Gaussian processes, we assume that the labels are normally 
distributed 

h(v) ∼ N (m(v), k(v, v)), (3)  

where m : Rnv →R is the mean function and k : Rnv × Rnv →R is the kernel 
or covariance function. Overall, the kernel function describes the 
neighborhood or similarity between data points in the feature space. 

Gaussian processes start from a prior distribution of functions, char
acterized by a prior mean function and a prior covariance function, i.e., 
prior to observing data. The prior distribution is determined by the 
choice of the kernel function, which is chosen to be infinitely differen
tiable, smooth, and continuous. Many kernel functions are possible; in 
this work, we use the squared-exponential kernel function 

k(vi, vj
⃒
⃒τ) = σ2exp

(
− (vi − vj)

⊤
(vi − vj)

2d2

)

, (4)  

where σ2 ∈ R is the signal variance, d ∈ R is the length-scale, both of 
which are hyperparameters of the kernel function. 

Furthermore, we obtain the covariance matrix K ∈ Rnd×nd based on 
the chosen kernel function and the supplied training data 

K =

⎡

⎣
k(v1, v1) ⋯ k(v1, vnd )

⋮ ⋱ ⋮
k(vnd , v1) ⋯ k(vnd , vnd )

⎤

⎦, (5)  

which captures the relationship between the features. 
We optimize the hyperparameters of the kernel function by maxi

mizing the log marginal likelihood, i.e., τ* = arg maxτ logp(L|V,τ), with 

log(p(L|V, τ)) = −
1
2
LT(K + σ2

nI)− 1L −
1
2

log
( ⃒
⃒K + σ2

nI
⃒
⃒
)
−

nd

2
log(2π), (6)  

where τ := [σ2, d, σ2
n ] and I is the identity matrix of appropriate size. 

Finally, the conditional posterior of the Gaussian process with 
optimal hyperparameters follows a normal distribution for a test input 
vector v* ∈ Rnv×1, i.e., p(h̄(v*)|V,L) ∼ N (h̄,Σ), with predictive mean h̄ 
and variance Σ 

h̄(v*) = k̃
⊤

(K + σ2
nI)− 1L, (7a)  

Σ(v*) = k(v*, v*) − k̃
⊤

(K + σ2
nI)− 1k̃, (7b)  

k̃ := [k(v1, v*),…, k(vnd , v*)]⊤. (7c)  

Since we aim to capture with Gaussian processes the model-plant 
mismatch w of differential equations, then h(v) := wi(v), where wi is 
the model error of a differential equation i. We consider as many 
Gaussian process regressors as nw, i.e., multi-input single-output 
Gaussian processes. The features of the Gaussian process can be, e.g., 

appropriate model states and inputs. 

2.3. Open-loop dynamic optimization of the optogenetically modulated 
ATPase expression 

We propose to find the optimal light input trajectories that maximize 
the efficiency of the process with optogenetic control of the ATPase by 
solving the following optimal control problem 

max
u(⋅), x0

J(⋅), (8a)  

s.t. Eqs.(1a) − (1f), (8b)  

0 ≤ g(x, u, θ, τ), (8c)  

where J(⋅) is the cost function that captures the efficiency of the process 
and g : Rnx × R × Rnθ × Rnτ →Rng are additional process constraints. The 
decision variables of the optimization problem can include in principle 
the dynamic input, in this case, green light photon flux density, and the 
initial state concentrations, e.g., initial substrate concentration. In other 
words, we cover both static and dynamic degrees of freedom in the 
formulation above. The cost function in (8a) can be the product volu
metric productivity, titer, yield, or an explicit function that captures the 
economic profit of the process. The constraints in Eq. (8c) can include, e. 
g., safety, economic, or technical constraints. 

2.4. Numerical methods 

The parameter estimation procedure for the knowledge-based part of 
the model was performed in COPASI using the particle swarm algorithm 
[46]. We used HILO-MPC [43], a Python toolbox for 
machine-learning-supported optimal control, for training the Gaussian 
process regressors and solving the open-loop optimization problems. 

3. Results and discussion 

3.1. Model of the lactate fermentation with optogenetic control of the 
ATPase 

Having described the general modeling and optimization framework 
in Sections 2.2 and 2.3, we proceed to describe the proposed model for 
the lactate fermentation case study in batch mode. We consider the 
following dynamic states: glucose sG ∈ R, lactate pL ∈ R, E. coli’s 
biomass Bc ∈ R, and the intracellular ATPase E ∈ R. Therefore, in the 
case study, s := sG, p := pL, and B := Bc. Compared to the dynamic 
constraint-based model proposed in [13,14], this represents a significant 
reduction in the number of dynamic states, i.e., from 23 to only 4 states. 
The control input is the green light photon flux density ul ∈ R, hence u 
:= ul. 

The proposed model follows 

dsG

dt
= − qG(sG,E, θ)Bc + wG(sG,Bc, pL,E, ul, τ), (9a)  

dBc

dt
= μ(sG,E, θ)Bc + wc(sG,Bc, pL,E, ul, τ), (9b)  

dpL

dt
= qL(sG,E, θ)Bc + wL(sG,Bc, pL,E, ul, τ), (9c)  

dE
dt

= qE(ul, θ) − dE(E, θ), (9d)  

sG(t0) = sG0 ,Bc(t0) = Bc0 , pL(t0) = pL0 ,E(t0) = E0, (9e)  

where qG, μ, qL, qE, and dE are known kinetic functions with appropriate 
parameters, and wG, wc, and wL are Gaussian-process regression func
tions with appropriate parameters describing the model error. In Eqs. 
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(9a)-(9d), we assume only two rate-limiting components in the kinetic 
functions, namely the substrate glucose and the light-inducible intra
cellular ATPase. We neglect dilution or degradation effects in equations 
(9a)-(9c). 

Measuring the extracellular concentrations to parameterize the 
model is relatively straightforward, however, measuring the intracel
lular ATPase concentration remains a challenge. When available and 
affordable, proteomics [47] can be an option to measure the intracel
lular ATPase, but it is generally time-consuming and requires dedicated 
sample preparation. Note that, although proteomics is effective offline, 
implementing it for real-time monitoring remains a challenge. Alterna
tively, biosensors could, in principle, be used to estimate the intracel
lular ATPase, for example, by attaching fluorescent protein tags to the 
enzyme [48]. However, in some cases, this can lead to protein mal
function [49], and the intrinsic folding and maturation of fluorescent 
proteins [48] may cause delays in the output reading. One could argue 
that if the ATPase cannot be measured, it may still be estimated with soft 
sensors as shown in [14,26]. Yet, for soft sensors, we require a suitable 
validated mathematical model, which, in the context of this study, is 
unavailable. For these reasons, we did not implement here a biosensor or 
a soft sensor for ATPase determination, but it can be the focus of future 
studies, in particular within feedback control schemes where real-time 
monitoring is desirable. 

Since in our experimental setup we cannot measure the intracellular 
ATPase, we regard E as a virtual variable expressed in virtual units (VU) 
per gram of biomass and we assume no model uncertainty in Eq. (9d). 
For simplicity, we assume that the dynamics of the intracellular ATPase 
are a function of only the ATPase concentration and the light input (cf. 
Eq. (9d)). Note that the inoculum/preculture preparation in the fer
mentations follows a well-standardized protocol (cf. Section 2.1.2), e.g., 
the preculture was always grown under red light conditions, i.e., 
without ATPase induction. Therefore, we arbitrarily set E(t0) = 0 VU∕g 
in all fermentation experiments. We neglect the exact biological mean
ing of Eq. (9d) and associated parameters as long as they help to describe 
well the dynamics of the extracellular concentrations. As mentioned 
before, Eq. (9d) allows coupling the input-dependent intracellular state 
of the cell (micro-scale variable) to the extracellular species (macro- 
scale variables). By doing so, one can capture time delays in the macro- 
scale fermentation dynamics arising from the lumped transcription and 
translation of the intracellular ATPase. 

We model the kinetic rates as follows 

qG(sG,E) = qGmax

(
sG

sG + kG

)(

1 +
En1

En1 + kn1
GV

)

, (10a)  

μ(sG,E) = YBG(qG(sG,E) − mG)

(

1 −
En2

En2 + kn2
BV

)

, (10b)  

qL(sG,E) = (YLBμ(sG,E) + mL)

(

1 +
En3

En3 + kn3
LV

)

, (10c)  

qE(ul) = qE0 + qEmax

un4
l

un4
l + kn4

u
, (10d)  

dE(E) = kdE, (10e)  

where θ := [kBV,kG,kGV,kLV,mG,mL,n1,n2,n3,qGmax ,YBG,YLB,qE0 ,qEmax ,n4,

ku,kd]
⊤ comprises the 17 parameters of the assumed known kinetic 

functions. 
If we assume no enforced ATP turnover, i.e., E(t) = 0, the specific 

substrate uptake rate (Eq. (10a)) follows conventional Monod-type ki
netics [50], the specific growth rate (Eq. (10b)) follows the Pirt’s 
equation for substrate distribution [51], and the specific lactate pro
duction rate (Eq. (10c)) follows the Leudeking-Piret’s equation for 
catabolic products [52]. We include Hill-type activation terms [53] in 
Eqs. (10a)-(10c) to account for either an increase (+) or decrease (-) in 

the specific rates as a result of the enforced ATP turnover, i.e., for E(t) >
0. The production of the ATPase is activated by green light following the 
Hill function [53], Eq. (10d). Note that we assume homogeneous light 
penetration in the bioreactor. Finally, we assume an average lumped 
dilution/degradation rate of ATPase based on first-order kinetics, Eq. 
(10e). 

3.2. Model validation 

To validate the proposed model, we ran five fermentation experi
ments under different constant green light input values, namely 0, 175, 
349, 524, and 873 μmol m− 2 s− 1. Samples were taken equidistantly 
every hour. As can be seen in the blue bars in Fig. 3, the yield of lactate 
on glucose for the entire batch YLG,batch increases with increasing light 
input, up to around 1 g/g, i.e., the maximum theoretical yield. Note that 
there cannot be biomass generation if the lactate yield is at its maximum 
theoretical value. Thus, there must have been a slight overestimation of 
the actual lactate yield, in particular for the experiment with constant ul 
= 873 μmol m− 2 s− 1, very likely arising from a systematic measurement 
error of lactate concentration. Similarly, an increasing light input 
translates into decreasing biomass on glucose yield YBG,batch and lactate 
volumetric productivity rL,batch averaged over the batch. This is the ex
pected behavior since higher light photon flux density is linked to higher 
ATPase induction level, thus higher ATPase accumulation and ATP 
wasting [13,14]. 

Based on the batch experiments presented in Fig. 4, we carried out a 
parameter estimation procedure considering the data from all the batch 
experiments simultaneously. The resulting optimized nominal parameter 
values are kBV = 2.605 × 10− 4 VU∕g, kG = 5.340 × 10− 7 g∕l, kGV =

1.053 × 10− 6 VU∕g, kLV = 1.002 × 10 VU∕g, mG = 1.232 × 10− 6 g∕g∕h, 
mL = 1.910 g∕g∕h, n1 = 1.000 × 10− 2, n2 = 1.028 × 10− 1, n3 = 1.000 ×
10, qGmax = 1.731 g∕g∕h, YBG = 1.083 × 10− 1 g∕g, YLB = 2.204 g∕g, 
qE0 = 1.000× 10− 6 VU∕g∕h, qEmax = 1.000× 10 VU∕g∕h, n4 = 4.718, ku 
= 3.729 × 102 μmol m− 2 s− 1, kd = 0.988 1∕h. Note that the latter pa
rameters were estimated considering only the knowledge-based part of 
the model, i.e., without learning the model-plant mismatch with 
Gaussian processes. We call this model the nominal model. Our goal 
with the parameter estimation was not to provide unique parameters 
rendering perfect fitting, but rather to approximate the behavior of the 
dynamic system such that, if necessary, the model fitting and predict
ability could be enhanced with Gaussian processes. 

Overall, the nominal model fits well the experimental data for all the 
tested light inputs in Fig. 4. Despite the good fitting of the nominal 
model, we still implemented -as a proof of concept- Gaussian process 
regressors to learn the remaining model-plant mismatch. That is, we 
learned the model error wi of equations (9a)-(9c). As input features for 
each of the Gaussian processes, we used the initial condition of the 
system at a sampling time tk and the applied input over a time interval of 
size tk+1 − tk. The output label of each of the Gaussian processes was the 
corresponding model-plant error wi, whose function value was approx
imated as 

wi(tk) =
xe(tk+1) − xe(tk)

tk+1 − tk
−

xm(tk+1) − xm(tk)

tk+1 − tk
, (11)  

where xe(tk) and xe(tk+1) are the measured experimental state values at 
sampling times tk and tk+1, respectively. Similarly, xm(tk) and xm(tk+1) 
are the predicted state values at times tk and tk+1 for the knowledge- 
based part of the model. At each sampling time, xm(tk) := xe(tk). The 
knowledge-based part of the model uses the parameters previously 
estimated for the nominal model; that is, the training of the model error 
via the Gaussian processes occurs after the parameter estimation. Each 
multi-input single-output Gaussian process was trained with 39 data 
entries, with each entry comprising values of the input features and 
output label. 

Eq. (11) intrinsically assumes that the true dynamic equation 
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Fig. 3. A) Average lactate on glucose yield YLG,batch, B) biomass on glucose yield YBG,batch, and C) lactate volumetric productivity rL,batch. Blue bars: experiments used 
to model the system. Orange bars: predicted open-loop optimization results using the nominal (OLO_nom_pred) and hybrid (OLO_hyb_pred) models. Green bars: 
actual experimental results for the open-loop optimizations using the nominal (OLO_nom_exp) and hybrid (OLO_hyb_exp) models. These metrics correspond to 
average batch results, i.e., considering initial and final points. The units of ul are μmol m− 2 s− 1. 
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governing the experimental observations is the sum of the dynamic 
equation described by the assumed known model plus another differ
ential equation describing the error or missing part. Furthermore, Eq. 
(11) considers that the right-hand side of the differential equations at a 
time tk, over an interval tk+1 − tk, can be approximated as the difference 
in the state values with respect to the length of the corresponding time 

interval. In other words, wi can be regarded as the approximation of the 
right-hand side of the differential equation capturing the model error. 
Given the relatively short and equidistant sampling time in the experi
ments of 1 h, we deemed the outlined approach as a good approximation 
of the model error. Note that discrete versions of the model are in 
principle also possible. We refer to the model combining the knowledge- 

Fig. 4. Fitting of the nominal and hybrid models to the experimental data under different constant light inputs.  
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based part with the Gaussian process regressors as the hybrid model. As 
expected, the hybrid model can fit slightly better the experimental data, 
particularly for the glucose and lactate profiles over the mid-end term of 
the fermentation experiments (cf. Fig. 4). 

3.3. Implementation of open-loop optogenetic control of ATPase 

We formulated optimal control problems, as described in Section 2.3, 
constrained by the nominal and hybrid models. The idea was to show the 
applicability of both models for optimal control of the optogenetically 
controlled ATPase expression. Specifically, we maximized the final 
batch lactate concentration in a time frame of eight hours, by applying 
piece-wise constant inputs of green light every hour (dynamic degree of 
freedom) and determining the optimal initial glucose concentration 
(static degree of freedom). Discretizing the input renders the optimiza
tion problem finite-dimensional and practical to solve since finding ul as 
a function would otherwise make the problem infinite-dimensional. The 
input was constrained to the values used for fitting/training the model 
(cf. Eq. (12c)) and we demanded the optimizer to deplete all glucose by 
the end of the fermentation (cf. Eq. (12d)). Furthermore, we constrained 
the optimizer to achieve a user-defined product on glucose yield over the 
batch (cf. Eq. (12e)) ỸLG,batch. We also included a box constraint for the 
initial glucose concentration (cf. Eq. (12f)) with zero and sGmax = 5 g/l as 
the lower and upper bounds, respectively. 

The resulting optimization problem reads 

max
ul(⋅), sG(t0)

pL
(
tf
)
, (12a)  

s.t. Eqs.(9a) − (9d), (12b)  

0 ≤ ul ≤ 873, (12c)  

sG(tf ) = 0, (12d)  

pL(tf ) − pL(t0)

sG(t0) − sG(tf )
= ỸLG,batch, (12e)  

0 < sG(t0) ≤ sGmax . (12f) 

The optimization problem in (12) thus maximizes the volumetric 
productivity in the fixed time frame under given product yield, light, 
initial substrate, and substrate consumption constraints. Remark that we 
neglect the model error w from the Eqs. (9a)-(9d) when we use the 
nominal model in the optimization. When we use instead the hybrid 
model, we then include the Gaussian-process-based model error w in 
Eqs. (9a)-(9d). For the optimization based on the nominal model, we 
arbitrarily set ỸLG,batch to 0.954 g/g, while this was set to 0.986 g/g for 
the optimization based on the hybrid model. The goal was not to 
compare one-to-one the performance of the optimization using the two 
models but rather to show the flexibility of our approach to handle both 
knowledge-based and hybrid Gaussian-supported models. Furthermore, 
we also wanted to highlight the fact that modulating ATPase expression 
dynamically can be exploited to adjust the batch-to-batch fermentation 
performance in terms of product yield and productivity. Hence, the 
different selected values for ỸLG,batch. 

Intuitively, as long as ỸLG,batch is larger than the one achievable by the 
cell without ATPase induction (cf. Fig. 3, constant ul = 0), the optimizer 
is expected to utilize the light-mediated ATP turnover mechanism to 
increase the product yield. Therefore, formulating an optimal control 
problem as done in (12) is a way to obtain trade-offs between 
enhancement of product yield and drop in volumetric productivity in the 
context of dynamic ATP turnover as discussed in [13,16]. The predicted 
open-loop optimization results based on the nominal and hybrid models 
are presented in Fig. 5. For the sake of rigor, the input trajectory 
generated by the optimizer was subsequently used to simulate the ex
pected dynamics using the same system model employed by the 

optimizer. It is worth noting that there was no difference between the 
state dynamics of the model used by the optimizer upon convergence to 
a solution and those of the simulated plant given the optimized 
trajectory. 

In both open-loop optimizations, the predicted input follows a two- 
stage profile, with a first phase at 0 μmol m− 2 s− 1 (no ATPase induc
tion), followed by a second phase at 873 μmol m− 2 s− 1 (induction at the 
maximum green light photon flux density value). The main difference 
between the two optimization problems is the time at which the second 
phase is triggered, i.e., 3 h for the optimization based on the nominal 
model and 4 h for the optimization based on the hybrid model. As ex
pected, in both cases the optimizer predicts a slight decrease in the 
biomass growth rate and a slight increase in the glucose uptake rate and 
lactate production rate for the second fermentation phase. The predicted 
optimal initial glucose concentration determined by the optimization 
based on the nominal model is 2.745 g/l, while this is 2.834 g/l for the 
optimization based on the hybrid model. As demanded, the optimizer 
predicts full consumption of glucose by the end of the fermentations. 

The predicted yields of lactate on glucose over the batch for both 
fermentations are as demanded, i.e., 0.954 g/g for the optimization 
based on the nominal model and 0.986 g/g for the optimization based 
on the hybrid model (Fig. 3, orange bars). Compared to the scenario 
without ATPase induction (Fig. 3, ul = 0), this represents a predicted 
increase in product yield of 9 % and 13 %, respectively. The predicted 
increase in batch product yield is at the expense of a decrease in the 
biomass on glucose yield by 33 % and 23 %, respectively. This also 
correlates to a decrease in volumetric productivity by 19 % and 14 %, 
respectively. As can be seen, the hybrid model predicts a less pro
nounced drop in biomass on glucose yield and volumetric productivity, 
even though the demanded increase in product yield in the optimization 
with the hybrid model is higher than in the optimization with the 
nominal model. In other words, the hybrid model seems to be more 
optimistic, which is in line with the fittings observed in Fig. 4, where the 
hybrid model predicts slightly higher lactate formation rates (in 
particular for treatments at 0, 175, 349 μmol m− 2s− 1). 

We experimentally validated the predicted open-loop optimizations. 
As can be seen in Fig. 5, the experiments follow the overall trends as 
predicted by the optimal control problems. There is, nevertheless, some 
model-plant mismatch, in particular for the lactate concentration profile 
in the optimization based on the hybrid model. One should also notice 
that there is a slight mismatch between the target and the experimental 
initial concentrations, which is natural due to human error (cf. e.g. the 
glucose initial concentration in Fig. 5, optimization based on the hybrid 
model). The final lactate concentrations for both optimizations are 
within the same range, i.e., 2.324 ± 0.020 and 2.317 ± 0.018 g∕l for the 
optimizations based on the nominal and hybrid models, respectively. 
Compared to the scenario without ATPase induction (ul = 0 constant), 
the increase in lactate on glucose yield over the entire batch for the 
optimizations based on the nominal and hybrid models is, in average, 3 
% and 6 %, respectively (cf. Fig. 3, green bars). In both optimizations, 
this is lower than the demanded ỸLG,batch values; however, if we take into 
account the reported standard deviations, the experimental results are 
still close to the predicted values. 

It is worth noting that the predicted input, following an off-on tra
jectory, differs from the more gradual trajectories found in previous 
simulation studies involving bilevel optimizations using dynamic 
constraint-based models (cf. [13,14]). This difference can be explained 
by the fact that the dynamic constraint-based models mentioned earlier 
are constrained by redox and energy balances, as well as resource 
allocation phenomena, which are neglected in our simplified modeling 
approach. Also, constraint-based models as in [13,14] assume a cell’s 
dynamic (evolutionary) objective function, which, when formulated 
within a (bilevel) optimization scheme may bias the outcome of the 
optimization. Overall, we deem the predicted inputs in this work 
reasonable since they follow the widely discussed two-stage 

S. Espinel-Ríos et al.                                                                                                                                                                                                                            



Process Biochemistry 143 (2024) 174–185

183

fermentation approaches for bioprocess optimization [10,12,23]. Even 
though the experimental comparison between different modeling and 
model-based optimization approaches was not within the scope of this 
study, it is still of interest for future research. For example, one could 
compare the use of a validated constraint-based dynamic model and a 

macro-kinetic-like model as the one outlined here to elucidate whether a 
higher modeling complexity also translates into enhanced optimization 
performance. 

The fact that the optimizations were performed in an open-loop 
fashion, i.e., without taking correcting actions online, hinders the full 

Fig. 5. Results of the open-loop optimization prediction and experimental implementation. The optimizations based on the nominal and hybrid models are shown on 
the left and right sides, respectively. 
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potential of model-based optimization. To address possible system un
certainty, as observed in the validation experiments, one could, e.g., 
implement feedback control schemes such as model predictive control. 
In model predictive control, the optimization is updated with the initial 
conditions of the plant and resolved at every sampling point (cf. e.g. [13, 
14,25,44,54− 57]). The repetitive solution of the optimization problem 
leads to closed-loop control. Closed-loop control when considered in the 
frame of metabolic systems with external induction of gene expression is 
often referred to as metabolic cybergenetics [14,57,58]. As mentioned 
before, we did not have at hand real-time sensors for monitoring the 
fermentation dynamics, which hindered our possibility of implementing 
feedback control. Closing the control loop would be the natural next step 
once the monitoring aspect is addressed. 

Other modeling techniques for metabolic systems with external in
duction of gene expression are also worth considering for future 
experimental implementations of model-based control. One interesting 
approach is the use of flux balance analysis to inform machine-learning 
surrogates to be embedded into the reaction rates of macro-kinetic 
models, effectively creating hybrid physics-informed models [57,59]. 
In this case, valuable information captured by metabolic networks, such 
as intrinsic metabolic trade-offs, redox and energy balances, etc., can be 
transferred into structurally simpler models. This strategy could help to 
reduce the gap between unstructured kinetic models and structured 
models based on flux balance analysis. The use of Gaussian processes to 
learn the model error, as described in this study, could still be employed 
to enhance the predictability of these hybrid physics-informed models. 

In the hybrid model, we only considered the predicted mean of the 
Gaussian processes (Eq. (7a)). In addition, the input features of the 
Gaussian processes were intrinsically regarded as deterministic. As 
shown in Fig. 4, this was sufficient for fitting the error of the assumed 
known model given the experimental data. Having said that, future 
research endeavors will focus on exploiting the property of Gaussian 
processes for quantifying uncertainty (cf. e.g. Eq. (7b)). For instance, 
one could treat the input features of the Gaussian processes as normally 
distributed random variables [60] or estimate the state uncertainty via 
Monte Carlo sampling from the distributions governed by the Gaussian 
processes [33]. Being able to quantify the uncertainty of the hybrid 
model can unlock stochastic control that is robust in probability, capable 
of dealing with chance constraints [60–63,44]. As such, stochastic 
control approaches can be of significant relevance when dealing with 
uncertain bioprocesses. Furthermore, as suggested by [64], the pre
dicted variance of Gaussian processes can be in principle incorporated 
into the objective function of optimization problems to balance explo
ration and exploitation properties. That is, one could actively explore 
areas of high model uncertainty while still exploiting the system. This 
could facilitate efficient model adaptation and enhance the performance 
of process optimization as a result of increasing model certainty. 

4. Conclusion 

We have proposed and experimentally validated a (Gaussian-pro
cess-supported) model-based optimization strategy for open-loop opto
genetic control of the ATPase to maximize bioprocesses production 
efficiency through dynamic enforced ATP turnover. We have outlined a 
simplified modeling framework, i.e., an unsegregated and quasi- 
unstructured kinetic modeling approach, that captures relevant pro
cess dynamics. This facilitates model parameterization and simplifies 
model-based optimization compared to previously proposed dynamic 
constraint-based models. We have also considered hybrid models 
combining knowledge-based and Gaussian-process-supported compo
nents for modeling and optimal control. 

For the experimental implementation, we have engineered E. coli to 
carry the CcaS/CcaR system to achieve optogenetic control of the 
ATPase. This engineered E. coli produces lactate as the main fermenta
tion product under anaerobic conditions. Following optimal control 
problems constrained by knowledge-based and hybrid models, we have 

maximized lactate concentration while aiming at a target product yield 
and depleting all available glucose. However, there is still some model- 
plant mismatch which limits the full potential of the presented 
approach. Further work includes the experimental implementation of 
model predictive control schemes coupled with soft sensors in the 
context of metabolic cybergenetic systems. Overall, the presented 
model-based open-loop optimization strategy, validated with experi
ments, outlines an example of a simple and structured way to maximize 
production efficiency in optogenetically regulated metabolic processes. 
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