日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Assessment of Calcaneal Spongy Bone Magnetic Resonance Characteristics in Women: A Comparison between Measures Obtained at 0.3 T, 1.5 T, and 3.0 T

MPS-Authors
/persons/resource/persons83952

Hagberg,  GE       
Institutional Guests, Max Planck Institute for Biological Cybernetics, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Capuani, S., Maiura, A., Giampà, E., Montuori, M., Varrucciu, V., Hagberg, G., Vinicola, V., & Colonna, S. (2024). Assessment of Calcaneal Spongy Bone Magnetic Resonance Characteristics in Women: A Comparison between Measures Obtained at 0.3 T, 1.5 T, and 3.0 T. Diagnostics, 14(10):. doi:10.3390/diagnostics14101050.


引用: https://hdl.handle.net/21.11116/0000-000F-5FA6-C
要旨
Background: There is a growing interest in bone tissue MRI and an even greater interest in using low-cost MR scanners. However, the characteristics of bone MRI remain to be fully defined, especially at low field strength. This study aimed to characterize the signal-to-noise ratio (SNR), T2, and T2* in spongy bone at 0.3 T, 1.5 T, and 3.0 T. Furthermore, relaxation times were characterized as a function of bone-marrow lipid/water ratio content and trabecular bone density.
Methods: Thirty-two women in total underwent an MR-imaging investigation of the calcaneus at 0.3 T, 1.5 T, and 3.0 T. MR-spectroscopy was performed at 3.0 T to assess the fat/water ratio. SNR, T2, and T2* were quantified in distinct calcaneal regions (ST, TC, and CC). ANOVA and Pearson correlation statistics were used.
Results: SNR increase depends on the magnetic field strength, acquisition sequence, and calcaneal location. T2* was different at 3.0 T and 1.5 T in ST, TC, and CC. Relaxation times decrease as much as the magnetic field strength increases. The significant linear correlation between relaxation times and fat/water found in healthy young is lost in osteoporotic subjects.
Conclusion: The results have implications for the possible use of relaxation vs. lipid/water marrow content for bone quality assessment and the development of quantitative MRI diagnostics at low field strength.