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An interpretable data‑driven 
prediction model to anticipate 
scoliosis in spinal muscular atrophy 
in the era of (gene‑) therapies
Tu‑Lan Vu‑Han 1,2*, Rodrigo Bermudez Schettino 3, Claudia Weiß 4, Carsten Perka 2, 
Tobias Winkler 2,5,6, Vikram Sunkara 7 & Matthias Pumberger 1

5q-spinal muscular atrophy (SMA) is a neuromuscular disorder (NMD) that has become one of the 
first 5% treatable rare diseases. The efficacy of new SMA therapies is creating a dynamic SMA patient 
landscape, where disease progression and scoliosis development play a central role, however, remain 
difficult to anticipate. New approaches to anticipate disease progression and associated sequelae will 
be needed to continuously provide these patients the best standard of care. Here we developed an 
interpretable machine learning (ML) model that can function as an assistive tool in the anticipation of 
SMA-associated scoliosis based on disease progression markers. We collected longitudinal data from 
86 genetically confirmed SMA patients. We selected six features routinely assessed over time to train 
a random forest classifier. The model achieved a mean accuracy of 0.77 (SD 0.2) and an average ROC 
AUC of 0.85 (SD 0.17). For class 1 ‘scoliosis’ the average precision was 0.84 (SD 0.11), recall 0.89 (SD 
0.22), F1-score of 0.85 (SD 0.17), respectively. Our trained model could predict scoliosis using selected 
disease progression markers and was consistent with the radiological measurements. During post 
validation, the model could predict scoliosis in patients who were unseen during training. We also 
demonstrate that rare disease data sets can be wrangled to build predictive ML models. Interpretable 
ML models can function as assistive tools in a changing disease landscape and have the potential to 
democratize expertise that is otherwise clustered at specialized centers.
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SMA and disease‑modifying therapies
New (gene-)therapies are changing the natural course of diseases in a growing number of neuromuscular dis-
orders (NMD). The first to undergo a drug-induced revolution was 5q-spinal muscular atrophy (SMA), a rare 
monogenic NMD with an incidence of 1:70001 that is now included in a growing number of newborn screen-
ing programs worldwide2. The currently approved disease-modifying therapies for SMA include gene therapy 
onasemnogene abeparvovec as well as antisense oligonucleotides nusinersen and small molecule splicing modifier 
risdiplam3–6. Gene therapy onasemnogene uses an adeno-associated virus 9 AAV9 to introduce the comple-
mentary DNA of the SMN1 gene encoding for the missing SMN protein. Antisense oligonucleotides and RNA 
targeting small molecules, on the other hand, leverage the SMN2 pre-mRNA splicing mechanism to include exon 
7, which is missing in defective SMN proteins6,7. The introduction of these therapies has marked a paradigm shift 
in previous SMA-associated orthopedic management strategies, especially for severely affected patients, such as 
SMA type 1, who historically rarely survived the age of two8,9. Up to 90% of patients develop SMA-associated 
neuromuscular scoliosis (NMS)10, which belongs to the group of flaccid NMS, characterized by rapid progression 
upon onset. The guiding principles of NMS management are closely linked to the progression of the underly-
ing disease, in which the anticipation of curve and disease progression is a key to successful treatment11. SMA 
patients are now achieving motor milestones beyond their historical counterparts12, and the conclusions drawn 
from historical data sets have limited applicability. As a rare disease, the treatment of SMA requires expertise 
that is regularly clustered at specialized centers, where patients are evaluated at regular intervals to monitor 
disease progression over the course of many years. In a changing disease landscape, data-driven machine learn-
ing (ML) algorithms harbor great potential and can serve as assistive tools during patient evaluations. However, 
the black-box nature of ML algorithms may limit adoption by physicians during clinical decision-making13. A 
clinical support tool should be trained on clinically relevant features and interpretable to a physician. The aim 
of this study was to develop an interpretable data-driven ML model capable of predicting scoliosis based on the 
clinical features that are assessed during routine visits of SMA patients. We used explainable AI (XAI) tools to 
test model interpretability.

Material and methods
Data collection
Data was collected from genetically confirmed 5q-SMA patients, who had received SMA therapies, using RED-
Cap electronic data capture tools14,15. Data was extracted from electronic health records (EHR) and Picture 
Archiving and Communication System (PACS). REDCap instruments included pseudonymized demographic 
data, SMA genetic and disease markers, clinical parameters from examinations and assessments during routine 
hospital visits. Motor scores were tested by physiotherapists trained in the SMArtCare registry16.

Data export and preparation
The SMA data set was fully updated and exported in May 2023. The descriptive statistics of the data set and 
visualization was performed using pandas, Matplotlib and Seaborn packages17–19 implemented in Python (version 
3.11). The processed data set was segmented into subsets of routine SMA visits, SMA therapy administrations 
and spine examinations. We performed expert domain-knowledge directed feature engineering. In summary, 
the variables related to a feature were aggregated and converted to numeric using current domain-knowledge 
of the feature. The features used for training in this study include ‘orthosis’, ‘ventilation’, and ‘contractures’ (see 
also Appendix).

Feature engineering
To overcome the challenge of training a machine learning model on a small data set, we engineered features to 
improve the predictive power of individual features. To do this, we used expert domain knowledge from clini-
cians specializing in treating SMA patients and the current literature. Contractures are common sequelae in 
SMA patients. The contractures are routinely measured by physicians during routine visits and the anatomical 
location (feet, knees, hips, elbows, wrists) and severity (none, mild, moderate, severe) is documented in the 
patient’s EHR. According to the current literature, contractures in the lower extremities occur early during SMA 
disease progression and have a significant impact on the patient’s functional capabilities. To calculate the score, we 
ranked the location of contractures by their significance for SMA disease progression and exponentiated it with 
the severity of the contracture. To engineer the orthosis score, we similarly ranked the location of the orthosis by 
their correlation with SMA severity and converted that representation to numeric. This allowed us to numerically 
encode whether a patient had one or a combination of multiple different orthosis types, which indirectly correlate 
with SMA severity. For the ventilation score, the ventilation type (none, non-invasive, invasive), frequency of 
use (daily, occasional, or when ill only), and duration of use (intermittent, night, day, or continuous) were used 
to calculate a score that represented the intensity of the patients’s ventilation requirements.

Feature importance testing and feature selection
For univariate feature importance analysis we performed correlation and predictive power score analysis20. To 
minimize the risk of data leakage during training, we removed all variables related to the spine. For multivariate 
feature importance analysis, we performed feature importance testing using mean decrease impurity analysis, 
permutation feature importance and Shapley Additive exPlanations (SHAP). We selected six SMA progression 
markers from different clinical domains to train a Random Forest Classifier (RFC). These progression markers 
included ‘age at assessment’, ‘CHOP-INTEND score’, ‘contractures score’, ‘HFMSE score’, ‘orthoses score’ and the 
‘ventilation score’.
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Scoliosis labels and weight
Target labels for a binary classifier, class 0 = ‘no scoliosis’ and class 1 = ‘scoliosis’ were collected with the follow-
ing prioritization from PACS and patients’ EHR: If anteroposterior spine radiographs were available, the Cobb 
angle was measured, and the scoliosis label was ‘positive’ (1) if a Cobb angle > 10° was measured. If there was 
no spine radiograph available, the label was collected from documented external orthopedic treatment (e.g., 
external radiological or orthopedic report). If neither were available, the scoliosis label was collected from clini-
cal examinations of the spine. The scoliosis label was ‘unknown’, and the patient was excluded from the train/
test data set when none of the above documentation were available. The diagnosis of scoliosis onset is marked 
with diagnostic uncertainty near the threshold of a Cobb angle of 10°, as is the case with any diagnostic tool. 
To include the uncertainty in the training a binary classifier, we incorporated weights to regulate penalization 
during training. Scoliosis labels of ‘0’ = ‘no scoliosis’ and ‘1’ = ‘scoliosis’, were annotated with scoliosis confidence 
levels, depending on the mode of acquisition (i.e., spine radiograph or clinical exam) and the severity of scoliosis 
(i.e., Cobb angle).

Missing data analysis
To fine-tune the model, we performed missing data analysis using missingno packages (Supplemental Fig. 1). The 
amount of missingness was 0% or 0.14% in case of the ventilation score. The HFMSE score and CHOP-INTEND 
score showed 64.6% and 59.28% missing data points, respectively (Supplemental Fig. 1a). An in-depth analysis 
of missingness showed that, in line with the age-dependent use of each score, the CHOP-INTEND scores were 
missing when the HFMSE was used and vice-versa. To preserve the age-dependent meaning of these missing 
data points, we interpolated only the missing data points between two HFMSE and CHOP-INTEND scores for 
each patient. This reduced the amount of missing data from 64.6% to 46.04% and 59.28% to 33.96%, respectively 
(Supplemental Fig. 1b).

Training and model evaluation
To train an ML model, we used scikit-learn’s Random Forest Classifier and trained the model using 100 trees, 
and a maximum depth of 6. The model was trained using the following six features: ‘age at assessment’, ‘CHOP-
INTEND score’, ‘HFMSE score’, ‘contractures score’, ‘ventilation score’, and ‘orthoses score’. Because of their 
feature randomness, bootstrapping and voting mechanisms, Random Forest Classifiers can handle moderate to 
severe class imbalance problems. The class distribution was moderately imbalanced in the training and testing 
data set. We used a k = 10 stratified Group-K-Fold cross-validation strategy21 to train and test the model. Using 
this cross-validation method, the train and test data sets were split to ensure that data from the same patient 
remained strictly separated in the train and test sets, respectively. The model’s performance was evaluated using 
accuracy, precision, recall, F1-score, and MCC. We plotted the average Received Operatic Characteristics Area 
Under the Curve (ROC AUC) curves and calculated the average AUC scores across ten folds and ten different 
random states. To validate our model, we tested the model on an unknown scoliosis data set (Fig. 1).

Predicted probability of scoliosis versus Cobb angles
To further interrogate our model’s predictions, we plotted the predicted scoliosis probabilities and compared 
them with the actual scoliosis Cobb angles (Fig. 4). The saved model was then tested further on an ‘unknown 
scoliosis’ data subset consisting of 27 patients without scoliosis labels (Fig. 1). We then performed patient follow-
up examinations to confirm the model’s prediction.

Code availability
The code supporting the findings of this study is available on Zenodo at the following https://​doi.​org/​10.​5281/​
zenodo.​11217​091. This repository contains all source code of the data processing, machine learning model 
training, and testing.

Approval by the Internal Review Board (IRB) and Ethics Commission
This study has been approved by Charité Universitätsmedizin Berlin Ethics Commission (EA2/178/21) and has 
been performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its 
later amendments. Clinical patient data collected within this study has been collected with the informed consent 
from all subjects and/or their legal guardian(s).

Results
The raw data set contained 1230 visits from 86 genetically confirmed 5q-SMA patients. The processed data 
frame consisted of 695 visits from 86 SMA patients. Scoliosis labels were available for 59 patients, resulting in 
a labeled train/test data set of 333 total visits. Patients without scoliosis labels (n = 27) corresponded with 150 
visits (see also Fig. 1).

Descriptive statistics of the training data set
Of 333 total visits from 59 SMA patients, 242 (72.7%) visits were labeled with ‘scoliosis’ and 91 (27.3%) visits 
with ‘no scoliosis’. SMA type 1 patients were represented with 104 (31.2%), SMA type 2 with 147 (44.1%) and 
SMA type 3 with 82 (24.6%) visits. There were 161 (48.35%) females and 172 (51.65%) males. The mean num-
ber of visits per patient was 5.64 (range 1–18). The mean age of patients was 115.58 months (SD 75.5), and the 
SMN2 copy numbers ranged from 1 to 6. 3 patients (0.9%) had 1 SMN2 copy number, 117 (36.2%) had 2 copy 
numbers, 141 (43.7%) had 3 copy numbers, 58 (18%) had 4 copy numbers, 1 (0.3%) had 5 copy numbers, and 3 

https://doi.org/10.5281/zenodo.11217091
https://doi.org/10.5281/zenodo.11217091
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(0.9) had 6 copy numbers (see Table 1 in Fig. 1c). The mean HFMSE score was 26.25 (SD 20.05) and the mean 
CHOP-INTEND score was 37.03 (SD 14.96), the mean Cobb angle was 31.46° (SD 24.97) (Table 1 in Fig. 1c). 
The mean age at SMA disease onset in the training data set was 19.35 months (SD 24.98) and the mean age at 
first SMA therapy was 98.98 months (SD 75.3) (Table 2 in Fig. 1c).

Descriptive statistics of the validation data set
The validation data set contained 27 patients with unknown scoliosis labels and 150 visits. 66 (44%) of these visits 
represented SMA type 1, 42 (28%) represented SMA type 2, and 29 (19.3%) represented SMA type 3 patients. The 

Figure 1.   (a) Data processing flow in the predictive modeling process.1230 visits of 86 genetically confirmed 
SMA patients were cleaned and merged on time. The 333 visits were labeled with corresponding scoliosis labels 
from available spine examinations for supervised training of a RandomForestClassifier (RFC). (b) Schematic 
visualization of data subsets for training and validation. The model’s predictions were tested on visits without 
scoliosis labels and patient subsets where the scoliosis was unknown. (c) Table 1 summarizes the demographics 
and features in the training and testing data set used during model development. Table 2 summarizes the 
demographics of the validation data set used to validate the model after training.
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mean age of patients in the validation data set was 40.92 months (SD 53.95), and the SMN2 copy numbers ranged 
from 2 to 4. 2 patients had 51 (34.5%) SMN2 copy numbers, 73 (49.3%) had 3 copy numbers and 24 (16.2%) had 
4 copy numbers (Table 2 in Fig. 1c). The mean HFMSE score was 46.33 (SD 13.91), and the CHOP-INTEND 
score was 50.13 (SD 13.31). The mean age at first SMA disease onset was 34.48 months (SD 56.07) and the mean 
age at first SMA therapy was 36.37 months (SD 51.45) (Table 2 in Fig. 1c).

Individual features alone are poor predictors of scoliosis
For univariate feature analysis we plotted the correlation coefficients and predictive power scores in a heatmap 
(Fig. 2a,b). When a patient transitioned from being evaluated using the CHOP-INTEND score to HFMSE score, 
both scores were strongly correlated (r = 0.88) (Fig. 2a). We observed weak correlation between the CHOP-
INTEND and HFMSE score with the contractures score (r = 0.27 and 0.44, respectively). There was a moder-
ate correlation between the ventilation score and the HFMSE and CHOP-INTEND score, (r = 0.48 and 0.51, 
respectively). The predictive power score showed that the CHOP-INTEND and HFMSE scores were moderately 
predictive of each other (PPS = 0.60 and 0.64). The HFMSE score, routinely used for patients 2 years and older22, 
predicted the age at assessment. Results of our multivariate feature analysis are shown in Fig. 2c,d. The SHAP 
value analysis showed that high values of HFMSE scores negatively impacted the model’s prediction for class 1 
‘scoliosis’. Increasing age at assessment positively impacted the prediction for class 1. In turn, low contracture 
scores negatively impacted class 1 prediction. The mean decrease impurity analysis over multiple folds showed 
relatively high feature importance for the HFMSE and CHOP-INTEND (Fig. 2). To test the predictive power of 
collective features over individual features, we compared ROC AUC curves (Supplemental Fig. 2), and observed 
that training on collective features improved model performance.

Prediction of scoliosis based on collective clinical features
The model achieved a mean accuracy of 0.77 (SD 0.2) and an average ROC AUC of 0.85 (SD 0.17). For class 1 
‘scoliosis’ the average precision was 0.84 (SD 0.11), recall 0.89 (SD 0.22), F1-score of 0.85 (SD 0.17), respectively. 
The average Matthews correlation coefficient (MCC) was 0.40 (Supplemental Fig. 3b). The confusion matrices 
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of ten stratified group K-folds are plotted in the Supplemental Fig. 1a. Detailed performance metrics for each 
stratified group K-fold can be found in Supplemental Fig. 3b. The results suggested variability across different 
stratified group K-folds. To get a more robust assessment of the model’s performance, we performed ten strati-
fied group K-folds using different random states and calculated the average ROC AUC. The average ROC AUC 
across ten random states of grouped K-fold cross validation runs was 0.84 (SD 0.007) (Fig. 3).

Predicted scoliosis probability
Using the learnt RFC model, we plotted the model’s predicted scoliosis probability for each patient. Here we 
could observe the changes in the model’s predicted probability of scoliosis over time, plotted as age of the patient 
in months (Fig. 4). Note that the Cobb angle was not used in the model’s training. When we plotted the model’s 
predicted probability of scoliosis and compared it with measured Cobb angles in spine radiographs, we could 
retrace the inflection point that marked the model’s predicted time point of scoliosis onset (Fig. 4).

Model validation on ‘unknown scoliosis’ data set
We further tested our trained model on the unlabeled subset of the SMA data set and performed follow-up 
examinations of the patients to verify the model’s prediction. Some patients had either relocated or were deceased, 
so the predicted labels could not be verified for some. We were able to attain follow-up examinations from ten 
patients and the model had predicted the scoliosis label correctly for 9 of them. Figure 5 shows examples of the 
model’s predicted scoliosis probability and the results of our follow-up examinations.

Discussion
SMA is one of the first monogenic neuromuscular disorders to receive gene therapy treatment. The efficacy of 
new SMA-therapies is changing the landscape of patient phenotypes. Early treatment administration improves 
outcomes 23, which is why SMA is now implemented in a growing number of newborn screening programs 
worldwide2. In addition, more effective modes for the administration of SMA therapies are currently being 
explored (e.g., in utero therapy)24. These advances in SMA treatment will create a dynamic SMA patient land-
scape, in which the anticipation of SMA disease progression and associated sequelae will guide decisions to 

Figure 3.   Training and performance evaluation of a binary Random Forest Classifier for scoliosis prediction. 
(a) Cross validation using StratifiedGroupKFold for ten folds (b) Average Receiver Operating Characteristics 
(ROC) for ten cross-validation folds of ten different random states (c) exemplary decision tree.
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provide the best standard of care. We developed an interpretable data-driven ML model that can predict scoliosis 
based on SMA progression markers, which can function as an assistive tool during interdisciplinary treatment 
evaluations. It is important to note that the current model has been trained to predict the likelihood that an 
SMA patient has scoliosis at a certain visit based on routinely assessed clinical features. This model has not been 
trained to forecast the presence of scoliosis at a future visit.

Random forest classifier as an assistive tool
The aim of this study was to develop an assistive tool for physicians involved in the treatment of SMA patients that 
can help clinicians anticipate scoliosis onset. The model must be robust and interpretable for future adoption of 
the tool. Random Forest Classifiers have repeatedly demonstrated high accuracy and robustness in classification 
tasks. In addition, RFCs can capture nonlinear relationships between features and their target (here, ‘scoliosis’). 
By using different feature importance calculation methods, visualizing decision trees, and plotting the model’s 
predicted probabilities over time, the physician can interpret and interact with the model’s output and make 
decisions based on the presented predictions. How this technology will be used in the future will greatly depend 
on its integration with electronic health data collection and its adoption by physicians. Currently, clinical features 
of SMA patients are routinely assessed in the SMArtCare study. Such an algorithm could perform an automated 
scoliosis prediction based on routine feature inputs and suggest referrals to pediatric spine specialists, who can 
then use the model’s prediction with the child’s feature development to derive individualized treatment plans 
and schedule time points for reassessments and consultation.

SMA data set statistics and representation
The training data set contained relatively balanced proportions of SMA types 1, 2, and 3 (31.23%, 44.14%, 24.62%, 
respectively). The gender distribution of 48.19% females to 51.81% males aligns with previously reported SMA 
statistics. The natural history of SMA is associated with scoliosis development in up to 60–95% of patients, 
depending on SMA types 25,26. The training data set contained 72.7% scoliosis, which was representative of the 
average prevalence of scoliosis in SMA25. Overall, the distribution between classes of ’scoliosis’ and ‘no scoliosis’ 
was moderately imbalanced, so we chose to train a Random Forest Classifier, which is known for its robustness 
even in severe class imbalances. Notably, most patients in this data set were born in Germany (72·0.09%), one of 
the first countries to approve SMA therapies and implement SMA in newborn screenings 1.
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Figure 5.   Model validation on the ‘unknown scoliosis’ data set. The predicted scoliosis probabilities for patients 
3, 39, 33, 43, 73, and 84 are plotted on the left graph. The corresponding follow-up examinations of the spine are 
depicted on the right side of the graph.
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Scoliosis labels and scoliosis prediction
The diagnosis of scoliosis is defined by a Cobb angle of > 10° (± 3°) on an anteroposterior spine radiograph, which 
may be debatable even among experts. Interestingly, some of the model’s predicted scoliosis probabilities reflected 
the uncertainty related to the diagnostic interval. For patient 53, the model predicted ‘scoliosis’ with a probability 
of only 41% (Fig. 4). When we compared the predicted probability with the corresponding spine radiograph, the 
measured Cobb angles were 7° and 13°, respectively, representing scoliosis onset. The current model was trained 
as a binary scoliosis classifier and therefore, cannot predict actual Cobb angles. Such a prediction model would 
require more complex models and larger data sets that include multiple spine radiographs taken in children with 
SMA at multiple time points. Ethically, this data set does not exist at the moment. Other approaches to address 
these obstacles could include data augmentation approaches in the future. However, it is remarkable that the 
model’s predicted scoliosis probability could reflect a diagnostic uncertainty in the physician’s spine radiograph. 
Future performance testing of the model should include an external validation data set. In addition, the model 
will likely improve when retrained with additional data.

Feature engineering and feature selection
This model was designed to provide robust predictions regardless of baseline biomarkers, which is why we 
deliberately selected routinely assessed SMA progression markers for training. Excluding baseline SMA disease 
markers such as SMA type, SMN2 copy numbers, motor milestones, first symptom onset, and SMA therapy, 
reduced our model’s performance metrics but, in our opinion, was optimized toward our model’s purpose 
and future application. Importantly, our focus on disease progression markers during model training is in line 
with the ongoing update of SMA classification27. To improve training on a rare disease data set, some features 
were engineered and presented as numeric using domain knowledge, which was based on the current evidence 
reported in the literature. Improved understanding of the impact of different features on SMA disease progres-
sion and scoliosis development, could further improve the feature engineering process and potentially, model 
performance in the future. Nevertheless, RFCs have demonstrated robustness in the context of different data 
types, including categorical and numerical.

Limitations and bias in rare disease data sets
SMA is a rare disease. Data-driven models strongly depend on the data that they are trained on. Despite rigor-
ous data preparation and feature selection to ensure meaningful data representation, potential biases in the 
training set may limit its current deployment. An external validation is needed in the next step. To the best of 
our knowledge, the data set used for the purpose of this study is one of the largest and most comprehensive 
SMA data sets to date. The robustness of the model should improve when it is retrained on a larger data set in 
the future. Potential solutions to mitigate current limitations may include using generative methods for data 
augmentation28. However, these methods require extensive evaluation before application for the purpose of 
clinical support tools. We were cautious in using such methods, as our current understanding of the new SMA 
patient landscape is still limited. Our predictive model, which utilizes SMA disease progression markers, could 
augment clinical decision-making in the future by offering quantified probabilities of scoliosis development, 
providing actionable insights that extend beyond the capabilities of traditional assessments. These insights would 
support targeted early intervention strategies and personalized care in neuromuscular disease management in 
the context of gene therapy.

Conclusion
SMA will likely not be the last NMD to undergo a drug-induced alteration of the natural course of disease. New 
approaches to anticipate disease associated sequelae and progression will be needed to continuously provide the 
best standard of care. We demonstrate that rare disease data sets can be wrangled to build predictive ML models. 
These models harness the compounded observations that normally train a clinician’s intuition. Our trained model 
could predict scoliosis using selected disease progression markers, namely ‘age at assessment’, ‘HFMSE score’, 
‘CHOP-INTEND score’, ‘ventilation score’, and ‘orthoses score’ and ‘contractures score’, and scoliosis prediction 
correlated with radiological Cobb angle measurements. More importantly, the model could help clinicians antici-
pate scoliosis in patients who were unseen during model training. Such ML models can function as assistive tools 
during interdisciplinary patient evaluations and augment expertise in an era of disease-modifying therapies. In 
addition, it has the potential to democratize expertise that is otherwise clustered at specialized centers. Future 
work entails giving access to and validating our model on a data set from an international clinic.

Data availability
The dataset generated during and analyzed during the current study are not publicly available, due to patient data 
protection. We will make the anonymized data subset used to train the final ML model in this study available 
through the corresponding author upon reasonable request. This will include data dictionaries. Specifically, the 
SMA data subset that underlie the results reported in this article (i.e. features used for training a Random Forest 
Classifier) after de-identification, i.e. anonymization (removal of record ID, age of the patient, dates of assess-
ments, locations, genetic information). We will also provide our python code, including feature engineering code, 
written for this study. To protect the identity of patients and minimize the risk of re-identification in a rare disease 
data set, we would share the data only with investigators whose proposed use of the data has been approved by 
an independent review committee (“learned intermediary”) identified for this purpose. In concordance with 
our Clinical Trial Office’s Data Protection board, the data should not be made publicly available to avoid misuse, 
re-identification through data-pooling methods.
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