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Figure 1: How can you fnd an appropriate voice for a robot? We propose a fve-step approach: A Develop a voice creation tool 
for robots. B Participants iteratively change the voice of the robot using this tool to fnd a voice that fts well to the robot. C 
Identify attributes relevant to the perception of robots from previous literature and a taxonomy elicitation procedure. D A 
separate set of participants rates all images and their matched voices along those perceptual attributes. E Predict well-matched 
voices for unseen robots. For this and all future fgures, the copyright holders of the robot images are defned in Tables S9–S10. 

ABSTRACT 
Speech is a natural interface for humans to interact with robots. Yet, 
aligning a robot’s voice to its appearance is challenging due to the 
rich vocabulary of both modalities. Previous research has explored 
a few labels to describe robots and tested them on a limited num-
ber of robots and existing voices. Here, we develop a robot-voice 
creation tool followed by large-scale behavioral human experi-
ments (N=2,505). First, participants collectively tune robotic voices 
to match 175 robot images using an adaptive human-in-the-loop 
pipeline. Then, participants describe their impression of the robot 
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or their matched voice using another human-in-the-loop paradigm 
for open-ended labeling. The elicited taxonomy is then used to 
rate robot attributes and to predict the best voice for an unseen 
robot. We ofer a web interface to aid engineers in customizing 
robot voices, demonstrating the synergy between cognitive science 
and machine learning for engineering tools. 
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1 INTRODUCTION 
Robots are used in a wide range of scenarios and they vary in 
purpose and appearance [57]. The voice is an intuitive medium 
for humans to interact with robots, conveying not only spoken 
content but also intentions [62], personality [70], conversational 
goals [37], and emotions [6]. However, a discrepancy between what 
we see (the robot’s appearance) and what we hear (its voice) can 
strongly hinder robots’ usability. Previous research has stressed 
the importance of users’ afective responses to robots in fulflling 
their functions [11, 32]. However, a mismatched voice can result in 
a variety of aversive reactions, such as unsettling, eerie, uncanny, 
and repulsive responses [51, 54, 55, 74, 78]. The intensity of this 
dissonance can be infuenced by factors like the user’s age or the 
robot’s realism [17, 52]. 

Given the broad spectrum of robot designs, the range of possi-
ble voices given to robots must be similarly diverse. For example, 
functional robots need to be highly intelligible (e.g., for tasks like 
navigation), whereas popular media robots, like Pixar’s WALL-E, 
are designed to sound less clear but more expressive. However, ex-
isting robot voices are limited in their diversity [12] and research is 
often limited in terms of the number of explored voice dimensions 
[31, 79, 80], the number of robots studied [2, 23, 31, 79, 80], or in 
terms of the robots’ diversity [60]. So, how can we synthesize a 
robot voice, accounting for the broad spectrum of possibilities? 

The advancement of Text-To-Speech (TTS) systems has made it 
possible to synthesize realistic human voices [77]. However, desir-
able robot voices may signifcantly difer from human voices. This 
work extends a state-of-the-art TTS model [35] (Figure 1A) to cover 
a wide range of robot voices: from highly synthetic or distorted 
voices to natural and individualized voices that sound similar to 
human speech. How can we efciently search the expansive space 
of all voices to fnd the one that best matches a newly crafted robot? 
For this problem, we use an adaptive, human-in-the-loop sampling 
paradigm (Gibbs Sampling with People, or GSP; [24]) to iteratively 
fnd a voice that fts a robot (Figure 1B). 803 participants engaged in 
the task of matching a voice to 175 images of commonly used robots 
that span a wide variety of appearances and contexts. A separate 
group of human raters (N = 142) confrmed that the created voice 
improves over iterations and plateaus in the last iterations. 

We then performed a literature review and identifed attributes 
that characterize robots and their voices. We compared this list to 
labels elicited directly from participants viewing images of robots 
(N = 73) or listening to their matched voices (N = 59). To do so, 
we use a recently developed adaptive human-in-the-loop labeling 
paradigm [46] that does not rely on a pre-existing taxonomy (see 
Figure 1C). We found that terms emerging from this process mostly 
overlapped with those proposed in the literature. We then compiled 
a new list of 40 labels that frequently appear both in the literature 
and in our labeling pipeline and recruited new groups of partici-
pants to rate the voices (N = 245) and images (N = 298) along these 
dimensions (see Figure 1D). Finally, we show that the perceptual 
rating of the image predicts a suitable voice for a robot (see Figure 
1E). A separate group of raters confrmed that the predicted voice 

is similarly good as the matched voice (N = 94). We conducted two 
separate experiments on a new set of 175 robot images from the 
ABOT dataset [61] (N = 249) and on randomly generated voices (N 
= 189) to ensure the reliability of our results. We observed that the 
relationship between labels in these new datasets was similar to 
the original one. Furthermore, using the ratings of the new robots 
we propose a matched voice optimized from images in the frst 
set. We show the predicted voice is as good as the original match, 
confrming the robustness of our fndings. We have made the de-
veloped voice creation tool publicly available as a Python package1 

to enable our validated voice confgurations to be directly used in 
real-world applications. Finally, we provide an online robot voice 
prediction tool, which can be used to identify possible voices for 
new robots2. 

The contributions of this work can be summarized as: 
• We provide a voice creation tool that covers a wide range of 
robotic voices using both state-of-the-art TTS and classical 
signal processing (Figure 1A). 

• We present a human-in-the-loop approach for creating a 
synthetic voice for a particular robot (Figure 1B). 

• We use the taxonomy elicitation process to identify labels 
that are relevant for the perception of robots, both in audi-
tion and vision, and compare them with attributes from the 
literature (Figure 1C). 

• We create a densely annotated dataset of the attributes of 
175 robots (Figure 1D). 

• We show how our tool predicts suitable voices for new robots 
based on those perceptual dimensions (Figure 1E). 

• In order to demonstrate that our results are robust regardless 
of the initial set of robots, we rerun the annotation and 
prediction steps with a diferent set of 175 robots. 

• We make the resulting TTS voices publicly available as an 
easy-to-use software package. 

2 RELATED WORK 
Here we frst review related research exploring the correlation be-
tween a robot’s appearance and voice dimensions, underlining the 
signifcance of aligning a robot’s voice with its perceived attributes. 
We then propose to apply two recently developed approaches to 
human-in-the-loop alignment to robot voice alignment: 1) human-
in-the-loop sampling [24], which is the foundation of our method 
for collectively generating voice samples that match a robot’s ap-
pearance, and 2) human-in-the-loop labeling [46], which we use to 
capture people’s auditory or visual perceptions of robots. 

2.1 Robots and Speech 
Existing TTS models have frequently been used as voices for robots 
[68] and their quality has greatly improved in the last decade 
[13, 77], enabling them to produce speech that is nearly indis-
tinguishable from human recordings [35]. humanlike voices are 
typically preferred over synthetic ones [40], which makes state-of-
the-art TTS models an excellent voice creation tool. A recent switch 
from recurrent to non-autoregressive models [34, 75, 83] brought 
about major improvements in latency, allowing robots to produce 

1https://robotvoice.s3.amazonaws.com/code.zip 
2https://robotvoice.s3.amazonaws.com/predict.html 
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voices faster than real-time. Modern TTS models have great factor-
ization abilities [42, 82, 89], allowing users to independently change 
text, prosody, and speaker identity (i.e., what and how something 
is being said by whom). Harnessing such rich latent features [72] 
not only facilitates the crafting of new voice personae [33, 76], but 
also ensures that these synthesized voices encapsulate the nuances 
and diversity inherent to human speech. 

A substantial body of extant work emphasizes the importance of 
synchronizing the robot’s voice with its appearance [2, 3]. Simply 
adopting a TTS model that delivers humanlike speech might be 
incongruous for a robot that has a distinctly non-human appearance. 
For example, imagining R2D2 from Star Wars speaking with a plain 
natural voice would be odd and likely uncanny [55, 74]. 

So what makes a voice appropriate for a robot? Existing stud-
ies have investigated this question by looking into the correlation 
between appearance and voice along certain dimensions (e.g., gen-
der or naturalness). For example, McGinn et al. [50] developed 
a voice association task (i.e., matching a picture of a robot to a 
voice) showing that gender and naturalness strongly afect the vi-
sual appearance people associate with a robot. Other studies have 
investigated the opposite relationship: How the voice infuences 
the mental model that people have of a robot. For example, Powers 
et al. [63] showed that participants associate a male voice with 
a more knowledgeable person. This research also highlights the 
risks of reinforcing existing social biases when matching specifc 
vocal characteristics, like a deep voice, with particular personality 
traits, such as being knowledgeable. In addition to aligning the 
voice and appearance of a robot, its behavior must also be syn-
chronized. Torre et al. show that while trust partly depends on the 
voice [79], the consistency of voice and behavior is more important 
[80]. This is in line with previous research showing that people 
prefer serious-sounding robots in work-related contexts [20] and 
empathetic voices for healthcare robots [31]. 

As this literature review emphasizes, aligning robot voices with 
their appearances is a task of crucial importance. Here, we propose a 
method that can handle both highly synthetic and natural-sounding 
robot voices. We also develop a framework to solve the alignment 
problem by optimizing the voice of a specifc robot based on its 
appearance. Finally, we enrich the aforementioned literature by pro-
viding attributes of robots that are relevant to the human perception 
of voices and images. 

2.2 Human-in-the-Loop Sampling 
Given the wide variety of possible vocal characteristics, tuning 
a robot’s voice is a considerable challenge. While thus far this 
task has been left to specialists [38, 56], an alternative approach 
is the human-in-the-loop method. Human-in-the-loop methods 
efciently integrate human decision-making with computer algo-
rithms, so that a complex computation such as sampling or opti-
mization can be collectively performed by humans and computers 
[24, 69]. Human-in-the-loop techniques have been proposed in the 
context of mapping internal representation in visual memory [44], 
3D pose perception [43], color perception [91], musical rhythm 
and melody [4, 29]. More recently, various human-in-the-loop tech-
niques have been developed in the context of speech, including 

human-in-the-loop evolutionary algorithms to maximize the emo-
tional content in sound [67, 84] and a GUI-based tool allowing 
users to build a custom TTS voice [38]. These approaches are more 
efcient than elicitation methods that do not use optimization algo-
rithms, such as reverse correlation [16, 24, 45]. 

A particularly efcient method for optimizing a stimulus for a 
desired subjective property is Gibbs Sampling with People (GSP) 
[24]. In this paradigm, participants are introduced to a stimulus 
space and use a slider interface to change one dimension of the 
stimulus space at a time. Importantly, the result from one iteration 
becomes the input for another iteration, where the same participant 
or a diferent participant now manipulates another dimension of 
the space (Figure 2A). For instance, when provided with a robot 
image, participants might adjust specifc voice synthesis parameters 
sequentially to best align with the given image. Harrison et al. [24] 
demonstrated that, under experimentally verifable conditions, this 
iterative method converges to samples of high subjective quality -
that is, it identifes a voice that perceptually aligns with the image. 
GSP was previously used in the domain of emotional speech, [24, 86] 
or associating a particular voice to a face [85] in high-dimensional 
latent spaces in TTS models. To increase the speed of convergence, 
one can show the same slider to multiple participants and aggregate 
their responses (e.g., mean or median). In our experiment, we used 
decisions from 5 participants for every iteration. 

2.3 Human-in-the-Loop Labeling 
One of the best-known models for characterizing human personal-
ity is the Big Five personality taxonomy [48]. Following the Com-
puter as Social Actors paradigm [58], researchers have applied social 
categories, such as gender, age, and personality, to socially inter-
active computer agents [32, 39]. Furthermore, specifc dimensions 
have been developed for speech-based conversational agents [88] 
and for robots [8]. Despite these eforts, it remains unclear which 
dimensions people utilize in their perception of robots and whether 
these dimensions align with a range of established theories. 

A recently developed adaptive tag mining pipeline called Sequen-
tial Transmission Evaluation Pipeline (STEP-Tag), where partici-
pants adaptively annotate a set of target stimuli, both by providing 
new descriptive tags for the stimulus and by simultaneously re-
viewing the tags made by previous participants [46]. When the 
pipeline is applied to images of robots (see Figure 2B), participants 
view the image of a robot, provide tags describing their impression 
of the robot, and rate the relevance of tags that were created by 
other participants (5 Likert-scale). Participants also have the possi-
bility of fagging tags they deem inappropriate. Tags are removed 
if they are fagged twice (but can potentially reappear if a future 
participant adds them again). As the process unfolds over many iter-
ations, meaningful tags emerge that describe the stimulus well and 
are validated by multiple participants, thus enabling a theory-free 
elicitation of tags describing the stimulus. It has previously been 
demonstrated that this method is efective in eliciting open-ended 
taxonomies without pre-specifcation, predicting downstream tasks 
(such as perceptual and semantic similarity), as well as predict-
ing similarity in the representation of humans and deep learning 
models [46]. 
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Figure 2: Human-in-the-loop paradigms. A Gibbs Sampling with People. Participants change the slider, modifying only one 
dimension at a time. By cycling over the dimensions, participants explore dense regions in the feature space that are associated 
with a given robot. B STEP-Tag. Through the labeling process, participants simultaneously create new tags and review the tags 
provided by others. Over many iterations, meaningful and rich semantic labels are efciently collected for each robot image. 

Unlike conventional methods in the literature, STEP-Tag elimi-
nates the need for manual post-processing tasks like merging syn-
onyms, thereby reducing the potential for subjectivity. However, 
this also means that the provided labels by the user can refect 
stereotypes and reveal biases present in the data (e.g., images of 
cleaning robots often look feminine) and in the participants (e.g., 
images of masculine-looking robots are perceived as intelligent). 
Using STEP-Tag can help minimize prejudice in human-robot in-
teractions by characterizing and identifying them, thus enabling 
engineers to create less biased systems. 

3 METHODS 

3.1 Images of Robots 
As robots vary greatly in their appearance, our goal was to col-
lect a variety of images that capture this variation. To simplify 
the complexity of possible presentation methods (such as images, 
videos, and 3D designs), we decided to focus on static images. We 
used an existing dataset (IEEE Robots) downloaded all robots from 
https://robots.ieee.org/robots (April 2022), removing robots with-
out a frontal view and discarded devices such as exoskeletons or 
telepresence interfaces, which integrate a human user. For each 
robot, we selected the best image, ideally showing the entire robot 
in isolation. The selected images span diverse types of robots with 
14 diferent categories, ranging from industrial to consumer robots 
and humanoids to drones (see Supplementary Materials C.1 for the 
distribution of these categories). 

This list of 160 IEEE robots was extended with 15 images that 
were collected from other sources, such as promotional pictures 
from manufacturer websites or photographs taken by ourselves. To 
avoid contextual cues, we removed the shades and backgrounds 
for all robots and replaced them with a solid white background. In 
total, we gathered 175 images of robots across many application 
domains (see Table S9–S10). This selection of 175 robots is notably 
larger than datasets in relevant previous literature (maximally eight 
diferent robots, see Supplementary Materials C.7) 

3.2 Voice Manipulation and Efects 
To create a voice for a robot, we need an expressive voice creation 
tool that is fully parametrizable. Our solution is depicted in Figure 
3. Overall, the architecture changes the voice of a Text-To-Speech 
(TTS) model, changes the speaking speed, and passes the resulting 
audio to a rack of efects. Participants use sliders to adjust the model 
parameters, thus changing the voice. 

The frst fve sliders modify the voice of the speaker of a TTS 
model. We modifed the state-of-the-art TTS model VITS [36] 
trained on the VCTK dataset [92] so that it can be used to di-
rectly modify the voice representation (speaker embedding). We 
performed a Principal Component Analysis (PCA) on all 110 speaker 
embeddings of the same dataset. We use the frst fve PCA com-
ponents, which seem to capture sufcient variation in the human 
voice, as voice sliders (see Supplementary Materials C.4 for fur-
ther details). These dimensions have no direct interpretation, but 
they correspond to intuitive vocal features such as gender, speak-
ing speed, and voice timbre. We perform reverse PCA to obtain a 
speaker embedding based on the PCA dimensions. For maximum 
expressivity and minimum distortion, the range is constrained to 
approximately four standard deviations in all dimensions. 

Since the variability in speaking speed in natural human speech 
is rather limited and the PCA dimensions by themselves did not 
provide enough variability in terms of duration, we added a sixth 
slider that can parametrically change the speaking speed ranging 
from 46% to 153% of the original speed using Parselmouth [30], a 
Python wrapper for Praat [10]. 

Since we could not fnd a suitable dataset of robot voices, we 
trained our TTS system on natural speech (VCTK). This means 
that the TTS model mainly produces naturalistic human voices and 
does not create robotic-like sounds. Therefore, we added sliders to 
apply robotic audio efects. Here we combined modern TTS with 
traditional signal processing techniques. We implemented eight 
diferent efects commonly used to create robotic voices: changing 
the pitch, decreasing synthesis quality, applying a timeshift, using a 
vocoder, or applying one of four diferent fanger confgurations to 
the audio. We implemented an efect rack using the Librosa Python 
library [49], which applies the efects in a sequential order. To avoid 

https://robots.ieee.org/robots
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Figure 3: Architecture. The voice of the robot is controlled via eight sliders. The frst fve sliders control the voice of the TTS 
model using the frst fve PCA dimensions on the speaker embeddings. The sixth slider controls the speed of the speech. The 
seventh slider selects one of the eight efects. The last slider determines the strength of the efect. When moving the slider, the 
voice confguration updates one parameter in the voice confguration (here: speed). This triggers the synthesis pipeline and the 
resulting audio is played back to the user. 

a strong mixture of voice efects, participants used a seventh slider 
to pick one of the eight efects and used an eighth slider to adjust 
the strength of the efect. The overall amplitude of the efects was 
manually normalized such that each efect would be approximately 
equally salient. The slider positions are linearly spaced (with a 
resolution of 16 positions) to make the synthesis computationally 
efcient. We used the following types of efects. Note that the 
exact parameters for the efects are described in the Supplementary 
Materials C.5 and implementation is provided in the code repository 
(https://robotvoice.s3.amazonaws.com/code.zip): 

• Pitch. We enhanced the signal with two transposed audio 
tracks, where one was transposed fve semitones up and 
the other transposed fve semitones down. By doing so, the 
intonation pattern of the voice gets obscured, resulting in 
an unnatural voice. Further, both transposed signals are a 
minor seventh apart, which is generally considered a rather 
dissonant interval in Western music perception [14]. As such, 
additional tension in the voice is induced. The correspond-
ing slider in our experiments allows us to control the ratio 
between the non-transposed and transposed signals. 

• Synthesis quality. Older text-to-speech systems are poor 
at phase reconstruction, which results in audible artifacts 
that sound “robotic”. To emulate this poor reconstruction, 
we transformed the signal to the frequency domain using 
a short-time Fourier Transform. We then reconstructed it 
using an inverse short-time Fourier Transform but with ran-
domly initialized phase estimates. Our implementation uti-
lized Librosa’s Grifn-Lim algorithm [49] without executing 
phase approximation. 

• Timeshift. To facilitate the creation of more “fuzzy” sounds, 
we also provided the option to blend the original voice with a 
slightly time-shifted version of the original signal. By doing 
so, the warmth and resonance of a natural voice gets veiled. 
To obtain this efect, the original signal was delayed for a 
few milliseconds, and the time-shifted signal was combined 
with the original signal. 

• Vocoder. Vocoder efects are frequently used to create 
robotic voices [65]. We used the speech signal as a mod-
ulator for a carrier signal. By fxing that carrier signal to 
a certain frequency, the resulting voice sounds monotone 
and mechanical. Our pipeline makes use of TAL Vocoder3, a 
publicly available VST implementation, which we included 
into our codebase using Pedalboard4. 

• Flanger. We incorporated a fanger, an audio efect that im-
parts a more synthetic quality to the sound. The fanger efect 
is achieved by combining a signal with a delayed version of 
itself where the delay time is modulated by a low-frequency 
oscillator. This addition ofers an avenue to ofset the voice’s 
natural tone. We made four distinct fanger variants available, 
each producing a unique auditory experience. 

For each robot we randomly selected a sentence from the 720 pho-
netically balanced and semantically neutral Harvard sentences [1]. 

3.3 Robot attributes proposed in the literature 
To obtain a long list of attributes proposed for robots in literature we 
included labels from the “Big Five” personality model [21, 48, 66, 81], 
from the Godspeed questionnaires that focuses on social robots [8], 
from the relevant dimensions that Völkel et al. identifed for voice 
assistants [88], and from the AttrakDif questionnaire that focuses 
on user experience in general [26]. Furthermore, we added three 
adjectives signifying demographic features, namely “young”, “male” 
and “female” to specify age and gender. We also added the word 
“animallike” because our collection of robots contains many artifcial 
pets and animal-inspired robots. This yielded 260 unique attributes 
(see Supplementary Tables S4–S7 for the full list). While this list 
clearly does not capture all possible attributes ever mentioned for 
robots, it covers the most widely used attributes in the literature. 

3.4 Participants and experiments 
Overall, we recruited 2,505 participants. Participants were recruited 
from Prolifc and provided informed consent under an approved 

3https://tal-software.com/products/tal-vocoder 
4https://github.com/spotify/pedalboard 
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protocol, and data was collected anonymously, with participants 
identifed only by their prolifc ID in order to enable compensation. 
Participants earned 9 pounds per hour, had a minimum age of 18 
years, had to live and be born in the UK, had to speak English as 
their frst language, and had to have been raised monolingually. 
See Supplementary Materials B.1 for additional demographic infor-
mation about the participants and the number of participants in 
each experiment. All experiments were implemented with PsyNet
5, which is a framework for large-scale behavioral research. (see 
Supplementary Materials B.2) If audio was played in the experi-
ment, we made sure participants were wearing headphones [90]. If 
the experiment involved a lot of text (see Supplementary Table S1), 
we tested English profciency by an objective test that goes beyond 
their self-report (see Supplementary Materials B.3). 

4 RESULTS 

4.1 Human-in-the-Loop Voice Creation 
803 UK participants engaged in a GSP experiment (see Supple-
mentary Materials B.1 for demographic information). In the study, 
participants were tasked with tailoring voices to 175 robot images 
(each participant visits 20 diferent robots) by manipulating one 
slider at a time in order to tweak vocal parameters to best match 
the voice with the robot’s appearance (as depicted in Figure 2A, see 
Supplementary Materials D.1 for instructions). Initially, all vocal 
parameters were uniformly randomized with the possible range 
values (see Methods, Section 3.2). We then presented the slider to 
fve participants, and the median of their responses was carried 
forward to the subsequent iteration (in the case of the efects slider, 
we picked the majority vote, see Supplementary Materials D.2 for 
further justifcation of the choice of median). In the next iteration, 
the aggregated parameters from the previous generation are propa-
gated and a new group of fve participants are recruited to control 
a diferent voice dimension. The idea is that the subjective match 
of voices to images gradually increases over iterations [24]. The se-
quence in which the dimensions were altered was shufed for each 
robot. The experiment concluded after 48 hours, during which time 
70 images underwent 15 iterations, and 105 images experienced 16 
iterations. Consequently, each of the eight dimensions was visited 
approximately twice. 

Figure 4A shows that the standardized slider diference between 
consecutive iterations within a chain decreases over the course 
of iterations. This means that participants move the sliders to a 
lesser extent at later iterations, indicating convergence. In par-
ticular, there was a signifcant diference between the frst and 
last iteration (Wilcoxon signed rank test: V = 11277.0, n = 175, 
p < 0.001, r = .43, this and all future tests are Bonferroni cor-
rected for multiple comparisons) but we did not fnd a signif-
cant diference between the last iterations to the six iterations 
preceding it. The slider diference drops after all eight dimensions 
have been visited once, which is in line with previous studies 
[24, 85, 86]. The development over iterations can be listened to 
online: https://robotvoice.s3.amazonaws.com/iterations.html. 

To visualize the proximity of the matched robot voices to each 
other, we performed a PCA on the standardized slider positions of all 

5Psynet is available here: https://www.psynet.dev/. PsyNet [24] relies on the open-
source platform Dallinger (https://dallinger.readthedocs.io/) 

stimuli in the experiment. Figure 4B depicts the frst two principal 
components and shows the distribution of all slider confgurations 
using a kernel density estimate (gray lines). The initial robot voice 
confgurations are uniformly sampled from the sliders but occupy 
distinct slider positions at the end of the experiment. For example, 
the spider-like robots in the upper right corner or the toy-like robots 
in the top left corner of the plot group together in slider space 
(i.e., they received similar voices in the fnal iteration). The fnal 
voices can be explored interactively using the online visualization: 
https://robotvoice.s3.amazonaws.com/explore.html. 

In order to validate whether the voice and robot match improves 
over time, we recruited a separate group of participants (N = 142) 
that rated how well the voice matches the robot (see Supplementary 
Materials D.3). This experiment comprised 2,730 stimuli. All stimuli 
were generated in the GSP process with three additional random 
voices per robot. There were about 4.9 average ratings per stimulus. 
Overall, we had 13,597 human judgments in this experiment. As 
depicted in Figure 4C, the average match increases over the course 
of iterations. In particular, the average of the last three iterations 
was signifcantly larger than the frst three iterations (Wilcoxon 
signed rank test: V = 1813.5, n = 175, p < 0.001, r = .64). In addition, 
the increase in rating over iterations reduces after each dimension 
is visited approximately once. For example, we did not fnd a sig-
nifcant diference between the average of iterations 8-10 and the 
average of iterations 13-15 (Wilcoxon signed rank test: V = 6321.5, 
n = 175, p = 0.018, r = .10). 

4.2 Open-ended Labeling 
What are the semantic labels that determine robot appearance and 
voice characteristics? To answer this we used STEP-Tag [46], a 
recently developed elicitation method to elicit labels from stim-
uli. We recruited two new groups of participants to annotate the 
obtained fnal robot voices and the original images (N = 59 and 
N = 73 respectively). Each robot is sequentially annotated by 10 
participants (see Supplementary Materials E.1 for the participants’ 
instructions). The process is adaptive: one participant provides an-
notation and subsequent participants rate it, fag it (in case they 
think it is inappropriate), or suggest their own annotation (Figure 
2B). To facilitate convergence and avoid spelling variants and dupli-
cate tags, participants can see words that start with the same letters 
while typing and can select them if they fnd them appropriate. The 
proposed words are either tags provided by other participants or 
the 260 dimensions proposed in the aforementioned literature (see 
Methods, Section 3.3). 

As depicted in Figure 5A, the vocabulary used to describe the 
175 images of robots is generally larger than those of 175 voices 
(765 and 217 unique tags for the image and voice modalities, respec-
tively). Also, the same labels are used more frequently for the voice 
compared to the image modality (mean occurrence of 5.4 and 2.5 
for the voice and image modalities, respectively). 

To investigate which terms are particularly relevant, we visu-
alize the co-occurrence network for each modality in Figure 5B 
using a network analysis [46]. The nodes are tags proposed in the 
STEP-Tag process and the edges indicate if they co-occur within 
the same robot with other tags. Those tags that have many con-
nections to other tags – indicated by the larger dots – are likely to 

https://robotvoice.s3.amazonaws.com/iterations.html
https://www.psynet.dev/
https://dallinger.readthedocs.io/
https://robotvoice.s3.amazonaws.com/explore.html
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be relevant descriptors. In the co-occurrence network, terms that 
are semantically similar are often located near each other, such 
as ’animallike’ and ’doglike’ in the image modality. However, this 
isn’t always the case, as terms that are semantically related do not 
necessarily appear together if they are inapplicable to a signifcant 
number of robots. 

Overall, we observed that tags in the voice modality are more 
interconnected (average degree: image = 3.8, voice = 11.3), suggest-
ing that a relatively small number of recurring labels frequently 
appear together. This observation aligns with what is shown in 
Figure 5A. This pattern can be partially attributed to the challenge 
of identifying vocal properties compared to image attributes. Voice 
representations might be less easily described in words, or more 
ambiguous overall, leading to greater overlap in semantic labels. 

Interestingly, while our approach is open-ended (e.g., we don’t 
use post-processing and involve lay participants), many central 
terms overlap with those commonly mentioned in literature such as 
“friendly”, “humanlike” or “female” (see, for example, [19] or [63]). 
Figure 5B furthermore reveals that while some impressions are 
modality-specifc (e.g. “high-pitched”, “echo”, “accent”), the major-
ity of terms proposed by the participants refect general impressions 
of the robot (e.g., “weird”, “cute”, “robotic” and “friendly”) and are 
not modality-specifc. However, other features difer across the two 
modalities. For example, the biological sex or the age of the speaker 

is an important category in voices, whereas for the distinction be-
tween “animallike”, “humanlike”, and “robotic”/“mechanical” seems 
more important in the case of images. Furthermore, the participants 
came up with terms for the voices that refer to communication 
qualities, such as “inaudible” or “informative”, and the communica-
tion style, such as “assertive” and “unenthusiastic”. Obviously, the 
participants were able to produce voices that complemented the 
visual impression of the robots by assigning additional attributes to 
them via the voice modality. The observation that participants used 
terms related to communication qualities and styles when judging 
voices, but not when viewing static images of robots, highlights 
the complementary of diferent sensory modalities, such as visual 
and auditory. 

4.3 Rate Robots along Perceptual Dimensions 
To understand how the perceptual dimensions in the literature 
and the one from the STEP-Tag procedure describe each of the 
robots, we performed another experiment. Here a new set of 543 
participants was recruited to rate all robots across a select set of 
dimensions. As a result, we chose familiar dimensions in order to 
capture labels that existed in the literature as well as labels that 
were perceptually salient to participants. We selected 40 attributes 
in order to have enough ratings per participant. Specifcally, we 
selected the 26 dimensions that overlap between the list of 260 
labels from previous literature (see Supplementary Table S4–S7) 
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and our STEP-Tag results. The remaining 14 dimensions are the 7 
perceptually most salient features (based on STEP-Tag) in each of 
the modalities. Supplementary Table S8 specify the 40 dimensions 
and their sources. 

We recruited separate groups of participants to rate these 40 
perceptual labels in the image and voice modalities (N = 298 and N 
= 245 respectively, see Supplementary Materials F.1). Each partici-
pant rated the robot image or robot voice on 5 randomly selected 
dimensions using sliders that snap to 5 positions. On average, each 
stimulus and dimension was rated 7.5 times for the images and 6.1 
times for the voices (see Supplementary Materials F.2 for the ex-
periments’ instructions). Overall, the ratings were reliable for both 
experiments: the split-half reliability for images was r = 0.65 and r = 
0.61 for the voices. To compare the consistency of the dense rating 
results with the STEP-Tag results in the previous experiments, we 
correlated STEP-Tag ratings with the dense ratings for the labels 
that occur in both datasets. As shown in Supplementary Materials 
F.3, there is a diagonal for most terms indicating that there is a 
strong correlation between the number of stars a label received in 
STEP-Tag and the average rating it received in the dense rating 
experiment (mean diagonal: r = .31 and r = .24, of-diagonal: r = 
0.11 and r = 0.10 for images and voices respectively). 

Figure 6A shows the correlations between the dimensions for 
the image modality (i.e., a correlation between average rating per 
stimulus between all dimensions). Generally, terms with similar 
meanings, such as “female” and “feminine”, show strong positive 
correlations, while antonyms like “clear” and “unclear” display 
strong negative correlations. The matrix reveals an additional pat-
tern: participants tend to associate female robots with labels like 
“young”, “playful”, “cute”, and “friendly”, while male robots are 
linked with traits such as “assertive”, “functional”, “complex”, and 
“intelligent”. These observations align with previous literature [63], 
which suggests that societal stereotypes infuence how robots are 
perceived. 

For the voice, the correlation matrix shows a more consistent 
structure (Figure 6B): The largest cluster contains dimensions like 
“creepy”, “unpleasant”, “mechanical”, and “robotic”. Also “female” is 
associated with a “young” and “cute” voice (consistent with previous 
literature) [12], but not with a “friendly” voice. Instead, a new cluster 
emerges for “friendly”, “helpful”, “clear”, and “intelligent” voices. 
This suggests that voice modality presents a much harder challenge 
in terms of providing labels. Specifcally, voices cluster to a smaller 
number of interconnected terms (consistent also with the usage of 
smaller vocabulary in Figure 5A). 

To investigate the robustness of our fndings, we run the dense 
rating experiment on 175 new images from the ABOT dataset [61] 
(see Supplementary Materials C.2) and on 175 randomly created 
voices using our voice tool. We found strong correlations between 
the two image (r = .85) and two voice datasets (r = .91, see Supple-
mentary Materials F.5). These fndings indicate that the obtained 
correlations across the terms are robust across datasets. 

We also investigated the correlations of the dimensions across 
the modalities. Generally, the correlations were lower, indicating 
that the association between the dimensions across the modalities is 
weaker (e.g., a masculine robot does not necessarily become a male-
sounding voice, see Figure 6C for the correlation between terms 
across modalities). Furthermore, as depicted in Figure 6D, the diag-
onals between the dimensions were much weaker or entirely van-
ished for certain dimensions for example for terms like “humanoid” 
or “unpleasant”(see Supplementary Materials F.4 for a correlation 
matrix sorted by the strength of the diagonal). This indicates that 
the same labels are not consistently used across modalities, e.g. a 
“fast” voice does not mean that the image of the robot looks “fast” 
too. The dimensions that are best preserved across modalities are 
dimensions like “feminine”, “young”, and “cute” (Figure 6C). 

In Figure 6D, we can see that there is a large overlap between 
associations from images to voices as well as from voices to images 
(e.g., male voices are associated with mechanical robots, and vice 
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versa). However, this relationship is not always bidirectional; for 
example, assertive robots are associated with male voices (r = 0.32), 
but male robots are not really associated with assertive voices (r 
= 0.09). Further comparisons between the modalities can be made 
via the interactive visualization: https://robotvoice.s3.amazonaws. 
com/compare.html. 

Figure 6E displays the factor loadings for consistent dimensions 
across modalities as they relate to the frst two principal compo-
nents in the data from the correlation matrices shown in Figures 
6A and 6B. A high loading indicates a strong alignment between a 

specifc word and the PCA dimensions. In the voice modality, the 
frst principal component primarily captures the contrast between 
“humanlike” and “robotic”, while the second dimension focuses 
on the male-female dichotomy. In the image modality, a similar 
contrasting pattern is observed between “humanlike” and “robotic” 
features, but here the emphasis is on terms related to automatic-
ity, such as “fast”, “monotone”, and “unemotional”, as opposed to 
terms like “playful”, “friendly”, and “cute”. The gender dichotomy 
is somewhat less pronounced here. 

https://robotvoice.s3.amazonaws.com/compare.html
https://robotvoice.s3.amazonaws.com/compare.html
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4.4 Predict Voices based on Labels 
Finally, we wanted to learn if our results can be used in practice 
for engineers who want to ft a voice to a robot. To test whether 
we can predict the voice of a robot based on the image ratings 
in the dense rating experiment we recruited a new group of (N 
= 94) participants. We assessed whether the obtained perceptual 
dimensions can be used to propose a well-matched voice to an 
unseen robot. For each robot image � , we provide fve diferent 
combinations of an image and a voice (Figure 7A): As ground truth 
we included the original matched voice of robot � (matched). To see 
how well we can use verbal descriptors to perform voice prediction, 
we searched for the robot � with perceptual image rating across the 
40 dimensions and found the closest robot � (closest, i.e., with the 
highest cosine similarity, e.g., the Perseverance robot is closest to 
the Spirit & Opportunity robot). We then used the voice of the � in 
the fnal iteration of the GSP experiment. To test robustness, we also 
searched for robot � for the GSP slider confguration and selected the 
closest voice in slider space, which did not occur in any iteration for 
robot � and � (selected). As a negative reference, based on the slider 
confguration of the matched robot � we searched for the worst slider 
combination (worst, i.e., which is maximally dissimilar in cosine 
similarity). Finally, we also included a random voice confguration 
(random). The interface of the prediction experiment was identical 
to the GSP validation experiment (see Supplementary Materials 
G.1). We had 875 stimuli and 7,444 human judgments overall, and 
each stimulus received an average of 8.5 ratings. 

Consistent with the validation of the GSP voices, the random 
voice received the lowest voice match score and the fnal voice the 
highest match score (Figure 7B, left panel). While the closest and 
selected voices received a slightly lower match rating, we did not 
fnd a signifcant diference there (Wilcoxon signed rank test: V = 
6879.0, n = 175, p = 0.47, r = .07). However, the matched, closest, 
and selected voices were all signifcantly better than the worst or 
random voices (p < 0.001 in all cases), which both have much lower 
ratings. Thus, this shows that while the predicted voices (closest 
and selected) were all better matches than a random voice, they 
were not signifcantly worse than the matched voice. This trend is 

not only visible when averaging over all participants, but also on a 
single-participant basis (see Supplementary Materials G.2). 

To assess if our fndings also extrapolate to other datasets of 
robots, we run another prediction experiment (N = 73). We wonder 
if the annotated features of the new robot can be used to match the 
voice based on the old data set’s annotated features. In a real-world 
scenario where an engineer might have a new, unseen robot image 
and want to use our results for voice matching, this validation 
is crucial as it should show that even when using voices tailored 
to the old dataset and a matching model trained solely on the 
old dataset, we can still achieve accurate predictions with a new 
set of independently annotated images. Thus, we looked up the 
closest robot in terms of its annotated features for each of the 
new 175 robots in the old set of matched robots (closest). As a 
reference, we also included the same matched voice and paired it 
with the directly matched old robot image (matched). As a negative 
reference, we looked up the perceptually furthest robot in the old 
dataset and selected its voice (furthest). We also add a random 
voice (random). As shown in Figure 7B (right panel), the closest 
and matched voices are all signifcantly better than the furthest and 
random voice (p < 0.001 in all cases). While the closest voice received 
a slightly higher rating than the matched voice, this diference was 
not signifcant (Wilcoxon signed rank test: V = 8215.5, n = 175, p = 
0.14, r = .11). As in the previous prediction experiment, the furthest 
matched voice was slightly higher than random though both of 
them had low ratings overall. This is probably because random 
voices are uniformly sampled along the dimensions, leading in 
some cases to sample extreme values, which is not the case for 
the furthest or worst voices that were matched to a robot. This 
additional prediction experiment shows that our prediction also 
works for newly annotated robots from diferent datasets. 

To facilitate a wide adaptation of the tool, we provide an interac-
tive voice prediction tool online: https://robotvoice.s3.amazonaws. 
com/predict.html (Figure 7C). The tool allows one to select a robot 
from the 175 robots which is most similar to the robot that requires 
a new voice. The user can either search for the visually closest robot 
from the dropdown list or modify latent dimensions representing 
the 40 dimensions in vision (see Supplementary Materials G.3). For 

https://robotvoice.s3.amazonaws.com/predict.html
https://robotvoice.s3.amazonaws.com/predict.html
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example, slightly modifying the latent dimensions of the Zeno robot 
likely returns the voice created for the Milo robot because they look 
much alike. For the visual match, it will show the closest voices in 
the slider space. The voice confgurations can be downloaded and 
can directly be integrated into applications. 

4.5 Control analysis 
In this paper, we have shown that by using human-in-the-loop 
approaches, participants develop voices matched to robots, identify 
attributes relevant to the perception of robots, and provide ratings 
along those dimensions that can be used to predict well-matched 
voices to entirely novel robots. A natural question that arises is 
whether neural networks can replace parts of the human pipeline. 
Here, we conduct two experiments on CLIP [64] (see Supplementary 
Materials F.8) to avoid the human dense rating experiments since 
they involve many participants and thus are costly. We show that 
there is a moderate correlation between the cosine similarity across 
robot images computed on the human dense rating and the image 
embeddings (r = .58 for the old 175 robots and r = .51 for the new 
robots). This indicates that CLIP embeddings provide a fair proxy 
for the perceived similarity of robots. In a second analysis, we use 
CLIP to do the dense rating experiment (so each image receives 
probabilities of all 40 labels). We now compute the correlation 
across terms for the CLIP and human data. We fnd a similarly strong 
correlation across the CLIP results across datasets (r = .87) compared 
to the human results (r = .85, see Supplementary Materials F.5), 
but the CLIP and human data are uncorrelated in both the old (r 
= .04) and new image dataset (r = .01). The results show that the 
correlational structure across the terms is consistent across the 
datasets, but varies greatly between CLIP and the human dense 
rating. While CLIP provides a proxy for the perceived similarity of 
robots, researchers and engineers should be cautious about blindly 
replacing parts of the pipeline by neural networks, as the models 
will introduce new biases in the annotation process. 

To explore if we can actively reduce biases in our data, we re-
run the STEP and dense rating experiment on the images but par-
ticipants frst take an implicit bias training (see Supplementary 
Materials C.8). To measure implicit biases before and after the train-
ing, we use the widely-used implicit association test (IAT) [22, 73]. 
Based on previous literature, we expected that the training would 
have a short-term efect on participants’ responses and reduce ad-
verse stereotypes [41]. We found that participants carefully read 
the implicit bias fact sheet (6/8 text-comprehension questions were 
answered correctly), but we did not measure a signifcant diference 
in bias before and after training. 

Running the STEP experiment (N = 78), we found a large overlap 
in the used tags across STEP experiments with and without the 
training (see Supplementary Materials E.2), and the frequency of 
the shared tags is strongly correlated (r = .78). Moreover we found 
that if the data from the STEP experiment after the awareness 
training had been used to compile the list of 40 terms, only one 
term would have been replaced. These fndings suggest that the 
STEP tag results remained largely unafected by the training. When 
running the dense rating experiment (N = 202) (see Supplementary 
Materials F.7), we found that the correlation matrices in the dense 
rating experiment with and without training strongly correlate 

with each other (r = .91). This indicates that while participants were 
aware of their implicit biases (see comprehension questions), they 
did not substantially change their responses. 

5 DISCUSSION 
The present work provides a voice creation tool that can cover a 
wide range of robotic voices (Figure 1A). We used this tool in a 
human-in-the-loop approach (GSP) to create matched voices for 175 
robots (Figure 1B), obtained a taxonomy using a human-in-the-loop 
open-ended labeling approach (STEP-Tag, Figure 1C), densely rated 
the attributes from the taxonomy for 175 robots (Figure 1D), and 
predicted suitable voices for new robots based on those perceptual 
dimensions (Figure 1E). 

5.1 Limitation and Future work 
Our paper primarily focused on conveying robot characteristics 
through manipulating the audio channel. To control for voice ma-
nipulation, participants were presented with static images. The 
way robots move can signifcantly afect human perception, and a 
wide range of literature illustrates how robots convey personality 
through body language, gestures, and facial expressions, as sum-
marized in [32]. Future research can investigate how diferent use 
cases and scenarios of the same robot can afect the perceived ap-
propriate voices. Another limitation is that the voices we used were 
matched with short, semantically neutral sentences, which might 
not generalize to longer textual content. Consequently, participants 
formed opinions based on limited information about the robot and 
its voice. An intriguing future direction for this research could in-
clude the employment of dynamic materials such as videos instead 
of static images, as well as the use of longer, semantically relevant 
spoken content. While such complexities are beyond the purview 
of our current study, which is focused on the vocal channel, our 
methodologies could serve as a foundation for more comprehensive 
studies into voice interactions in dynamic robot settings. 

While we purposefully selected a neutral background for the 
robot to minimize contextual biases, it is essential to recognize that 
participants may have held varying perceptions of the robot’s role, 
task, and target audience while adjusting voice dimensions. Empir-
ical evidence indicates that factors beyond the robot’s attributes, 
such as the task and user characteristics, signifcantly infuence 
how it is perceived and how humans interact with it [39]. The tran-
sition from a toy-like robot to a robot serving as a speech assistant, 
as highlighted by Aylett [5] using the example of the Cosmo ro-
bot, can result in a mismatch between the robot’s function and its 
voice. Tags used by our participants to describe the robot, such as 
“functional” and “helpful”, highlight the importance of its intended 
purposes and audience in addition to its audio-visual characteris-
tics. Both the robot’s visual appearance and the mental models it 
triggered in participants may have infuenced voice modifcations. 
To gain further insights into these factors, conducting additional 
experiments with systematic changes to the robot’s visual context, 
aligned with its intended functions, could be valuable. 

At the end of the Results section, we have alluded to the possibil-
ity of replacing a part of the human pipeline with neural networks. 
Here, we used CLIP [64], but in future research, it would be par-
ticularly interesting to do similar experiments on Large Language 
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Models with vision grounding, such as Gemini, GPT-4V, or Bard, 
as they both have access to image and language data. 

We based our voice creation tools on an English dataset, which, 
while diverse in including multiple dialects, did not allow us to 
explore the intricate relationship between culture and robot per-
ception. This limitation applies to the user’s cultural background 
and the culture the robot is intended to portray. Prior research [23] 
demonstrated that a robot’s social category membership, including 
culture, signifcantly infuences how people perceive and interact 
with it. During the annotation process, our participants included 
tags related to English dialects like “Scottish” and “American”, high-
lighting the relevance of group membership as a distinguishing 
characteristic. McGinn and Torre [50] manipulated the accent of a 
robot’s voice to investigate its impact on the formation of stereo-
types. However, due to the heterogeneous background of the partic-
ipants, their fndings on the efect of accent manipulation were not 
consistent. Further research should, therefore, focus on the alleged 
cultural background of robots portrayed by their accent. 

In a broader perspective, our study only involved monolingual 
English UK participants and future research should incorporate less 
“WEIRD” participants (Western, Educated, Industrial, Rich, Demo-
cratic) [7, 27] to uncover associations across perceptual dimensions 
in diferent cultures. Our approach is largely language-agnostic (it 
would solely require a TTS model trained on a diferent language) 
and thus can be applied to a variety of languages and cultures. 

Finally, while the matched voices are signifcantly better than 
a random voice (Figure 7B), the mean ratings for the matched 
voices (3.4) are not quite at ceiling performance (5.0). This can 
have multiple causes. One explanation is that the voice model is 
not expressive enough yet. The voice dimensions mainly capture 
aspects of the voice such as gender or sex (see Supplementary 
Materials F.6). Future research can improve the parametrization of 
the latent voice dimensions to capture more expressive features 
of the voice. Another possible cause is that participants disagree 
about the voice properties associated with a robot. The split-half 
reliabilities in the rating experiments are high but there is still some 
disagreement across participants (dense: image r = .68 and .53, voice 
r = .65 and .48; prediction: r = .56 and .53). This indicates that future 
research should investigate individual diferences in the perception 
of robots. 

5.2 Ethical considerations 
Our tools have the potential to uncover implicit biases that carry 
over from human-human interactions to human-robot interactions. 
For instance, our study revealed that participants tended to use 
tags like “playful” and “friendly” when describing a female robot 
and voice, whereas “assertive” and “functional” were more com-
monly associated with a male robot’s image. Furthermore, when 
describing a male voice, participants frequently employed tags like 
“unemotional” and “reserved”. 

To assess if the correlational structure obtained here generalizes 
to other datasets, we repeated the dense rating experiment on 
new image and voice data and found strong correlations across 
the new and old datasets (r = .85 and r = .91 respectively). While 
this shows that our fndings are robust across datasets, it does not 
rule out the possibility that both datasets are biased in the same 

way. To quantify the efect of the human-in-the-loop approach 
on perceived biases, we took, as an example, perceived gender. 
Consistent with the observation by Perugia and colleagues, we 
observe an underrepresentation of perceived female robots in both 
image datasets [60] (13 % for IEEE robots and 19 % for ABOT, percent 
below the midpoint for scale; see Supplementary Materials C.3). 

However, when taking random voice samples from the text-to-
speech model, participants evaluate the perceived gender of samples 
as nearly balanced (50 %). This is consistent with the dataset the 
model was trained on [92], which was intended to contain a diverse 
set of voices. Importantly, the percentage of perceived females in the 
GSP-matched voices was similarly balanced (49 %). This means that 
despite viewing an unbalanced dataset of images, the human-the-
loop approach provided a much more balanced voice distribution. 
Future research can use more balanced sets of robot images or 
use GSP with a generative model to create images of robots, which 
would lead to the development of “customizable robots” as proposed 
by Schiebinger [71]. 

Next to potential dataset bias, we explored how implicit biases 
of participants actively can be reduced. Before rerunning the STEP 
and dense rating experiments, participants undergo implicit bias 
training and take the implicit association test (IAT) [22, 73]. While 
participants carefully read the implicit bias fact sheet (6/8 text-
comprehension questions were answered correctly), we did not 
measure a signifcant decrease in bias. As a consequence, the in-
tervention did not substantially alter the responses. This may be 
explained by the fact that the efects of the training are short-lived 
and hence barely change the implicit biases [41]. Future research 
can consider other interventions to reduce biases in the data. For 
example, a common theme in the development of recent Large Lan-
guage Models is to perform an additional refnement on the model 
to suppress averse responses using human supervision [59]. We 
can perform an analog step for our approach, we can add a fnal 
post-processing step in which humans are asked to fag implicit 
biases. 

Finally, we want to emphasize that the relationships across the 
terms we uncovered within and across two modalities are not causal, 
but are merely correlations. So, the fact that images of female-
looking robots tend to be perceived as “cute” does not mean that 
they are cute because they are female (e.g., female-looking robots 
might have a more fufy appearance on average, which makes them 
look cute). 

5.3 General conclusion 
The relationship between a robot’s voice and its impact on user 
perception is complex. The primary aim of this paper was to explore 
the impact of nuanced voice features on individual perceptions of 
a diverse array of robots. In contrast to prior research – that used a 
small number of robots, existing audio samples, and limited behav-
ioral testing – we adopted a multi-method approach that included 
generative AI, human-in-the-loop computations, and voice predic-
tion. Our voice generation tool combines state-of-the-art TTS with 
traditional signal processing. We used human-in-the-loop compu-
tations in two key points in the research program: to collectively 
navigate a space of voice dimensions and to provide open-ended 
labeling of images and voices. We complement human-in-the-loop 
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experiments with extensive behavioral validation experiments (N 
= 2,505). Our results demonstrated that participants consistently 
converged towards specifc voice prototypes that either enhanced 
or aligned with the attributes associated with the static images of 
the robots. Our fndings highlight the signifcant interplay between 
visual and auditory perceptions in shaping how humans perceive 
and attribute qualities to robotic entities. Furthermore, our study 
revealed that predicting a suitable voice for images of previously 
unseen robots is possible. This discovery can be interpreted as 
evidence that static visual cues alone may sufce to empower in-
dividuals to create voices that consistently convey the collective 
mental model of the respective robot. Using the perceptual dimen-
sions we obtained for the set of robots, we could propose suitable 
voices to designers for new robots, as well as reveal and possibly 
suppress societal stereotypes underlying participants’ choices. They 
are of practical relevance for engineers who want to ft a voice that 
matches a robot. More broadly, our research demonstrates the syn-
ergy between cognitive science and machine learning in tackling 
engineering challenges, such as human-robot interaction. 
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A CODE AND DATA AVAILABILITY 
A view-only anonymous link is provided to the public, containing 
all the data collected for this project during the review stage 6. It 
includes the new human behavioral data, the computational experi-
ments with machine learning models, and all the necessary analysis 
scripts for producing the results. Additionally, the repository in-
cludes the PsyNet source codes for reproducing the behavioral 
experiments. Finally, we present an interactive visualization 7 for 
exploring the created voices, the perceptual space of robots and for 
predicting new voices based on the perceptual dimensions. 

B BEHAVIORAL STUDIES 

B.1 Participants 
Participants were recruited from Prolifc8 and provided informed 
consent under an approved protocol. The median age was 38 (SD: 
12.6, min: 18, max: 88). 61.4 % of the participants identifed them-
selves as male, 36.6 as female, 0.1 % as non-binary and 0.1 % pre-
ferred not to say. The highest level of formal education is high 
school for 23.3 %, college for 34.8 %, graduate school for 25.1 %, and 
postgraduate school or higher for 16.7 % of the participants (0.1 % 
of the participants had no formal education). The exact number of 
participants for each of the 7 behavioral experiments is reported in 
Table S1. 

The median total durations of the experiments are typical for on-
line experiments. The duration of the GSP experiments are similar 
to other experiments using GSP [S24, S85, S86]. 

B.2 Implementation 
All behavioral experiments were implemented using PsyNet frame-
work [S24]. PsyNet is a novel experiment design framework that 
builds on Dallinger (https://dallinger.readthedocs.io/) and allows 
for fexible specifcation of experiment timelines as well as provid-
ing support for a wide array of tasks across diferent modalities 
(visual, auditory, and audio-visual). Dallinger is a modern tool for 
experiment hosting and deployment that automates the process 
of participant recruitment and compensation by integrating cloud-
based services such as Heroku9 with online crowd-sourcing plat-
forms such as Prolifc. Participants interact with the experiment 
through their web browser, which in turn communicates with a 
backend Python server responsible for the experiment logic. As 
an advantage of using PsyNet, it ofers native support for adaptive 
human-in-the-loop experiments. 

B.3 Pre-screening 
In order to collect high-quality data, pre-screening tasks were used 
to avoid low-quality participants and users who used bots to re-
spond. We conduct the pre-screeners right before the main experi-
ment. If the pre-screening tasks are not completed, the experiment 
will be terminated early, but the participants will still be paid for 
their time (regardless of the outcome). Pre-screeners are addition-
ally ensure two main criteria for data quality, namely, a) to ensure 
that participants are wearing headphones and can hear audio b) 
6Code and data: https://robotvoice.s3.amazonaws.com/supplementary_materials.zip 
7 Interactive plots: https://robotvoice.s3.amazonaws.com/index.html 
8https://www.prolifc.co/ 
9https://www.heroku.com/ 

that they are native speakers of the language. To do this, we im-
plemented two tasks from previous literature. Namely, an English 
profciency test ([S87]) for experiments that relied on text; and a 
standardized headphone test ([S90] used for experiments involving 
audio. Table S1 provides details on which pre-screeners were used 
in each of the behavioral experiments. 

Figure S1: Example trial from the WikiVocab pre-screening 
task [S87]. 

English profciency test. To test participants’ English profciency 
we used the lexical decision task WikiVocab [S87]. In each trial, 
we briefy present the participant (1 second) with either a real 
English word or a pseudo-word that does not exist. Participants 
were instructed to guess whether the word was real or not. They 
used dedicated keys on their keyboard to respond. A total of 30 
trials (half of them being real words) were presented, and 25 of 
them needed to be correct for the participant to pass. For each 
batch of 30 trials, we randomly selected 15 real and 15 fake words. 
See https://vocabtest.org/ for an implementation of the test. An 
example trial is shown in Figure S1. 

Figure S2: Example trial from the headphone pre-screening 
test [S90]. 

Headphone test. We used the headphone test developed by Wood 
et al. [S90], which is used as a standard pre-screener for high-quality 
auditory psychophysics data-collection procedures [S53]. The test 
is designed to ensure that the participants are wearing headphones 
and are able to perceive subtle diferences in volume. The task 
consists of a forced choice task, in which three consecutive tones 
are played, and the participant has to identify which of them is the 
quietest. Importantly, these tones exhibit a phase cancellation efect 
without headphones, making it difcult for non-headphone users 
to identify the quietest tone. To pass, participants had to answer 4 
out of 6 trials correctly. An example trial is shown in Figure S2. 

https://dallinger.readthedocs.io/
https://robotvoice.s3.amazonaws.com/supplementary_materials.zip
https://robotvoice.s3.amazonaws.com/index.html
https://www.prolific.co/
https://www.heroku.com/
https://vocabtest.org/
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Table S1: Behavioral experiment summary table. Note. � denotes the number of participants included in the analysis; WV 
denotes the WikiVocab English profciency pre-screening task [S87]; HT denotes the headphone test [S90]. * means that before 
the main experiment, participants did implicit bias awareness training. Type: M denotes an experiment for the main results, C 
denotes a control experiment. Dur. denotes the median duration in minutes. 

Modality Paradigm Total stimuli Trials per Section � Pre-screening Type Dur. 
participant 

Voices + Images GSP 175 20 4.1 803 HT M 11.8 
Voices + Images Validation 3,255 80 4.1 142 HT M 15.3 

Images STEP-Tag 175 30 4.2 73 WV M 12.7 
Images STEP-Tag* 175 30 4.2 78 WV C 19.9 
Voices STEP-Tag 175 30 4.2 59 HT, WV M 12.0 
Images Rating 175 60 4.3 298 WV M 13.5 
Images* Rating 175 60 4.3 202 WV C 20.8 
Voices Rating 175 60 4.3 245 HT, WV M 14.1 

New Images Rating 175 60 4.3 249 WV C 14.5 
Random Voices Rating 175 60 4.3 189 HT, WV C 15.0 
Voices + Images Prediction 875 80 4.4 94 HT M 10.1 

Voices + New images Prediction new 700 80 4.4 73 HT C 11.2 

C METHODS 

C.1 Selection of images 
We selected a wide variety of diferent robots from the robot data-
base IEEE Robots. The images span 14 categories as marked by the 
database (see Figure S3). The majority of the images fall into the 
categories “humanoid” and “research”. 

Humanoid

Consumer

Industrial Military & Security Education

Entertainment

Aerospace

Medical

Disaster
Response

Drones

Autonomous
Vehicle

Research

Figure S3: Distribution of diferent categories of robots used 
from IEEE Robots. 

Tables S9–S10 shows examples of the images selected and edited 
for the experiment. The full list of stimuli is available at https: 
//s3.amazonaws.com/robotvoice/explore.html. 

C.2 Selection of new set of images 
To assess the generalizability of our fndings, we ran the dense 
rating on a new set of images and voices (see section F.5). We used 
the ABOT robot database10 [S60, S61] and obtained 167 new robot 
10https://www.abotdatabase.info/ 

images from it after removing those that were already in the IEEE 
Robots selection. 

We then added the following 7 robots that were used in a study 
by Mathur and Reichling [S47] but not already included in the other 
two lists. 

• 3e A18 (Honda)11 

• 3e C18 (Honda)12 

• aeo (Aeolus Robotics)13 

• cruzr (Ubtech Robotics)14 

• Jules (Hanson Robotics)15 

• Actroid Repliee Q2 (Osaka University, Kokoro Co. Ltd)16 

• Tapia (MJI Robotics)17 

Another robot that we added was Emotech’s Olly 18 because its 
abstract design is very diferent from that of the other robots and 
seemingly contrasts with the personality that its creators empha-
sized in advertising. 

C.3 Selection bias in images 
Consistent with previous literature, we fnd an underrepresentation 
of female robots in the ABOT database [S60] and in the IEEE Robot 
database (see Figure S4A). The initial random robot voices are 
gender-balanced (Figure S4B). Interestingly, the matched voices to 
the biased sample of robot images are equally gender-balanced as 
the initial random voices. 

C.4 Latent voice dimensions 
In an initial set of pilots, we noted that using only the TTS system to 
create voices provides diverse human-like voices but does not allow 

11https://global.honda/en/innovation/CES/2018/001.html 
12https://www.honda.com.au/news/2018/honda-3e-robot-concept 
13https://aeolusbot.com/ 
14https://ubtrobot.com/ 
15https://www.hansonrobotics.com/jules/ 
16https://en.wikipedia.org/wiki/Actroid 
17http://mjirobotics.co.jp/en 
18https://www.indiegogo.com/projects/olly-the-frst-home-robot-with-personality/ 

https://s3.amazonaws.com/robotvoice/explore.html
https://s3.amazonaws.com/robotvoice/explore.html
https://www.abotdatabase.info/
https://global.honda/en/innovation/CES/2018/001.html
https://www.honda.com.au/news/2018/honda-3e-robot-concept
https://aeolusbot.com/
https://ubtrobot.com/
https://www.hansonrobotics.com/jules/
https://en.wikipedia.org/wiki/Actroid
http://mjirobotics.co.jp/en
https://www.indiegogo.com/projects/olly-the-first-home-robot-with-personality/
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A Female ratings images B Female voices
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Figure S4: Distribution of ratings for attribute “female” in image (A) and voice datasets (B). 

us a way to create mechanical voices. Thus, adding efects was es-
sential. Once we add efects, these efects can also account for some 
of the voice characteristics (e.g., pitch height, speech duration, voice 
roughness, etc.). This decreases the importance of having very high 
dimensional TTS representations. We experimented with various 
dimension reduction algorithms. In particular, we experimented 
with supervised (PLS and CCA) and unsupervised dimension tech-
niques (PCA). For PLS and CCA, we used the eGeMAPS feature set 
[S18] as a supervision signal. Based on initial piloting, we found 
that the PCA voice dimensions had the best tradeof between ex-
pressivity and distortion (high expressivity, low distortion). Across 
the dimension reduction methods, we found that the total amount 
of explained variance was comparable from method to method 
and was generally relatively small. This is compatible with previ-
ous studies in which the explained variance of the PCA on latent 
voice dimensions was low [S85] (e.g., 25.4 % variance explained for 
ten dimensions). We reduced the total number of dimensions to 
fve dimensions, capturing 12.2 % of the variance (see Figure S5). 
Note that the explained variance per dimension is high for the frst 
few dimensions and decays slowly afterward, which makes the 
choice of fve dimensions reasonable. Moreover, our pilot suggested 
that adding further dimensions did not improve voice expressiv-
ity qualitatively. Since most of the sliders in the experiment are 
voice dimensions (5/8), using a lower number of voice dimensions 
allows us to revisit dimensions more often in the GSP process and 
accelerate convergence. While we only use fve dimensions, the 
dimensions clearly capture various aspects of the voice, such as sex 
and age (see Supplementary Materials F.6). 

C.5 Voice Efects 
We implemented a set of audio efects to allow the creation of voices 
that sound more synthetic. For each efect, the slider in our GSP 
experiment steered the amount of efect in the resulting signal. The 
only exception here is the Timeshift efect, where the slider did not 
control the amount of the efect but the time that the signal was 
shifted. In order to even out diferences in auditory saliency between 
efects, we defne upper bounds for the efect amount separately for 
each efect (see Table S2). These bounds were manually adjusted by 
one of the authors and further tested by all other authors. Further, 
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Figure S5: Explained variance by Principal Component Anal-
ysis. 

some efects had to be parametrized with additional parameters 
which are listed in Table S3. 

C.6 Robot labels 
The list of 260 robot labels is depicted in Table S4–S7. These labels 
were taken from psychological literature about human personality 
traits [S15, S21, S28, S48, S66, S81], from the Godspeed Question-
naires that were created specifcally for social robots [S8], from 
the personality dimensions that Völkel et al. identifed for voice 
assistants [S88], as well as from the AttrakDif questionnaire that 
measures user experience [S25, S26]. The references for each label 
are listed next to it in the aforementioned tables. 

In many cases, the sources did not contain the exact word, but a 
synonym or an antonym of it. These instances are marked with a ’ 
respectively * symbol next to the source’s abbreviation. 

Furthermore, several labels were added after a small-scale pilot 
study for the labeling task showed a tendency for labeling robots 
with their visible properties. In particular, labels were added for the 
(apparent) sex, gender presentation and age since they were also 
expected to relate to the voices. Other examples include “animallike” 
due to the large number of non-human robots, as well as adjectives 
referring to the size or to attractiveness in general. In the tables, 
these are marked with a ◦ symbol. 
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Efect Upper Bound 
Pitch 0.5 

Tremolo 0.4 
Synthesis Quality 1.0 

Timeshift 45ms 
Vocoder 0.35 
Flanger 0.78 

Table S2: Upper boundaries for the efect amounts for each efect. Lower boundaries is always 0. 

Efect Parameter Value 
Flanger Type 1 Delay 1 
Flanger Type 1 Depth 10 
Flanger Type 1 Frequency 5 
Flanger Type 2 Delay 0 
Flanger Type 2 Depth 50 
Flanger Type 2 Frequency 0 
Flanger Type 3 Delay 20 
Flanger Type 3 Depth 20 
Flanger Type 3 Frequency 5 
Flanger Type 4 Delay 1 
Flanger Type 4 Depth 10 
Flanger Type 4 Frequency 25 
Flanger Type 5 Delay 10 
Flanger Type 5 Depth 0 
Flanger Type 5 Frequency 0 

Vocoder Carrier Frequency 30 
Vocoder Harmonics 1.0 

Table S3: Fixed parameters of the efects. 

C.7 Number of robots in previous studies 
The present study incorporates a much larger number of robots 
(350) than previous research (max. 8 diferent robots): 

• Alonso-Martín et al. [S2]: 3 robots 
• Alonso-Martín et al. [S3]: 3 robots 
• Aylett et al. [S5]: 3 robots 
• Häring et al. [S23]: 1 robot 
• James et al. [S31]: 1 robot 
• Kuchenbrandt et al. [S39]: 1 robot 
• McGinn & Torre [S50]: 8 robots 
• Powers & Kiesler [S63]: 4 robots 
• Ritschel et al. [S67]: 1 robot 
• Torre et al. [S80]: 1 robot 

C.8 Implicit bias awareness training 
We adapted the Implicit Association Test (IAT) [S73] to assess im-
plicit biases in our participants. This test measures the association 
between words (either passive and active attributes or positive and 
negative words). The task is done on randomly selected six images 
from each target in a pair. Possible target pairs are adult vs. children, 
cats vs. dogs, and men vs. women. We focus on the target pair men 
vs. women, since the implicit biases were pronounced in the col-
lected data. Since some attributes in the test are rarely used – such 
as “servile” or “obsequious” –, we select the 10 most frequent words 

from the 16 active and 16 passive words. The selected words occur 
at least once per one million. The selected active words are: “strong”, 
“active”, “efective”, “mobile”, “alive”, “dynamic”, “animated”, “lively”, 
“potent”, and “energetic”. The selected passive words are: “gentle”, 
“passive”, “inactive”, “tame”, “compliant”, “yielding”, “meek”, “sub-
missive”, “obedient”, and “controllable”. 

For each participant, we randomly select three passive and three 
active words. We tell the participant “In this task, you will be shown 
a word and two images. Your task is to choose the image that fts 
the word better.” On every page, participants see a random male 
or female image (from the 10 images per gender in the IAT). The 
order of the female image (left or right) was random. On top of the 
image, participants see one of the 6 selected words. The images are 
shown for 2 seconds and automatically disappear. Participants use 
the keys on their keyboard to indicate if the left (key A) or the right 
image (key L) fts best to the attribute. Each of the six attributes 
is visited 5 times. After the participants complete all 30 trials, we 
show the measured biases (see Figure S6 for an example). 

Participants proceed with an implicit bias training. For this, we 
selected the following excerpts from the implicit bias fact sheet 
from the White House Ofce of Science and Technology Policy19 

(Figure S7–S8) 
In both experiments, on average, participants answered 6/8 ques-

tions correctly, indicating they carefully read the implicit bias aware-
ness sheet. In both experiments, we did not fnd a signifcant dif-
ference across the terms after correcting for multiple comparisons 
(Bonferroni). 

D CREATE VOICES USING GIBBS SAMPLING 
WITH PEOPLE 

D.1 Instructions Main Experiment 
The experiments proceeded as follows: Upon completion of the 
consent form and the pre-screening tasks, participants received 
instructions regarding the main experiment (see Figure S9). 

As described in the instructions, in each trial, participants move 
a slider corresponding to one voice dimension and have to move 
the slider to the position such that the obtained voice maximally 
matches the robot. A screenshot of the task is shown in Figure S10. 

19https://obamawhitehouse.archives.gov/sites/default/fles/microsites/ostp/bias_9-
14-15_fnal.pdf 

https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/bias_9-14-15_final.pdf
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/bias_9-14-15_final.pdf
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Figure S6: Example of measured biases in Implicit Association Test. 

A

B

E

F

G

H

I

C

D

In the previous task, we measured implicit associa-
tions between attributes and gender. Research 
demonstrates that most people hold unconscious, 
implicit assumptions that influence their judgments 
and perceptions of others. Such are called implicit 
biases.

Implicit bias manifests in expectations or assump-
tions about physical or social characteristics 
dictated by stereotypes that are based on a 
person’s race, gender, age, or ethnicity.

Most people hold unconscious, implicit assump-
tions that influence their judgments and perceptions 
of others. People who intend to be fair, and believe 
they are egalitarian, apply biases unintentionally.

Some behaviors that result from implicit bias 
manifest in actions, and others are embodied in the 
absence of action; either can reduce the quality of 
the workforce and create an unfair and destructive 
environment.

Explicit vs. implicit bias
Explicit bias involves consciously held, self-report-
ed attitudes that shape how people evaluate or 
behave toward members of a particular group.
Explicit bias is accessible – it can be measured with 
straightforward questions in surveys, such as “do 
you agree or disagree with the statement that boys 
are better than girls at math”.

Implicit bias , in contrast, is activated automatically 
and unintentionally, functioning primarily outside of a 
person’s conscious awareness. Therefore, measur-
ing implicit bias requires more subtle tools, and 
combating it is challenging.

On the next pages, we will give you some more 
information about implicit bias and ask you some 
questions about the topic.

Implicit bias is activated automatically and 
unintentionally.

True False

Implicit bias are more harmful than explicit bias.

True False

Explicit bias is accessible.

True False

Implicit bias cannot be combated with logic and 
discussion.

True False

Implicit bias can be measured with straightforward 
questions in surveys.

True False

Figure S7: Implicit bias pages part 1. The letters indicate page order. 

D.2 Diferent ways to summarize data from 
previous iterations in GSP experiments 

Harrison et al. [S24] found that aggregating data from multiple 
participants in Gibbs Sampling with People (GSP) can improve sam-
pling quality by reducing noise. However, the choice of how to 
summarize the aggregated data (e.g., mean, median, kernel density 
estimate) can impact the results. They used mean aggregation for a 
GSP experiment involving color-matching tasks (Experiment 1 in 
their paper) but selected the most common value, for face genera-
tion experiments (Experiment 4 in their paper), which they deemed 
more suitable for complex, multi-modal data. While we couldn’t 
directly use their most common value aggregation approach due 

to a limited number of responses, we used a similar approach of 
median aggregation, which ensures that only played voice confgu-
rations propagate to the next iteration. Median aggregation, like the 
choice of the most frequent value in Harrison et al.’s generative face 
domain, is appropriate for our domain, because it prevents the se-
lection of an unpopular intermediate value, as stimulus generation 
is time-consuming and slider changes may not be smooth. 

D.3 Instructions Validation Experiment 
The instructions for the experiment are shown in Figure S11. A 
screenshot of the task is shown in Figure S12. 
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Impact of implicit bias
Biases are destructive for those who apply them as 
well as those being judged based on stereotypes. 
Various experiments suggest that those who judge 
others through a biased lens can miss the chance to 
hire superior employees or appreciate the true 
talents of others, including their own children. For 
instance, parents rate the math abilities of their 
daughters lower than parents of boys with identical 
math performance in school. College faculty are less 
likely to respond to an email from a student inquiring 
about research opportunities if the email appears to 
come from a woman than if the identical email 
appears to come from a man. Science faculty are 
less likely to hire or mentor a student if they believe 
the student is a woman rather than a man. In all of 
these experiments, expressions of bias are the same 
across faculty of different academic ranks, fields of 
study, and genders.

Implicit biases are harmful for those who apply 
them as well as those being judged based on 
stereotypes.

True False

Implicit bias are more common in people with a 
lower education.

True False

Institutional vs. individual bias
Implicit bias is usually thought to affect individual 
behaviors, but it can also influence institutional 
practices and structures. For example, many 
institutions adhere to certain practices that 
disadvantage a subset of the institution’s members, 
such as holding faculty meetings at a time when 
parents are most likely to be picking up children at 
day care, which discriminates against parents of 
young children. Institutional bias is usually not 
deliberate – schedules, for example, were often 
established at a time when most faculty were men 
married to women who stayed home with children. 
Thus, it is important to consider how past biases 
and current lack of awareness might make an 
institution unfriendly to members of certain 
demographic groups.

Institutional bias – in contrast to individual bias – is 
intentional.

True False

Figure S8: Implicit bias pages part 2. The letters indicate page order. 

A

B

In this experiment, you will 
have to match a voice to a 
robot:
• On every page, you will be 

presented with an image 
of a robot.

• Move the voice control 
slider to change the voice 
that best fits to the robot.

We now take you through 2 examples.

You need to try out various slider positions in 
order to continue to the next example.

C
Explore different slider positions to find a good voice 
for the robot. Differences between the slider 
positions may be subtle, so pay attention when 
modifying the voice dimension and listen carefully. 
You do not need to memorize the slider position, 
just move the slider to best match the voice with the 
robot.

Warning It is important to note that we can 
monitor participants who either do not try to 
improve the robot voice or who move sliders 
randomly without paying attention. Addition-
ally, other participants continuously listen to 
your created voices. You may be excluded 
from further participation if other participants 
flag your creation. The best strategy is to 
listen carefully and match the robot’s voice as 
closely as possible.

D

Try to focus on matching the voice to the 
robot and not to the content of the sentence. 
The content of the sentence is not important 
for the experiment. Also, it does not matter if 
the sentence is slightly mispronounced.

Figure S9: Instructions for GSP experiment. 
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Figure S10: Example trial in the GSP experiment. 

On every page, you will see an image of a robot and you will listen to a voice. Rate how well the voice matches 
the robot on a 5-point scale.

If the recording does not play after a few seconds, try reloading the page.

Figure S11: Instructions for validation experiment. 

Figure S12: Example trial in the validation experiment. 

E ANNOTATE DIMENSION USING STEP-TAG 

E.1 Instructions
The experiments proceeded as follows: upon completion of the 
consent form and the pre-screening tasks, participants received 
instructions regarding the main experiment (Figure S13–S14). 

“<tag1>” or “<tag2>” are randomly selected from the following 
terms which were commonly used in a previous pilot: 

• friendly,
• cute,
• functional,
• weird,

• humanlike,
• creepy,
• strange,
• odd,
• scary,
• unsettling,
• uncanny,
• powerful

A screenshot of the task is shown in Figure S15. 
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A Image

 A Audio

Rate & Tag Robot
In this game you will:
• Be presented with an image of a robot and you 

have to describe your impression of the robot
• Rate tags that other players have given
• Add new tags that you think are missing

Rate & Tag Robot
In this game you will:
• Be presented with the voice of a robot and you 

have to describe your impression of the robot
• Rate tags that other players have given
• Add new tags that you think are missing

B Image

The created descriptions should reflect your impression of the robot. So adding tags like “<tag1>” or “<tag2>” 
is fine if that reflects your impression of the robot. 

However, not all descriptions are helpful. Please avoid:
• Adding generic descriptions of the robot such as “arm” if the robot has four arms or “eyes” if the 

robot has eyes.
• Typing off text from the image, e.g., if the brand name of the robot is visible in the image, the 

brand name of the robot is not a valid tag.
• Combining two words into one tag, e.g. “friendlyrobot” would be wrong, but submitting “friendly” 

and “robot” separately would be fine.
If this applies to already created tags, please flag them.

B Audio

The created descriptions should reflect your 
impression of the robot. So adding tags like “<tag1>” 
or “<tag2>” is fine if that reflects your impression of 
the robot. 

However, not all descriptions are helpful. 
Please avoid:
• Typing off words that are said in the 

sentence. If the sentence would be 
“Good morning”, “good” would not a 
valid tag.

• Combining two words into one tag, e.g. 
“friendlyrobot” would be wrong, but 
submitting “friendly” and “robot” 
separately would be fine.

If this applies to already created tags, please 
flag them.

Figure S13: Instructions for STEP experiment part 1/2. 

D
Game rules
• You can also add your own tag that is relevant 

for describing your impression of the robot
• Your tag will then be rated by other players 

who are playing the game simultaneously

C Image

We'll now explain you the rules of the game.
• After viewing the robot, you will see tags given 

by other players that describe their impressions 
of the robot

• You should rate the relevance of each tag by 
clicking the appropriate amount of stars (1 star 
not very relevant, 5 stars very relevant)

• If you think that the tag is a mistake or 
completely irrelevant, you should flag it by 
clicking the flag icon

• If you are the first person seeing his robot, you 
may see no previous tags

C Audio

We'll now explain you the rules of the game.
• After listening to the voice of the robot, you will 

see tags given by other players that describe 
their impressions of the robot

• You should rate the relevance of each tag by 
clicking the appropriate amount of stars (1 star 
not very relevant, 5 stars very relevant)

• If you think that the tag is a mistake or 
completely irrelevant, you should flag it by 
clicking the flag icon

• If you are the first person seeing his robot, you 
may see no previous tags

E

Simply writing many and irrelevant tags is not 
a good idea because other players might flag 
your tag. Your experiment will terminate early 
if there are too many red flags!

Figure S14: Instructions for STEP experiment part 2/2. 

E.2 STEP with implicit bias training 
There is considerable overlap between the tags obtained in both 
STEP-Tag experiments. As shown in Figure S16, there is a strong 
correlation (r = .78) between the frequency of the tags. Indicating 
that the same tags were used to describe the robots. If the data of 
the STEP experiment after the awareness training had been used to 
compile the list of 40 terms, it would have led to the replacement of 
only a single term. The term “functional” would have been replaced 
by “modern”. The results show that the awareness training had 
very little efect on the collected data. 

F RATE ROBOTS 

F.1 Labels 
The 40 used dimensions and their sources are listed in Supplemen-
tary Table S8. 

F.2 Instructions 
The instructions are depicted in Figure S17, a screenshot of the task 
is shown in Figure S18. 
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Figure S15: Example trial in the image STEP experiment. 
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Figure S16: Frequency of terms with or without implicit bias 
training. 

F.3 Consistency between STEP-Tag and dense 
rating 

We computed the correlation between the STEP-Tag ratings and the 
dense ratings. For most dimensions, the value on the main diagonal 
is relatively large compared with other values, as shown in Figure 
S19. This suggests that dimensions were rated similarly across the 
two experiments. Furthermore, we found block-like structure for 
words with a similar meaning (e.g., female and feminine) or words 
with opposite meanings (e.g., male and female), indicating semantic 
clusters of terms. Some of these clusters also extend beyond the 
exact meaning or antonym, , for example “cute” (STEP-Tag) is not 

only highly correlated with “cute” (Dense), but also with “friendly” 
and “playful”. Interestingly, the strength of the diagonal difers 
across the two modalities. For example, “scary” has a rather strong 
correlation in the visual modality, but is weaker in the voice modal-
ity. Generally, the correlation seems strongest for dimensions that 
are most salient in that modality: For example, the biological sex 
of a speaker and the clarity of their voice are salient, and features 
such as “humanlike”, “animallike”, or “friendly” have clear visual 
cues. 

F.4 Consistency across modalities 
Figure S20 shows the same data as in Figure 6D but now the dimen-
sions are sorted by the strength of the diagonal. 

F.5 Generalizability of the fndings 
To assess the generalizability of the fndings, we run the dense 
rating on 175 new robot images (see Supplementary Materials C.2) 
and on the initial random voices (i.e., iteration 0). We show in Figure 
S21, that the obtained correlation matrices strongly correlate with 
the initial correlation matrices: r = 0.85 for the image and r = 0.91 
for the voice modality. These fndings indicate that the obtained 
correlations across the terms are robust across databases. 

F.6 Acoustic correlates 
Figure S22 shows the correlations between the voice features and 
the perceptual dimensions. The frst and third voice dimensions are 
correlated with an older male voice. The other latent voice dimen-
sions do not correlate strongly with the 40 dimensions. Speaking 
speed correlates with “fast”, “unclear”, “playful”, and “intelligent”. 
All acoustic efects strongly correlate with “artifcial”, “robotic”, 
“strange”, and “unnatural”. 

F.7 Dense rating with implicit bias training 
As shown in Figure S23, the implicit bias awareness training barely 
changed the correlations across terms as indicated by the high 
correlation across the upper triangles without diagonals (r = .91). 
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A Image

In this experiment, you will be presented with an 
image of a robot.
You have to rate your impression of the robot on the 
following dimensions:
    <list of 5 randomly chosen dimensions>

A Audio

In this experiment, you will be presented with the 
voice of a robot.
You have to rate your impression of the robot on the 
following dimensions:
    <list of 5 randomly chosen dimensions>

B Image

Some descriptions can be odd impressions of an 
image of a robot. Nevertheless, try your best to rate 
them anyway.

We monitor the quality of your responses 
during the experiment. If you rate the 
dimensions in a way that is not consistent 
with the instructions, the experiment will 
terminate early.

B Audio

Some descriptions can be odd impressions of an 
voice of a robot. Nevertheless, try your best to rate 
them anyway.

We monitor the quality of your responses 
during the experiment. If you rate the 
dimensions in a way that is not consistent 
with the instructions, the experiment will 
terminate early.

Figure S17: Instructions for dense rating experiment. 

Figure S18: Example trial in the dense rating experiment. 
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Figure S19: Consistency between STEP-Tag and dense rating. 
Correlation matrices are sorted by the strength of the diago-
nal. 

While participants closely followed the implicit bias training (cor-
rect comprehension questions), it barely infuenced the correlations 
across the terms. 

F.8 Replace dense rating by deep learning model 
To investigate if we can replace the dense rating procedure by a 
deep learning model, we provide two analyses on the pretrained 
CLIP model.20 

In the frst analysis, we compute the correlation between the 
cosine similarity computed on the dense image rating (which was 
used to predict a voice) and the cosine similarity of the image 
embedding. For both the old (r = .58) and the new set of 175 images (r 
= .51) we found a moderate correlation between the upper triangles 
of both cosine similarity matrices. This indicates that CLIP provides 
a fair proxy for the perceived similarity of robots. 

In the second analysis, we use CLIP to do the dense rating. For 
each image, we obtain a logit value for each of the 40 dimensions. 
In Figure S24 we show the correlations across the 40 dimensions. 
Generally, the correlations across the dimensions are high in CLIP. 
There is a similarly strong correlation across the CLIP results across 
datasets (r = .85) compared to the dense rating results (r = .87). The 
results show that the correlational structure across the terms is 

20https://github.com/openai/CLIP 

https://github.com/openai/CLIP
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B Voice only
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Figure S21: Replication of dense rating experiments on 175 
new robot images (A) and on the initial random voices (B). 

consistent across the datasets, but varies greatly between CLIP and 
the human dense rating. 
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Figure S23: Correlation across correlation matrices in dense 
image rating experiment with or without implicit bias train-
ing. 

G PREDICTION 

G.1 Instructions 
The instructions are identical to the GSP validation experiment 
(Section D.3). 

G.2 Prediction per participant 
To assess if the prediction result can also be found in single partic-
ipants, we z-scored all ratings by each participant. We then com-
puted the mean per participant and condition which are depicted as 
thin lines in Figure S25. As shown in Figure S25, most participants 
show the trend consistent with overall mean (thick line). 

https://robotvoice.s3.amazonaws.com/compare.html
https://robotvoice.s3.amazonaws.com/compare.html
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A Old image

B New image
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Figure S24: Correlation across 40 dimensions for human 
dense labeling and CLIP. 
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Figure S25: Prediction per participant. Mean standardized 
rating by participants and condition. Single lines depict sin-
gle participants. The dark black line is the average across 
participants. The shaded area is the standard deviation across 
participants. 

G.3 Factor analysis 
To predict the closest robot based on perceptual dimensions, we 
performed a factor analysis on the 40-dimensional image rat-
ings. Of the 40 dimensions, 39 are correlated at least 0.3 with at 
least one other feature, suggesting reasonable factorability. The 
Kaiser–Meyer–Olkin measure of sampling adequacy is 0.85, and 
Bartlett’s test of sphericity is signifcant (5013.3, � < 0.001). There-
fore, we applied factor analysis with Varimax (orthogonal) rotation. 

We selected a seven-factor solution because the frst seven eigen-
values are > 1 (Figure S26A). The factors explain 21%, 21%, 20%, 10%, 
10%, 7%, and 2% of the variance (91% in total). Factor 1, “humanlike”, 
mainly loads on humanlike and humanoid (see Figure S26B for the 
loading plot, the factor name is given by the dimension with the 

strongest loading). Factor 2, “cute”, loads mainly on cute, friendly, 
playful, and young. Factor 3, “creepy”, loads on creepy, distorted, 
scary, strange, unpleasant, and weird. Factor 4, “gender”, positively 
loads on male and negatively on female. Factor 5, “natural” nega-
tively loads on artifcial, mechanical, and robotic. Factor 6, “fast”, 
mildly loads on animallike, assertive, and fast. Factor 7, “functional”, 
mildly loads on functional, helpful, and intelligent. 

A Eigenvalues B Factor loadings
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Figure S26: Factor analysis. A Eigenvalues plot. B Factor load-
ing plot. Weak loadings (< 0.3) are omitted for the readability 
of the fgure. 
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source(s) adjective in STEP 

GS, VA 
GS, VA’ 
AD, TIPI, VA’ 

friendly 
mechanical 
simple 

□ 
□ 
□ 

▽ 
▽ 
▽ 

TIPI, BFI-10 reserved ▽ 
IASR-B5, FFM, VA assertive ▽ 
GS, VA fake ▽ 
GS unpleasant ▽ 
GS artifcal ▽ 
VA synthetic ▽ 
PCPS*, HRG unemotional ▽ 
AD clear ▽ 
TIPI* unenthusiastic ▽ 
AD’ boring ▽ 
GS* unnatural ▽ 
AD* unclear ▽ 
◦ masculine ▽ 
◦ male ▽ 
◦ young ▽ 
◦ feminine ▽ 
◦ female ▽ 
VA playful □ 
GS, VA intelligent □ 
VA helpful □ 
GS humanlike □ 
TIPI complex □ 
◦ animallike □ 

markers: sources: 

□ in STEP-images IASR-B5 [S81] HRG [S28] AD [S26] 
▽ in STEP-voices FFM [S48] PCPS [S15] AD-BG [S25] 

TIPI [S21] GS [S8] 
* antonym in source BFI-10 [S66] VA [S88] 
’ synonym in source 
◦ added after pilot study 

Table S4: List of attributes compiled from literature and pilot study. Part 1/4, showing those of the original 260 attributes that 
were also used by participants in the labeling task. 
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source(s) adjective 

TIPI uncreative 
AD conservative 
TIPI open to experience 
IASR-B5 unphilosophical 
IASR-B5 unrefective 
AD, TIPI conventional 
FFM*, AD, BFI-10* unimaginative 
AD, TIPI*, VA creative 
IASR-B5*, BFI-10*, VA artistic 
IASR-B5, FFM, BFI-10’ imaginative 
IASR-B5, TIPI* unconventional 
IASR-B5, FFM* unreliable 
AD innovative 
IASR-B5 questioning 
IASR-B5 philosophical 
IASR-B5 refective 
FFM curious 
AD original 
VA joyful 
IASR-B5 broad-minded 
BFI-10, VA lazy 
VA principled 
VA reckless 
AD predictable 
GS irresponsible 
TIPI careless 
IASR-B5, FFM*, TIPI, VA* disorganized 
IASR-B5, FFM* inefcient 
IASR-B5 unsystematic 
IASR-B5*, FFM*, VA superfcial 
IASR-B5 undisciplined 
VA messy 
BFI-10* diligent 
IASR-B5, FFM reliable 
AD unpredictable 
GS responsible 
IASR-B5, FFM, TIPI*, VA organized 
IASR-B5 orderly 
IASR-B5, FFM efcient 

source(s) adjective 

IASR-B5 systematic 
IASR-B5, FFM, BFI-10’, VA thorough 
IASR-B5, VA* tidy 
TIPI extroverted 
TIPI quiet 
IASR-B5 timid 
IASR-B5, VA* forceless 
IASR-B5 meek 
FFM talkative 
FFM’, VA expressive 
FFM active 
IASR-B5 dominant 
VA powerful 
FFM, BFI-10, TIPI* outgoing 
IASR-B5, VA forceful 
IASR-B5 frm 
FFM energetic 
FFM, VA enthusiastic 
VA agreeable 
FFM*, BFI-10*, VA distrustful 
VA detached 
GS, VA* unfriendly 
IASR-B5 uncharitable 
IASR-B5 soft-hearted 
IASR-B5*, FFM*, GS, VA* unkind 
IASR-B5, VA cruel 
FFM*, VA stingy 
IASR-B5 ruthless 
GS pleasant 
TIPI*, VA peaceful 
FFM, BFI-10, VA’ trusting 
VA benevolent 
VA afectionate 
VA respectful 
IASR-B5, FFM, TIPI sympathetic 
IASR-B5 charitable 
IASR-B5 iron-hearted 
IASR-B5*, FFM, TIPI, VA warm 
IASR-B5, FFM, GS, VA kind 

markers: sources: 
* antonym in source IASR-B5 [S81] AD [S26] 
’ synonym in source FFM [S48] GS [S8] 
◦ added after pilot study TIPI [S21] VA [S88] 

BFI-10 [S66] 

Table S5: List of attributes compiled from literature and pilot study. Part 2/4, showing a subset of the original 260 attributes 
that was not used by participants in the labeling task. 
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source(s) adjective 

IASR-B5 tender 
FFM appreciative 
FFM forgiving 
FFM generous 
BFI-10 sociable 
IASR-B5*, FFM, TIPI* unstable 
IASR-B5, FFM*, TIPI stable 
IASR-B5, BFI-10, VA nervous 
VA temperamental 
FFM impulsive 
IASR-B5, FFM worrying 
IASR-B5, FFM tense 
IASR-B5, FFM*, TIPI*, VA* unanxious 
IASR-B5’, VA excitable 
FFM thin-skinned 
IASR-B5*, VA moody 
FFM touchy 
IASR-B5, TIPI, VA calm 
VA stoic 
FFM*, VA deliberate 
IASR-B5, FFM* unworrying 
IASR-B5, BFI-10, VA relaxed 
IASR-B5, FFM, TIPI, VA anxious 
GS incompetent 
GS competent 
GS, VA ignorant 
VA dumb 
GS knowledgeable 
VA useful 
GS natural 
GS machinelike 
GS unconscious 
GS, VA dead 
GS stagnant 
GS inert 
GS conscious 
GS, VA* alive 
GS lively 
GS organic 
GS, VA interactive 

source(s) adjective 

GS, VA responsive 
AD not presentable 
AD unstylish 
AD confusing 
AD cumbersome 
AD complicated 
VA soothing 
AD presentable 
AD valuable 
AD stylish 
AD direct 
AD engaging 
GS moving rigidly 
GS lifelike 
GS moving elegantly 
VA fexible 
GS apathetic 
GS, VA* unintelligent 
GS foolish 
GS sensible 
GS dislike 
GS awful 
GS like 
GS nice 
BFI-10’, VA fault-fnding 
FFM*, TIPI critical 
TIPI quarrelsome 
FFM, TIPI, VA dependable 
IASR-B5, FFM, TIPI, VA self-disciplined 
GS agitated 
GS surprised 
GS quiescent 
PCPS’, HRG thoughtful 
PCPS inattentive 
HRG cautious 
HRG reasonable 
PCPS honest 
HRG weak 
PCPS arrogant 
HRG uncooperative 

markers: sources: 
* antonym in source IASR-B5 [S81] AD [S26] 
’ synonym in source FFM [S48] GS [S8] 
◦ added after pilot study TIPI [S21] VA [S88] 

BFI-10 [S66] 

Table S6: List of attributes compiled from literature and pilot study. Part 3/4, showing a subset of the original 260 attributes 
that was not used by participants in the labeling task. 
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source(s) adjective 

HRG impolite 
HRG cooperative 
HRG polite 
PCPS merciful 
PCPS emotional 
AD-BG ugly 
AD-BG beautiful 
TIPI*, VA* closed-minded 
BFI-10’, VA* unartistic 
TIPI’ open-minded 
VA* shallow 
IASR-B5* unquestioning 
IASR-B5* narrow-minded 
FFM* uncurious 
FFM* unoriginal 
VA* serious 
VA* unprincipled 
IASR-B5, AD impractical 
IASR-B5’ disorderly 
TIPI* careful 
IASR-B5*, AD practical 
IASR-B5’, FFM’, VA’ disciplined 
TIPI* introverted 
FFM*, VA* expressionless 
FFM* passive 
IASR-B5*, FFM*, VA* non-assertive 
IASR-B5* submissive 
VA* powerless 
FFM* non-energetic 
IASR-B5* bold 
VA* disagreeable 
VA* belligerent 
VA* malevolent 
VA* disrespectful 
IASR-B5*, FFM*, TIPI* unsympathetic 
IASR-B5’, TIPI* cold 
FFM* unappreciative 
FFM* unforgiving 

source(s) adjective 

IASR-B5*, VA* non-excitable 
FFM* thick-skinned 
VA* unhelpful 
VA* useless 
GS’, VA* unresponsive 
GS’ agitating 
AD’ worthless 
GS’ calming 
FFM*, BFI-10* reclusive 
BFI-10* unsociable 
FFM’ uncritical 
FFM*, TIPI*, VA* undependable 
TIPI’ upset 
TIPI’ loud 
HRG* unreasonable 
PCPS* dishonest 
PCPS* attentive 
PCPS* merciless 
GS’ intimidating 
GS’ upsetting 
GS’ reassuring 
◦ small 
◦ tiny 
◦ old 
◦ big 
◦ tall 
◦ distant 
◦ involved 
◦ changing 
◦ constant 
◦ repulsive 
◦ unattractive 
◦ attractive 
◦ inelegant 
◦ uninteresting 
◦ elegant 
◦ interesting 
◦ uncomfortable 

markers: sources: 
* antonym in source IASR-B5 [S81] AD [S26] 
’ synonym in source FFM [S48] GS [S8] 
◦ added after pilot study TIPI [S21] VA [S88] 

BFI-10 [S66] 

Table S7: List of attributes compiled from literature and pilot study. Part 4/4, showing a subset of the original 260 attributes 
that was not used by participants in the labeling task. 
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source(s) adjective 

GS, VA friendly 
GS, VA’ mechanical 
AD, TIPI, VA’ simple 
GS’ robotic 

creepy 
weird 

VA playful 
GS, VA intelligent 
VA helpful 
GS humanlike 
TIPI complex 
GS’ humanoid 
GS’ scary 
◦ animallike 
◦ cute 

strange 
futuristic 
functional 

in STEP 

□ ▽ 
□ ▽ 
□ ▽ 
□ ▽ 
□ ▽ 
□ ▽ 
□ 
□ 
□ 
□ 
□ 
□ 
□ 
□ 
□ 
□ 
□ 
□ 

markers: 

□ in STEP-images 
▽ in STEP-voices 

* antonym in source 
’ synonym in source 
◦ added after pilot study 

source(s) adjective in STEP 

TIPI, BFI-10 reserved ▽ 
IASR-B5, FFM, VA assertive ▽ 
GS unpleasant ▽ 
PCPS*, HRG unemotional ▽ 
GS artifcial ▽ 
VA synthetic ▽ 
AD clear ▽ 
GS, VA fake ▽ 
TIPI* unenthusiastic ▽ 
GS* unnatural ▽ 
AD* unclear ▽ 
AD’ boring ▽ 
◦ masculine ▽ 
◦ male ▽ 
◦ young ▽ 
◦ feminine ▽ 
◦ female ▽ 

echo ▽ 
accent ▽ 
distorted ▽ 
fast ▽ 
monotone ▽ 

sources: 

IASR-B5 [S81] HRG [S28] AD [S26] 
FFM [S48] PCPS [S15] AD-BG [S25] 
TIPI [S21] GS [S8] 
BFI-10 [S66] VA [S88] 

Table S8: The 40 labels selected for rating the robots’ images and the voices. Whenever possible, references that confrm them 
were added for those that were not in the original list of 260 attributes. 
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Name: 
Creator: 

Image Credits: 

Bärbot 
University of Augsburg 
photo taken and edited by authors 

Name: 
Creator: 

Image Credits: 

Schlupp 
Augsburger Puppenkiste 
photo taken and edited by authors 

Name: 
Creator: 

Image Credits: 

RoboKind R50 Alice 
Hanson Robotics 
photo taken and edited by authors 

Name: 
Creator: 

Image Credits: 

Digit 
Agility Robotics 
Agility Robotics (written approval) 

Name: 
Creator: 

Image Credits: 

Daisy 
HEBI robotics 
HEBI robotics (written approval) 

Name: 
Creator: 

Image Credits: 

Valkyrie 
NASA 
NASA (not subject to copyright for non-commercial use) 

Name: 
Creator: 

Image Credits: 

Perseverance 
NASA 
NASA (not subject to copyright for non-commercial use) 

Table S9: Copyright statement of robot images used in the fgures of the manuscript (1/2). 
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& Creator: 
Name: 
NASA 

Image Credits: 

Spirit & Opportunity 

NASA (not subject to copyright for non-commercial use) 

Name: 
Creator: 

Image Credits: 

Curiosity 
NASA 
NASA (not subject to copyright for non-commercial use) 

Name: 
Creator: 

Image Credits: 

Robonaut 2 
NASA 
NASA (not subject to copyright for non-commercial use) 

Table S10: Copyright statement of robot images used in the fgures of the manuscript (2/2). 
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