
PHYSICAL REVIEW RESEARCH 6, L022050 (2024)
Letter

Mutual information as a measure of mixing efficiency in viscous fluids
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Because of the kinematic reversibility of the Stokes equation, fluid mixing at the microscale requires an
interplay between advection and diffusion. Here, we introduce mutual information between particle positions
before and after mixing as a measure of mixing efficiency. We demonstrate its application in a Couette flow in
an annulus and show that nonuniform rotation sequences can lead to more efficient mixing. We also determine
mutual information from Brownian dynamics simulations using data compression algorithms. Our results show
that mutual information provides a universal and assumption-free measure of mixing efficiency in microscale
flows.
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Designing protocols that force an out-of-equilibrium sys-
tem into equilibrium faster than the natural relaxation rate is
a pertinent topic in a number of classical [1,2] and quantum
systems [3]. A prime example of forced equilibration is the
mixing of fluids if the initial state contains a nonequilibrium
concentration or temperature distribution. Fluid mixing at the
microscale is of paramount importance in biological organ-
isms and in artificial systems. Examples range from the uptake
of oxygen, nutrients, or chemical signals in aquatic organisms
to microreactors and “lab-on-a-chip” applications [4–8]. In
biology, mixing is frequently accomplished by cilia which
drive long-range flows, but also localized regions of chaotic
advection [9–14]. A particular challenge to microscale mixing
is posed by the time reversibility of flows at low Reynolds
numbers [15,16]. Mixing therefore requires an interplay be-
tween advection (stirring) and diffusion [17,18]. Although
most examples work with the mixing of two distinct fluids,
the formalisms that are used apply equally to other scalar
quantities such as temperature [17].

The measures that quantify the mixing efficiency can
broadly be classified as global and local [8,17]. Global mea-
sures typically start by imposing a pattern, e.g., by distributing
the solute in a part of the fluid volume. After mixing, the
intensity of segregation can be defined as the variance of so-
lute concentration (the L2 norm) [19,20], its entropy [21–25],
the mean distance to the closest particle from the other
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population [26], or Sobolev norms [20,27]. The same global
mixing measures can also be applied to quantify unmixing in
cases of spontaneous phase segregation [23]. The limitation
of these measures is that the result will depend on the choice
of the initial distribution. Local measures typically charac-
terize the amount of stretching or the Lyapunov exponents
[16,28,29].

In this Letter, we introduce mutual information as a univer-
sal measure of mixing in fluids at low Reynolds numbers with
strong interplay between advection and diffusion. As a simple
model system, we test our method in a two-dimensional (2D)
Couette flow and show that the mixing efficiency depends in
a nontrivial way on the time sequence of rotation (see Fig. 1).

Because the theoretically smallest compressed size of a
data set is given by its Shannon entropy, lossless data com-
pression algorithms can be used to estimate the entropy of a
distribution [30–33]. Order in two-dimensional systems can
be estimated with lossless image compression algorithms such
as PNG [34] or GIF with LZW compression [35]. However,
it has also been argued that compression algorithms lead to
poor estimates in two-dimensional systems with long-range
correlations [36,37]. We estimate mutual information with
different compression algorithms and achieve good accuracy
with the neural-network based PAQ8PX [38].

The fluid motion at low Reynolds number is governed by
the Stokes equation μ�v = ∇p and incompressibility con-
dition ∇ · v = 0 with the fluid velocity v, pressure p, and
viscosity μ. We assume that the boundary shape does not
change during the mixing process, although an extension to
shape-changing compartments is straightforward. Therefore,
the normal velocity has to vanish at the boundary, n · v = 0.
Without inertia the fluid motion at any time t is fully deter-
mined by the instantaneous velocities at the boundaries. The
particles in the fluid to be mixed—we assume that they are
all equivalent—are subject to Brownian motion in addition to
flow-driven advection. The time evolution of the probability
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FIG. 1. (a) 2D Couette flow in an annulus geometry. The outer
boundary is stationary and the inner is rotating with angular velocity
�. (b) Time evolution of the probability density P̃(x, t̃ |x0), with an
initial position x0 in the middle of the annulus. The top row shows
the process with pure diffusion (�̃ = 0) and the bottom row with
additional uniform advection (�̃ = 15π ) (see Movies 1 and 2 in
Supplemental Material [39]).

density P(x, t ) is determined by the advection-diffusion equa-
tion (equivalent to a Fokker-Planck equation)

∂t P + ∇ · (vP) = D�P, (1)

with the diffusion constant D. The zero-flux condition implies
n · ∇P(x, t ) = 0 at the boundary. The conditional probability
P(x, t |x0) is obtained by solving Eq. (1) with the initial con-
dition x = x0 at t = 0. Because the flow is divergence free,
the stationary solution is always given by a uniform density,
P(x, t ) ≡ 1/V .

We quantify the mixing efficiency using the mutual infor-
mation between the initial and the final position of a particle
in the fluid. Mutual information provides the strictest possible
measure of mixing: Zero mutual information means that the
final position of a particle is unrelated to its initial position
and therefore also to the position of any other particle in
the fluid. Unlike many other criteria, it does not require any
assumptions about the initial spatial distribution of the fluid
components to be mixed. Mutual information is defined as
the sum of entropies of initial and final position distributions,
reduced by the joint entropy of the initial and final position
together [40]:

I[x0; xt ] = S[x0] + S[xt ] − S[x0, xt ]. (2)

Here, S[x0] is the entropy of the initial position variable,
S[xt ] is the entropy of the position variable at time t , and
S[x0, xt ] is the joint entropy of these two variables. The fi-
nal distribution at time t can also be expressed as P(x, t ) =∫

P(x, t |x0)P(x0)dx0. Mutual information can equivalently be
expressed with the conditional entropy as

I[x0; xt ] = S[xt ] − S[xt |x0], (3)

where S[xt ] = − ∫
P(x, t ) log P(x, t )dx, and S[xt |x0] =

− ∫
P(x0)[

∫
P(x, t |x0) log P(x, t |x0)dx]dx0 is the conditional

entropy with the knowledge of the initial position.
Mutual information, as defined above, depends on the

distribution of initial positions P(x0). This distribution de-
termines the statistical weight that is given to the mixing
efficiency in different regions of the fluid. It should not be
confused with any imposed pattern in the fluid to be “erased”
by mixing, as frequently used in other mixing efficiency cri-
teria. In the following, we assume a homogeneous weight
P(x0) = 1/V . As this is the stationary solution, it also leads

to P(x, t ) = 1/V at all later times. We note, however, that as a
possible alternative, one could also use an initial distribution
that maximizes I (t ), following the spirit of Shannon’s chan-
nel capacity theorem, which would provide a quantitatively
stricter measure.

Interestingly, the mixing efficiency is invariant upon
time reversal of the mixing sequence, defined by v̄(x, t ) =
−v(x, tF − t ), where tF is the duration of the mixing process.
This follows from a general property of the Fokker-Planck
equation with divergence-free flux densities [41], for which
P̄(x, t |x0) = P(x0, t |x). With a uniform distribution P(x0), we
have S[xt ] = S[x0] and from Eq. (3) it follows immediately
that Ī (tF ) = I (tF ).

We now demonstrate the application of mutual information
as measure for mixing efficiency in 2D Couette flow. The
outer circular boundary with radius Rout is stationary and
the inner boundary with radius Rin rotates with an angular
velocity �(t ), as shown in Fig. 1(a). In the following we
nondimensionalize all variables using the length scale L =
(Rin + Rout )/2 and timescale T = L2/D such that t̃ = t/T ,
r̃ = r/L, etc. In the examples shown below, we use R̃in = 0.6
and R̃out = 1.4. The flow in the annulus is solved by [42]

ṽ = �̃r̃
r̃−2 − R̃−2

out

R̃−2
in − R̃−2

out

. (4)

In order to numerically determine the conditional en-
tropy S[xt |x0] in Eq. (3), we use a spectral method to
calculate P(x, t |x0) for any initial position x0. Two exam-
ples of the solution for P(x, t |x0), one with pure diffusion
and one with uniform rotation, are shown in Fig. 1(b). The
conditional entropy S[xt |x0], needed to determine the mu-
tual information I (t ), is eventually obtained by integrating
P(x, t |x0) log P(x, t |x0) over r̃0, r̃, and θ , and making use
of the rotational symmetry of the system with regard to θ0.
The decay of mutual information with pure diffusion and
with different advection rates is shown in Fig. 2. In all cases
I (t̃ ) monotonically decreases with time (as in any Markovian
process, information can only be lost, but never recovered),
but we see that the decay is faster in the presence of rotation,
proving that the interplay between advection and diffusion
accelerates mixing. At short times, the effect of advection
is small and the particle dynamics can be approximated as
free diffusion, giving S[xt |x0] = log (4πDt ) + 1 [18]. Insert-
ing the conditional entropy into Eq. (3) and switching to
nondimensional units gives an approximation for the mutual
information I (t̃ ) = − log (4π t̃/Ã) − 1, where Ã is the dimen-
sionless surface area [Fig. 2(a), dashed line]. While giving the
correct slope, the value of I is slightly underestimated because
of neglected boundaries.

A more conventional way of quantifying mixing consists of
studying the dissolution of an initial pattern [19]. For example,
the initial state can consist of two different fluids. A compar-
ison between the decay of concentration variance and mutual
information I (t̃ ) is shown in Fig. 3. It shows that the slowest
of the patterns has the same final exponential decay rate as
I (t̃ ) while others are faster, in line with the argument that
mutual information provides the strictest possible measure of
mixing efficiency. The calculation of concentration variance
is described in the Supplemental Material [39].
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(a)

(b)

FIG. 2. (a) Temporal decay of mutual information between parti-
cle positions in the initial state and the state after time t̃ for different
constant rotation rates. The dashed line shows the approximation for
free diffusion, I (t̃ ) = − log (4π t̃/Ã) − 1. (b) The time constant of
final relaxation for the processes shown in (a), I ∝ exp(−t̃/τ ).

Because mixing in viscous fluids requires an interplay
between advection and diffusion, we expect that the mixing
efficiency depends on the time sequence of rotation �̃(t̃ ) and
not just the total angle

∫ t̃F
0 �̃dt̃ [17]. For example, rotation at

the very beginning or the end of the time interval just reorders
the positions, but does not reduce the mutual information.
We also know, as shown above for any mixing process, that
I is invariant if we reverse the mixing sequence in time,
�(t ) → �(tF − t ).

We investigated the mixing efficiency of time-dependent
advection under two different conditions: (i) for a fixed to-
tal rotation

∫ t̃F
0 �̃dt̃ with the additional condition that the

sense of rotation be constant (�̃ > 0) and (ii) for a fixed
total viscous dissipation,

∫ t̃F
0 �̃2dt̃ . In each scenario, we com-

pared the mixing efficiency of uniform rotation (�̃ = const)
with a Gaussian profile, centered around the middle of the
time interval (Supplemental Material Movie 3 [39]) and the
globally optimal sequence. We determined the latter with a
global optimizer [GlobalSearch in MATLAB (MathWorks,
Inc.)], using the velocities in discrete intervals as optimization
variables. For a constant rotation, the dependence of IF on
the Gaussian width σ is usually monotonic [Fig. 4(a)] and
optimal mixing is achieved by a sharp, discrete rotation at
midtime [Fig. 4(d)]. For certain parameters, especially for
large total rotation angles and long times, the dependence be-

FIG. 3. Temporal decay of mutual information I between particle
positions in the initial state and the state after time t̃ (right axis; red)
compared with the variance of concentration σ 2

c for three different
initial patterns (left axis; color). The insets show the time evolution
of concentration for each initial pattern (see also Fig. S1 [39]).
(a) Processes with pure diffusion (�̃ = 0). The dashed line shows the
approximation for free diffusion. (b) Processes with both diffusion
and advection (�̃ = 20π ).

comes nonmonotonic [Fig. 4(b)]. The optimal sequence then
consists of two symmetrically arranged peaks [Fig. 4(e)].
If the total viscous dissipation is kept constant, mixing se-
quences with strong nonuniformity naturally become less
efficient [Fig. 4(c)]. Then the optimal velocity profile becomes
approximately parabolic with a maximum in the middle and
dropping to zero at the beginning and end of the interval.
Overall, the analysis shows that the velocity profiles that max-
imize the mixing efficiency are always nonuniform, regardless
of whether the total rotation or the total viscous dissipation is
kept constant. The symmetry of mixing efficiency upon time
reversal is also reflected in the symmetry of the optimal pro-
files. The exact dependence, however, is complex and can be
nonmonotonic in certain parameter regions. A nonmonotonic
dependence can also be seen if we quantify mixing using the
variance of concentration σ 2

c (Fig. S2 [39]), but the outcome
depends on the initial pattern, in contrast to the universal
nature of mutual information.

As an alternative approach, mutual information can also
be estimated using lossless data compression algorithms. The
(information) entropy of a data set in principle gives a lower
bound on its compressed size. By creating a file with initial
and final positions of particles (x0, xt ) and compressing it,
we obtain an upper bound on the joint entropy S[x0, xt ],
and consequently, a lower bound on the mutual information
I (t ) using Eq. (2). As each position is a two-component
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FIG. 4. Mixing efficiency IF of nonuniform sequences �̃(t̃ ) with (a), (b) a fixed total rotation angle and (c) fixed dissipation. (a) Mixing
efficiency of the rotation sequence with a Gaussian dependence �̃ ∼ exp[−(t̃ − t̃F /2)2/2σ 2] with standard deviation σ , discretized with 25
segments, for

∫
�̃dt̃ = π , t̃F = 0.2 (red line). The blue dashed line shows the optimal, the gray dashed line shows the uniform sequence, the

green point shows the sequence with σ = 0, and the orange point shows the sequence with σ = 0.068. (b) As in (a), but with
∫

�̃dt̃ = 4π ,
t̃F = 0.4. (c) Mixing efficiency of Gaussian sequences, discretized with 49 segments, with equal total dissipation

∫
�̃2dt̃ = 5π 2 and t̃F = 0.2.

The orange point shows the sequence with σ = 0.051. (d)–(f) show the sequences used in (a)–(c), respectively. The optimal sequence shown
in (e) becomes bimodal.

vector, the problem is equivalent to computing entropy of a
distribution in a four-dimensional space, larger than in most
uses of compression algorithms for entropy evaluation re-
ported to date.

We generate a data set by randomly selecting an initial po-
sition x0 within the fluid area. We then simulate the Brownian
trajectory with the Euler-Maruyama method with each next
position determined as

xt+�t = R(ω(|xt |)�t ) · xt + ξt . (5)

Here, R(�θ ) denotes a rotation matrix with the rotation angle
�θ , ω = v/r is the local rotation rate and ξt is a vector where
each component is a Gaussian-distributed random variable
with mean zero and standard deviation

√
2D�t . The combi-

nation of rotational motion and noise in Cartesian coordinates
is chosen to avoid spurious drift caused by the integration
procedure. Positions outside the radial range [Rmin, Rmax] were
reflected at the boundary. Both positions were expressed in
polar coordinates and the quantities r2

0 − R2
min, θ0, r2

F − R2
min,

θF were normalized, converted to 8-bit unsigned integers, and
written to a file in this order. Using r2 as a variable ensures
a homogeneous radial distribution. The simulation is repeated
with N = 105, 106, or 107 starting points, giving a file size of
400 kB, 4 MB, or 40 MB, respectively.

The optimally compressed size of this file (Ct ) is a measure
of the joint entropy S[x0, xt ] up to a constant that depends on
the level of coarse graining. Likewise, the compressed size of
an equivalent file with uncorrelated random initial and final
positions (C∞) is a measure of the sum of the entropies of

the initial and the final distributions S[x0] + S[xt ]. Following
Eq. (2), the mutual information can be estimated as

I[x0; xt ] ≈ (log 2)
C∞ − Ct

N
, (6)

with both file sizes measured in bits.
For data compression, we use three different programs:

the commonly used Lempel-Ziv-Markov chain algorithm
(LZMA) and BZIP2, as well as the experimental, neural net-
work based algorithm PAQ8PX [38,43,44]. A simple test case
comprising a one-dimensional drift-diffusion process shows
that all three algorithms qualitatively give the right depen-
dence when 10-bit integers are used, but PAQ8PX consistently
gave errors �0.1 with large samples (Supplemental Material
Fig. S3 [39]). Figure 5 shows the mutual information I (t̃ )
of our mixing process estimated using the three compression
algorithms and different data-set sizes in comparison with the
numerical results, obtained with the spectral solution. The
comparison is shown for a diffusive process [Fig. 5(a)] and
for constant advection with �̃ = 20π [Fig. 5(b)]. Whereas
the standard algorithms practically failed to detect any mu-
tual information, PAQ8PX gave results with an absolute error
	1. With the largest size N , the errors are �0.3. LZMA
and BZIP2 failed because they use consecutive byte sequences
when searching for repeated patterns, whereas PAQ8PX ana-
lyzes data bitwise and also includes predictors for arithmetic
numbers. These features allow PAQ8PX to detect nontrivial
regularities in the significant digits of the positions and not
getting distracted by the largely stochastic lower bits.
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FIG. 5. Mutual information I between the initial state and the
state after time t̃ , estimated by means of three different compression
algorithms (color). Different symbol shapes mark different data-set
sizes N . The red line shows the numerical result using the spectral
solution. (a) Process with pure diffusion (�̃ = 0). (b) Process with
both diffusion and advection (�̃ = 20π ).

In conclusion, we have introduced mutual information be-
tween the initial and the final state as a universal measure
for mixing efficiency in microfluidic setups with a strong
interplay between advection and diffusion. We have shown
that under this measure, the mixing efficiency is symmetric
upon time reversal of the actuation sequence. Among all se-
quences with the same rotation angle, the ones with optimal
mixing consist of a fast rotation in the middle of the time
interval, or in some cases two symmetrically arranged. We
have also demonstrated that advanced neural network based
compression algorithms can be applied to estimate mutual
information to a high accuracy. The latter can prove useful in
more complex flows in which a full solution of the advection-
diffusion equation may not be tractable. In some limits, the
shear-induced enhancement of mixing shown in our model is
similar to Taylor dispersion which requires a relatively thin
channel and therefore fast radial diffusion [45]. We also stress
that the Couette flow that we chose as a demonstration is
far from optimal and that several works have investigated
sequences with optimal kinematics under given mixing norms
[46–51]. Finding the mixing pattern without geometric re-
strictions that minimizes mutual information remains a task
for future. Furthermore, we expect that our formalism will
also be applicable to more complex mixing situations, for
example, by active swimmers [52–54], natural or artificial
cilia [11–14,55,56], or in active materials and systems where
the final distribution is nonuniform or even nonstationary [25].
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