
RESEARCH ARTICLE

Windthrow causes declines in carbohydrate

and phenolic concentrations and increased

monoterpene emission in Norway spruce

Linda M. A. LehmanskiID
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Abstract

With the increasing frequencies of extreme weather events caused by climate change, the

risk of forest damage from insect attacks grows. Storms and droughts can damage and

weaken trees, reduce tree vigour and defence capacity and thus provide host trees that can

be successfully attacked by damaging insects, as often observed in Norway spruce stands

attacked by the Eurasian spruce bark beetle Ips typographus. Following storms, partially

uprooted trees with grounded crowns suffer reduced water uptake and carbon assimilation,

which may lower their vigour and decrease their ability to defend against insect attack. We

conducted in situ measurements on windthrown and standing control trees to determine the

concentrations of non-structural carbohydrates (NSCs), of phenolic defences and volatile

monoterpene emissions. These are the main storage and defence compounds responsible

for beetle´s pioneer success and host tree selection. Our results show that while sugar and

phenolic concentrations of standing trees remained rather constant over a 4-month period,

windthrown trees experienced a decrease of 78% and 37% of sugar and phenolic concen-

trations, respectively. This strong decline was especially pronounced for fructose (-83%)

and glucose (-85%) and for taxifolin (-50.1%). Windthrown trees emitted 25 times greater

monoterpene concentrations than standing trees, in particular alpha-pinene (23 times

greater), beta-pinene (27 times greater) and 3-carene (90 times greater). We conclude that

windthrown trees exhibited reduced resources of anti-herbivore and anti-pathogen defence

compounds needed for the response to herbivore attack. The enhanced emission rates of

volatile terpenes from windthrown trees may provide olfactory cues during bark beetle early

swarming related to altered tree defences. Our results contribute to the knowledge of fallen

trees vigour and their defence capacity during the first months after the wind-throw distur-

bance. Yet, the influence of different emission rates and profiles on bark beetle behaviour

and host selection requires further investigation.
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Introduction

In recent years, forests throughout the world have suffered an increased number of extreme

weather events such as storms, droughts and fires caused by climate change that promote

large-scale tree mortality [1]. The occurrence and intensity of forest damaging storms has

risen, especially in Central Europe, recent examples being the low-pressure systems Ylenia and

Zeynep in February 2022 [2, 3]. Storms leading to uprooting of trees (windthrow), have strong

effects on forest biodiversity, soil properties, vegetation and micro-climate as well as on insect

communities [4, 5]. Drought stress or uprooting caused by storm damage can limit water

uptake of trees and therefore have strong effects on tree physiology and vitality of trees [6].

Because photosynthesis is reduced and less non-structural carbohydrates are available for the

production of defensive compounds, such as terpenes or phenolics, trees can become more

susceptible to successful colonisation by bark-boring insects [7–10]. Phenolics in particular

have been shown to play an important role in tree defence against bark beetles and their sym-

biotic microbes [11]. The recent large-scale die-off events of Norway spruce (Picea abies)
caused by its main pest the Eurasian Spruce bark beetle Ips typographus (L.) (Coleoptera: Sco-

lytidae) are a bold example of how abiotic stress can cause or facilitate insect infestations.

Spruce has been planted abundantly in many regions in Germany because trees grow fast and

the wood is of high quality for many applications; however, spruce is also particularly predis-

posed to suffer from drought and windthrow [12]. Wind-felled spruce trees offer ideal breed-

ing material for certain insect pests which can trigger population increases that can also

threaten standing, healthy trees [4–6]. While vigorous trees are of higher nutritional value for

bark beetles, they are generally well defended against successful beetle attack, at least when bee-

tle population densities are low (endemic) [13]. By contrast, bark beetles seem to be more suc-

cessful in attacking and colonising trees that were exposed to disturbance and stresses like

windthrow or drought [7–10].

In springtime, overwintering pioneer beetles emerge from within the bark or forest litter to

colonise trees and establish the first annual brood. Being exhausted from overwintering these

beetles thus need to locate suitable hosts that are weak enough to ensure a successful colonisa-

tion and egg deposition, while providing sufficient resources to allow beetle development until

maturation [14, 15]. Hence, finding the right host is a crucial aspect of the beetle’s life cycle to

ensure the survival of the population, a process termed primary attraction that likely is guided

by cues emitted from trees, although there currently is no coherent evidence for primary

attraction [16]. Several studies have been conducted to address aspects of attraction of beetles

to certain cues [17–21], yet results do not clearly show that beetles can differentiate between

stressed and unstressed trees. Following first attack, emission profiles substantially change as

pioneer beetles and their associated microorganisms start emitting pheromones [22] to attract

conspecifics (i.e. secondary attraction) [11].

In this study we investigated the effect of windthrow on tree vitality and defence capacity as

well as volatile emissions. Therefore, we examined sugar and phenolic concentrations and vol-

atile emission profiles of stressed (windthrown, weakened) and unstressed (standing, vigorous)

trees. We hypothesised that (1) windthrow will lead to decreasing carbohydrate availability in

tree stems due to reduced water uptake and light exposure. This will in turn (2) lead to reduced

local (i.e. stem) production of secondary metabolites, like phenolics, that are required to

defend against attacking bark beetles, and (3) these changes in tree metabolism will be accom-

panied by quantitative and qualitative changes in emissions of monoterpene volatiles that are

proposed to be the main factor influencing early swarming bark beetle behaviour during the

search for a suitable host.
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Methods and materials

Site

In February 2022, successive storms with wind speeds up to 120 km/h caused major damage to

forests in Germany [23], producing many windthrown trees as breeding material for resident

bark beetles. Measurements were performed in a 50-70-year-old Norway spruce stand in

Schöngleina (near Jena, Thuringia, Germany) which was also partially damaged by windthrow.

In March, we selected 6 windthrown trees and 6 visually healthy standing trees for our mea-

surements. Measurements were conducted from March - June 2022.

Stem bark sampling

Bark samples were collected at 4 different time points during the experiment. We used an 18

mm hole punch to cut out pieces of bark/phloem on the opposite side of the chamber frames

(see Fig 1) to prevent direct effects on tree physiology and therefore on volatile emissions.

Samples were put in dry ice for transport to the lab and stored in a -20˚C freezer until they

were freeze dried once all samples had been collected.

Sugar measurements

Soluble sugars were analysed as described by [24] in detail. In a nutshell: 10mg of ground bark

material was extracted with 0.5 mL of 85% ethanol, then vortexed 1 min, incubated for 10 min

at 90˚C and centrifuged for 1 min at 13,000g. The supernatant was collected and the extraction

step was repeated after which the supernatants were combined, diluted and analysed with a

High-Performance Liquid Chromatography coupled to a Pulsed Amperometric Detection

(HPLC-PAD) following [25]. To determine the total soluble sugar concentrations, we summed

concentrations of glucose, sucrose and fructose.

Fig 1. A: Mobile GC-MS (Gas chromatography–mass spectrometry), with attached probe for volatile collections; B:

Dynamic volatile collection chamber attached to a windthrown trees. A permanent frame (1) is attached to the stem on

which the collection chamber (2) is strapped. A pump (3) and flowmeter (4) allow constant air flow. A valve (5) can be

opened for rinsing with ambient air and taking air samples with the mobile GC-MS. All materials are made from VOC

repelling materials.

https://doi.org/10.1371/journal.pone.0302714.g001
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Phenolic measurements

Phenolic compounds were extracted as described in Huang et al. 2017 and 2019, with slight

modifications [26, 27]. Briefly, *30 mg of ground freeze-dried sample was extracted with 1 ml

methanol containing 20 μg of apigenin-7-glucoside (Carl Roth GmbH, Germany) as an inter-

nal standard. The mixture was vortexed for 10 min and centrifuged for 10 min at 13,000g at

room temperature. The supernatant was collected, and the pellet was re-extracted with 0.8 ml

methanol containing the internal standard. Both supernatants were combined and analysed

using HPLC-mass spectrometry (MS) (HPLC, Agilent, Santa Clara, CA, USA; MS, Sciex,

Darmstadt, Germany). Phenolic compounds were separated on a Zorbax Eclipse XDB-C18

column (4.6 x 50 mm, 1.8 μm; Agilent) using mobile phase 0.05% (v/v) formic acid (phase A)

and acetonitrile (phase B) at a flow rate 1.1 ml min-1, with the following profile: 0–1 min,

100% A, 0% B; 1–7 min, 0–65% B; 7–7.01 min, 65–100% B; 7.01–8 min, 100% B; 8–8.01 min,

100–0% B; 8.01–10 min, 0% B. The MS was operated as follows: negative ionization mode; ion

spray voltage, -4200 V; turbo gas temperature, 700˚C; nebulizing gas, 70 p.s.i.; curtain gas, 30

p.s.i.; heating gas, 60 p.s.i.; and collision gas at 10 p.s.i. Multiple reaction monitoring was used

to analyse the parent ion! product ion: m/z 288.9! 109.1 for catechin; m/z 404.8! 243 for

astringin; and m/z 418.9! 257.1 for isorhapontin. The sum of catechin and proanthocyanidin

B1 was reported as flavan-3-ols. The sum of astringin and isorhapontin was reported as stil-

benes. Compounds were identified by comparison of retention time and mass spectra with

standards and quantified using the peak area in relation to the internal standard peak area.

The response factors were calculated with standards [28]. For the determination of total phe-

nolic concentration, all compound concentrations were summed.

Volatile measurements

Volatile measurements were performed from May to June 2022 using a closed dynamic cham-

ber system fixed to the stem of each tree and attached to a mobile gas chromatograph–mass

spectrometer (GC-MS, HAPSITE, Inficon, Switzerland, Fig 1). We attached permanently

installed flexible frames made from closed porous cell foam (EPDM, ethylene propylene diene

monomer rubber) covered in oven bags (Cofresco Frischhalteprodukte GmbH & Co. KG) to

relatively smooth and undamaged bark areas. The chamber system itself consisted of a pump

(model NMPO15S, KNF Group, Freiburg, Germany), a controllable flowmeter (model

FR2A13BVBN, Key Instruments, Croydon, US) to ensure constant air flow, a chamber (320

mL) which was lined with Polyethylenterephthalat (PET) oven bags to which volatiles do not

adhere, and hoses and connecting pieces made from FEP and PFA or stainless steel. All materi-

als were chosen to prevent volatile adherence and thus cross contamination between samples.

After installation on the tree, we flushed the chamber for 5 min at a flow rate of 0.4 L min-1

with ambient air that was cleaned of volatiles using an active charcoal filter. To increase con-

centrations of volatiles in the headspace, we incubated the chamber for 30 min with an air flow

of 0.4 L/min. The mobile GC-MS then sampled 150 mL of air from the headspace and col-

lected the volatiles on its concentrator column. The mobile GC-MS was pre-programmed fol-

lowing [28]. The starting temperatures were: column, 60˚C; membrane, 80˚C; valve oven,

70˚C; heated lines, 70˚C; probe, 40˚C. For compound separation, we used a 15 m fused silica

Restek Rtx-1 MS capillary GC column (5% diphenyl/95% dimethyl polysiloxane phase,0.25

mm inner diameter, 1 μm film thickness). Desorption of volatiles from the absorbent hap-

pened with the following temperatures: 60˚C hold for 1 min, followed by an increase to 120 at

30˚C min−1, hold for 15 min, and then to 200˚C at 30˚C min−1, hold for 2 min. MS was done

in the electron ionization mode at 70 eV with N2 as carrier gas. For analysis, we used a Hapsite

software ER Analysis. We identified compounds by comparing mass spectra with the reference
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spectra of the NIST library and ensured by the measurement of standards (α-pinene, cam-

phene, β-pinene, 3-carene, limonene (Merck, KGaA). Quantification was done using an inter-

nal standard of the mobile GC-MS, Bromopentafluorobenzene.

Data analysis

We used Shapiro-Wilk and Levene’s tests to examine normal distribution and homogeneity of

variances. If normal distribution occurred, we tested differences of treatments with non-paired

t-tests. Where normality and homogeneity of variances were not met, we applied non-

parametric tests. To test whether means of independent treatments were equal, we performed

Mann-Whitney-U tests. Kolmogorov Smirnov tests showed if distributions between com-

pounds and treatments differed.

We normalized the data to account for the large differences in absolute values between

treatments and sampling. This was done following the subsequent equation by minimum and

maximum concentration for individual compounds for both treatments where Xi is the con-

centration of a compound on day i.

normðxiÞ ¼
xi � minð compoundÞ

maxðcompoundÞ � minðcompoundÞ

Data and statistical analysis was performed using R (version 4.13, R Development Core

Team 2023) [29]. Code used for statistical analysis can be found at https://github.com/

LLehmanski/windthrow.

The forestry office Jena-Holzland in Stadtroda, Germany granted permission for our field

research. Consent from IRB or an ethics committee was not necessary. No field permit number

was issued.

Results

Sugar and phenolic concentrations

Over the approximately 4-month period of measurement, total soluble sugar concentrations in

standing trees increased slightly while concentrations in windthrown trees decreased from

first to last sampling day (Fig 2). Over these 4 months, the sucrose concentrations in wind-

thrown trees decreased by 9.9 mg/g (-68.1%), showing a significant difference to standing

trees, which had sucrose levels of 14 mg/g (+61.3%) greater (p< 0.001, Wilcoxon rank sum

test; S1 Table 1 in S1 File). Differences in treatments for glucose and fructose were not as sub-

stantial with windthrown trees experiencing a decrease of 8.8 mg/g (-85.2%) in glucose and 9.1

mg/g (-83.9%) in fructose concentration and standing trees showing a decrease of 4.1 mg/g

(-43.1%) for fructose and 3.1 mg/g (-33.7%) decrease for glucose (p< 0.01 and p< 0.05, Wil-

coxon rank sum test; S1 Table 1 in S1 File).

Phenolic substances showed similar trends as soluble sugars (Fig 3 and S1 Table 3 in S1

File). Standing trees showed no noteworthy change of total phenolic concentration during the

sampling campaign. Windthrown trees showed a significant 47.9% decrease in total phenolic

concentrations after 4 months (p< 0.05, Wilcoxon rank sum test; S1 Table 2 in S1 File). In

windthrown trees, all individual compounds experienced a substantial decrease of 35–60%

over the 4-month period, especially, catechin (-54.92%) and taxifolin (-58.97%). While most

compounds in standing trees showed minor increases, taxifolin (-2.78%) and isorhapentin

(-1.27%) showed slightly decreasing concentrations over the sampling period.

Phenolic and soluble sugar concentrations show a distinct positive relationship (Fig 4).

Higher sugar concentrations correlate with higher phenolic concentrations in both treatments
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(p< 0.001, linear regression model; S1 Table 3 in S1 File). Standing trees show a tendency

towards higher sugar and phenolic concentration, but the slope shows a similar trend for both

treatments.

Volatile measurements

Monoterpene emissions from the trunks of standing and windthrown trees differed signifi-

cantly in concentration for all measured compounds. Emissions of windthrown trees were 25

times more than in standing trees (S1 Table 4 in S1 File). Alpha-pinene is emitted at highest

rates in both treatments in relation the other compounds (61.3% in standing, 58.3% in wind-

thrown), followed by beta-pinene and camphene. The fourth most abundant compound was

limonene in standing and 3-carene in windthrown trees. With 3-carene showing roughly 90

times greater concentrations in windthrown versus standing trees (p< 0.01 Wilcoxon rank

sum test; S1 Table 5 in S1 File), this monoterpene showed the greatest difference. Only limo-

nene did not show such a large significant trend (p< 0.05, Wilcoxon rank sum test; S1 Table 5

in S1 File), although emissions were still higher in windthrown trees (Fig 5).

When investigating the proportions of compounds in windthrown and standing trees,

windthrown trees showed a higher emission of 3-carene and beta-pinene in relation to the

other substances with 4.2% and 24.1%, respectively, in comparison to about 1.1% and 21.7% in

standing trees (S1 Table 4 in S1 File). However, standing trees showed higher proportions of

alpha-pinene and camphene with 61.3% and 14.0%, while the share of this substance in wind-

thrown trees was only 58.1% and 11.4%. Trees of both treatments showed similar proportions

of limonene with 1.8% in standing and 1.9% in windthrown trees.

Fig 2. Concentrations (mg/g of dry biomass) of individual soluble sugars: glucose(A), fructose (B) and sucrose(C) and

on the sum of individual soluble sugars (D) in Norway spruce trees over a period of several weeks following a

windthrow event. Statistical differences between treatments at specific time points are indicted with ***: P<0.001, **:
p<0.01, *: p<0.05.

https://doi.org/10.1371/journal.pone.0302714.g002
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Discussion

Our study shows that windthrown trees underwent a notable decline in vigour and defence

capacity, indicated by a decrease of sugars and phenolic concentrations, in contrast to standing

and undisturbed trees. This alteration in tree physiology was associated with quantitative

changes in concentrations of monoterpenes emissions, which may provide cues to bark beetles

for identifying suitable host trees.

Windthrown trees are less well-defended than standing trees

A reduction in water availability by the uprooting of windthrown trees can reduce photosyn-

thetic activity and therefore lead to a decreased supply of carbohydrates. NSCs are a main sub-

strate for many processes in trees, such as growth, development and the synthesis of defence

compounds [30]. Water limitation can limit the production of new carbohydrates and make

trees rely on stored NSCs, which can quickly be depleted [31, 32]. Reduced photosynthesis and

reduced NSC production caused by windthrow or drought [33] may in turn constrain the pro-

duction of secondary defence metabolites, and make trees more vulnerable to damaging

insects or diseases [34, 35].

Fig 3. The effect of windthrow on concentrations of phenolic compounds in Norway spruce. A: Astringin; B: Catechin; C:

Isorhapontin; D: Proanthocyanidin B1; E: Taxifolin glucoside; F: Taxifolin; G: sum of all phenolic concentrations. Statistical

differences between treatments at specific time points are indicted with **: p<0.01, *: p<0.05. Bars depict (+/-) standard deviation

for the 4 different time points.

https://doi.org/10.1371/journal.pone.0302714.g003
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Phenolics, as a major group of defence compounds in spruce [36] are stored in different

organs of the tree, including the bark and contribute to constitutive and induced defences

against insects, microbes and herbivores [28, 37]. Our results indicate that windthrown trees

Fig 4. Relationship between sugar and phenolic concentrations of windthrown trees and standing control trees.

Dots represent measurements of individual trees. P(s) shows the p-value of standing trees, p(w) of windthrown trees.

https://doi.org/10.1371/journal.pone.0302714.g004

Fig 5. The effect of windthrow on monoterpene emission from Norway spruce trunks as measured with a mobile GC-MS. Data are normalised to

highest value within each time series as pooled data. ***: P<0.001, **: p<0.01, *: p<0.05. Normalisation was done using equation shown in ‘Data analysis’.

https://doi.org/10.1371/journal.pone.0302714.g005
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show a decrease of certain flavan-3-ols and stilbenes which are biosynthesised in the phenyl-

propanoid pathway [38, 39]. Stilbene (astringin and isorhapontin measured here) and flavo-

noid biosynthesis requires para-coumaroyl CoA which is made from phenylalanine, an

amino-acid that is involved in the production of most phenolic compounds [36]. Phenylala-

nine in turn is derived via the shikimate pathway from phosphoenolpyruvate (PEP) and ery-

throse 4-phosphate, two intermediates of plant central metabolism derived from fixation of

carbon or breakdown of glucose [40]. A decreased supply of NSCs can therefore have a direct

effect on the ability of trees to produce defence compounds. Several studies have shown similar

results in which water stress, e.g. caused by drought can constrict the production of secondary

metabolites and therefore decrease the defence capability of spruce trees [9, 28, 41].

Monoterpene emission increase in windthrown trees

The large increase in monoterpene emissions of windthrown spruce trees observed in our

study has been reported by others also. Trees cut down and left in the field showed higher total

monoterpene emission than control trees left standing [18]. A previous study on artificially

uprooted trees showed a large drop in phloem monoterpene concentration over several

months, which is also consistent with a high rate of volatilization [42]. Because spruce mono-

terpenes are typically stored in resin ducts [43], increased emission might occur if resin ducts

had been broken during windthrow. Although the bark of all trees measured in our study was

intact, with no cracks of leaking resin visible, the death of cells on windthrow and associated

disintegration of membranes may lead to increased emission without any obvious damage.

The increased emission from windthrown trees could also arise from the release of newly

synthesized monoterpenes not associated with resin ducts or other storage structures. Various

abiotic factors, such as increased light, increased temperature and moderate drought have been

reported to lead to elevated monoterpene biosynthesis and emission in conifers and other

woody plants [41, 44], and the uprooting caused by windthrow leads to drought effects [42].

The elevated emission we measured is a typical conifer response not only to abiotic stresses, but

also to herbivory or pathogen infection [45]. Extensive studies on Norway spruce have demon-

strated that herbivore damage (or damage simulated by mechanical wounding or methyl jasmo-

nate treatment) leads to increases in monoterpene emission rates [46, 47]. Even artificially

uprooted trees respond to methyl jasmonate treatment with an increased content of phloem

monoterpenes, which could lead to elevated emission rates [42]. Such an increase could repre-

sent a direct defence response to biotic attackers since volatile monoterpenes are toxic and

repellent to many insect herbivores and microbial pathogens [48]. Partially-fallen trees that

remain alive could benefit from increased defence if they are at greater risk of further attack.

Spruce monoterpenes are formed from the intermediate geranyl diphosphate, which is in

turn made from products of the methylerythritol phosphate pathway [49]. Precursors of the

methylerythritol phosphate pathway may be derived directly from photosynthetic carbon fixa-

tion or from NSCs via glycolysis in non-photosynthetic cells. The reduced NSC concentrations

present in windthrown trees are inconsistent with an increase in monoterpene formation,

which may indicate that monoterpene biosynthesis is not limited by NSC substrate supply or

that the increased emission is not a consequence of increased biosynthesis, but rather due to

the increased permeability of storage structures. Additional research is needed to understand

the mechanism for elevated monoterpene emission from windthrown spruce trees.

The monoterpenes of Norway spruce are emitted as a complex blend. Studies have shown

alpha-pinene, beta-pinene and limonene to be the most abundant monoterpenes to be emitted

from Norway spruce [17, 50]. Our results are in general agreement, and we discovered highest

differences between standing and windthrown trees for alpha-pinene, 3-carene and beta-
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pinene. When examining the relative proportions of the blend, windthrown trees showed a

higher relative emission of 3-carene and beta-pinene while standing trees had higher relative

emissions of alpha-pinene and camphene in relation to the other substances. Additionally,

oxygenated monoterpenes may play important roles in primary attraction [18, 51] but were

not measured in this study.

Changes in monoterpene emissions as a potential cue for bark beetles to

identify physiologically stressed host trees

A strong link between physiological stress in trees and infestations by bark beetle has also been

noted by earlier works [52, 53]. The depletion of NSCs we observed and the reduction in phe-

nolic accumulation could facilitate a successful infestation by bark beetles and their associated

fungi, as the tree’s defence capacity declines [34, 54]. Trees from our experiment showed a sig-

nificant decrease in phenolic defences after four to five months, although depending on the

extent of windthrow this could take longer for individual trees [42].

Bark beetles have been shown to locate host tree species and avoid non-hosts based on their

vastly different olfactory cues [17, 21, 55]. However, it has not been found out if Ips typogra-
phus can perceive differences in volatile emissions between stressed and unstressed host trees

and therefore discriminate between more suitable hosts with lowered defences and less suitable

hosts with greater defences [16, 18, 56]. Rather than responding to differences in the total

emissions of monoterpenes, it has been suggested that beetles could react to qualitative

changes in the emission profiles of trees [18]. For example, 3-carene, which is emitted in

higher proportions from windthrown trees could act as an attractant to such trees. However,

monoterpenes have shown very differing effects on beetles depending on the emitted concen-

trations, so they can be both attracting or repelling depending on the concentration [57]. This

way, beetles could distinguish potential host trees that are under stress and poorly defended

based on strongly increasing emissions of certain terpenes, but more studies are needed to

prove this phenomenon.

Conclusion and outlook

The results of this study show the effect of physiological stress on tree vitality, defence and

monoterpene emission after windthrow disturbance. Our work shows implications regarding

monoterpene stress markers and their effect on bark beetle behaviour. An increased monoter-

pene concentrations and changes in emission profiles could act as indicator for beetles to select

appropriate host trees. Yet, more investigations on differences in amount and proportions of

certain substances and their effect on beetle behaviour could shed light onto the effects of cli-

mate change on tree physiology including tree-beetle-interactions. Understanding the effect of

host tree volatiles on primary attraction could help optimizing beetle traps for early-swarming

periods. Using highly specialised baits to capture pioneer beetles could be more effective in

reducing beetle population growth and allow hampering and delaying outbreaks. Given the

severity of recent I. typographus outbreak levels in Central Europe, each and every measure to

slow bark beetle populations will be important to buy time for other forest management

actions against outbreak. Our results further underline the importance of removing wind-

thrown trees from forests as soon as possible to prevent a beetle population build-up that origi-

nates from these less resistant and potentially more attractive trees to bark beetle attacks.
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24. Landhäusser SM, Chow PS, Dickman LT, Furze ME, Kuhlman I, Schmid S, et al. Standardized proto-

cols and procedures can precisely and accurately quantify non-structural carbohydrates. Mencuccini M,

editor. Tree Physiology. 2018; 38(12):1764–78. https://doi.org/10.1093/treephys/tpy118 PMID:

30376128

25. Raessler M, Wissuwa B, Breul A, Unger W, Grimm T. Chromatographic analysis of major non-structural

carbohydrates in several wood species–an analytical approach for higher accuracy of data. Anal Meth-

ods. 2010; 2(5):532.
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