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Bio-inspired multimodal learning with
organic neuromorphic electronics for
behavioral conditioning in robotics
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Biological systems interact directly with the environment and learn by
receivingmultimodal feedback via sensory stimuli that shape the formation of
internal neuronal representations. Drawing inspiration from biological con-
cepts such as exploration and sensory processing that eventually lead to
behavioral conditioning, we present a robotic system handling objects
through multimodal learning. A small-scale organic neuromorphic circuit
locally integrates and adaptively processes multimodal sensory stimuli,
enabling the robot to interact intelligently with its surroundings. The real-time
handling of sensory stimuli via low-voltage organic neuromorphic deviceswith
synaptic functionality forms multimodal associative connections that lead to
behavioral conditioning, and thus the robot learns to avoid potentially dan-
gerous objects. This work demonstrates that adaptive neuro-inspired circuitry
with multifunctional organic materials, can accommodate locally efficient bio-
inspired learning for advancing intelligent robotics.

Advancements in the field of robotics have witnessed a notable shift
towards bio-inspiration, motivated by the remarkable capabilities of
biological nervous systems1–3. Bio-inspired robotics introduces novel
ways for robots to interact with and be integrated into the physical
world. Achieving this goal often necessitates the use of functional
materials chosen for their ability to provide the desired flexibility,
deformability, or adaptability4,5.

At the same time, artificial intelligence (AI) is already demon-
strating its proficiency for highly complex tasks in various domains
such as data analysis, decision making and computer vision6. AI sys-
tems mostly utilize large-scale (deep) neural networks for learning,
pattern recognition, classification, and language processing inside a
static environment7,8. These systems are based on gradient-based
algorithms that require high computing power andmemory storage as
well as a large amount of labeled training data. Although these systems
arehighly effective, their biological plausibility is limited9, and they can
be power-hungry10. Hence, there is a desire to explore alternative bio-

inspired algorithms, such as spiking neural networks, genetic and
evolutionary algorithms, and swarm strategies, and to further enhance
the development of specialized neuromorphic hardware platforms11–13.
Such innovations in algorithms and hardware have proven to be
powerful tools for simulating neural processes, accelerating the
training of artificial neural networks, and leading to increasingly
sophisticatedhardware for artificial neural systems.However, essential
adaptive neuronal processes, including associative learning and
behavioral conditioning, exist in primitive organisms like the box jel-
lyfish which even lack centralized nervous systems14. This raises the
question of whether complexity in algorithms and architectures is
always imperative for achieving cognitive functions and intelligent
behavior. The relatively simple neural circuits of primitive species still
exhibit significant capabilities, suggesting that emulating fundamental
biological learning principles locally with functional materials and
devices could be equally important as complexity while gaining
efficiency4,15.
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Primitive biological organisms employ fundamental strategies for
learning, such as exploration, multimodal processing, and behavioral
conditioning. From early developmental stages, living beings instinc-
tively start to learn from experience and through trial and error by
interacting with their surroundings16. During this initial exploration
phase, behaviors tend to be somewhat random and lack a specific goal
while the organism is engaged with the environment via a wide range
of sensory modalities (touch, vision, olfaction, etc.). The randomness
of certain behaviors, such as bumping into an object, leads to the
discovery of new sensations and, consequently, learning opportu-
nities. Through this physical interaction of organisms with their sur-
roundings, behavioral randomness develops gradually into
consistency17. In this context, multimodal sensing enables the collec-
tionof various sensations describing the sameevent. Theseconcurrent
multimodal observations are synchronized in time and, as a result,
become correlated, establishing autonomic connections across dif-
ferent sensory modalities and enabling behaviors such as respondent
(Pavlovian) conditioning and associative learning. Indeed, a recent
study of the complete connectome of a Drosophila brain reveals that
the majority of neurons process multimodal signals18. Adaptivity and
plasticity in function and behavior - essentials for biological develop-
ment - are especially effective if previous experiences andmemory are
taken into account aswell19. For instance, behaviors are associatedwith
consequences through affirmative (rewards or reinforcement) and
adverse (punishment) stimuli to strengthen or weaken a specific
behavior (operant conditioning). By providing diverse sensory feed-
back and abundant opportunities to learn from the environment,
explorative behavior andmultimodal processing allow for instruction-
free processes that converge into optimal behavioral conditions via
adaptivity.

Emerging functional materials and devices can offer unique
properties that go beyond what conventional systems and electronics
could achieve20. Organic mixed ionic-electronic (semi)conductors
have recently experienced a notable upswing in neuromorphic
engineering21–23. They are able to replicate bio-inspired functionalities
such as synaptic plasticity24,25, neural processing26, high connectivity
and recurrence27,28 and even forgetfulness29 just by material-inherent
mechanisms. Key features of organic synaptic devices are their adap-
tivity through linear, symmetric, and analog tuning of electrical con-
ductance and their operation at low voltage with high energy
efficiency30. The compatibility of organics with solution-based pro-
cesses and large-area integration into flexible or stretchable substrates
can enable the merging of organic neuromorphic electronics in
unconventional form factors (body, robotics, buildings, etc.)31. Indeed,
significant steps havebeenmadeusing conductive polymers regarding
localized handling of data via on-chip training32,33, real-time operation
with online learning34 and spiking circuits for bio-integration35,36.
Despite these significant demonstrations, applications are often lim-
ited to abstract and conceptual demonstrations in well-defined
laboratory settings or mock environments, enabled by simple binary
decisions. Robotic setups offer a realistic platform for interaction-rich,
real-life setups37. Robotic manipulators, for example, are crucial for a
variety of applications serving in versatile and dynamic environments,
ranging from industrial assembly lines to neural prostheses. Highly
adaptive and localized control close to the sensory nodes can drasti-
cally improve performance and can also warrant operational
safety which is essential for human-oriented purposes such as
neuroprosthetics38,39.

In this work, we present a robotic system that uses multimodal
sensory stimuli to explore and interact with a real-world environment
in real time while adapting to it using bio-inspired mechanisms. At the
core of adaptivity and learning of the robotic system is an organic
neuromorphic circuit that consists of organic electrochemical tran-
sistors (OECTs) and organic neuromorphic devices (also called elec-
trochemical random-access memories, ECRAMs). This bio-inspired

approach enables the robotic agent to incrementally learn and per-
form a complex behavioral task, showcasing its adaptability and dis-
tributed intelligence in responding locally to dynamic andmultimodal
environmental cues. More specifically, the robotic system gains the
ability to distinguish between safe and potentially harmful objects
through local adaptation of neuromorphic circuitry. This work
demonstrates that highly functional organic materials can reform
neuromorphic hardware, rethinking adaptive intelligent systems as
small(er)-scale local circuitry that interacts with the environment with
bio-inspired learning mechanisms.

Results
The robotic system is basedon theArduinoBraccio Kit (Fig. 1a), withfive
degrees of freedom and an additional movement option for opening
and closing a gripper. The gripper acts as the hand of the robotic
manipulator and is equippedwith four sensors that continuously collect
multimodal sensory stimuli of pressure, distance, temperature, and
color tone when manipulating objects (Figs. 1a and 1b). A custom grip-
per setup is realized to accommodate the collection of multimodal
sensory signals in a hand-like shape (Fig. S1 and “Methods” section).
Different cups (dark/hot, white/cold) are placed sequentially near the
robotic system so that it is able to either pick them up or refuse them.
Each movement of the robot follows an autonomic sequence of speci-
fiedmoves that provides a behavioral baseline for any action taken. The
movements vary between a pick-up actionwith a grab or no-grab option
in the end, a drop action that concludes a successful grab, and a pull-
back action to avoid the cup that functions as a no-grab. These actions
are driven via an Arduino Uno that operates the motors of the robotic
setup. The motor commands are continuously modulated by sensory
stimuli from the environment, i.e., a detection of a cup in close proxi-
mity with the hand or a pressure applied due to a successful grab,
creating a real-time response of the robot to its surroundings (that is,
the object of interest). Without any prior external influence, the robot is
in an explorative state in which it incidentally picks a cup or not with the
grab or no-grab actions initially taken randomly (Fig. 1b). Whenever a
cup is discovered (grabbed) by chance, it inherently leads to new
sensory sensations. An analog trainable neuromorphic circuit (Figs. 1a
and 1c) interacts locally with the sensory signals and allows learning via
adaptive associative connections necessary for behavioral conditioning
(Fig. 1b, right). The organic neuromorphic circuit comprises of organic
electrochemical devices, OECTs and ECRAMs, that are either volatile or
non-volatile respectively (Fig. 1d). The output voltage

P
V of the

organic neuromorphic circuit depends on the conductance state of each
organic electrochemical device and reflects the sensory signals in an
event-driven nature.

P
V merges the input branches of electrical cir-

cuitry similar to the dendritic summation of multiple neurons via the
synapses (Fig. 1b, right).

The organic neuromorphic circuit consists of four micrometer-
scale organic electrochemical devices (Fig. S2 and “Methods” section),
mimicking synaptic plasticity and, therefore, exhibiting neuro-
emulating functionality. Two of these devices function as OECT and
operate in a volatile, short-term manner (indicated as ST). The other
twodevices operate in a non-volatilemanner as ECRAMwith long-term
effects (referenced as LT, Fig. 2a). The four devices are arranged in two
branches (+ and -) that each contains a volatile and a non-volatile ele-
ment in series. The combined output voltage is the sum over both
branches:

P
V =V + +V�. This closely resembles the dendritic sum-

mation of multiple presynaptic signals at the synapses of a post-
synaptic neuron (Fig. 2b). Each branch also displays an intrinsic
associative adaptation due to the interplay of OECT and ECRAM. If
loaded with a (adaptive) resistive load, the OECT changes its operating
regime and thus its transconductance (Fig. S3 and S4). The transcon-
ductance represents a tunable sensitivity towards the sensory stimuli
that can be strengthened or weakened via the ECRAM leading to an
inherent association between the two stimuli at OECT and ECRAM.
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The output voltage
P

V is translated into a motor action through
an activation function that relates the signal to a behavioral probability
(Fig. 2c). The activation function is sigmoidal and proportional to the
widely used activation function hyperbolic tangent (tanh), converging
around 1. It is executed on the ArduinoUno andwhile this is part of the
processing, it only provides a static, fixed translation of an analog
output voltage such as

P
V into a behavioral movement pattern. The

output voltage is also interpreted in terms of probability, whichmeans
only determines the probability for a certain action, but notnecessarily
the action itself. The non-deterministic and fail-prone behavior in
biological systems causing new sensations is one of the reasons for
their remarkable adaptability in unknown situations40. While the
Arduino Uno relays signals from the organic neuromorphic circuit to
the robotic setup, it operates solely as a translator/mediator and has
no agency on the behavior of the robotic agent. In order to react to the
environment, the neuromorphic circuit handles optical, thermal, and

mechanical stimuli. A color and proximity sensor are used for gaining
information on objects (i.e., a cup) fromafar/without contact anddrive
the gates and thus (trans-)conductance of the volatile devices, GST +

and GST�. A pressure and temperature sensor feed a signal on contact
to the non-volatile gates of the neuromorphic circuit, GLT + and GLT�
providing the necessary impulses for learning and conditioning. Via
the series connection in the circuit layout, the (+)-branch then com-
bines the sensory input of pressure and proximity in a single infor-
mation stream leading to the output voltage V + . This functionality is
mirrored in the (-)-branch coupling temperature and color resulting in
signal stream V�. We employ off-the-shelf sensors for collecting sen-
sory input which provides lifelike, noise-containing data (Fig. S5, see
sensor section in “Methods”). The sensory signals undergo basic pre-
treatment through an additional analog hardware unit to alignwith the
low operating voltages (≤1.0 V) of the neuromorphic devices (Fig. S6,
see sensor section in “Methods”).
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Fig. 1 | Robotic manipulator with an organic neuromorphic circuit using bio-
inspired learning. a A robotic manipulator with a custom-made gripper is equip-
pedwith fourmultimodal sensors. The sensory stimuli are processed adaptively via
specialized hardware and condition the grasp behavior of the robotic system.bThe
robot employs the following bio-inspired principles for learning: an exploration of
its environment through random movement, collection of multimodal sensory
inputs and adaptive processing leading to behavioral conditioning. c The robotic
system is connected to a local organic neuromorphic circuit that emulates neuronal
processing, such as short-term and long-term synaptic plasticity and dendritic
summation. The neuromorphic circuit consists of organic electrochemical devices.

d Schematic architecture of an organic electrochemical device based on the
semiconducting polymer p(g2T-TT) and a solid-state electrolyte based on the ionic
liquid EMIM:TFSI. The device is defined by three electrodes (gray): source (left),
drain (right) and gate (top). The polymer is distributed between the source and
drain terminals (blue) and exhibitsmixed electronic-ionic conduction. Anions (dark
blue) from the electrolyte can penetrate into the polymer bulk leading to the for-
mation of holes (white) along the polymer backbone and changing its conductivity.
The drawing of the full robotic arm in Fig. 1a is based on the Arduino® Braccio Kit
image by Arduino under the CC BY-SA license.
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The robotic system follows itsmovement patterns remaining in an
explorative state until it starts interacting with the environment and
receives new sensory stimuli. These stimuli change the output voltage
P

V momentarily or permanently leading to an event-driven and
adaptive behavior.

The neuromorphic circuit consists of volatile (OECTs) and non-
volatile (ECRAMs) organic electrochemical devices. These devices

utilize the semiconducting polymer poly(2-(3,3′-bis(2-(2-(2-methox-
yethoxy)ethoxy)ethoxy)-[2,2′-bithiophen]−5-yl) thieno [3,2-b] thio-
phene) [p(g2T-TT)] as the channelmaterial and are controlled through
an electrolyte. The modulation of the electronic current within the
channel, specifically the conductance state, is achieved through the
application of an ionic gate current41. The polymer p(g2T-TT) displays
mixed ionic-electronic conduction by supporting the transport of both

Fig. 2 | Characterization of the organic neuromorphic circuit. a Circuit sche-
matic of the organic neuromorphic circuit following a two-branch (+ and -) archi-
tecture. The gate of eachorganic electrochemical device is connected to a specified
sensory stimulus. The sum

P
V over the output voltages V + and V� branches is

forwarded to the robotic system via an activation function. b Biological repre-
sentation of dendritic summation involving two presynaptic signals. c A sigmoidal

activation function translates the stimulus intensity
P

V into a neural response
(probability for a certain behavior, from random (green) to noxious (orange)).
d Output characteristics of the volatile synaptic device that displays short-term
memory. e Transfer characteristics of the volatile synaptic device that displays
short-term memory. f Long-term memory of the non-volatile synaptic device.
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holes and ions. This polymer serves as a versatile platform for various
functionalities and is suitable for both short- and long-term devices
depending on the probing conditions34,42. Hence, the organic neuro-
morphic circuit allows for monolithic integration of both volatile and
non-volatile functionalities with the same polymer as the channel
material of the transistors. It exhibits a wide range of well-defined
conductance states (with a > 100on/off ratio), high linearity, sensitivity
to gate pulses (ranging from μS to mS), and stability (>10^9 write-read
operations)42,43. The low-voltage operation (≤ ± 1 V) and compatibility
with solution-based processing methods contribute to high energy
efficiency and cost-effectiveness. While short-term (volatile) and long-
term (non-volatile) synaptic devices share a similar device archi-
tecture, their primary distinction lies in the device configuration. For
the short-term effect, the gates are directly linked to the sensor signal.
Conversely, in non-volatile devices, a switch with a current-limiting
resistance of 100MΩ is connected in series to the gate, inducing an
open-circuit potential when no sensor signal is applied (see Methods).
This induces a lasting change in conductance, inducing long-term
(non-volatile) synaptic memory phenomena. We adopt a side-gate
device architecture with a solid-state electrolyte comprised of the
ionic liquid [1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)
imide (EMIM:TFSI) embedded in a polyvinylidene fluoride-co-
hexafluoropropylene (PVDF-HFP) polymer matrix (see Methods).

The device characteristics of the neuromorphic circuit are shown
in Figs. 2d–2f in the face of the volatile and non-volatile synaptic
devices respectively. We attain low voltage operation for all compo-
nents of the organic neuromorphic circuit and write currents <5 nA
and conductance values < 100nS for the ECRAM (Fig. S7) indicating
low energy demands of the circuit30. We achieve stable performance
with a minimal hysteresis for the volatile synaptic device as shown in
the output (ID over VD) and transfer (ID over VG) characteristics
(Figs. 2d and 2e, respectively). The transconductance gm (Fig. 2e), also
described as the device sensitivity, depends on the gate voltage but
can also be influenced via the drain voltage. AnOECT switched in series
with a resistive load RL moves its operation from linear to saturation
depending on RL as detailed in44. The ratio of resistances between load
and OECT is critical and a substantial ratio change (ROECT

RL
= 1 ! 50) is

necessary to achieve a significant change in the output voltage
(VOUT =

VSUPP
2 ! 0V ) and in the amplification of the gate voltage

through the transconductance (Fig. S3). An additionalmeasurement of
the voltage output for an OECT loaded with different resistances is
provided inFig. S4. Replacing the resistive loadRL with thenon-volatile
synaptic device (LT), as in our circuit topology, prompts similar
changes in voltage level for the branch voltages V + and V� and in the
transconductance of the OECTs. This change in transconductance of
the OECT and therefore change in output voltage causes an inherent
link between the two gate stimuli, a form of associative learning. Fig-
ure 2f shows the programming characteristics of the non-volatile
synaptic device. which displays high on-off ratio across orders of
magnitude with linear switching behavior and stable state retention
(zoom-ins) for long-term plasticity at very low programming voltage
(V ≤ 0:2Vj j). The conductance states are adjusted reversibly by
applying gate pulses of opposite polarity. These long-term con-
ductance changes in the artificial synapses create the memory effect
needed for learning and adaptive behavior.

Overall, the learning process of the robotic manipulator is shown
in Fig. 3. The organic neuromorphic circuit combines the collection of
multimodal sensory stimuli with neuronal processing leading to
associative connections and behavioral consequences. Therefore, the
robot learns to avoid potentially harmful objects like a hot cup. Initi-
ally, the robotic system is an explorative state in which it experiments
with different behaviors, in this case grabbing or non-grabbing action
(Fig. 3a). As a baseline behavior, the robotic system is already able to
grab a cup, but this occurs at random and is unrelated to any external
stimuli (i.e., the trait of a cup). It operates undirected and associative

conditioning is latent and thus yet to be formed. Sensory cues are
already present but lead to no change in behavior via the activation
function. Initially, only standard (cold) cups are used as objects which
render the (-)-branch (Figs. 2a and 2b, orange bolt) of the neuro-
morphic circuit reacting to temperature inactive for now. An object
(i.e., a cup) gets registered by the proximity sensor, causing a short-
term peak of V + and subsequently of

P
V (Fig. 3a). A longer peak in

this context means that the cup is picked up (checkmark ✓) and held
until the follow-up drop action, a shorter peak indicates that the cup is
indeed detected but not grabbed (cross ✗) (Fig. 3a and Movie S1). To
showcase the random behavior of the robotic agent over time without
learning, the training signals are disconnected from the non-volatile
synaptic device for this experiment to prevent any adaptation. With all
sensor connections restored, the organic neuromorphic circuit adapts
to the sensory cues from its environment. Whenever the robot suc-
cessfully grabs a cup, the pressure sensor on the gripper directly for-
wards a signal to the non-volatile synaptic device (VG,LT + = ±0:5V ).
This happens in addition to the peak shown before, which was pro-
voked by a pulse from the proximity sensor at the gate of the OECT
(VG,ST + = � 0:25V ). The activation leads to an increase in voltage V +

(Fig. 3b). The probability for a grab behavior therefore changes
represented as the background color (light to darker blue) in Fig. 3 and
consequently the overall behavior shifts from random to systemic
(Movie S2). A darker blue tone indicates a high probability of grabbing
a cup. From Fig. 3b, it is apparent that a certainty in behavior develops
only for the simultaneous occurrence of long-term synaptic change
(increase in general voltage level of V + ) and the short-term change
during the detection of an object (peak in V + ). In between peaks (that
is, in between object detections) the probability declines again (lighter
blue), so an inherent associative link between object proximity and the
grabbing action (the training pressure signal) is formed, similar to
biological associative learning or respondent conditioning (Pavlovian
response). Complete adaptation is achieved after 14 training steps and
the robotic manipulator consistently grabs the cup if it is close by
(Fig. 3c, checkmarks and Movie S3). This behavior is also resistant to
instabilities and imperfect sensor signals that can be caused by non-
optimal grip and/or shifting and slipping of the object during grasping
(seen in the last peak of the measurement, Fig. 3c at 90–95 s) and
maintained stably over time and under movement.

Complex tasks can often be broken down into smaller compo-
nents that are learned separately and incrementally. This technique is
called chaining and is well-known in research fields like behavioral
psychology and deep learning45,46. Chaining involves teaching a series
of behaviors in a specific sequence. Each behavior serves as a cue for
the next one. After completing the first cycle of learning, a second
behavioral change is built on top (chained), concluding in the fulfill-
ment of a more complex task: The robotic system now faces cups of
different temperatures (cold and hot), which are mirrored in their
color: a cold cup is white, and a hot cup is dark. Introducing this new
thermal stimulus, the (-)-branch connected to the related sensor sig-
nals (temperature and grayscale/color) is also active. In the initial state,
the previously learned behavior is maintained (Fig. 3d and Movie S4).
The (+)-branch (V + in blue) follows the adapted behavior from before.
The (-)-branchyields a small voltageV� (in orange) and a peak reaction
to the color of the dark (hot) cups. The probability output of the
activation function is depicted as an orange hue in the background.
Cold and hot cups are handed alternately. Initially, the robot again
grabs the cup every time it comes close, disregarding the temperature
or color (Fig. 3d, checkmarks) as it has learned to do previously.
However, the new thermal stimulus induces a gate voltage at the sec-
ond non-volatile device (VG,LT = ±0:5V ), causing a change in voltage
level V� and increasing the response in output voltage (peak height)
towards a color stimulus. Like in the first training process, an asso-
ciation between the temperature and color is formed, resulting in an
associative link (Fig. 3b and Movie S5). Color is thus coupled to
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temperature. After 4 training steps, the activation functionwith
P

V as
input reaches a veryhigh stimulus intensity (Fig. 2c, probability >100%)
forcing a protective reaction of the robotic hand. It draws back and
avoids the object. This overstimulation – noxious behavior – only
occurs when a hot (and dark) cup is detected, highlighted in Figs. 3e

and 3f in dark orange. This progresses our initial adaptation from
respondent/Pavlovian learning to amore complex behavior of operant
conditioning by learning from positive (pressure) and negative (tem-
perature) consequences of different stimuli. At the end of the whole
training process, by including both branches (V + , V� and

P
V ), the

Fig. 3 | Behavioral changeof the roboticmanipulatoruponadaptiveprocessing
ofmultimodal stimuli. a Explorative behavior of the robot before any adaptation.
A checkmark (✓) represents a successful grab of the cup, the cross (✗) indicates a
missed or refused grab attempt. b Adaptation of the V + (blue line) branch to the
pressure stimuli when incidentally grabbing a cup. c After training, the robotic
manipulator consistently grabs the cup if it is close by, when detected by the
proximity sensor. The inset image depicts the robot holding a (dark) cup.

d Established behavior from the V + branch ismaintainedwhile the addition of new
stimuli via the V� (orange line) branch has no effect. e Adaptation to the new
temperature stimuli in the V� branch. fAfter training, the roboticmanipulator only
grabs cups that are white and cold, but not those that are dark and hot. The final
voltage output

P
V is shown as purple line. The inset image pictures the robot

holding a white cup.
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robotic system is able to distinguish between two types of cups,
essentially classifying dangerous and non-dangerous objects. More
specifically, by following and adapting to the dynamic cues of the
environment, the robot learns to avoid potentially harmful objects like
a hot cupwhile actively engaging with other safe objects. Figure 3f and
Movie S6 present the final output signals and behavior. Both color and
temperature sensors are more sensitive to positioning (seen as noisy
signals in the measurements), demonstrating a high tolerance for sti-
mulus variations in the learning scheme.

Discussion
Taking inspiration from the versatile capabilities of biological systems,
we combine bio-inspired processing, learning, and control paradigms
with the development of organic neuromorphic circuitry, and we
demonstrate a standalone robotic system that interacts intelligentlywith
a non-static environment. Through the integration of an organic neu-
romorphic circuit, the system adapts its behavior based on multimodal
sensory feedback from environmental cues. The synaptic devices in the
circuit enable associative learning, leading to both respondent (Pavlo-
vian) conditioning andmore complex operant conditioning. The robotic
agent learns to associate positive and negative consequences with
multimodal stimuli, showcasing adaptability and the ability to distin-
guish between safe and potentially harmful objects. The use of func-
tional materials, such as organic (semi-)conducting polymers, in the
neuromorphic circuit is elemental to the system’s capabilities, replicat-
ing bio-inspired functionalities like synaptic plasticity, dendritic sum-
mation, and neural processing. This is possible using small-scale, locally
integrated, and low-voltage monolithic polymer electronics. Moreover,
due to the modular-like structure of the neuromorphic circuit, the
concept can be extended into multiple branches in order to handle
sensory signals of arbitrary complexity and multimodality. The pre-
sented robotic system serves as a tangible example of how combining
bio-inspired principles with localized organic neuromorphic circuitry
can lead to the development of highly adaptive, intelligent, and efficient
systems for real-world applications.

Methods
Device fabrication
Standard microscope glass slides (75mm by 25mm) are cleaned in a
sonicated bath, first in a soap solution (Micro-90) and then in a 1:1 (v/v)
solvent mixture of acetone and isopropanol. Gold electrodes for the
source, drain, and gates are photolithographically patterned [with
negative photoresist AZ nLof2035 (MicroChemicals) and AZ 726MIF
Developer (MicroChemicals)] on the cleaned glass slides. A chromium
layer is deposited to achieve better adhesion of the gold. The photo-
lithography foil masks are designed using KLayout47 and the com-
plementary pypi-package koala48. Each glass slide contains twelve
devices with fixed dimensions. The channel dimensions of the non-
volatile devices (LT) are as follows: W/ L = 1/3 with L = 250μm with a
lateral gate of the 1000μmby 1000μm and 150-μmdistance between
the gate and the channel. The volatile device (ST) has the following
dimensions: W/L= 1/6 with L = 500μm with a lateral gate of 1000μm
by 1000μm and 150-μm distance between the gate and the channel.
The complete layouts are depicted in Fig. S2. Two layers of parylene C
(Specialty Coating Systems) are deposited. Soap solution (Micro-90
soap solution, 2% (v/v) in deionized water) is used for separation
between the layers, allowing the peel-off of the upper layer. An adhe-
sionpromoter (silaneA-174, Specialty Coating Systems) is added to the
lower layer of parylene C to prevent detachment. This layer insulates
the gold electrodes. In a second photolithography step using positive
photoresist AZ 10XT (MicroChemicals) and AZ Developer (Micro-
Chemicals), the channel and lateral gate dimensions of the devices are
defined. Reactive ion etching with O2 plasma is used to carve out the
channel and corresponding gates. The semiconducting polymer
p(g2T-TT) is synthesized according to (41) and prepared and applied

following the procedure in42,43. p(g2T-TT) is solved in chloroform
(3mg/ml) inside an N2-filled glove box and spin-cast inside the N2-
filled glove box at 1000 rpm for 1min. The devices are baked at 60 °C
for 1min.

In ambient, the sacrificial upper paryleneC is peeled off to confine
the polymer inside the gate and channel regions. Excess soap is rinsed
off with de-ionized water. An ionic gel is prepared as electrolyte
according to49. An ionic liquid 1-Ethyl-3-methylimidazoliumbis(tri-
fluoromethylsulfonyl)imide (EMIM:TFSI, Merck) and the copolymer
poly(vinylidene fluoride)‐co‐hexafluoropropylene (PVDF-HFP) are
solved in acetone inside an N2-filled glove box in the following pro-
portions: 17.6weight% (wt%) ionic liquid, 4.4wt% copolymer, and 78wt
% acetone. The solution is stirred for at least 2 hours at 40 °C inside the
glove box. The ionic gel is drop-cast with a pipette onto each channel
and gate under ambient conditions and dried overnight (Fig. S2).

Measurements
For measurements of the electrical characteristics of volatile and non-
volatile devices, a Keithley 2602B SourceMeter is used. The measure-
ments of the volatile device (ST), the sourcemeasure units at the three
device terminals are directly connectedwith themeasurement system.
For non-volatilemeasurements (LT), amechanical switch in series with
a resistance RG = 100MΩ is added between the gate of the device and
the measurement system and enhances the analog memory phenom-
ena. The switch forces open-circuit potential conditions between the
gate and channel, while the gate resistor RG downscales and limits the
gate current in the range of nanoamperes. The probing conditions
determine whether the device operates in a volatile or non-volatile
manner. With the addition of a switch and current limiting resistance,
the charges are effectively trapped inside the polymer channel leading
to a non-volatile device behavior25. Conversely, without the additional
components at the gate, charges inside the semiconducting polymer
are not hindered by a high energy barrier and can move around, and
thus the behavior is volatile.

Sensors
The robotic sensors are off-the-shelf components, operate in the
analog domain, and are Arduino-compatible. The proximity (URM09
ultrasonic distance), grayscale and temperature (LM35 temperature)
sensor are from theDFRobotGravity line. The pressure sensor uses the
Grove force sensor module with a rectangular Taiwan Alpha force
sensor pad (MF02-N-221-A01). The sensors and detailed specifications
are depicted in Fig. S5. The sensor signals are pretreated with addi-
tional analog circuitry shown in Fig. S6. This pretreatment consists of
downscaling the sensor output voltage (≤1.0V) and fixing the output
polarity (+/-) to a level suitable for organic devices. The additional
circuitry also adds an activation threshold for each sensor, meaning
the sensors only forward a signal once it surpasses a certain intensity.
The pretreatment is fixed throughout all experiments.

3D-printed parts
The custom robotic gripper is designedusingAutodesk Inventor and is
then 3D-printed using a Formlabs SLA resin printer, model 3. For the
gripper, Tough1500 resin is used to allow for slightflexibility andbend.
To attach the ultrasonic sensor in front of the gripper, clear resin is
used for the printed fixture. All fixtures are shown in Fig. S1 and S5.

Data availability
The data generated in this study are provided in the Supplementary
Information and Source Data files.

Code availability
Code and additional software (robotic control, measurement control,
mask design) are available upon request from the authors. Arduino® is
a trademark of Arduino SA.
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