
Symmetry and Generalization in Local Learning

of Predictive Representations

Janis Keck∗1,2,3,, Caswell Barry4, Christian F. Doeller2,3,5, and
Jürgen Jost1,3,6,7

1Max Planck Institute for Mathematics in the Sciences, Leipzig,
Germany

2Max Planck Institute for Human Cognitive and Brain Sciences,
Leipzig, Germany

3Max Planck School of Cognition
4Department of Cell and Developmental Biology, University

College London, London, WC1E 6BT, UK
5Kavli Institute for Systems Neuroscience and Jebsen Centre for

Alzheimer’s Disease, Norwegian University of Science and
Technology, Trondheim, Norway

6ScaDS.AI - Center for Scalable Data Analytics and Artificial
Intelligence, Leipzig, Germany

7Santa Fe Institute for the Sciences of Complexity, Santa Fe, New
Mexico, USA

May 27, 2024

Abstract

It is an increasingly accepted view that the representations which the
brain generates are not merely descriptive of the current state of the world;
rather, representations serve a predictive purpose. In spatial cognition,
the Successor Representation (SR) from reinforcement learning provides
a compelling candidate of how such predictive representations are used to
encode space, in particular, hippocampal place cells are assumed to encode
the SR. Here, we investigate how varying the temporal symmetry in learn-
ing rules influences those representations. To this end, we use a simple
local learning rule which can be made insensitive to the temporal order.
We analytically find that a symmetric learning rule results in a successor
representation under a symmetrized version of the experienced transition

∗Corresponding author: janis.keck@maxplanckschools.de

1

structure. We then apply this rule to a two-layer neural network model
loosely resembling hippocampal subfields CA3 - with a symmetric learn-
ing rule and recurrent weights - and CA1 - with an asymmetric learning
rule and no recurrent weights. Here, when exposed repeatedly to a linear
track, CA3 neurons in our model show less shift of the centre of mass
than those in CA1, in line with existing empirical findings - an effect
which is not observed using an asymmetric learning rule. We further-
more investigate the functional benefit of such representations in simple
RL navigation tasks. Here, we find that using a symmetric learning rule
yields representations which afford better generalization, when a model is
probed to navigate to a new target without relearning the SR. This effect
is reversed when the state space is not symmetric anymore. Thus, our
results hint at a potential benefit of the inductive bias afforded by sym-
metric learning rules in areas employed in spatial navigation, where there
naturally is a symmetry in the state space. In conclusion, we expand the
SR theory of hippocampus by including symmetry in SR learning, which
might yield an advantageous inductive bias for learning in space.

1 Introduction

The hippocampus and its adjacent sub- and neocortical regions are widely be-
lieved to form both a crucial part in the acquisition and storage of memory, as
well as the encoding of spatial and navigational variables in the form of spatially
stable neural responses. (Scoville and Milner, 1957; O’Keefe and Nadel, 1978;
Eichenbaum et al., 1999; Squire et al., 2004; Hafting et al., 2005).

It is an increasingly popular assumption that the representations that the
brain generates in general, and in particular for space and memory, are not
merely descriptive of the current state of the world, post-dictions of events
or places just passed. Rather, it is believed that a predictive representation
is learned, such that the objective is to infer future states of the world from
one’s experience (Rao and Ballard, 1999; Friston, 2002; Stachenfeld et al., 2017;
Russek et al., 2017; Behrens et al., 2018).

One framework that has extensively been used to describe this objective on
the algorithmic level comes from reinforcement learning. The so called ’succes-
sor representation’ (SR), or more broadly ’successor features’ (SF) are a gen-
eralization of the well known value function, and are essentially a conditional
expectation: Given the current state, they encode a (weighted) expectation of
future values of a given function of the states of the world (Dayan, 1993; Bar-
reto et al., 2017). If that function is simply an indicator of the states, then one
obtains the SR, which thus roughly encodes how often states will be visited in
the future.

Originally, the SR was proposed as an intermediate between ’model-based’
and ’model-free’ reinforcement learning (Momennejad et al., 2017; Gershman,
2018), allowing the storage of certain information about the transition structure
under a given policy - hence, affording some generalization to different reward
structures - while still being possible to learn with a efficient TD-learning algo-

2

rithm (Dayan, 1993; Russek et al., 2017). Later work has also used the SR for
different objectives such as option discovery (Machado et al., 2017b) and reward
free exploration (Yu et al., 2023).

In the hippocampal navigation literature, the successor representation view
has been influential because apart from fitting well with the more general predic-
tive brain hypothesis, it could explain non-trivial effects of place cells that had
been previously observed, for example the skewing of place fields in direction of
travel or the non-extension of place-fields through obstacles in the environment
(Stachenfeld et al., 2017). Furthermore, SR theory yielded an algorithmic ex-
planation for grid cells as an eigendecomposition of place-cell structure, which
could also be connected to efficient neurally plausible navigation (Dordek et al.,
2016; Corneil and Gerstner, 2015; De Cothi and Barry, 2020; De Cothi et al.,
2022).

Despite the immanent success of the SR theory to explain neural data on
an algorithmic level, there has been considerably less work dedicated to pro-
viding a mechanism through which the SR should be learned using biologically
plausible learning rules (Vértes and Sahani, 2019). Recently, this question has
been tackled by the community: Two recent papers (George et al., 2023b; Bono
et al., 2023) used feedforward networks to learn synaptic weights that com-
pute successor features from their inputs. (George et al., 2023b) focuses on
the predictiveness afforded by the theta cycle together with a compartment-
neuron learning rule, while (Bono et al., 2023) uses spiking neural networks and
a STDP-like rule. On the other hand, (Fang et al., 2023) used a recurrent neural
network, to learn successor features directly in the activities of the recurrently
connected neurons.

Anatomically, the latter approach can be linked to plasticity occurring at
the recurrent synapses of CA3, while the former approach maps to the feed-
forward synapses from CA1 (Knierim, 2015). Both areas are known to show
a considerable proportion of place cells (Leutgeb et al., 2004), hence both are
indeed candidate regions to encode successor representations. However, it has
been suggested that different learning rules might be in place at the respective
synapses: the feedforward synapse from CA3 to CA1 is the classical location
for the study of STDP, that is plasticity which requires presynaptic increased
activity to precede postsynaptic increased activity (Bi and Poo, 1998; Markram
et al., 2011). On the other hand, recent work has identified a regime in which
recurrent CA3 synapses get strengthened if pre- and postsynaptic increased ac-
tivity are close in time, regardless of the temporal order - and computationally
linked a symmetric learning rule to benefit in memory storage of a recurrent
network (Mishra et al., 2016).

Here, we want to investigate the effect of such symmetric learning rules on
the construction of predictive representations. That is, we aim to understand
whether using a learning rule insensitive to the temporal order of the inputs
learns different successor representations - and which (dis-)advantages it yields.

To this end, we first construct a model which has both a recurrent and a
feedforward component, reminiscent of the architecture of CA, and study the
successor features that are learned using a local learning rule. Thereby we

3

extend the earlier work which focused on learning in a single layer to learning
at multiple levels. This extension is rather straightforward and results in both
layers learning successor features based on their respective inputs.

We then find that by changing the learning rule, the representations also
undergo a similar modification: In the symmetric setting, instead of encoding
future expectations under the current true policy of the agent, successor fea-
tures under a symmetrized version of the transition probabilities are learned,
while an asymmetric rule learns the ’true’ successor features. We then contrast
the utility of the respective representations in a reinforcement learning setting.
There, we find that a symmetric learning rule yields benefits for generalization
in navigational tasks, where the symmetry of the state space can be exploited,
while an asymmetric learning rule is more advantageous for generalization in
asymmetric state spaces. We conclude that implementing both an asymmetric
and a symmetric learning rule might yield complementary representations.

2 Results

2.1 Successor Representations

The successor representation and the more general successor features describe
future expectations of a quantity, conditional on the current state of the world.
They are most easily defined in the following setting: Assume the environment
of an agent/animal consists of a set of states S. The states of the world are
changing according to a time homogeneous Markov chain, denoted st ∈ S. Then
for any feature/observation function

ϕ : S → Rm (1)

one can define an expectation of weighted, cumulative future values of that
function, given the current state:

SFϕ(s) = E

[∑
k=0

γkϕ(St+k)

∣∣∣∣St = s

]
. (2)

The weighting factor γ ∈ [0, 1) puts relatively more importance on proximal
times. In the case that ϕ is an injective function, that is for every state of
the world there is an unique observation value, it makes sense to define the
’successor representation’ (SR)

SRϕ(ν) = E

[∑
k=0

γkϕ(St+k)

∣∣∣∣ϕ(St) = ν

]
. (3)

We use this terminology here in a little more generality than is usual, but it
can be seen that one important special case leads to what is usually called SR:
Using indicator vectors ϕ(s) = es′(s), for some state s′, one obtains

SRes′ =
∑
k

γkP kes′ = (Id− γP)−1
·s′ , (4)

4

with P the transition matrix of the Markov Chain. The matrix (Id− γP)−1 is
widely referred to as the successor representation, so our definition encompasses
this special case. This SR of indicator vectors thus gives a weighted sum of ex-
pected future visitation probabilities of states, and it is this expression that has
originally been used to model the predictive representations that hippocampus
ought to encode (Stachenfeld et al., 2017; Russek et al., 2017).

2.2 Learning Successor representations with local learning
rules

We construct a simple model of two neuron population activities pt which have
dynamics of the form

d

dt
p1 = −p1 + σ(λ1W

rp1 + (1− λ1)ϕ
1) (5)

d

dt
p2 = −p2 + σ(λ2W

fp1 + (1− λ2)ϕ
2). (6)

Here, W r is a recurrent connectivity matrix that feeds the activity of the first
population back into itself, while W f is feedforward matrix, which encodes how
activity of the first population is fed into the second. This architecture of one
population of highly recurrently connected neurons feeding into second one with
little recurrent connectivity is reminiscent of hippocampal subfields CA3, CA1
respectively (Knierim, 2015). The two populations obtain additional external
inputs ϕ1, ϕ2, which might represent the input to CA3 via mossy fibers, or
directly through the perforant path, and the input to CA1 from EC through
the latter, respectively. In the simplest case, these inputs are just indicator-
functions for particular states, that is ϕi(s) = δ(s = si). A more realistic shape,
which we employ in our experiments in section 2.5, might be given by Gaussian

inputs of the form ϕi(s) = exp
(
−∥s−µi∥

2σ

)
.

For analysis, we assume that the activation function σ is the identity (i.e. the
system is linear), and that the population vectors take the equilibrium values
of the above dynamics, that is

p1 = (1− λ1)(Id−λ1W r)−1ϕ1 (7)

p2 = λ2W
fp1 + (1− λ2)ϕ

2. (8)

We then define a learning rule for the synaptic weights, using these equilibrium
values. Hence, we implicitly assume that neural dynamics happen on a timescale
τp which is way quicker than that of learning, τW . Taking the equilibrium
values is the limit case which simplifies analysis, but in practice one can also
take τp << τW and simply update activities and weights concurrently. The
learning rule we use is a slight modification of the learning rule used in Fang et al.
(2023). In particular, we use the same general learning rule for both recurrent
and feedforward weights, only varying certain parameters. Let ppost,i, ppre,i be
the activity of the i-th post/pre-synaptic neuron respectively. We then update

5

Figure 1: Model and learning rule. (A) Cartoon depiction of the model we
are using in the main text. A recurrently connected population of neurons p1,
putatively CA3, receives external input ϕ1, putatively from dentate gyrus or en-
torhinal cortex(EC). It projects to another population p2, which receives input
ϕ2. The latter could be CA1 receiving input again from EC. Note that there
are no recurrent connections in the second layer and no backwards connections.
(B) Quantities relevant for the update of synapse Wij : pre- and postsynap-
tic activities, as well as the sum of the total input to the postsynaptic neuron
through the synapses W . (C), (D) Invariance of learning rules with respect to
temporal order. We plot synaptic weight change of a single synapse in a setup
with a single pre- and postsynaptic neuron, respectively. The right column has
the same pre- and postsynaptic activities as the left column, only in reverse
order. In (C), the learning rule with parameters α = 1, β = 0 is used, while in
(D) α = β = 1

2 . Only in the latter the synaptic weight changes are preserved (in
reverse order), while in (C), postsynaptic activity before presynaptic activity
leads to a net weight decrease. Note that in this illustrative exampleW is fixed,
in reality, network dynamics and weights would influence each other and lead
to more complex changes.

6

the weight from the j−th presynaptic neuron to the i-th postsynaptic neuron
via

∆Wij = α

(
ppost,it+1 −

∑
k

Wikp
pre,k
t

)
ppre,jt + β

(
ppost,it −

∑
k

Wikp
pre,k
t+1

)
ppre,jt+1 .

(9)
The update rule contains terms of the form ppost,ippre,j , which are simply Heb-
bian terms. The other summands perform a subtractive normalization: they
subtract the total overall input to a post-synaptic neuron, such that only activ-
ity exceeding this input will actually be considered positive. This term has been
interpreted as a decorrelative term by (Fang et al., 2023) - in total, the learning
rule can be understand as a predictive coding rule approximating a conditional
expectation operation, as we explain in appendix A. In matrix-vector notation
the update rule reads

∆W = α
(
ppostt+1 −Wppret

)
ppret

T
+ β

(
ppostt −Wppret+1

)
ppret+1

T
. (10)

The parameters α, β ∈ R control the sensitivity of this update to the order of
the activity, put differently, the temporal symmetry of the rule: If we write our
synaptic weight change as ∆W (W,ppostt+1 , p

post
t , ppret+1, p

pre
t), then for parameters

α = β we obtain a learning rule that is invariant under a reversal of time, that
is

∆W (W,p′, p, q′, q) = ∆W (W,p, p′, q, q′) , (11)

while for the original learning rule with α = 1, β = 0, no such relation holds -
see also Figure 1. For α = −β we would obtain a rule that is antisymmetric in
this sense - it turns out however that this would yield unstable dynamics.

2.3 Network learns successor representation and successor
features

Before exhibiting the representations that are learned under the modified learn-
ing rule, it might be helpful understanding which representations a two layer-
network as the above learns with the simplest choice of parameters (α = 1, β =
0). Let us assume the has been exposed extensively to features ϕ1, ϕ2 under
the same random walk with transition probabilities P , such that the synap-
tic weights could converge. Then, as we show in appendix A and appendix D
we find that the activities in the network, when presented with inputs ϕ̃1, ϕ̃2,
compute successor representations/features: They take the equilibrium values

p1 = (1− λ1)SFϕ1(ϕ̃1) = (1− λ1)

∞∑
k=0

E[ϕ1(St+k)|ϕ1(St) = ϕ̃1] (12)

p2 = (1− λ2)

(
ϕ̃2 +

∞∑
k=0

E[ϕ2(St+k)|SFϕ1(St) = SFϕ1(ϕ̃1)]

)
. (13)

In words, this means that the first, recurrent layer computes the weighted cu-
mulative sum of the predicted values of the feature ϕ1 it was trained on, but

7

given the possibly new feature ϕ̃1 - one could see this a form of pattern com-
pletion, but with a predictive component. Similarly, the second layer computes
predictions of ϕ2, only that these predictions themselves depend on those pre-
dictive representations passed to it from the first layer. In particular, when the
inputs are the same as the model was trained on, and the maps ϕi are injective
(i.e., sufficiently rich features exist for the environment), then these equations
simplify to

p1 = (1− λ1)SRϕ1
(14)

p2 = (1− λ2)SRϕ2
. (15)

That is, in this case the two layers simply learn to encode the successor repre-
sentations of their respective inputs.

2.4 Influence on the representations by choice of parame-
ters

We now proceed to ask the question ”which representations would be learned
depending on the choice of the parameters α, β?”. It turns out that the result-
ing representations are still Successor representations, albeit corresponding to
transition probabilities that are not necessarily faithful to those of the environ-
mental dynamics anymore. To be precise, we define a weighted sum of transition
matrices

Pα,β :=
α

α+ β
Pforward +

β

α+ β
Pbackward. (16)

Here, Pforward contains the transition probabilities of the actually observed pro-
cess (that is, ’forward’ in time), while Pbackward contains the transition probabil-
ities of the reverse process, i.e. p(st = s|st+1 = s′). We then show in appendix D
that under suitable conditions, with the learning rule defined above, the model
is able to learn the successor representations under Pα,β . This entails that the
neuronal population activities at convergence yield

pit = SR
Pαi,βi

ϕi (ϕit), (17)

with αi, βi the respective parameters used in the learning rule. That is, in
particular, under the regime α = 1, β = 0, this corresponds to the ’true’ succes-
sor representation, while under a symmetric regime, the transition probabilities
forward and backward in time are averaged over, that is

1

2
(Pforward + Pbackward). (18)

In fact, in this case the transition probabilities are reversible in time - this is not
surprising, as the learning rule was defined to be invariant under a time reversal
and hence should only extract aspects of the dynamics which are reversible. We
note here that such reversible dynamics have been typically assumed in the the-
ory of SR when construing grid cells as efficient representations of the geometry
of an environment through the eigenvectors of the SR - see Appendix C.

8

Figure 2: Successor Representations learned in circular random walks.
We construct a circular state space with possible actions stay, move left and
move right. We simulate three random walks, one where the actions are selected
uniformly (first row), one where right actions are preferably selected (second
row) and one where left actions are preferably selected (third row). The first
column shows an example trajectory of the respective walk. The second and
third column show the successor representations learned by the first and second
layer of our model, using a symmetric (α = β = 1

2 and an asymmetric (α =
1, β = 0) learning rule, respectively. Note how the successor representation
learned with a symmetric rule does not distinguish between the policies. Here,
the inputs to the cells are one-hot vectors encoding the respective states and the
plotted successor representations are obtained by taking the average population
activity in the respective states.

2.4.1 Activities in the model converge to theoretically obtained lim-
its

Having theoreticallly obtained the limits of the weights and the corresponding
activities, we next verified these limits empirically in simulations. In these sim-

9

ulations, we consider an environment with a discrete number of states s ∈ S and
inputs ϕi which are functions of these states. In the simplest case, ϕi(s) = es,
we obtain the classical successor representation. In particular, for a symmetric
learning rule we obtain a symmetrized successor representation - which shows
less dependence on the policy. For example, on a circular track, the represen-
tation becomes indifferent to whether the agent is performing a clock-wise or a
counter-clockwise walk (Figure 2). One might argue that a reversible represen-
tation encodes more of the geometry of the underlying state space and less of
the actual dynamics (although there is still an indirect influence of the dynamics
through the stationary distribution). Indeed, we show in appendix G that the
symmetrized transition probabilities are always closer to a uniform policy than
the unsymmetrized ones.

We also verified our theoretical results in more complex scenarios: the con-
vergence prevails also when the features are random inputs instead of one-hot
vectors, and also when the random walk is arbitrary instead of circular - see
Figure 3. Additionally, we investigated the stability under the choice of param-
eters α, β. Here we found that it seems that the model is only stable when the
positive weight is bigger (in absolute value) than the negative weight, with no
convergence at the boundary case of α = −β. The latter is in line with the
theoretical results - note that Equation 16 is undefined in this case.

2.5 Place fields under symmetrized rule show less shift

Although both areas CA3 and CA1 show place cells, these cells exhibit different
properties and dynamics (Lee et al., 2004a,b). It is well known, that on a linear
or circular track place fields shift backwards opposite the direction of travel in
both regions (Mehta et al., 1997; Roth et al., 2012). However, when directly
comparing cell recordings from both, it has been observed for example in Dong
et al. (2021) that the shift in CA3 is in general less pronounced, that is, the
center of mass of these cells is more stable than in their counterparts in CA1.
We hypothesized that a difference in learning rules could explain this effect.
Indeed, it is not hard to see theoretically why this should be the case: Through
learning, the features ϕi(s) get replaced by their successor features SFϕi(s). If
there is a preferred direction of travel, then states preceding those where the
feature puts a lot of mass will also have more mass, since they are predictive of
the former states. If there is an asymmetry in the policy, the same will not hold
true for succeeding states, hence one observes a shift towards the predecessors.
If now however one has symmetric transition probabilities, then there is no
directionality, hence this shift would not occur. Indeed, we provide a simple
proof of this in Appendix B

We confirmed this intuition, running our two-layer model in a simple linear
track where the agent repeatedly moves from the left side to the right. Indeed,
we find a tendency to shift in the CA1 cells, which isn’t as pronounced in
the CA3 population. Qualitatively, our results match those obtained in Dong
et al. (2021). Importantly, these results only hold when using the symmetrized
version of the learning rule for CA3, while the asymmetric variant yields almost

10

Figure 3: Successor representations are learned for a variety of in-
puts, dynamics, and parameters. Top: Convergence of recurrent (red) and
feedforward (blue) matrices to their theoretical limit with random features in
circular (left) and arbitrary (right) random walks. Bottom: Convergence of
recurrent weight (left) and feedforward weight (right) for different parameters
α, β. The other set of parameters is fixed to (1, 0) and (12 ,

1
2) in these experi-

ments, respectively. In graphs, we measure convergence by the loss term L as
explained in Methods section. In the bottom row, we compute the fraction of
the loss at the final step over the initial loss and display the result in a logscale.
Thus, negative values indicate converging towards the target. Note that the
values on the antidiagonal are approximately 0.

11

no distinction.

Figure 4: Symmetric learning rule leads to more stable place fields in
linear track. We simulated an experiment with a rat repeatedly running on
a linear track, similar to Dong et al. (2021). A two-layer SR network was used
where the recurrent weights had a symmetric (middle row) or asymmetric
(top row) learning rule. In the the symmautorefetric case, there is less shift
of the centre of mass of place fields in the modelled CA3 population (red) than
in the CA1 population (blue), which is not the case in the asymmetric version.
Histograms show distribution of shifts comparing last five laps versus first five
laps, while the rightmost plot shows shift relative to the 12-th lap. The results in
the symmetric case are qualitatively similar to data (bottom row) from Ca2+

recordings of hippocampal neurons in a similar experiment - figure adapted from
Dong, C., Madar, A. D., & Sheffield, M. E. (2021).

12

2.6 Generalization and learning with (a)-symmetric rules

Having derived the different kinds of successor representations that symmetric
and asymmetric learning rules encode, we next sought to understand what the
functional benefits of these representations might be.

In particular, we hypothesized that a symmetric learning rule for successor
representations might be a relatively simple inductive bias that would favour
learning such representations that are invariant under time reversal. This could
be useful in such environments where there is a symmetry in transition structure,
that is, whenever there is a mapping σ : S ×A→ A such that

p(s′|s, a) = p(s|s′, σ(s, a)). (19)

A particularly simple example of this setting - but still likely for biological
agents to encounter - is when the transition structure of the environment is
deterministic and transitions in both directions between states are possible. In
this case, the state space becomes a metric space and the metric a particular
invariant under the symmetry - that is d(s, s′) = d(s′, s). This then hints at
a possible benefit of using a learning rule biased towards such symmetry: In
a metric space, an optimal policy for navigating towards any target depends
only on the metric - in fact one may give a closed form expression as we show
in appendix G.1. Hence, the more the representations that are learned in one
particular tasks encode something akin to the distance on the underlying space,
the more useful these representations should be for generalizing to new such
tasks. In other words, one would want to bias the representations to encode
more of the geometry of the space and less of the dynamics of the particular
tasks.

In the light of this hypothesis, we trained an reinforcement agent, equipped
with a TD-learning rule that for a fixed policy would converge to the same
weighted representation under Pα,β , and investigated performance in simple
navigation tasks. Note that since we now want to understand the benefits on
the computational level irrespective of the biological implementation, we use
a classical RL model and not the neural network model from the preceding
sections - however, all experiments could also be conducted using such a model.

Under a policy π, the RL agent updates a successor representation SRπ
α,β .

Furthermore, the agent learns a reward vector R, and computes the value func-
tion of states via V π

R (s) = (SRπ
α,βR)(s). Together with a local transition model

p(s′|s, a) (which we assume as given), the agent can then define Q values of state
action pairs Q(s, a) and take the next action based on these Q−values Sutton
and Barto (2018); Dayan (1993).

The task for the agent is split in two parts: In the first part, in each epoch,
the agent is initialized in a random location and has to navigate to a fixed goal
starget, where a unit reward is received -i.e., ϕ = estarget . This goal does not
change over epochs. After a fixed number of epochs, the goal is changed to
a new location s′target, randomly drawn from all other locations. Importantly,
the agent is then only allowed to relearn the reward vector, not the successor
representation matrix.

13

We find that both the classical SR, corresponding to parameters α = 1, β =
0, as well as the symmetrized version α = β = 1

2 are able to learn the navigation
tasks with similar mean learning curves - the symmetric agent shows a higher
variation though, as can be observed in Figure 5. Although it might be coun-
terintuitive at first that symmetrization yields a policy which still navigates to
the correct target, we actually prove in appendix G.1 that indeed an optimal
policy is stable under such symmetrization - which shows at least that once such
a policy is learned, it can be maintained.

Importantly, we then find empirically that on the new targets, the symmetric
learning rule outperforms the classical one on average, while both show higher
variation in these tests (Figure 5). Thus, one may argue that the successor
representation in a symmetric learning regime affords better generalization - at
least in a navigational setting. This is not merely an effect of the trajectories
that are sampled with the different learning rules - that is, in particular it
cannot be attributed to the higher variation during training on the first target:
We repeated the above experiment while learning the successor representations
based on the transitions obtained from the classical agent alone - the results
remain unchanged, suggesting that the symmetric rule yields representations
more apt to generalization without the need of a different sampling regime
(Figure H.5). Similarly, the results also hold when controlling the norm of the
updates, such that both the asymmetric and symmetric update make an equally
big update step at each point.

In other words, the agent can concentrate on solving the current task and
still gets afforded a map of the environment which is less influenced by the
current policy.

Indeed, one can show that the transition probabilities encoded in P 1
2 ,

1
2
will

be closer (than the observed transition probabilities) to those that correspond
to an uniform policy, choosing every transition with equal probability - see
appendix G. The successor representation of the uniform policy in turn is closely
related to the shortest-path distance (Zhang et al., 2021). It can thus be used to
generalize to any navigational target, while the successor representation under
other policies will not neccesarily have this property. Together with our previous
considerations on the symmetry of the state space, this led us to hypothesize that
the generalization effect of the symmetric learning rule should vanish as soon as
there is no such symmetry in the state space any more. We thus repeated the
above experiment on a state space that corresponds to a directed graph, where
the number of transitions needed to go from s to s′ is not necessarily equal to
those needed to travel from s′ to s. Indeed, we find that in such a setting the
effect is reversed: there, the classical learning rule leads to better generalization
(Figure 6).

3 Discussion

Here, we have expanded the existing work on successor representation models
of the hippocampus. We extended previous local learning rule models by in-

14

Figure 5: Generalization experiments in navigation tasks. Top: Agents
started in random locations in the environments and had to learn to navigate
to fixed targets. After 400 episodes, reward location was switched to a new
random location, where agents could only relearn the reward prediction vector
but not the SR. (Generalization) performance is visualized by total number of
steps taken per episode, for an agent using the classical rule (blue) and an agent
using the symmetric rule (red). Dashed line indicates change of target location.
We show the average performance over different environments as performance
is qualitatively similar, see Figure H.3 for plots in individual environments.
Bottom: Similar to left plot, but instead of switching target after a fixed
number of episodes, the target was switched when the previous target was found
with a fixed accuracy. Violin plots show distribution of suboptimality (steps -
optimal number of steps) over all environments, for individual environments see
Figure H.4. For an outline of the environments see Figure H.2
.

15

Figure 6: Generalization experiment on a directed graph. We conducted
the same kind of experiment as in Figure 5 on a directed graph. Left: The
state space is tree-like, with the addition that from the leaf nodes at the last
level one travels back to the central node (orange dashed line). Right: In this
scenario an SR agent with the classical learning rule (blue) performs better in
generalization than one with the symmetric learning rule (red).

cluding learning at two synapses, corresponding to CA3-CA3 recurrent synapses
and CA3-CA1 feedforward synapses. In this model, we then studied the effect
of making a local learning rule invariant to a reversal of time on the learned rep-
resentations. We have found that the successor representations that are learned
under such a learning rule correspond to encoding a transition structure which
is also invariant to a time reversal - irrespective of the actual dynamics which
are experienced. In particular, we could show that under such a symmetrized
learning rule, place fields shift less when on a linear track, which is in line
with empirical findings, showing a distinction between place field shifting in
CA3/CA1. The local learning rule we have modified from Fang et al. (2023)
is not the only one which could be used to obtain successor representations.
Indeed, also George et al. (2022) and Bono et al. (2023) use local learning rules
to learn these representations. It seems plausible that to obtain the successor
representations we studied here, the exact shape of the learning rule is not im-
portant, as long as one can symmetrize it in an appropriate way. This might not
even necessarily mean symmetrizing the plasticity kernel: For example, George
et al. (2022) use STDP to learn feedforward connections between CA3 and CA1
neurons. Specifically, phase precession was used to provide a location code in
the timescale of STDP, and importantly, in the absence of phase precession, a
symmetric SR is learned in a biased random walk. Thus, it is plausible that
precession in their model breaks the temporal invariance.

To understand the functional significance of such learning rules, we then
went on to reinforcement learning experiments, where we trained an agent in
navigation tasks. Here, we could show that a symmetrized learning rule affords
a better generalization performance when the agent should navigate to a new
target. This is interesting, because successor features have been explicitly em-
ployed in RL to obtain better generalization to new tasks (Dayan, 1993; Barreto
et al., 2017, 2018). In particular, also when the SR was introduced as a model
for hippocampus in the neuroscience literature, the generalization capability of

16

such representations was measured (Stachenfeld et al., 2017; Gershman, 2018).
In fact, it was argued in (Stachenfeld et al., 2017) that especially a successor
representation that corresponds to a uniform policy should be beneficial for
generalization. This was later also identified as a flaw of classical successor
representation theory when linear reinforcement learning was suggested as a
model for the hippocampal formation instead (Piray and Daw, 2021). In the
latter, instead of storing the successor representation under the current policy,
the representation under a default policy is stored, and the current policy can
be efficiently represented by only encoding the deviations from default. This
default policy in navigation is of course intuitively the uniform policy, which
could be learned by an agent as soon as it encounters a new environment, in an
explorative manner. Our symmetrized learning rule provides a middle ground
between these two perspectives: the successor representation that one learns
with this learning rule is depending on the current policy, but one can show
that the reversible version is always closer to the SR of uniform policy than the
SR under the original policy (see appendix). Thus, an agent does not necessarily
have to start with exploration to construct a map of its environment, but can
do so while performing a particular task. This is of course only possible due to
the inductive bias that is inherent in the learning rule, which assumes that the
state space is symmetric, since we observed that when this assumption is not
true, the SR affords worse generalization.

Adapting learning mechanisms to symmetries of the data is a topic under
ongoing investigation in biological and machine learning communities (Higgins
et al., 2022; Mercatali et al., 2022). In reinforcement learning, symmetries are
frequently considered under the framework of MDP homomorphisms (Van der
Pol et al., 2020a; Mavor-Parker et al., 2022; Van der Pol et al., 2020b). This
line of research for example aims at learning efficient abstractions of large state
spaces into more amenable ones, or exploits known symmetries in the task struc-
ture to learn more efficiently. The symmetric state spaces we consider here are
simple cases of an equivalence of states induced by the optimal value function:
in a navigational problem in a metric space, any two states are equivalent with
respect to the optimal value function if they have the same distance to the target
(Givan et al., 2003). It would be interesting to investigate whether modifica-
tions of TD learning are also beneficial for the more general case of symmetries
that are considered in this literature. Interestingly, it has been shown before
that TD learning can be considered as performing a form of gradient descent if
and only if the dynamics under the policy are reversible (Ollivier, 2018). This is
intriguing, since TD-learning is known to be unstable in the continuous setting
(Sutton and Barto, 2018) - if our symmetrized learning rule extends to this set-
ting, then it might be possible that it could be useful for a more stable learning
in symmetric settings.

Using a fixed learning rule for all synapses of a region might be a simplistic
assumption, and in real networks, possibly a variety of learning rules are at play
(Debanne et al., 1999). Our model of course does not capture this diversity.
However, it would be easy to adapt the learning rules of individual neurons in
such a sense that they have varying temporal profile. This could then possibly

17

lead to a whole spectrum of successor features, each with it’s own sensitivity
to future and past. In fact, it has been proposed before that the hippocampus
encodes representation of both predecessors and successors (Namboodiri and
Stuber, 2021). Representing preceding states has furthermore been suggested
as useful for exploration in unsupervised reinforcement learning (Yu et al., 2023).
Additionally, it is noteworthy that replay phenomena are taking place in CA3
both in a forward as well as a reverse direction. Indeed, for offline planning
agents might want to be able to simulate replay in the backward as well as the
forward direction (Penny et al., 2013; Yu et al., 2021). These purely predictive
respectively postdictive representations would be the two ends of a continuum of
representations, with the symmetric learning rule in the middle. Thus, a model
representing such a continuum could provide a more nuanced understanding of
neural encoding and learning processes.

Our model naturally is a broad oversimplification of matters and lacks biolog-
ical realism. This is not a problem per se, because we aimed here at analytical
amenability and to expand on the theory of successor representations, which
operates on the computational level. Still, we could only obtain an explicit re-
lation to successor representations by considering CA3/CA1 in isolation, with
external input synapses not subject themselves to learning. In reality, it is now
accepted that there is not a simple forward pass through the hippocampus, but
rather there are projections from the deep layers of entorhinal cortex back into
the superficial layers (which provide input to hippocampus), essentially creating
a loop (Kumaran and McClelland, 2012; Canto et al., 2008). With plasticity
also happening at these synapses, one would then obtain a model that is not as
simple anymore as the one we presented here. Studying the representations in
such an extended model, which would include learning for example in synapses
from HC to EC, and whether these can still be framed in Successor representa-
tion theory, would be an interesting future research direction and could possibly
build a bridge to computational models which include hippocampal-entorhinal
interactions (George et al., 2023a; Whittington et al., 2020).

Finally, we want to mention that the hippocampal formation is also of high
interest in studying generalization in human cognitive neuroscience (Theves
et al., 2021; Garvert et al., 2023). Since evidence is growing that the systems
which are partaking in spatial representations are also recruited to encode more
abstract variables, possibly forming ’conceptual spaces’ (Nitsch et al., 2023; Bot-
tini and Doeller, 2020; Constantinescu et al., 2016), it might be interesting to
understand whether an inherent bias for symmetry also shapes these represen-
tations - and thus, aspects of cognition where metric space structure might be
inadequate.

In conclusion, our model contributes to the theoretical framework of hip-
pocampal predictive representations, both on the mechanistic level through sug-
gesting the use of symmetric local learning rules, as well as on the functional
level, where such learning might be useful for generalization in spatial learning.

18

4 Methods and Materials

5 Methods

5.1 Neural Network Model

We consider populations of rate-based neurons p1 ∈ Rm, p2 ∈ Rn respectively.
The population p1 is recurrently connected via a matrix of synaptic weights
W r ∈ Rm×m, and feeds its activity forward to population p2 via the matrix of
synaptic weights W f ∈ Rn×m. Both regions receive additional external inputs,
ϕ1, ϕ2, and decay to equilibrium in the absence input. Then we can posit the
following dynamics

d

dt
p1 = −p1 + σ

(
λpW

rp1 + (1− λp)ϕ
1
)

(20)

d

dt
p2 = −p2 + σ

(
λqW

fp1 + (1− λq)ϕ
2
)
. (21)

Here, σ is an activation function, and the λ parameters control the relative
weight of the different types of inputs. Of course, on the computational level,
these parameters will correspond to the discounting factor of the successor rep-
resentation, effectively scaling how far in the future predictions are made. On
the level of biological implementation, these parameters might speculatively be
associated with acetylcholine, controlling the relative strength of external and
internal input in hippocampus (Hasselmo, 2006; Fang et al., 2023). Assuming

the weights (and the external inputs) change on a slower timescale than the
population dynamics, we can let these equations go to equilibrium for analysis
- in practice, we can also integrate the ODE above with a timescale τ orders of
magnitude smaller than the timescale of learning. If σ is approximately linear,
this results in

p1 = (1− λp)(Id-λpW
r)−1ϕ1 (22)

p2 = λqW
fp1 + (1− λq)ϕ

2. (23)

We now take these equations as a basis to define population activities in discrete
time,

p1t := (1− λp)(Id-λpW
r
t)

−1ϕ1t (24)

p2t := λqW
f
t p

1
t + (1− λq)ϕ

2
t , (25)

and define a learning rule which changes the matrices of synaptic weights at
each discrete timestep, see next section.

We assume that the animal receives inputs depending on the current state
of the environment, which we will denote by the process St. In the reinforce-
ment learning setting, the agent influences the way in which the state-process
is sampled by selecting actions At, but at this point this is not relevant since

19

we are only building up a predictive representation of states, not actions. The
inputs to the two neural populations thus take the form

ϕkt = ϕk(St) (26)

where ϕk is a function mapping the state space to an activation pattern in neural
space. If the state space is discrete, we can also write this as

ϕkt = ΦkeSt (27)

with Φk now being a matrix of appropriate dimension, and eSt
is the unit-vector

corresponding to state St, which hence selects the corresponding activation pat-
tern from Φks columns. In the special case Φk = Id, we have a one-hot encoding,
where hence every cell corresponds to a distinct state.

5.2 Reinforcement Learning and Successor Features

In Reinforcement learning, one generally considers a Markov decision process
(MDP), that is a tuple (S,A, T,R, γ), where S,A are the sets of possible states
and actions, T (s′|s, a) gives the transition probability from state s to state s′

when choosing action a, R(s, a) is obtained reward when chosing action a in
state S, and γ is a discount factor. The goal in RL usually is to find an optimal
policy, that is a probability distribution π(a|s) over actions, given states, which
maximizes the expected discounted cumulative reward

E

[∞∑
k=0

γkR(St, At)

]
, (28)

where the states and actions St, At are sampled according to the policy π and
the transition probabilities T . In our experiments, we are only interested in the
particularly simple case where the transitions are deterministic - that is, taking
an action a in state s surely leads to a specified state s′(a). Furthermore, we
only consider the situation where the reward is a function of the state only.
However, all definitions in the paragraph below readily generalize to functions
of states and actions. Assume a fixed policy π and a process St following said

policy. Now consider any mapping from the state space

ϕ : S → Rm, (29)

which we can interpret as an observable generated by the state space. Then
define a function on the state space

SF t
ϕ(s) = E

[∞∑
k=0

γkϕ(St+k)|St = s

]
. (30)

SFϕ thus gives the expected (exponentially weighted) cumulative future sum
of the observation or feature ϕ, given the current state s. This is hence called

20

a ’successor feature’ in the literature. Define Gt =
∑∞

k=0 γ
kϕ(St+k). We then

have

SF t
ϕ(s) = E[Gt|St = s] = E[ϕ(St) +

∞∑
k=1

γkϕ(St+k)|St = s] (31)

= E[ϕ(St) + γGt+1|St = s] (32)

= E[ϕ(St)|St = s] + γE[E[Gt+1|St+1]|St = s] (33)

= ϕ(s) +
∑
a,s′

P[St+1 = s′|St = s]γSF t+1
ϕ (s′). (34)

In particular, if the transition probabilities of St are time-homogeneous, we see
that SF itself does not depend on t, and we can write

SFϕ(s) = E [ϕ(St) + SFϕ(St+1)|St = s] . (35)

Temporal Difference learning (TD-learning) uses this relationship to construct
a target to update an estimate of SFϕ online. Indeed, let

S̃F t+1(St) = S̃F t(St) + ε∆t (36)

∆t = ϕ(St) + γS̃F t(St+1)− S̃F t(St). (37)

Then we see that if S̃F t = SFϕ, we get E[∆t|St = s] = 0. Thus, here

ϕ(St)+ γS̃F t(St+1) is used as a bootstrapping estimate of the target E[ϕ(St)+
γS̃F t(St+1)|St = s], and S̃F t is updated according to the error to that target -
in total, ∆t is thus also called TD-error.

Successor features encompass important special case examples: For the
choice of ϕ = R the reward function, SFR becomes the value function: The
value function under a policy π, which is typically denoted as V π, hence encodes
the weighted cumulative sum of expected rewards, given the current state. In
particular, the current estimate of the reward function may be used to define a
new policy as

π∗(·|s) = δa∗

a∗ = argmax
a

V π(s′(a)).
(38)

That is, the policy deterministically selects the action a∗ which leads to the
next state with the highest value according to the current value function esti-
mate. Iterating this process then successively learns a better value function -
this process of updating an estimate of the value function and then choosing
an optimal policy with respect to it is the basis of the classical TD-learning
algorithm (Sutton and Barto, 2018). Indeed, for our navigation experiments we
use this approach, only replacing the maximum in Equation 38 by a softmax
which smoothens the transition probabilities. Note that the above assumes a
model of which actions lead to which next states - which posing as given should
be a sensible assumption in navigation problems - but a completely model-free
approach simply computes the value of a state-action pair instead.

21

Successor Representations In the case that we have that ϕ is in fact an
injective mapping, we can define a modified version of successor features as

SRϕ(ρ) = E

[∞∑
k=0

γkϕ(St+k)|ϕ(St) = ρ

]
, (39)

where ρ ∈ ϕ (S) . Here, the injectivity of the mapping is necessary to ensure SR
defined as above still enjoys desirable properties like homogenity in time and the
Bellman equation, but besides of that one could also define a similar quantity
without using injectivity. Now, in the injective situation, we would like to call
the above ’successor representation’. This is because when we take mapping
ϕ(s) = es, where eS is a unit vector in R|S|, then we obtain

SRϕ(es) = (Id− γP)−1
s (40)

which corresponds to the classical definition of successor representation. In
general, if we assume Φ ∈ Rm×|S| is the matrix of features (could also be an
operator if we allow for continuous state space), then we have that

SRϕ(ϕ(s)) = (Φ(Id− γP)−1)s = (ϕ(Id− γP)−1Φ−)ϕ(s), (41)

where Φ− is such that Φ−Φ = Id|S|.

Generalization and Successor Features The idea behind using successor
features for some set of function ϕi, instead of simply directly computing the the
value function is that of generalization/transfer: Assume the reward function R
can be written as a linear combination of the features ϕ, that is

R =
∑
i

wiϕ
i. (42)

Then also for the respective predictive representations one has

SFR(s) =
∑
i

wiSFϕ(s). (43)

Now assuming that the reward changes to a new function R̃, which also can
be expressed with the features, then the only thing that has to be relearned is
the weights wi, while the successor features SFϕ can be reused. Thus, one may
then generalize more easily to a new task, since the transition structure under
a policy is essentially already learnt. In particular, in a discrete state space, a
fixed reward function can R can of course be encoded by a reward vector R,
that is

R =
∑
s

R(s)es. (44)

The value function is then simply given through the classical SR as

V (s) = (Id− γP)
−1

R(s). (45)

22

Thus, for a fixed policy, this separates the computation of value into learning a
successor representation and learning a reward vector. Our navigation experi-
ments probe the generalization capability of this approach, by introducing a new
reward vector R̃, after an optimal policy and a SR for a reward vector R have
been learned. Importantly, only the reward vector is allowed to be relearned,
while the SR has to be reused from the previous task.

Symmetric TD-learning In our reinforcement learning experiments, we use
a modified version of TD-learning to mimic the behaviour of the local learning
rule in the SR-network. In practice, Successor features are typically parametrized
by some parameter θ (e.g., the weights of a neural network), which is then up-
dated to reduce the TD-error. That is, for each value of θ we obtain a map
S̃F θ(s) of states. We can then update the parameter θ via

θt+1 = θt + ε∆(θ)t (46)

∆(θ)t = α
(
ϕ(St) + γS̃F θt(St+1)− S̃F θt(St)

)T
∇θS̃F θt(St) (47)

+ β
(
ϕ(St+1) + γS̃F θt(St)− S̃F θt(St+1)

)T
∇θS̃F θt(St+1), (48)

where α, β are parameters corresponding to the ones controlling the local learn-
ing rule. In particular, for α = 1, β = 0 one obtains the classical TD-learning
rule for function approximation (Sutton and Barto, 2018) and for α = 0, β = 1
one obtains the ’predecessor representation’ (Yu et al., 2023). The case α = β
yields a symmetrized version of TD-learning. In our experiments, we use a par-
ticularly simple version of the above: for a discrete state space, one can simply
parametrize S̃F by means of a matrix M ∈ Rd×k, where d is the number of
features and k is the number of states. Then one has S̃FM (s) = Mes, and
hence the update rule

∆(M)t = α
(
ϕ(St)e

T
St

+ γMeSt+1e
T
St

−MeSte
T
St

)T
+β
(
ϕ(St+1)e

T
St+1

+ γMeSte
T
St+1

−MeSt+1
eTSt+1

)
.

(49)

5.3 A predictive representation leads to backward shift
only in the asymmetric case

Here we want to give an analytic explanation for the stronger backward shifts of
the centre of mass when using an asymmetric learning rule, while a symmetric
learning rule does not result in a shift. This is easily explained if we ignore
boundaries and go to a continuous situation. Let’s assume an agent is repeatedly
running on the real line R. In the beginning, before learning, the cells in our
model are just driven by the external input, and thus can be taken equal to
the features. That is, cell j will take the value ϕj(x) when at position x. After

23

learning, it will instead encode a successor feature, which in the continuous case
becomes

SFϕj (x) =

∫ ∞

0

e−γt

∫
ϕj(y)pt(y|x)dydt, (50)

where pt(y|x) is the probability of transitioning from state x to state y in time t.
The centre of mass (COM) is just the normalized activity, that is, for example
for the raw feature it is ∫

xϕj(x)dx∫
ϕj(x)dx

. (51)

It is instructive to study the successor feature with deterministic dynamics:
Assume we are moving with constant velocity v, that is, pt(y|x) = δ(y−(x+tv))
then the successor feature takes the form

SFϕj (x) =

∫ ∞

0

e−γtϕj(x+ tv)dt. (52)

Now, taking the mean over all positions yields:∫
x

∫ ∞

0

e−γtϕj(x+ tv)dtdx =

∫ ∞

0

x

∫
e−γtϕj(x+ tv)dxdt (53)

=

∫ ∞

0

(u− tv)

∫
e−γtϕj(u)dudt (54)

=

∫ ∞

0

u

∫
e−γtϕj(u)dudt−

∫ ∞

0

tv

∫
e−γtϕj(u)dudt

(55)

=
1

γ

∫
uϕj(u)du− v

γ2

∫
ϕj(u)du. (56)

After normalization (that is, dividing by
∫
SFϕj (x)dx = 1

γ

∫
ϕj(x)dx), this sim-

ply becomes ∫
uϕj(u)du∫
ϕj(u)du

− v

γ
. (57)

That is, the center of mass is shifted backward by a factor which is controlled
by the prediction timescale γ and the velocity of the movement. We thereby
also obtain the seemingly new prediction that faster running speed and smaller
terminal place field size (as a proxy for γ) should result in bigger shifts. The
same relation holds also when the dynamics come from a Brownian motion with
constant drift, that is dxt = vxt =

√
ρBt, as we show in appendix B . Now when

we symmetrize the Brownian motion with drift, the drift term will disappear,
that is, we have a standard Brownian motion. It is thus clear that under this
motion, there should be no shift of the centre of mass.

5.4 Experiments

5.5 Convergence Experiments

For our initial convergence experiments (Figure 3, top row) we simulate our
model in a circular random walk setting with 30 states and use n = 40 cells in

24

each layer. The input at each state is drawn from an i.i.d. Gaussian distribution
(σ = 0.1) (i.e., for each cell and each state we draw a value from a Gaussian
distribution, this is then assumed to be the input for that cell whenever the
specific state is visited). Throughout this and the following experiments, we use
a moderately high value of γ = 0.7 - meaning a relatively large timescale/small
discounting. This is an arbitrary choice, but relatively high values have been
used in the past in SR-theories of hippocampus Geerts et al. (2020).

We observe 1e5 transitions, and repeat the experiment 30 times. We then
repeat the same experiment (top row, right of Figure 3), also drawing the tran-
sition matrix P randomly. To track the convergences, we consider the loss terms

LWr = ||E[∆Wr]|| (58)

LWf = ||E[∆Wf]||, (59)

where the terms on the right hand vanish at convergence and are defined in
Equation 93. The resulting convergence curves are shown in Figure 3. These
experiments are conducted with a linear activation function, we also repeat this
experiment with the activation functions tanh, relu as shown in Figure H.1

To check the effect of different values α, β, we conduct a parameter sweep
in a circular random walk, and random Gaussian features as above. For each
combination α, β we run 30 random initializations for 1e3 iterations, and check
this combination once for the recurrent layer and once for the feedforward layer.
Here, we track convergence similar as above, but now we take the fraction

LW
LW0

(60)

with W0 the initial weight, to judge if we are moving towards or away from
equilibrium. This results in the matrices shown in Figure 3. To speed up the
experiments, we use a smaller network for these experiments, with 20 neurons
in each layer and 10 states. Again we use dt = 0.1.

5.6 Linear Track Experiments

To simulate the animal running on a linear track, we partitioned a track of
length 300cm in 50 discrete states and let the agent perform a rightward biased
walk that either took a step to the right (p = 0.9) or stayed in place (p = 0.1).
We chose a time step of dt = 0.4, corresponding to a velocity of ≈ 15cm/s.
The agent would run 25 laps on the linear track, with a short resting phase in
between two laps. We set up a two-layer model, with n = 100 cells in each layer,
and again γ = 0.7. For the feedforward weights, we always used the parameters
α = 1, β = 0, while for the recurrent weights we tested both the symmetric case
α = β = 1

2 as well as the asymmetric case α = 1, β = 0. We then performed an
analysis approach as in Dong et al. (2021). For each lap, we collected the mean
activities of each layer per state and computed the center of mass (COM) by
the formula

COMj =

∑
x xpj(x)∑
x pj(x)

(61)

25

where x is position on the track and pj(x) denotes the mean activity of cell j
when at that location. To obtain a distribution of the overall shifts of the COMs
over all laps, we calculated the average COMs for the first and the last five laps
and subtracted them from each other, obtaining the histograms in Figure 4. To
track the evolution of the shift, we subtracted the COMs from the 12-th lap,
which yields a more gradual tracking of shifts, see Figure 4.

5.7 Reinforcement Learning

We investigated the generalization capabilities of a symmetric over an asym-
metric learning rule in TD-learning in different scenarios.

5.7.1 Navigation Experiments

Since the hippocampal formation is prominently involved in navigation tasks,
we first focused on tasks of such nature. We thus studied different variations of
the same general problem setup: Given a grid environment with a deterministic
transition structure, the agent would receive a unit reward only when arriving
at the designated target state sT , upon which the episode is terminated, and
the next episode starts in an initial state s0, drawn uniformly at random. The
agent is thus encouraged to navigate from all possible starting states to the
target state to receive a reward. We used the Neuronav toolbox (Juliani et al.,
2022) to implement the grid environment and implemented our modified SR-
agent in the framework of that toolbox.

To check for generalization capability, we would train agents which utilize the
respective learning rules (symmetric,asymmetric) to navigate to a fixed sT first.
We trained the agent either for a fixed number of episodes (we used 400 episodes
with a maximum number of steps of 400), or until fixed performance criterion
was met (the mean deviation from optimal performance for the preceding 8
e-episodes was lesser than 2). Then, we would randomly select a new target
state s̃T from among all possible states. Importantly, after the modification of
the target states, the agents were only allowed to modify the reward-prediction
vector w, but not the successor representations SF themselves. That is, they
could only learn the reward structure of the new task, but had to rely on the
transition structure that was encoded during learning the previous task, which
also depends on the policy. We repeated this experiment for 200 times, with
randomly drawn combinations (sT , s̃T) in each repetition. For all experiments,
we used a learning rate of 1e−1 and set γ = 0.7. The results of these experiments
are depicted in Figure 5. We repeated the second kind of analysis for different
values of γ and the learning rate, as shown in Figure H.7

Since all the environments we tested in the above setting have a symmetric
nature, that is, their underlying state space is an undirected graph, we repeated
the same generalization experiment in a setting where the state space is a di-
rected graph, and hence travel time between two nodes is not symmetric. We
constructed a simple graph with 17 nodes, which is essentially a tree graph with
the addition of a directed edge from the lowest level to the highest. On this

26

graph, we performed the same kind of navigation experiment. We used the same
values for the learning rate and γ, but reduced the number of episodes to 50
since the state space is smaller and hence can be learned faster.

5.8 Acknowledgements

We thank William de Cothi, Tom George and Nikola Milosevic for helpful dis-
cussions. JK is supported by the Max Planck School of Cognition. CFD’s
research is supported by the Max Planck Society, the European Research Coun-
cil, the Kavli Foundation, the Jebsen Foundation, Helse Midt Norge and The
Research Council of Norway. CB is funded by a Wellcome SRF.

5.9 Code Availability

All code and data used for this project is available at https://github.com/

jakeck1/sympredlearning.

References

Barreto, A., Borsa, D., Quan, J., Schaul, T., Silver, D., Hessel, M., Mankowitz,
D., Zidek, A., and Munos, R. (2018). Transfer in deep reinforcement learning
using successor features and generalised policy improvement. In International
Conference on Machine Learning, pages 501–510. PMLR.

Barreto, A., Dabney, W., Munos, R., Hunt, J. J., Schaul, T., van Hasselt, H. P.,
and Silver, D. (2017). Successor features for transfer in reinforcement learning.
Advances in neural information processing systems, 30.

Behrens, T. E., Muller, T. H., Whittington, J. C., Mark, S., Baram, A. B.,
Stachenfeld, K. L., and Kurth-Nelson, Z. (2018). What is a cognitive map?
organizing knowledge for flexible behavior. Neuron, 100(2):490–509.

Bi, G.-q. and Poo, M.-m. (1998). Synaptic modifications in cultured hippocam-
pal neurons: dependence on spike timing, synaptic strength, and postsynaptic
cell type. Journal of neuroscience, 18(24):10464–10472.

Bono, J., Zannone, S., Pedrosa, V., and Clopath, C. (2023). Learning predic-
tive cognitive maps with spiking neurons during behavior and replays. Elife,
12:e80671.

Bottini, R. and Doeller, C. F. (2020). Knowledge across reference frames: Cog-
nitive maps and image spaces. Trends in Cognitive Sciences, 24(8):606–619.

Canto, C. B., Wouterlood, F. G., Witter, M. P., et al. (2008). What does the
anatomical organization of the entorhinal cortex tell us? Neural plasticity,
2008.

27

https://github.com/jakeck1/sympredlearning
https://github.com/jakeck1/sympredlearning

Chung, F. (2005). Laplacians and the cheeger inequality for directed graphs.
Annals of Combinatorics, 9:1–19.

Chung, F. R. (1996). Laplacians of graphs and cheeger’s inequalities. Combi-
natorics, Paul Erdos is Eighty, 2(157-172):13–2.

Constantinescu, A. O., O’Reilly, J. X., and Behrens, T. E. (2016). Or-
ganizing conceptual knowledge in humans with a gridlike code. Science,
352(6292):1464–1468.

Corneil, D. S. and Gerstner, W. (2015). Attractor network dynamics enable
preplay and rapid path planning in maze–like environments. Advances in
neural information processing systems, 28.

Dayan, P. (1993). Improving generalization for temporal difference learning:
The successor representation. Neural computation, 5(4):613–624.

Dayan, P. and Sejnowski, T. J. (1994). Td (λ) converges with probability 1.
Machine Learning, 14:295–301.

De Cothi, W. and Barry, C. (2020). Neurobiological successor features for spatial
navigation. Hippocampus, 30(12):1347–1355.

De Cothi, W., Nyberg, N., Griesbauer, E.-M., Ghanamé, C., Zisch, F., Lefort,
J. M., Fletcher, L., Newton, C., Renaudineau, S., Bendor, D., et al. (2022).
Predictive maps in rats and humans for spatial navigation. Current Biology,
32(17):3676–3689.

Debanne, D., Gähwiler, B. H., and Thompson, S. M. (1999). Heterogeneity
of synaptic plasticity at unitary CA3–CA1 and CA3–CA3 connections in rat
hippocampal slice cultures. Journal of Neuroscience, 19(24):10664–10671.

Dong, C., Madar, A. D., and Sheffield, M. E. (2021). Distinct place cell dy-
namics in CA1 and CA3 encode experience in new environments. Nature
communications, 12(1):2977.

Dordek, Y., Soudry, D., Meir, R., and Derdikman, D. (2016). Extracting grid cell
characteristics from place cell inputs using non-negative principal component
analysis. Elife, 5:e10094.

Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., and Tanila, H. (1999).
The hippocampus, memory, and place cells: is it spatial memory or a memory
space? Neuron, 23(2):209–226.

Fang, C., Aronov, D., Abbott, L., and Mackevicius, E. L. (2023). Neural learning
rules for generating flexible predictions and computing the successor repre-
sentation. Elife, 12:e80680.

Friston, K. (2002). Functional integration and inference in the brain. Progress
in neurobiology, 68(2):113–143.

28

Garvert, M. M., Saanum, T., Schulz, E., Schuck, N. W., and Doeller, C. F.
(2023). Hippocampal spatio-predictive cognitive maps adaptively guide re-
ward generalization. Nature Neuroscience, 26(4):615–626.

Geerts, J. P., Chersi, F., Stachenfeld, K. L., and Burgess, N. (2020). A gen-
eral model of hippocampal and dorsal striatal learning and decision making.
Proceedings of the National Academy of Sciences, 117(49):31427–31437.

George, T., Stachenfeld, K., Barry, C., Clopath, C., and Fukai, T. (2023a).
A generative model of the hippocampal formation trained with theta driven
local learning rules. In Thirty-seventh Conference on Neural Information
Processing Systems.

George, T. M., de Cothi, W., Clopath, C., Stachenfeld, K., and Barry, C. (2022).
Ratinabox: A toolkit for modelling locomotion and neuronal activity in con-
tinuous environments. bioRxiv, pages 2022–08.

George, T. M., de Cothi, W., Stachenfeld, K. L., and Barry, C. (2023b). Rapid
learning of predictive maps with stdp and theta phase precession. Elife,
12:e80663.

Gershman, S. J. (2018). The successor representation: its computational logic
and neural substrates. Journal of Neuroscience, 38(33):7193–7200.

Givan, R., Dean, T., and Greig, M. (2003). Equivalence notions and model min-
imization in markov decision processes. Artificial Intelligence, 147(1-2):163–
223.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. I. (2005). Mi-
crostructure of a spatial map in the entorhinal cortex. Nature, 436(7052):801–
806.

Hasselmo, M. E. (2006). The role of acetylcholine in learning and memory.
Current opinion in neurobiology, 16(6):710–715.

Higgins, I., Racanière, S., and Rezende, D. (2022). Symmetry-based represen-
tations for artificial and biological general intelligence. Frontiers in Compu-
tational Neuroscience, 16:836498.

Huang, Y. and Rao, R. P. (2011). Predictive coding. Wiley Interdisciplinary
Reviews: Cognitive Science, 2(5):580–593.

Johns, J. and Mahadevan, S. (2007). Constructing basis functions from di-
rected graphs for value function approximation. In Proceedings of the 24th
international conference on Machine learning, pages 385–392.

Jost, J. and Mulas, R. (2019). Cheeger-like inequalities for the largest eigenvalue
of the graph laplace operator. arXiv preprint arXiv:1910.12233.

29

Juliani, A., Barnett, S., Davis, B., Sereno, M., and Momennejad, I. (2022).
Neuro-nav: a library for neurally-plausible reinforcement learning. arXiv
preprint arXiv:2206.03312.

Knierim, J. J. (2015). The hippocampus. Current Biology, 25(23):R1116–R1121.

Kumaran, D. and McClelland, J. L. (2012). Generalization through the recur-
rent interaction of episodic memories: a model of the hippocampal system.
Psychological review, 119(3):573.

Kushner, H. J. and Clark, D. S. (2012). Stochastic approximation methods
for constrained and unconstrained systems, volume 26. Springer Science &
Business Media.

Lee, I., Rao, G., and Knierim, J. J. (2004a). A double dissociation between
hippocampal subfields: differential time course of CA3 and CA1 place cells
for processing changed environments. Neuron, 42(5):803–815.

Lee, I., Yoganarasimha, D., Rao, G., and Knierim, J. J. (2004b). Comparison of
population coherence of place cells in hippocampal subfields CA1 and CA3.
Nature, 430(6998):456–459.

Leutgeb, S., Leutgeb, J. K., Treves, A., Moser, M.-B., and Moser, E. I. (2004).
Distinct ensemble codes in hippocampal areas CA3 and CA1. Science,
305(5688):1295–1298.

Machado, M. C., Bellemare, M. G., and Bowling, M. (2017a). A laplacian
framework for option discovery in reinforcement learning. In International
Conference on Machine Learning, pages 2295–2304. PMLR.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M., Tesauro, G., and Campbell,
M. (2017b). Eigenoption discovery through the deep successor representation.
arXiv preprint arXiv:1710.11089.

Mahadevan, S. and Maggioni, M. (2007). Proto-value functions: A laplacian
framework for learning representation and control in markov decision pro-
cesses. Journal of Machine Learning Research, 8(10).

Markram, H., Gerstner, W., and Sjöström, P. J. (2011). A history of spike-
timing-dependent plasticity. Frontiers in synaptic neuroscience, 3:4.

Mavor-Parker, A. N., Sargent, M. J., Banino, A., Griffin, L. D., and Barry, C.
(2022). A simple approach for state-action abstraction using a learned mdp
homomorphism. arXiv preprint arXiv:2209.06356.

Mehta, M. R., Barnes, C. A., and McNaughton, B. L. (1997). Experience-
dependent, asymmetric expansion of hippocampal place fields. Proceedings of
the National Academy of Sciences, 94(16):8918–8921.

30

Mercatali, G., Freitas, A., and Garg, V. (2022). Symmetry-induced disen-
tanglement on graphs. Advances in Neural Information Processing Systems,
35:31497–31511.

Mishra, R. K., Kim, S., Guzman, S. J., and Jonas, P. (2016). Symmetric
spike timing-dependent plasticity at CA3–CA3 synapses optimizes storage
and recall in autoassociative networks. Nature communications, 7(1):11552.

Momennejad, I., Russek, E. M., Cheong, J. H., Botvinick, M. M., Daw, N. D.,
and Gershman, S. J. (2017). The successor representation in human rein-
forcement learning. Nature human behaviour, 1(9):680–692.

Namboodiri, V. M. K. and Stuber, G. D. (2021). The learning of prospective and
retrospective cognitive maps within neural circuits. Neuron, 109(22):3552–
3575.

Nitsch, A., Garvert, M. M., Bellmund, J. L., Schuck, N. W., and Doeller, C. F.
(2023). Grid-like entorhinal representation of an abstract value space during
prospective decision making. bioRxiv, pages 2023–08.

O’Keefe, J. and Nadel, L. (1978). The hippocampus as a cognitive map. Hip-
pocampus, 3:570.

Ollivier, Y. (2018). Approximate temporal difference learning is a gradient
descent for reversible policies. arXiv preprint arXiv:1805.00869.

Penny, W. D., Zeidman, P., and Burgess, N. (2013). Forward and backward
inference in spatial cognition. PLoS computational biology, 9(12):e1003383.

Piray, P. and Daw, N. D. (2021). Linear reinforcement learning in planning,
grid fields, and cognitive control. Nature communications, 12(1):4942.

Rao, R. P. and Ballard, D. H. (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects. Nature
neuroscience, 2(1):79–87.

Roth, E. D., Yu, X., Rao, G., and Knierim, J. J. (2012). Functional differences
in the backward shifts of CA1 and CA3 place fields in novel and familiar
environments. PloS one, 7(4):e36035.

Russek, E. M., Momennejad, I., Botvinick, M. M., Gershman, S. J., and
Daw, N. D. (2017). Predictive representations can link model-based rein-
forcement learning to model-free mechanisms. PLoS computational biology,
13(9):e1005768.

Scoville, W. B. and Milner, B. (1957). Loss of recent memory after bilateral
hippocampal lesions. Journal of neurology, neurosurgery, and psychiatry,
20(1):11.

Sprekeler, H. (2011). On the relation of slow feature analysis and laplacian
eigenmaps. Neural computation, 23(12):3287–3302.

31

Squire, L. R., Stark, C. E., and Clark, R. E. (2004). The medial temporal lobe.
Annu. Rev. Neurosci., 27:279–306.

Stachenfeld, K. L., Botvinick, M., and Gershman, S. J. (2014). Design principles
of the hippocampal cognitive map. Advances in neural information processing
systems, 27.

Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J. (2017). The hip-
pocampus as a predictive map. Nature neuroscience, 20(11):1643–1653.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

Theves, S., Neville, D. A., Fernández, G., and Doeller, C. F. (2021). Learning
and representation of hierarchical concepts in hippocampus and prefrontal
cortex. Journal of Neuroscience, 41(36):7675–7686.

Van der Pol, E., Kipf, T., Oliehoek, F. A., and Welling, M. (2020a). Plannable
approximations to mdp homomorphisms: Equivariance under actions. arXiv
preprint arXiv:2002.11963.

Van der Pol, E., Worrall, D., van Hoof, H., Oliehoek, F., and Welling, M.
(2020b). Mdp homomorphic networks: Group symmetries in reinforcement
learning. Advances in Neural Information Processing Systems, 33:4199–4210.

Vértes, E. and Sahani, M. (2019). A neurally plausible model learns succes-
sor representations in partially observable environments. Advances in Neural
Information Processing Systems, 32.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and com-
puting, 17:395–416.

Whittington, J. C., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N.,
and Behrens, T. E. (2020). The tolman-eichenbaum machine: unifying space
and relational memory through generalization in the hippocampal formation.
Cell, 183(5):1249–1263.

Wu, Y., Tucker, G., and Nachum, O. (2018). The laplacian in rl: Learning rep-
resentations with efficient approximations. arXiv preprint arXiv:1810.04586.

Yu, C., Burgess, N., Sahani, M., and Gershman, S. (2023). Successor-
predecessor intrinsic exploration. arXiv preprint arXiv:2305.15277.

Yu, C., Li, D., Hao, J., Wang, J., and Burgess, N. (2021). Learning
state representations via retracing in reinforcement learning. arXiv preprint
arXiv:2111.12600.

Zhang, T., Rosenberg, M., Jing, Z., Perona, P., and Meister, M. (2021). Endo-
taxis: A neuromorphic algorithm for mapping, goal-learning, navigation, and
patrolling. bioRxiv, pages 2021–09.

32

A Learning Rule

Recall the learning rule, which with parameters α = 1, β = 0 reads

∆W = (ppost −Wppre)p
T
pre. (62)

This learning rule can be seen as performing a sort of conditional expectation
objective: We have that in general

E [∆W |ppre] = 0 (63)

only if
Wppre = E [ppost(W,pre)|ppre] (64)

where we have written the dependency of the postsynaptic activity more explic-
itly. Thus in some sense, this learning rule is very similar in spirit to classical
TD-learning, since also there one tries to fulfill a conditional expectation equa-
tion (the Bellman equation) and works towards a solution by bootstrapping
(Sutton and Barto, 2018). Indeed, also in Fang et al. (2023) this learning rule
was derived starting from the assumption of td-learning with function approxi-
mation.

Of course, the equation above will mostly not have an exact solution, since
condition on an input is in general a nonlinear operation. However, in special
cases there will be a solution: If for example we have a conditional Gaussian
relationship, that is ppost|ppre ∼ N (ppost;Appre, σ), then an exact solution is
possible and simply retrieves A.More generally, the solution will simply corre-
spond to a regression, as we will see below. In general, one can thus understand
this as a simple form of a predictive coding objective, where the weights are
adapted in such a way that postsynaptic activity becomes predictable Huang
and Rao (2011). Let us now understand how this predictive coding rule learns
successor representations.

A.1 Learned representations through the predictive cod-
ing rule

Consider first a feedforward network with update rules

pt = γV ϕt + (1− γ)ψt. (65)

Here, ϕt(st) is the input through the feedforward weights V and ψt(st) is exter-
nal input, both depending on the state st of a Markov process. Now Equation 64
becomes

(1− γ)E[ψt+1|st] = V (ϕt − γE[ϕt+1|st]) (66)

Assume the case of a finite state space, where we can write ϕ(st) = Φest , ψ(st) =
Ψest , for matrices Φ,Ψ which we assume invertible. It is then not hard to see
that a solution is

V = (1− γ)ΨPT
(
Id−γPT

)−1
Φ−1. (67)

33

But this is now just successor features in another basis: We have that

V ϕ = (1− γ)

∞∑
k=1

γkE [ψt+k|ϕt = ϕ] . (68)

In particular, plugging in V into equation Equation 65 then just includes the
current timestep:

pt = (1− γ)

∞∑
k=1

γkE [ψt+k|ϕt] . (69)

The situation for the recurrent net is maybe even simpler (cf. Fang et al. (2023)):
Assume a network with update rules

pt = (1− γ)(Id−γW)−1ϕt. (70)

Then Equation 64 becomes

(1− γ)(Id−γW)−1E[ϕt+1|ϕt] =W (1− γ)(Id−γW)−1ϕt. (71)

Since W and (Id−γW)−1 commute, it is again not hard to see that a solution
is

W = ΦPTΦ−1, (72)

and hence

pt = (1− γ)(Id−γΦPTΦ−1)−1 = (1− γ)

∞∑
k=0

γkE [ϕt+k|ϕt] . (73)

Now finally, what happens when the input to the feedforward-layer itself is
also a successor representation, under the same prediction horizon γ, i.e. Φ =
Φ̃(Id−γPT)−1? In this case the matrix V takes the particularly easy form
V = ΨPTΦ−1, which is just the one step prediction (analogous to the recurrent
case above). Still in this case pt will encode successor features, just conditional
on the basis Φ̃.

These limits give the right intuition, we give a more formal analysis of the
convergence below.

B Backward shifts of successor features

Here we want to prove backward shifting of Successor features which are Gaus-
sian, but let us first make some general remarks. Recall that we are considering
a feature ϕ : R → R and it’s center of mass, defined as the normalized mean.
Since the feature in our case is obtained as inputs from other neurons, it makes
sense to assume that ϕ is non-negative. Without loss of generality, we also as-
sume that the feature is normalized, i.e. ϕ is a probability density, and the center
of mass simply becomes

∫
xϕ(x)dx = Eϕ[x]. Furthermore, when we normalize

34

the successor operator (which is simply the Laplace transform) by multiplying
by γ, that is letting

SF (ϕ)(x) =

∫ ∞

0

∫
γe−γtϕ(y)pt(y|x)dydt, (74)

then we have that SF (ϕ)(x) = Eq(y|x)[ϕ(y)], with q(y|x) =
∫∞
0
γe−γtpt(y|x)dt

the density obtained from transforming pt(y|x) (one can think of this as the
transition density from x to y when time t is sampled from an exponential
distribution). In general, it might be difficult to study the centre of mass,
because for example SF is not necessarily normalized anymore. However, the
case we consider is more benign. Assume that we have Gaussian features, that
is

ϕ(x) = N (x;µ, σ) . (75)

Hence, the centre of mass is simply the mean µ. Let the dynamics be a Brownian
motion with a constant drift, that is

pt(y|x) = N
(
y;x+ vt, ρ

√
t
)
. (76)

In particular, as a function of x we can write this as

N
(
x; y − vt, ρ

√
t
)
. (77)

Then integrating the transition density and ϕ just yields the marginal distribu-
tion, which is ∫

pt(y|x)ϕ(y) = N
(
x;µ− vt, ρ

√
t+ σ

)
. (78)

Thus, the successor feature is

SF (ϕ)(x)

∫ ∞

0

= γe−γtN
(
x;µ− vt, ρ

√
t+ σ

)
dt. (79)

In particular, the centre of mass is∫ ∞

0

γe−γt(µ− vt) = µ− v

γ
. (80)

Thus, we observe again a shift, which depends on the predictive time scale factor
γ and the velocity v. In particular, if the velocity is zero, then no shift should
be observed.

C Eigenvectors of the Successor Representation

The eigenvectors of the successor representation matrix (Id−γP)−1 are of spe-
cial importance in the theory both in computational neuroscience as well as in
reinforcement learning. In the latter, these eigenvectors are used to construct a

35

natural basis for functions on the state space, which yield a representation of the
large-scale geometry of the state space and can be used for example for option
discovery (Machado et al., 2017b,a; Mahadevan and Maggioni, 2007). In neuro-
science in turn, these eigenvectors have been used as a model of grid cells, since
in spatial settings there are remarkable similarities of some of the eigenvectors
to grid cells observed in the entorhinal cortex Stachenfeld et al. (2014, 2017).
The key insight to why these eigenvectors are particularly useful to represent
the state space is that they are essentially the eigenvectors of a Laplace operator
Stachenfeld et al. (2014). On an undirected graph with adjacency matrix A, the
random-walk Laplacian is defined as

Id−D−1A (81)

where Dii =
1∑

j Aij
. There are other ways to define a Laplacian (Chung, 1996),

but on an undirected graph they are all related (Jost and Mulas, 2019). In
Equation 81, the matrix P := D−1A corresponds to the transition probability
matrix of a random walk that uniformly selects among all edges of a Graph.
It is then not hard to see that the random walk Laplacian and the succes-
sor representation under P share the same eigenvectors (although for different
eigenvalues). These eigenvectors and associated eigenvalues have many desir-
able properties: they are invariant under certain symmetries (automorphisms)
of the graph Mahadevan and Maggioni (2007), they can be used to cluster the
graph (Von Luxburg, 2007) and they represent slowly varying/smooth features
Sprekeler (2011). Many of the technical results on graph Laplacians hinge on
self-adjointness (i.e., symmetry), which is why they do not directly translate to
the setting of directed graphs. In this situation, it is thus common to include
some form of symmetrization - in fact, from the beginning it was proposed to
use Laplacian eigenfunctions under some sort of symmetrization (Mahadevan
and Maggioni, 2007). There are at least two straightforward ways how to do
this: either, one can treat each directed edge as an undirected edge - this corre-
sponds to constructing a new adjacency matrix 1

2 (A+AT), and was for example
used in Mahadevan and Maggioni (2007) to obtain basis functions for RL. The
other possibility is to use the information from the stationary distribution, and
symmetrize as 1

2 (P +Π−1PTΠ) - this leads to the so called ’Chung-Laplacian’
(Chung, 2005); also this Laplacian construction has been successfully applied
in RL (Johns and Mahadevan, 2007; Wu et al., 2018). We have seen that our
symmetrized learning rule in the stationary setting will learn the successor rep-
resentation under P + Π−1PTΠ, and therefore eigenvalues constructed from it
would correspond to those of the Chung-Laplacian. However, in practice sta-
tionarity might not be a valid assumption - this is for example the case in our
simulations, where episodes are terminated on reward. In this case, the symmet-
ric representation that is learned is actually more closely related to the former
case.

36

D Convergence proofs

In the following, we will give convergence proofs for both the neural network
model and the TD-learning setting. In both situations, we will use the same
strategy as in Dayan and Sejnowski (1994). Therein, he uses a classical result
from stochastic approximation theory (Kushner and Clark, 2012). We state now
a formulation of this result close to the one used in Dayan and Sejnowski (1994),
but note that this omits some detail.

Theorem 1. Let Zn ∈ Rn be a sequence of random variables, which fulfill

Zn+1 = Zn + εnk(Zn), (82)

where k is a stochastic function of Z mapping to Rn, and εn ∈ (0, 1) is a
sequence such that

∑
n αn = ∞,

∑
n α

2
n <∞. Define k : z 7→ E[k(z)], assume

that Zn is bounded almost surely and that Var[k(Zn)− k(Zn)] is bounded. Let
A0 be the set of asymptotically stable equillibria of the differential equation

d

dt
z(t) = k(z). (83)

Then if A0 is nonempty, Zn → A0.

As in Dayan and Sejnowski (1994), we will not verify the boundedness con-
ditions, because these could be enforced by projecting the sequence back into a
bounded region if necessary - i.e., one could modify the update equations to in-
clude a projection step that enforces staying in a certain bounded region. Then,
all quantities above are bounded and hence this new sequence converges to A0

if A0 is in that region.

D.1 Convergence of Model

In the following, to avoid using two many superscripts, we change notation
compared to the main text, and set W =W 1 the recurrent weight,V =W 2 the
feedforward weight, p = p1, q = p2 the population activities, ϕ = ϕ1, ψ = ϕ2 the
inputs. Furthermore, we use the notation

R(W) = (Id− γW)−1

and recall our definition

Pα,β =
α

α+ β
PT +

β

α+ β
ΠPΠ−1.

Consider the update rule for the system

Wt+1 =Wt + εt∆W,t (84)

Vt+1 = Vt + εt∆V,t (85)

∆W,t = (αW (pt+1 −Wtpt)p
T
t + βW (pt −Wtpt+1)p

T
t+1). (86)

∆V,t = (αV (qt+1 − Vtpt)p
T
t + βV (qt − Vtpt+1)p

T
t+1). (87)

37

As stated above, we can show convergence to W ∗, V ∗ if we can show that the
differential equation

d

dt

(
W
V

)
= E

[(
∆(W)
∆(V)

)]
(88)

has an asymptotically stable fixed point at W ∗, V ∗ - to do so, we will study
eigenvalues of the jacobian at putative fixed points.

We have approximately (assuming for the expectation that Wt+1 ≈ Wt,
Vt+1 ≈ Vt):

∆(W) =αW (R(W)ϕt+1 −WR(W)ϕt)ϕ
T
t R(W)T+ (89)

βW (R(W)ϕt −WR(W)ϕt+1)ϕ
T
t+1R(W)T (90)

and (recall q = γV V p+ u)

∆(V) =αV (V (γVR(W)ϕt+1 −R(W)ϕt) + ψt+1)ϕ
T
t R(W)+ (91)

βV (γV V (R(W)ϕt −R(W)ϕt+1) + ψt)ϕ
T
t+1R(W)T (92)

We now assume that the inputs ψt, ϕt are in stationary distribution (we
state below a condition under which this holds) and then take the expectation
to obtain

E[∆(W)] = (R(W)
(
αE[ϕ1ϕT0]] + βE[ϕ0ϕT1]]− (α+ β)WE[ϕ0ϕT0]

)
R(W)T

(93)

E[∆(V)] = V R(W)
(
γV (αV E[ϕ1ϕT0] + βV E[ϕ0ϕT1])− (αV + βV)E[ϕ0ϕT0]

)
R(W)T

(94)

+ (αV E[ψ1ϕ
T
0] + βV E[ψ0ϕ

T
1])R(W)T (95)

where we have used that W and R(W) commute. For the first equation, setting
the innermost term zero, we see that this equation has an equilibrium if

W ∗E[ϕ0ϕT0] =
αW

αW + βW
E[ϕ1ϕT0] +

βW
αW + βW

E[ϕ0ϕT1] (96)

We see that this equation essentially prescribes W to implement a weighted
average of the linear regression of ϕ0 against ϕ1 and vice versa. Indeed, if
E[ϕ0ϕT0] is invertible one sees that it becomes

W ∗ =
αW

αW + βW
E[ϕ1ϕT0]E[ϕ0ϕT0]−1 +

βW
αW + βW

E[ϕ0ϕT1][ϕ1ϕT1]−1. (97)

Setting the second equation to zero yields the relation

V ∗R(W)

(
E[ϕ0ϕT0]− γV

(
αV

αV + βV
E[ϕ1ϕT0] +

βV
αV + βV

E[ϕ0ϕT1]
))

=
αV

αV + βV
E[ψ1ϕ

T
0]+

βV
αV + βV

E[ψ0ϕ
T
1].

(98)

38

We now want perform a stability analysis of the equations at an equillibrium
(W ∗, V ∗). Since the dynamics of W do not depend on V , we can look at the
respective equations separately and if both are stable, the whole system is stable.
The easier part is the equation for V : It is affine linear in V , that is we only
have to study the eigenvalues of the matrix

R(W ∗)
(
γV (αV E[ϕ1ϕT0] + βV E[ϕ0ϕT1])− (αV + βV)E[ϕ0ϕT0]

)
R(W ∗)T (99)

In fact, using 2, we only have to study the eigenvalues of
(
γV (αV E[ϕ1ϕT0] + βV E[ϕ0ϕT1])− (αV + βV)E[ϕ0ϕT0]

)
.

According to 5, these have all negative real parts, hence we have stability for
this equation at any equilibrium.

The stability of the differential equation for W is slightly more delicate. Let
F denote the right hand side of the differential equation for W . The derivative
of F (in the Frechet sense) at W ∗, applied to a matrix U becomes

DFW∗(U) = −R(W ∗)γUR(W ∗)
(
αE[ϕ1ϕT0] + βE[ϕ0ϕT1]− (α+ β)W ∗E[ϕ0ϕT0]

)
R(W ∗)

(100)

−R(W ∗)
(
αE[ϕ1ϕT0] + βE[ϕ0ϕT1]− (α+ β)W ∗E[ϕ0ϕT0]

)
R(W ∗)T γUTR(W ∗)T

(101)

−R(W ∗)(α+ β)UE[ϕ0ϕT0]R(W ∗)T (102)

= −R(W ∗)(α+ β)UE[ϕ0ϕT0]R(W ∗)T , (103)

where the first two terms vanished at W ∗ by the defining relation of the latter.
Since we have the identity

vec(ABC) = (CT ⊗A) vec(B), (104)

where ⊗ denotes the Kronecker product and vec denotes vectorization, the sta-
bility is determined by the eigenvalues of the matrix

M = −(α+ β)R(W ∗)E[ϕ0ϕT0]⊗R(W ∗). (105)

Since for the Kronecker-product of two matrices, the eigenvalues are given as
the products of the eigenvalues of the individual matrices, there seems to be in
general no guarantee that the matrix M will be stable for all choices of α, β, ϕ.

However, we can obtain a results in the symmetric case, under some assump-
tions:

Proposition 1. For α = β > 0, E[ϕ0ϕT0] invertible, and the real part of any
eigenvalue µ of W ∗ fulfilling Re(µ) ≤ 1 the matrix M is stable, that is all
eigenvalues have negative real parts.

Proof. First, we note that by the defining relation of W ∗ we obtain that

R(W ∗)E[ϕ0ϕT0] = R(W ∗)

(
E[ϕ0ϕT0]− γ

(
αW

αW + βW
E[ϕ1ϕT0] +

βW
αW + βW

E[ϕ0ϕT1]
))T

R(W ∗)T .

(106)

39

According to 5 and 2, the eigenvalues of the right hand side have positive real
parts, and for α = β, the matrix is symmetric hence the eigenvalues are positive
reals. On the other hand, the eigenvalues of the matrix R(W)∗ = (Id−γW ∗)−1

have positive real parts by assumption and 3. Thus, also the products of the
eigenvalues of the two matrices have positive real parts, which proves the claim.

We have thus confirmed that in the symmetric case, it is possible to have
stability (and thus convergence) at some (W ∗, V ∗). Below, we will now assume
a specific structure of the inputs which will link to successor features and which
will make it possible to state the existence of a solution. We will now assume

ϕt = ϕ̃(St+τ1) = ΦeSt+τ1
(107)

ψt = ψ̃(St+τ2) = ΨeSt+τ2
(108)

where St is the state process, which we assume in stationary distribution, ϕ̃, ψ̃
are injective functions, the matrices Ψ,Φ have the respective values of these
functions as their columns, The τi indicate that the two inputs could have a
temporal offset, we will however set these to zero in the sequel. We note at
these points that these choices are made to relate to the definition successor
features, and other choices of input could equally yield a similar result.

With the above definitions, we have

E[ϕ0ϕT0] = ΦΠΦT (109)

E[ϕ1ϕT0] = ΦPTΠΦT (110)

E[ψ1ϕ
T
0] = ΨPTΠΦT (111)

where P is the transition matrix of St and Π is again the diagonal matrix of the
stationary distribution. With this, it is easy to see that all possible solutions
for W ∗ are of the form

W ∗ = ΦPαW ,βW
Φ− + C (112)

where Ψ− denotes the pseudoinverse, and C is a matrix with CΨ = 0. On the
other hand, all possible solutions for V ∗ are of the form

V ∗ =
(
ΨPT

αV ,βV
(Id−γV PT

αW ,βW
)−1Φ− + C

)
R(W ∗)−1 (113)

where C is again a matrix having Φ in its kernel.
We note that with this particular form of W ∗, we can indeed achieve stable

solutions: ΦPαW ,βW
Φ− has eigenvalues either being zero or corresponding to

eigenvalues of PαW ,βW
, which is a stochastic matrix and hence has eigenvalues

in the unit circle, such that as long as the matrix C has eigenvalues with real
part lesser or equal than 1, the requirements of our proposition above are met
and we have a stable equilibrium. In the particular special case where Φ is
invertible, we get unique stable solutions.

40

D.1.1 Limits of activities

With these particular solutions, we can understand the form the activities of
the populations will take. We will plug in the limits of the weight matrices into
the equations

pt = (Id−γWW ∗)
−1
ϕt (114)

qt = γV V
∗pt + ψt (115)

First, we recall that we assume inputs of the form ϕt = ϕ(St). Second, we
note that the action of the matrices on the space spanned by Φ is the same for
all solutions W ∗, regardless of the additional matrix C. In particular, we have
that

ΦPα,βTΦ−ϕt = EPα,βT
[ϕt+1|ϕt] = E[Pα,βT][ϕt+1|(St)]. (116)

This then yields

pt =
(
Id−γWΦPT

αW ,βW
Φ−)−1

ϕt =
∑
k

γkWEPα,β
[ϕ(St+k)|St] (117)

which is the successor representation of the function ϕ. On the other hand, note
that

Id+γV P
T
αV ,βV

(
Id−γV PT

αV ,βV

)−1
=
(
Id−γV PT

αV ,βV

)−1
(118)

and that Φ−ϕt = Ψ−ψt by definition. Using this, we have

qt = γV ΨP
T
αV ,βV

(
Id−γV PT

αV ,βV

)−1
Φ−ϕt + ψt = Ψ

(
Id+γV P

T
αV ,βV

(
Id−γV PT

αV ,βV

)−1
)
Ψ−ψt

(119)

= Ψ
(
Id−γV PT

αV ,βV

)−1
Ψ−ψt =

∑
k

γkV EPα,β
[ψ(St+k)|St] (120)

E Convergence of TD learning

Here we show in a very similar manner that classical TD-learning with the inclu-
sion of parameters α, β learns the successor representation under the modified
probabilities. In fact, one can see classical TD-learning as a one layer feedfor-
ward network implementing the learning rule/

Consider the following modified TD-learning rule for the parameter θt parametriz-
ing Ṽ

θt+1 = θt + εt∆t (121)

∆t = α
(
ϕ(St) + γṼ (θt, St+1)− Ṽ (θt, St)

)T
∇θṼ (θt, St) (122)

+ β
(
ϕ(St+1) + γṼ (θt, St)− Ṽ (θt, St+1)

)T
∇θṼ (θt, St+1). (123)

41

We can see this as a semi-gradient descent with respect to the loss

L(s, s′, θ, θ′) = α||ϕ(s)+γṼ (θ′, s′)− Ṽ (θ, s)||2+β||ϕ(s′)+γṼ (θ′, s)− Ṽ (θ, s′)||2.
(124)

Now assume the linear and tabular case, that is

Ṽ (W, s) =Wes, ϕ(S) = Φes (125)

Wt+1 =Wt + εt∆t (126)

∆t = α
(
ΦeSt

+ γWteSt+1
−WteSt

)
eTSt

(127)

+ β
(
ΦeSt+1

+ γWteSt
−WteSt+1

)
eTSt+1

(128)

Note that we can also write the updates as

Wt+1(ij) = (1− ϵt(ij))Wt(ij) (129)

+ εt(ij)
(
α
(
ΦeSt

eTSt
+ γWteSt+1

eTSt

)
+ β

(
ΦeSt+1

eTSt+1
+ γWteSt

eTSt+1

))
(ij)

(130)

where ϵt(ij) = εt(αI[St = j] + βI[St+1 = j]).
We have

E[∆(W)] = E[α
(
ΦeSt + γWeSt+1 −WeSt

)
eTSt

(131)

+ β
(
ΦeSt+1

+ γWeSt
−WeSt+1

)
eTSt+1

.] (132)

= α(ΦΠ + γWPTΠ−WΠ) (133)

+ β(ΦΠ + γWΠP −WΠ) (134)

= (α+ β)

(
Φ−W

(
Id−γ

(
(

α

α+ β
PT +

β

α+ β
ΠPΠ−1

)))
Π.

(135)

Setting to zero, we obtain

W ∗ = Φ

(
Id−γ

(
(

α

α+ β
PT +

β

α+ β
ΠPΠ−1

))−1

, (136)

which is precisely the successor representation under Pα,β . The stability of the
differential equation, which is linear, is determined by the eigenvalues of the
matrix

M =

(
Id−γ

(
α

α+ β
PT +

β

α+ β
ΠPΠ−1

))
Π (137)

Using again lemma 5 below this has all positive eigenvalues, which proves the
stability and hence the convergence.

42

F Auxiliary results

Here we state some lemmas we used for the convergence proofs above, these
should all be standard results, but we prove them here for convenience.

Lemma 1. Let M ∈ Rn×n (not necessarily symmetric). Then if M is positive
definite in the sense that for any 0 ̸= x ∈ Rn, xTMx > 0, all eigenvalues of M
have positive real part.

Proof. Let λ ∈ C be an eigenvalue of M with eigenvector z ∈ Cn. Then on the
one hand we have

⟨z,Mz⟩Cn = ⟨z, λz⟩Cn = λ⟨z, z⟩Cn , (138)

and on the other hand

Re (⟨z,Mz⟩Cn) =
∑
i,j

Re(zi)Mij Re(zj) +
∑
i,j

Im(zi)Mij Im(zj) (139)

Now since ⟨z, z⟩Cn > 0, if M is positive definite, the right hand side of the last
equation is positive and this implies that Re(λ) > 0.

Lemma 2. Let A,B be in Rn×n and B be invertible. Then A is positive definite
in the sense of the previous lemma if and only if so is BABT .

Proof. Since B is invertible,

xTAx > 0∀x ⇐⇒ (By)TA(By) = yTBTABy > 0∀y. (140)

Lemma 3. Let Q be a matrix Re(λ) < 1 for all its eigenvalues λ ∈ C. Then
Id−Q has eigenvalues with all positive real parts, is invertible, and the inverse
also has eigenvalues with all positive real parts.

Proof. The eigenvalues of Id−Q are of the form 1−λ. Hence we have Re(1−λ) >
0. This then implies that Id−Q is invertible. The last part follows since inversion
maps the positive half-plane to the positive half-plane.

Lemma 4. Let A be a square matrix and A∗ be it’s adjoint with respect to some
inner product ⟨·, ·⟩. Then we have, denoting by σ the spectrum,

max
λ∈σ(A)

Re(λ) ≤ max
µ∈σ(1

2 (A+A∗))
µ. (141)

Proof. We note that for an eigenpair (v, λ) of A

⟨v, (A+A∗)v⟩ = ⟨v,Av⟩+ ⟨Av, v⟩ = (λ+ λ)⟨v, v⟩ = 2Re(λ)⟨v, v⟩ (142)

Hence, by the Courant-principle

Re(λ) =
⟨v, 12 (A+A∗)v⟩

⟨v, v⟩
≤ max

x

⟨x, 12 (A+A∗)x⟩
⟨x, x⟩

= max
µ∈σ(1

2 (A+A∗)
µ. (143)

43

Corollary 1. Let t ∈ R, P a stochastic matrix with stationary distribution π,
and Π = diag(π). The matrix

Q = tP + (1− t)Π−1PTΠ (144)

has Re(λ) ≤ 1 for all its eigenvalues λ ∈ C.

Proof. Consider the inner product ⟨x, x⟩Π = xTΠx. With respect to this inner
product, the adjoint of Q is

Q∗ = (1− t)P + tΠ−1PTΠ. (145)

Hence,
1

2
(Q+Q∗) =

1

2
(P +Π−1PTΠ) (146)

which is a stochastic matrix and therefore has largest eigenvalue 1.

Lemma 5. Let ϕ0, ϕ1 be random vectors distributed equally. Let furthermore
t ∈ R and γ ∈ [0, 1). Then the matrix

M = E[ϕ0ϕT0]− γ
(
tE[ϕ1ϕT0] + (1− t)E[ϕ0ϕT1]

)
(147)

has eigenvalues with all nonnegative real parts. If furthermore E[ϕ0ϕT0] has full
rank, then the real parts are all positive.

Proof. Let x be any nonzero vector. Note that we have

xTE[(ϕ1 − ϕ0)(ϕ1 − ϕ0)
T]x = xT Cov[ϕ1 − ϕ0]x ≥ 0, (148)

hence

2xTE[ϕ0ϕT0]x = xTE[ϕ0ϕT0]+xTE[ϕ1ϕT1]xT ≥ xTE[ϕ1ϕT0]x+xTE[ϕ0ϕT1]x = 2xTE[ϕ0ϕT1]x.
(149)

From this follows xTMx ≥ 0 with equality only if x is in the kernel of E[ϕ0ϕT0]
and hence the claim.

G Symmetrized distribution is closer to uniform
distribution

It is intuitive, that a reversible distribution of transitions is closer to the uniform
distribution. The Kullback-Leibler divergence yields a particularly easy way to
prove this intuition. Assume our state space S is a undirected graph G = (S, E),
that is, we are in a deterministic setting, and if one can go from s1 to s2 then
one can also go back. Then, together with the stationary distribution π(s), the
transition probabilities p(s|s′) define a joint probability on the set of edges (with
orientation) of the graph, i.e.

p((s1, s2)) = p(s2|s1)π(s1), (150)

44

with (s1, s2) denoting the directed edge from s1 to s2. That is, if we take the
transition probabilities

tp(s2|s1) + (1− t)p(s1|s2)
π(s2)

π(s1)
, (151)

then the joint distribution would be simply

tp(s2|s1)π(s1) + (1− t)p(s1|s2)
π(s2)

.
(152)

Now, if we were to observe transitions uniformly, then we have

p((s1, s2)) = I[(s1, s2) ∈ E]
1

2|E|
=: q((s1, s2)), (153)

where the factor 2 appears because we consider each undirected edge twice. Note
that this is the joint probability that is obtained when one classically defines
the random walk on an undirected graph with

p(s2|s1) = I[(s1, s2) ∈ E]
1

deg(s1)
(154)

with deg(s1) =
∑

s′ I[(s1, s′) ∈ E] the degree. Indeed, weighting the above

equation with the stationary distribution π(s) = deg(s)
2|E| yields the uniform dis-

tribution over edges.
Now, the Kullback-Leibler divergence between any probability distribution

and the uniform distribution is just

DKL(p||q) =
∑

(s1,s2)

ln p((s1, s1))p((s1, s2) + c, (155)

with c not depending on c -i.e, it is just given by the negative entropy of p.
Hence, the following lemma shows that indeed choosing t = 1

2 in Equation 151
leads us closest to uniform.

Lemma 6. Let X ∈ X be a random variable with density p, where X admits
an involution, that is a bijective, measure-preserving map σ : X → X such that
σ2 = Id. Let H(·) be the entropy. Then for any 1

2 ̸= t ∈ [0, 1]:

H(
1

2
(p+ p ◦ σ)) ≥ H(tp+ (1− t)p ◦ σ) (156)

and equality holds iff both densities are equal.

Proof. By the strict concavity of entropy and the convexity of the set {tp+(1−
t)p ◦ σ|t ∈ [0, 1]}, there is a unique maximum. Differentiating with respect to t
yields

d

dt
H(tp+ (1− t)p ◦ σ) = d

dt

∫
X
tp+ (1− t)p ◦ σ ln tp+ (1− t)p ◦ σdµ (157)

= 2

∫
X
(p− p ◦ σ) ln tp+ (1− t)p ◦ σdµ (158)

45

Now at t = 1
2 , the term ln 1

2 (p+ p ◦ σ) is invariant under σ, while the term
p− p ◦ σ is skew-symmetric under σ. Hence, the integral vanishes.

G.1 Proof that symmetrization of optimal policy is stable

Here, we want to show that an optimal policy remains optimal even if the value
function is computed under symmetrized transition probabilities. Before we do
so, we will however first state an useful identity for the successor representations.

Definition 1. Under a fixed policy π, for St a random walk with transition
probabilities P (s′|s) =

∑
a p(s

′|a, s)π(a|s), we define the first hitting times

τsk+1 = inf{t > τsk ∈ N|St = s}, τs0 = 0, (159)

where if the case that the set is empty we set the value to ∞. For a given pair
of states s, s′ we define

T (s′|s) = sup{k ≥ 0|P[τs
′

k <∞|S0 = s] > 0}. (160)

Note that T (s′|s) only takes the values {0, 1,∞}.
It is easy to see that by, the Markovian property, the distribution of these

stopping times does not change, in the sense that

τsk+1 − τsk |τsk <∞ ∼ τs1 , (161)

where for the left hand side we used the convention ∞− c = ∞ for any finite c.
Using this, we have the following expression for the Successor representation in
terms of stopping times:

Proposition 2. For the successor representation M =
(
Id− γP)−1

)
we have

Mss′ = δ(s, s′) +

0, T (s′|s) = 0

E[γτs′
1 |S0 = s], T (s′|s) = 1

E[γτs′
1]|S0=s]

1−E[γτs′
1]|S0=s′]

, T (s′|s) = ∞
(162)

Proof. We note that

Mss′ =
(
Id− γP)−1

)
ss′

(163)

=

∞∑
t=0

γtP t
ss′ (164)

=

∞∑
t=0

γtP[St = s′|S0 = s] (165)

=

∞∑
t=0

γt
∞∑
k=0

P[St = s′, τs
′

k = t|S0 = s] (166)

=

∞∑
t=0

γt
T (s′|s)∑
k=0

P[St = s′, τs
′

k = t|S0 = s] (167)

46

where we have simply included a sum over all possible values for the hitting
times and then included only the cases where those are finite. In particular, if
T (s′|s) = 0, we have M(s′|s) = 0.

Now note that in the above sum

P[St = s′, τs
′

k = t|S0 = s] =

{
1, k = t = 0, s = s′

P[τs′k = t|S0 = s], else.
(168)

Hence we get

= δ(s, s′) +

∞∑
t=1

γt
T (s′|s)∑
k=1

P[τs
′

k = t∥S0 = s] (169)

= δ(s, s′) +

T (s′|s)∑
k=1

∞∑
t=0

γtP[τs
′

k = t|S0 = s] (170)

= δ(s, s′) +

T (s′|s)∑
k=1

E
[
γτ

s′
k |S0 = s

]
. (171)

Thus, in the case that T (s′|s) = 1, we get

Mss′ = δ(s, s′) + E
[
γτ

s′
1 |S0 = s

]
. (172)

Now, for the remaining case T (s′|s) = ∞ first note that

γτ
s′
k =

k−1∏
l=0

γτ
s′
l+1−τs′

l , (173)

and that for l > 0 we have τs
′

l+1−τs
′

l is independent of S0 and since at τs
′

l , Sl = s′,
we have

E
[
τs

′

l+1 − τs
′

l

]
= E

[
τs

′

l+1 − τs
′

l |S0 = s′
]
= E

[
τs

′

1 |S0 = s′
]
. (174)

Hence,

E
[
γτ

s′
k ∥S0 = s

]
= E

[
k−1∏
l=0

γτ
s′
l+1−τs′

l

]
(175)

= E
[
γτ

s′
1 |S0 = s′

](k−1)δk>1

E
[
γτ

s′
1 |S0 = s

](k−1)δk>0

. (176)

47

Plugging this into the sum formula yields

Mss′ = δ(s, s′) +

∞∑
k=1

E
[
γτ

s′
k |S0 = s

]
(177)

δ(s, s′) + E
[
γτ

s′
1 |S0 = s

](∞∑
k=0

E
[
γτ

s′
1 |S0 = s

]k)
(178)

= δ(s, s′) + E
[
γτ

s′
1 |S0 = s

] (
1− E

[
γτ

s′
1 |S0 = s

])−1

(179)

(180)

as claimed.

Corollary 2. In the setting with a unit reward es∗ , the value function is com-
pletely determined by the expected γ to the power of the first hitting time, that
is

V (s) ≥ V (s̃) ⇐⇒ E[γτ
s∗
1 |S0 = s] ≥ E[γτ

s∗
1 |S0 = s̃]. (181)

In particular, consider the deterministic setting - that is, the transitions
p(s′|a, s) are deterministic and hence the state-space becomes a directed graph,
where a directed edge exists from state s to state s′ if there is an action a which
(deterministically) leads from states s to state s′. The task to navigate to state
s′ is inherently finite/absorbing, but we can extend the time horizion to infinity
by simply allowing an action that stays in the same state as one is (which hence
is the optimal action once one is at the target state). In this deterministic
setting, an optimal policy has to always decrease the distance to the target -
hence, we have under an optimal policy, where the target is s∗,

(τs
∗

1 |S0 = s) = δ(s ̸= s∗)d(s, s∗) + δ(s = s∗), (182)

where d(s, s′) is the shortest number of steps necessary to get from s to s′

(which is not necessarily symmetric). In particular, every non-target state s′

should never be returned to, and starting from state s, only states lying on
shortest paths from s to s∗ should be visited (where some of those shortest
paths may still not be visited by the policy, as there might be multiple such
paths). In summary:

Corollary 3. In the directed graph setting navigating to target s∗, for an optimal
policy π∗, the successor representation becomes

Mss′ = δ(s, s′)+

0, s′not on a shortest path from s to s∗ which the policy visits

γd(s,s
′), s′ ̸= s∗

γd(s,s′)

1−γ , s′ = s∗

(183)

Having understood this simple structure of the SR under an optimal policy,
we can also understand why a symmetrization does not impede solving the

48

task. First, we have to slightly generalize our definition of the symmetrization
of transition probabilities, as the one we used in our biological model only works
in the case where the resulting Markov chain is ergodic. This is not the typical
situation in navigation problems. Rather, in navigation tasks, under an optimal
policy, one will navigate towards a goal on the shortest possible path and then
typically the episode ends. Thus one could on the hand imagine an absorbing
state at the target, but this then does not lend itself nicely to the generalization
setting where the target should change but the environmental dynamics should
stay the same. Instead, one could then not introduce an absorbing state in the
environment transitions per se, and just include a self-transition at the target
state - but still stop the episode accordingly when the reward is reached.

We thus would want to define the reverse process in this case as a process
which always moves away from the target state s∗, until it reaches a state with
maximal distance to the target, where it stays (or rather, the episode ends) -
hence mirroring the behaviour of the optimal policies. That is formally, if P are
the transition probabilities under the optimal policy, and dmax = maxs d(s, s

∗)

P reverse
s,s′ =

{
δs,s′ , d(s, s∗) = dmax

P (Sτs
1−1 = s′|τs1 <∞), d(s, s∗) < dmax

(184)

The symmetrized process is then the one with transition probabilities given by

q =
1

2
(P + Preverse. (185)

The value function induced by q for the navigational problem (i.e. reward vector
es∗) is then

V s∗
q (s) =

∞∑
k=0

γkqk(s
∗|s). (186)

Recall that a policy π is optimal for a value function V if the policy always
selects actions which maximize the value function. We have

Proposition 3. Let π be an optimal policy in the deterministic navigation
problem with target state s∗ and let q be the corresponding symmetrized process.
Then π is also an optimal policy for V s∗

q .

Proof. First, let us define the sets

Dm = {s ∈ S|d(s, s∗) = m}. (187)

It is obvious that under the optimal policy, for the forward process, we have

p(St ∈ Dm|St−1 ∈ Dm+1) = 1,m > 0 (188)

and
p(St−1 ∈ Dm|St ∈ Dm−1, τ

s∗

1 > t) = 1,m < dmax (189)

49

This means that for the symmetrized process, with transition probabilities
q = 1

2 (P + P reverse), we actually have

q(Dmin(m+1,max(d(s,s∗))|Dm) = q(Dmax(m−1,0)|Dm) =
1

2
. (190)

That is, the symmetrized process with probability 1/2 either increases or de-
creases the distance to the target state s∗ by 1, with exception at the boundaries
(i.e. at maximal distance or zero distance), where it stays with probability 1

2 .
Now consider the value-function under q, which depends on the sum of the
k−step probabilities qk. But the k− step probabilities can be written as

qk(s
∗|s) =

∑
(l0,l1,...,lk)

q(D0|Dl0q(Dli |Dli+1) · · · q(Dlk |s), (191)

where the sum runs over all possible alignments such that one can reach s∗

after k steps from s. This implies that the value-function can be completely
determined by looking at the transition probabilities on the coarse-grained state
space of level sets of the distance function, which corresponds to a line graph
which self-loops at the ends. To be more precise, the value of s under q is
determined simply by

Vq(s) = V (Dd(s,s∗)). (192)

] This tells us that the value of the state is a function only of the distance to
the target state. Now we only need to show that this function decreases strictly
with distance. To do this, we can simply study the line-graph, or rather the
process with transition matrix

Q =

1
2

1
2 0 0 . . .

1
2 0 1

2 0 . . .
0 1

2 0 1
2 . . .

.

. . . 0 0 1
2

1
2 .

 (193)

Now let d(s, s∗) < d(s′, s∗). It is then clear that P[τs∗1 = t|S0 = s] < P[τs∗1 =
t|S0 = s′], since any path from s′ to s∗ has to go through s. Hence, recalling
proposition 2, also

Vq(s) =Mq
ss∗ =

E[γτs∗
1 |S0 = s]

1− E[γτs∗
1 |S0 = s∗]

<
E[γτs∗

1 |S0 = s′]

1− E[γτs∗
1 |S0 = s∗]

= Vq(s
′). (194)

This shows that the indeed the value-function decreases strictly with distance,
and hence the optimal policy π which we started with, also strictly decreases
Vq and hence also is an optimal policy for q, which concludes the proof.

H Supplementary Figures

50

Figure H.1: Convergence experiments with different activation func-
tions. We conducted the same experiments as in Figure 3, with the activation
functions (tanh,relu) from left to right.

51

Figure H.2: Grid environments used in navigation tasks Outline of the
environments used to produce Figure 5. In all environments, agents started at
random locations and could choose between four actions, corresponding to mov-
ing one step in the respective direction (or staying in place, when the supposed
next position would be a wall). Plots were generated using Neuronav package
Juliani et al. (2022).

52

Figure H.3: Generalization performance in the individual environments which
are averaged over to generate the left plot in Figure 5.

Figure H.4: Generalization performance in the individual environments which
are averaged over to generate the right plot in Figure 5.

53

Figure H.5: Generalization when seeing the same data while training
This figure is identical to Figure H.3, only that here we trained the symmetric
agent on the transitions sampled by the asymmetric agent - hence both agents
see exactly the same data before generalization.

Figure H.6: Generalization when seeing the same data while training
and normalization This figure is identical to Figure H.5, with the addition
that now the updates to the SR are normalized, so that both agents take an
equally sized update at each step..

54

Figure H.7: Generalization performance for varying choices of discount factors
and learning rates. All experiments were conducted in the ’empty’ environ-
ment.Note that in the case were the asymmetric agent outpasses the symmetric
agent, generalization is considerably worse than in the regimes where it does
not.

55

	Introduction
	Results
	Successor Representations
	Learning Successor representations with local learning rules
	Network learns successor representation and successor features
	Influence on the representations by choice of parameters
	Activities in the model converge to theoretically obtained limits

	Place fields under symmetrized rule show less shift
	Generalization and learning with (a)-symmetric rules

	Discussion
	Methods and Materials
	Methods
	Neural Network Model
	Reinforcement Learning and Successor Features
	A predictive representation leads to backward shift only in the asymmetric case
	Experiments
	Convergence Experiments
	Linear Track Experiments
	Reinforcement Learning
	Navigation Experiments

	Acknowledgements
	Code Availability

	Learning Rule
	Learned representations through the predictive coding rule

	Backward shifts of successor features
	Eigenvectors of the Successor Representation
	Convergence proofs
	Convergence of Model
	Limits of activities

	Convergence of TD learning
	Auxiliary results
	Symmetrized distribution is closer to uniform distribution
	Proof that symmetrization of optimal policy is stable

	Supplementary Figures

