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1 Data collection11

We followed common procedures used in the risk perception literature to obtain data12

for the psychometric paradigm [e.g., 1, 2]. The pre-registration for the study is available13

at https://osf.io/6m7xr. In what follows, we investigate the sensitivity of our results to14

various factors surrounding data collection. We focus on two main factors: the impact15

of psychometric item ordering—which could affect both predictive accuracy and inter-16

item correlations—and the impact of training set size (with a focus on predictive17

accuracy).18
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Fig. 1 Investigating the impact of psychometric item ordering on inter-item correlations. A. Order
1 inter-item correlations. B. Order 2 inter-item correlations. C. Order 1 minus order 2 inter-item
correlations.

1.1 Impact of psychometric item ordering19

In our survey, half of the participants received the psychometric items in the order20

presented below (order 1) for each risk and the other half received them in the reverse21

order (order 2). The main reason for doing this was to investigate whether ordering22

actually impacts participant responses, which, to our knowledge, has not been done23

before, and could affect data quality.24

1. Voluntary–Involuntary—Are individuals exposed to this risk voluntarily or25

involuntarily?26

2. Immediate–Delayed—Is death from this risk immediate or delayed?27

3. Known-Unknown—Is this risk known or unknown to the individuals exposed to28

this risk?29

4. Known–Unknown (Sci.)—Is this risk known or unknown to science?30

5. Controllable–Uncontrollable—Is this risk controllable or uncontrollable for the31

individual exposed to the risk?32

6. New–Old—Is this risk new or old?33

7. Chronic–Catastrophic—Is this a risk that kills one person at a time (chronic)34

or a risk that kills large numbers of people at once (catastrophic)?35
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8. Calm–Dread—Is this a risk that individuals can reason about calmly or is it one36

that they have great dread for?37

9. Not-fatal–Fatal—How fatal are the consequences of this risk?38

To evaluate potential differences between the two orderings, we carried out several39

analyses. First, we focus on the psychometric ratings alone. To investigate whether40

psychometric ordering had a statistically significant impact on responses, we take the41

individual ratings for each risk source and psychometric item, split them into two42

groups (order 1 and order 2), and run an independent-samples t-test on each pair of43

groups. This amounted to 9,036 t-tests (1,004 risks times 9 psychometric items), of44

which 11.6% of the groups significantly differed for α = .05. This is twice the number45

of type I errors expected, suggesting a small influence of ordering on average responses.46

Four out of the nine items (Immediate–Delayed, Voluntary–Involuntary, Calm–Dread,47

and Known–Unknown) account for almost 60% of the significant differences. However,48

overall, the difference in the average responses was small (average Cohen’s d = .09).49

Furthermore, the average ratings in the nine psychometric items showed very high50

Pearson correlations of, on average, 0.88.51

We further evaluated the robustness of the inter-item correlation between the52

two orderings because this has implications for the sensitivity of principal com-53

ponent analyses (PCA) often performed within the psychometric paradigm [cf. 1].54

Figure 1 shows the correlations across risks between psychometric item ratings for55

both orderings. We observed very similar patterns of correlations but also small dif-56

ferences ranging from δ < .001 (Immediate–Delayed and Chronic–Catastrophic) to57

δ = .21 (Immediate–Delayed and Known–Unknown), with an overall average absolute58

difference of δ = .08.59

Finally, we evaluated potential differences in the accuracy of predicting risk per-60

ception (See Figure 2). We observed that Psychometric 2 achieved a 6.4 percentage61
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Fig. 2 Investigating the impact of psychometric item ordering on performance. Psychometric 1 is
obtained from participants that received the following order 1 (as listed in text). Psychometric 2
participants received the reverse order. Psychometric is an aggregate of orders 1 and 2 (as used in
the main analysis), and Psychometric 1 & Psychometric 2 is the concatenation of both orderings.
Error bars are adjusted 95% confidence intervals [3].

points higher accuracy than Psychometric 1 and a 1.1 percentage points higher accu-62

racy than the aggregate psychometric model using both orders. This means that the63

reversed order is better at capturing risk perception than the original order. This64

may have contributed to the higher performance of the psychometric model in the65

Basel Risk Norms compared to the data of [2] because the latter relied only on the66

first ordering. The notable differences in predictive accuracy between the two orders67

have two noteworthy implications. First, other orderings of psychometric items could68

result in even larger predictive accuracy for the psychometric model. Second, the two69

orderings may capture distinct aspects of risk perception, suggesting that they might70

best be used in tandem rather than aggregated. To test the latter, we evaluated the71

concatenation of both orderings, Psychometric 1 & Psychometric 2, as a predictive72

model. We observed that the concatenated model outperformed the aggregate model73

by 1.6 percentage points, which is a small but significant effect (t = 4.00, p < .001).74
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Overall, our evaluation of orderings revealed some differences in average ratings,75

inter-item correlations, and predictive accuracy. However, the differences between76

orderings were overall small in magnitude. Furthermore, although the slightly higher77

accuracy of the concatenated model compared to the aggregate model may justify78

using the concatenated from the perspective of predictive accuracy, this choice would79

disadvantage our analysis in other ways. Specifically, it would limit interpretability,80

given that we possess no information on how the item ordering affects the content of81

the responses to the psychometric items, and comparability to previous work includ-82

ing, in particular, the study by [2]. We believe that the small gains in accuracy do not83

outweigh these costs, and so chose to use the aggregate model.84

1.2 The impact of training set size on predictive accuracy85

In planning the data collection of the Basel Risk Norms, we investigated the poten-86

tial of increasing predictive accuracy by increasing the training set size. We trained87

different models on different portions of the data of [2] and recorded the accuracy88

of predicting risk perception (see Figure 3; green lines). The analysis showed signifi-89

cant potential for higher accuracy, with accuracy values increasing systematically with90

larger training set sizes. The increasing accuracy is likely due to a decreasing role of91

model overfitting. This potential for increased accuracy suggested by the reanalysis of92

the data of [2] was largely realized by the larger Basel Risk Norms. Figure 3 also shows93

the accuracies of the different models for the Basel Risk Norms, which demonstrate94

clear performance increases for the larger training set sizes.95

Three additional results concerning the relationship between training set size and96

predictive accuracy in the Basel Risk Norms are worth noting. First, the accuracies97

appear to taper off for larger training set sizes. One important implication of this98

is that comparisons between the low-dimensional psychometric model and the high-99

dimensional embeddings models are fairer using the larger Basel Risk Norms. Second,100
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Fig. 3 Evaluating how test performance varies with training set size for 3 data (sub-)sets: (i) Basel
Risk Norms (All), which refers to our full data set of 1,004 risks, (ii) Basel Risk Norms (Bhatia Set),
referring to our data limited to the same 306 risks as used in [2], and [2] (iii). Test sets are composed
of all remaining risks in the data. Train–test splits were sampled randomly (i.e., bootstrapped), with
10 repetitions per model per training set size. Error bars are 95% confidence intervals.

the accuracy of the psychometric model is systematically higher for the Basel Risk101

Norms compared to the data of [2] for any training set size. This difference likely102

reflects the substantial increase in reliability due to a larger number of ratings. Third,103

embedding accuracies for small training sets are worse for the Basel Risk Norms than104

the data of [2] when considering all risks and better when considering only the risks105

shared across data sets. These results are consistent with the higher risk rating relia-106

bilities of the Basel Risk Norms but also suggest that the newly introduced risks may107

result in a larger diversity of risks, making it harder to generalize from train to test set.108
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Overall, by increasing the size of the risk set, we boosted the performance of all109

models thus permitting a fairer comparison of model performance due to less model110

overfitting.111

2 Model comparison112

In this section, we provide additional information concerning the sensitivity of our113

model comparison results to various analytic choices. We first justify our decision to114

focus only on the results of a linear regression algorithm (elastic net) in the main paper,115

instead of more flexible nonlinear methods such as the popular gradient boosting. We116

next motivate our decision to use a groupwise scaling technique during pre-processing,117

instead of more traditional approaches to scaling preceding regularized regression such118

as standardization. Finally, we provide a comprehensive statistical analysis of the119

differences between all pairwise model combinations for completeness.120

2.1 Elastic net versus gradient boosting121

In addition to elastic net regression, we evaluated the predictive accuracies of the122

different models using Scikit-Learn’s gradient boosting regressor [4]. Gradient boosting123

is a popular nonlinear algorithm that builds an additive model out of regression trees124

in a forward stagewise fashion. In many cases, gradient boosting can outperform linear125

models, especially when more training samples are available.126

We observed that for all but one model gradient boosting was at best equal and, in127

many cases, clearly worse than the linear model (see Figure 4). The only exception was128

the low-dimensional psychometric model, which saw a small increase in the predictive129

accuracy of 2.6 percentage points on the Basel Risk Norm data. Interestingly, we also130

see the impact of the increased training set size, with the additional risks in our norm131

set reducing the relative advantage of elastic net over gradient boosting. This indicates132
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Fig. 4 Pairwise differences between elastic net and gradient boosting using 10x10-fold cross-
validation. Cross-validation via [2]’s risk norms (306 risks) are colored cyan and points obtained using
the Basel Risk Norms (1004 risks) are colored purple. Error bars are adjusted 95% confidence inter-
vals [3].

that perhaps with a sufficient number of samples, the more flexible gradient boosting133

model could outperform elastic net.134

Overall, regularized linear regression emerged as the superior model, which is135

consistent with the relatively low ratio of data points to features.136

2.2 Evaluating embedding scaling approaches137

When relying on regularization techniques, such as elastic net regularization, it is138

common practice to standardize the predictors to even out their contribution to the139

regularization penalty. However, we based our analysis on unstandardized embeddings.140

We did this to allow for a fair comparison between the free-association and text embed-141

dings. The free associations embedding (SWOW ) was trained using singular value142

decomposition, which by design allocates variance very unevenly across the embedding143

dimensions. Standardizing SWOW would thus imply removing an important prior on144

the importance of embedding dimension, which can result in reduced predictive accu-145

racy. To quantify the potential negative effect of standardization on SWOW and a146
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Fig. 5 Pairwise differences between standardized and unstandardized models using 10x10-fold cross-
validation and elastic net regression. Cross-validation via [2]’s risk norms (306 risks) are colored
cyan and points obtained using the Basel Risk Norms (1004 risks) are colored purple. Error bars are
adjusted 95% confidence intervals [3].

potentially positive effect for the other embedding models, we explicitly compared the147

predictive accuracy for every model with standardized and unstandardized dimensions148

for both risk norm sets (Bhatia, 2019, and Basel Risk Norms).149

As can be seen in Figure 5, standardizing did indeed negatively impact the150

SWOW ) for both norm sets (Bhatia, 2019: t = −3.09, p = .003, Basel Risk Norms:151

t = −3.68, p < .001). In terms of the text embeddings, the effect of standardizing152

was mixed, with a negative effect for GloVe on [2]’s data (t = −3.04, p = .003), and153

smaller positive effects on the Basel Risk Norms for GloVe (t = 2.26, p = .027) and154

fastText (t = 2.05, p = .043). Psychometric was not significantly affected. In light of155

these findings, we chose not to standardize the models in our analysis.156

2.3 Statistical tests157

The comparison of models was carried using the procedure described in [3] (see also,158

[5]). It involves calculating the differences in model performance across the same 100159

(10x10) train-test splits for each pair of models and testing the null hypothesis that160
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the mean difference equals zero using an adjusted paired t-test that accounts for the161

dependence between train-test splits.162

To give an overview of all possible model comparisons, Figure 6 shows the differ-163

ences in R-squared predictive accuracy for all pairs of individual and ensemble models164

(y-axis models minus x-axis models) with nonsignificant differences displayed as white.165

Several important insights emerge from the patterns of results. First, the patterns166

of results are highly similar between the data of [2] and the Basel Risk Norms, with one167

exception being the large number of significant results for Basel Risk Norms due to the168

higher reliability and larger data set size. Second, ensembles containing the psychome-169

tric model outperform ensembles without the psychometric model, as indicated by the170

strong bright rectangle in the bottom left corners. Third, there is only one model not171

significantly different from the psychometric model—GloVe & SWOW—attesting to172

the strong performance of SWOW in capturing important aspects of risk perception.173

3 Word norms174

Our interpretability analysis identified unaccounted dimensions of risk by relying on175

a set of word norms. For this purpose, we selected a set of norms from [6] that we176

hypothesized to be related to risk perception. Table 1 provides an overview of these177

norms and lists the individual sources. As reported in the main text, these norms are178

able to predict 64.3% of risk perception variance (with 32% of the norm data imputed179

using Word2Vec to deal with missing norm data on certain risks), establishing their180

usefulness for revealing the key aspects of risk perception.181
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Table 1

Norm Category Description Source
Valence Affect The pleasantness of a stimulus on a 1 (happy) to 9

(unhappy) scale.
[7]

Arousal Affect The intensity of emotion provoked by a stimulus on a
scale of 1 (calm) to 9 (aroused) scale.

[7]

Dominance Affect The degree of control exerted by a stimulus on a scale
of 1 (controlled) to 9 (in control) scale.

[7]

Emotional
Association
Anticipation

Affect Word-emotion association built by manual annotation
using Best-Worst Scaling method, with 0 (not associ-
ated) and 1 (associated) ratings for anticipation.

[8]

Emotional
Association
Fear

Affect Word-emotion association built by manual annotation
using Best-Worst Scaling method, with 0 (not associ-
ated) and 1 (associated) ratings for fear.

[8]

Emotional
Association
Anger

Affect Word-emotion association built by manual annotation
using Best-Worst Scaling method, with 0 (not associ-
ated) and 1 (associated) ratings for anger.

[8]

Emotional
Association
Disgust

Affect Word-emotion association built by manual annotation
using Best-Worst Scaling method, with 0 (not associ-
ated) and 1 (associated) ratings for disgust.

[8]

Emotional
Association
Joy

Affect Word-emotion association built by manual annotation
using Best-Worst Scaling method, with 0 (not associ-
ated) and 1 (associated) ratings for joy.

[8]

Emotional
Association
Trust

Affect Word-emotion association built by manual annotation
using Best-Worst Scaling method, with 0 (not associ-
ated) and 1 (associated) ratings for trust.

[8]

Emotional
Association
Surprise

Affect Word-emotion association built by manual annotation
using Best-Worst Scaling method, with 0 (not associ-
ated) and 1 (associated) ratings for surprise.

[8]

Emotional
Association
Sadness

Affect Word-emotion association built by manual annotation
using Best-Worst Scaling method, with 0 (not associ-
ated) and 1 (associated) ratings for sadness.

[8]

Imageability Concreteness The degree of effort involved in generating a men-
tal image of the concept on a 1 (unimaginable) to 7
(imageable) scale.

[9]

Concreteness Concreteness The degree to which the concept can be experienced
directly through the senses from a 1 (abstract) to 5
(concrete) scale.

[10]

Familiarity Frequency A word’s subjective familiarity on a 1 (unfamiliar) to
7 (familiar) scale.

[9]

Age of Acquisi-
tion

Frequency The age at which people acquired the word, in which
a three-choice test was administered to participants
in grades 4 to 16 (college) (Living Word Vocabulary
Test).

[11]

Frequency Frequency Log10 version of frequency norms based on the SUB-
TLEXus corpus.

[12]

2 is the concatenation of both orderings. Error bars are adjusted 95% confidence232

intervals [3].233
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4.3 Figure 3234

Evaluating how test performance varies with training set size for 3 data (sub-)sets: (i)235

Basel Risk Norms (All), which refers to our full data set of 1,004 risks, (ii) Basel Risk236

Norms (Bhatia Set), referring to our data limited to the same 306 risks as used in237

[2], and [2] (iii). Test sets are composed of all remaining risks in the data. Train–test238

splits were sampled randomly (i.e., bootstrapped), with 10 repetitions per model per239

training set size. Error bars are 95% confidence intervals.240

4.4 Figure 4241

Pairwise differences between elastic net and gradient boosting using 10x10-fold cross-242

validation. Cross-validation via [2]’s risk norms (306 risks) are colored cyan and points243

obtained using the Basel Risk Norms (1004 risks) are colored purple. Error bars are244

adjusted 95% confidence intervals [3].245

4.5 Figure 5246

Pairwise differences between standardized and unstandardized models using 10x10-247

fold cross-validation and elastic net regression. Cross-validation via [2]’s risk norms248

(306 risks) are colored cyan and points obtained using the Basel Risk Norms (1004249

risks) are colored purple. Error bars are adjusted 95% confidence intervals [3].250

4.6 Figure 6251

Heatmap illustrating the differences in 10x10-fold cross-validation R-squared between252

all pairwise model combinations using elastic net regression (y-axis models minus x-253

axis models). White squares reflect mean differences that do not significantly differ254

from zero. The top panel shows the results for the data of [2] and the bottom panel255

the results for the Basel Risk Norms.256
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5 Table Legends257

5.1 Table 1258

Word norms and their sources.259
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Fig. 6 Heatmap illustrating the differences in 10x10-fold cross-validation R-squared between all
pairwise model combinations using elastic net regression (y-axis models minus x-axis models). White
squares reflect mean differences that do not significantly differ from zero. The top panel shows the
results for the data of [2] and the bottom panel the results for the Basel Risk Norms.
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