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Cluster algebra structures for Grassmannians and their (open) 
positroid strata are controlled by a Postnikov diagram D or, 
equivalently, a dimer model on the disc, as encoded by either a 
bipartite graph or the dual quiver (with faces). The associated 
dimer algebra A, determined directly by the quiver with a 
certain potential, can also be realised as the endomorphism 
algebra of a cluster-tilting object in an associated Frobenius 
cluster category.
In this paper, we introduce a class of A-modules corresponding 
to perfect matchings of the dimer model of D and show 
that, when D is connected, the indecomposable projective A-
modules are in this class. Surprisingly, this allows us to deduce 
that the cluster category associated to D embeds into the 
cluster category for the appropriate Grassmannian. We show 
that the indecomposable projectives correspond to certain 
matchings which have appeared previously in work of Muller–
Speyer. This allows us to identify the cluster-tilting object 
associated to D, by showing that it is determined by one of 
the standard labelling rules constructing a cluster of Plücker 
coordinates from D. By computing a projective resolution of 
every perfect matching module, we show that Marsh–Scott’s 
formula for twisted Plücker coordinates, expressed as a dimer 
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partition function, is a special case of the general cluster 
character formula, and thus observe that the Marsh–Scott 
twist can be categorified by a particular syzygy operation in 
the Grassmannian cluster category.
© 2024 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

1. Introduction

A key example of a cluster algebra (with frozen variables) is given by Scott’s cluster 
structure [37] on the homogeneous coordinate ring C[Grnk ] of the Grassmannian of k-
planes in Cn. The Plücker coordinates ϕI , for I a k-subset of {1, . . . , n} (written I ∈

(
n
k

)
below), are cluster variables of this cluster algebra, and a set {ϕI : I ∈ C} of Plücker 
coordinates is a cluster if and only if C ⊆

(
n
k

)
is maximal with respect to the property 

that its elements are pairwise non-crossing [37, Def. 3] (or weakly separated [25]). The 
frozen variables, which appear in every cluster, are the Plücker coordinates ϕI for I =
{i, . . . , i + k − 1} a cyclic interval in {1, . . . , n}, considered modulo n.

Recently, it has been shown by Galashin–Lam [16] (see also [38]) that the coordinate 
rings of open positroid varieties Π◦(P) in Grnk also have cluster algebra structures. These 
varieties are defined from a positroid P ⊆

(
n
k

)
, and consist of those points in Grnk on 

which the Plücker coordinates ϕI with I /∈ P vanish, while another set of Plücker 
coordinates depending on P (the frozen variables in the cluster algebra structure) do 
not vanish. Again, the cluster algebra has a cluster {ϕI : I ∈ C} of (restricted) Plücker 
coordinates for each maximal non-crossing subset C of P containing the indices of these 
frozen variables.

Both for the full Grassmannian and for open positroid varieties, the quivers of these 
clusters of Plücker coordinates are described via Postnikov (alternating strand) diagrams, 
which are given by a collection of n strands in a disc with n marked points on its 
boundary, satisfying various consistency conditions, as we recall in Section 2. Such a 
diagram D is also equivalent to the data of a bipartite graph Γ(D) in the interior of 
the disc, joined to the n marked points on the boundary by ‘half-edges’. To describe a 
cluster in C[Grnk ], each strand in D should go from the i-th point to the (i +k)-th point. 
We call this a uniform strand permutation and any corresponding diagram is a uniform
Postnikov diagram. Diagrams with non-uniform strand permutations define clusters for 
more general open positroid varieties.

The cluster algebra structure on C[Grnk ] has a categorical model given by the Frobenius 
cluster category CM(C), introduced by Jensen–King–Su [22], whose objects are Cohen–
Macaulay modules over a Gorenstein order C = Ck,n, that is, modules free over a central 
subalgebra Z = C[[t] ]. Each Plücker coordinate ϕI of C[Grnk ], for I ∈

(
n
k

)
, corresponds 

to a certain ‘rank 1’ C-module MI . The indecomposable projective-injective objects of 
CM(C) are MI for I a cyclic interval, and so these objects are in bijection with the frozen 
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variables of the cluster algebra. A direct relationship between the category CM(C) and 
uniform Postnikov diagrams is given by Baur–King–Marsh [2].

More recently, Pressland [34] has shown that the cluster algebra describing the coor-
dinate ring of any open positroid variety associated to a connected Postnikov diagram 
admits a similar categorification, given by a category GP(B) of Gorenstein projective 
modules over an Iwanaga–Gorenstein ring B (depending on the positroid).

Our goal here is to further develop the dictionary between these combinatorial and 
categorical constructions, with a focus on labelling rules (for example, those determining 
which collection of Plücker coordinates forms the initial cluster attached to a Postnikov 
diagram) and on twist maps as described by Marsh–Scott [26] and Muller–Speyer [27]. 
While many of our results are new even for uniform diagrams, we also extend some 
results of Baur–King–Marsh to the case of general connected Postnikov diagrams. Most 
notably, this applies to [2, Thm. 10.3], which realises the dimer algebra of a Postnikov 
diagram as an endomorphism algebra in CM(C). Our main results in more detail are as 
follows.

1.1. Vertex labelling and projective modules

The set C, indexing an initial cluster of Plücker coordinates, is obtained from a Post-
nikov diagram D via the following rule. For each boundary marked point i, write i on 
each vertex of the quiver Q = Q(D) (equivalently, each alternating region of D) to the 
left of the strand starting at i. At the end of this process, each vertex j ∈ Q0 has a label 
Ij ∈

(
n
k

)
, and we take C = {Ij : j ∈ Q0}.

One of our main results is that this labelling rule is a natural one from a representation-
theoretic point of view, at least when the Postnikov diagram D is connected. From the 
quiver Q, one can define a frozen Jacobian algebra A = AD, and the boundary algebra 
B = eAe, where e is a suitable ‘boundary’ idempotent, is then used to define the cate-
gorification GP(B) from [34]. We show here that B contains Jensen–King–Su’s algebra 
C as a subalgebra, and further that GP(B) ⊆ CM(B) ⊆ CM(C), where the second 
inclusion is strictly the fully faithful embedding given by restriction (Proposition 3.6). 
The labelling rule to produce C from D is then explained with reference to the rank 1
modules MI ∈ CM(C), as follows.

Theorem 1 (Theorem 8.2). Let D be a connected Postnikov diagram with quiver Q(D)
and dimer algebra A = AD. For each vertex j ∈ Q0, consider the B-module eAej as a 
C-module via restriction, as above. Then there is an isomorphism

eAej ∼= MIj .

Pressland [34] has shown that

TD = eA =
⊕

eAej (1.1)

j∈Q0
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is a cluster-tilting object in the categorification GP(B), and furthermore that A ∼=
EndB(TD)op. It follows by Theorem 1 that restricting TD to C produces the object

TC =
⊕
I∈C

MI =
⊕
j∈Q0

MIj (1.2)

and thus we also have

A ∼= EndC(TC)op. (1.3)

This generalises a result of Baur–King–Marsh [2, Thm. 10.3] from the uniform case to 
arbitrary connected Postnikov diagrams. The labelling rule to produce C has several 
natural variations, by replacing ‘left’ by ‘right’ and / or ‘source’ by ‘target’. We discuss 
the representation-theoretic analogues of these in Remarks 8.4 and 8.5.

By using similar ideas to those behind Theorem 1, we may further show (Proposi-
tion 8.6) that the rank 1 modules MI ∈ CM(C) lying in the subcategory CM(B) are 
precisely those with I ∈ P.

1.2. Perfect matching modules

The main new ingredient in this paper is the introduction of a perfect matching module
Nμ ∈ CM(A) attached to a perfect matching on the bipartite graph Γ(D), or equivalently 
(using Definition 4.1) on the quiver Q(D). These provide a combinatorial description of 
the rank 1 modules in CM(A), analogous to that of the rank 1 modules MI ∈ CM(C)
(Corollary 4.6). The restriction of Nμ to the boundary algebra B, and further to C, is 
encoded combinatorially by the boundary value ∂μ (Definition 4.7) of the matching μ; 
see Proposition 4.9 for a precise statement.

The consistency conditions for Postnikov diagrams imply that the projective A-
modules Aej are rank 1, and hence must be perfect matching modules. One key result of 
the paper, and the main step in the proof of Theorem 1, is to identify the corresponding 
matchings explicitly.

Theorem 2 (Corollary 7.7). Let D be a connected Postnikov diagram with dimer algebra 
A = AD. Then for each vertex j ∈ Q0 we have

Aej ∼= Nmj
,

where mj is an explicit perfect matching defined by Muller–Speyer [27], see (7.3).

The matching mj has boundary value ∂mj = Ij ∈ C by construction, so combining 
Theorem 2 and Proposition 4.9 leads directly to Theorem 1.

The core technical result used to prove Theorem 2 and other main results in the 
paper is the determination of a projective resolution of every perfect matching module 
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Nμ (Theorem 6.9) and consequently its class [Nμ] in the Grothendieck group K0(projA)
(Proposition 6.11).

1.3. Cluster characters and twists

An important use of perfect matchings is to define partition functions for dimer mod-
els. For example, Marsh–Scott [26] defined

MS◦(I) = x−wt(D)
∑

μ:∂μ=I

xwt◦(μ), (1.4)

for I ∈
(
n
k

)
, where wt(D) and wt◦(μ) are certain elements of K0(projA), so this expres-

sion is a (formal) Laurent polynomial in the cluster algebra associated to the diagram D. 
Strictly speaking, Marsh–Scott only studied the uniform case, but their partition func-
tion (1.4) makes sense in the general case. In the uniform case, under the substitution 
x[Aej ] �→ ϕIj , they showed that MS◦(I) is a twisted Plucker coordinate ←−ϕI ∈ C[Grnk ].

A further application of perfect matching modules in this paper is to give a 
representation-theoretic interpretation of the Marsh–Scott formula (1.4). Our first step in 
this direction (Proposition 9.2, Theorem 9.3) is to reformulate (1.4) in terms of modules:

MS◦(I) = x[P◦
I ]

∑
μ:∂μ=I

x−[Nμ] = x[FP◦MI ]
∑

N�FMI
eN=MI

x−[N ], (1.5)

where F = HomB(TD, −) : CM(B) → CM(A) is the right adjoint functor to boundary 
restriction N �→ eN . In addition P ◦

I is a certain projective A-module constructed com-
binatorially from I, whereas P◦MI is a (non-minimal) projective cover of MI in CM(B)
with the property that FP◦MI = P ◦

I . To get from (1.4) to (1.5), we use Proposition 6.11, 
to show that [P ◦

I ] − [Nμ] = wt◦(μ) − wt(D), and Proposition 5.5 (see also Remark 5.6) 
to rewrite the summation set in terms of modules.

By a further transformation of (1.5) we obtain the following.

Theorem 3 (Theorem 10.3). If MI ∈ CM(B) for some I ∈
(
n
k

)
, then

MS◦(I) = x[FΩ◦MI ]
∑

E�GΩ◦MI

x−[E],

where G = Ext1B(TD, −) : CM(B) → CM(A) and Ω◦M = ker(P◦M → M). That is, 
MS◦(I) is given by Fu–Keller’s version [12] of the Caldero–Chapoton formula [7] for the 
cluster character of Ω◦MI , using the cluster-tilting object TD in GP(B).

In the uniform case, the cluster character of MI is the Plücker coordinate ϕI , under 
the same substitution x[Aej ] �→ ϕIj . Thus (see (11.2)) the Marsh–Scott twist on Plücker 
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coordinates is categorified by the syzygy Ω◦ on rank 1 modules in CM(C). While Fu–
Keller’s formula makes sense as a function on CM(B), it is only a cluster character when 
restricted to GP(B). However, we may show (Lemma 10.4) that in fact Ω◦MI ∈ GP(B), 
justifying the language used in stating Theorem 3.

Muller–Speyer [27] define a slightly different twist, including in the non-uniform case, 
which we also relate to a syzygy via a cluster character formula (Theorem 12.2). This 
relationship is used in [35, Thm. 7.2] to prove both that this twist is a quasi-cluster 
morphism in the sense of Fraser [14], and the related fact [35, Thm. 6.16] that the 
source and target labelling conventions for a Postnikov diagram (see §1.1) lead to quasi-
coincident cluster algebra structures for the open positroid variety. This second statement 
was originally conjectured by Muller–Speyer [27, Rem. 4.7] (see also [15, Conj. 1.1]). 
Alternative proofs of these facts, using different methods, can be found in [8, Thm. B, 
Cor. 8.1].

1.4. Structure of the paper

In Section 2, we describe the notion of a consistent dimer model on a disc, in terms 
of a Postnikov diagram D, a bipartite graph Γ(D) or a quiver with faces Q(D). We also 
describe the dimer algebra A = AD, introduced in [2]. A fundamental invariant of a 
dimer model is its type (k, n) (Definition 2.5). In Section 3, we describe the two algebras 
associated to the boundary of the dimer model. The first is B = eAe, for e a certain 
boundary idempotent in A, and the second is the algebra C = Ck,n introduced in [22]
to categorify the Grassmannian cluster algebra C[Grnk ].

In Section 4, we explain how a perfect matching on Q(D) determines a module Nμ

for the corresponding dimer algebra A. In the context of Postnikov diagrams, this allows 
us to prove Proposition 3.6, showing that C is canonically a subalgebra of B, in such a 
way that the restriction map CM(B) → CM(C) is fully faithful. Thus Cohen–Macaulay 
B-modules are effectively a special class of Cohen–Macaulay C-modules.

In Section 5, we study the ‘induction-restriction’ relationship between modules for the 
algebras B and A. We recall results from elsewhere showing that A is the endomorphism 
algebra of a cluster-tilting object T ∈ GP(B), when the Postnikov diagram is connected.

In Section 6 we use the combinatorics of Q(D) to write down a projective resolution of 
Nμ. This projective resolution is used in Section 7 to show that Muller–Speyer matchings 
correspond to projective modules, yielding Theorem 2. In Section 8, we deduce that the 
combinatorial labelling of Postnikov diagrams agrees with the categorical labelling arising 
from restricting projective A-modules to the boundary, thus proving Theorem 1.

Sections 9 and 10 recall the Marsh–Scott formula and Fu–Keller’s cluster character. In 
Section 11 we relate these by proving Theorem 3, in particular showing that the twisted 
Plücker coordinate ←−ϕI is the cluster character ΦT (Ω◦MI), where Ω◦MI is a particular 
syzygy of the C-module MI . Finally, in Section 12, we relate Muller–Speyer’s twist for 
more general open positroid varieties to the cluster character formula.
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Fig. 2.1. The circular graph C.
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2. Grassmannian cluster categories and dimer models

In this section we introduce the related notions of Postnikov diagrams and dimer 
models with boundary. Our exposition largely follows [2, §2], but at a slightly higher 
level of generality.

Let C = (C0, C1) be a circular graph with vertex set C0 and edge set C1, both of size n. 
We will often label the edges with {1, . . . , n}, in cyclic order, but will not explicitly label 
the vertices. The case n = 7 is illustrated in Fig. 2.1.

Definition 2.1. Consider a disc with n marked points on its boundary, identified with C1

in the same cyclic order. A Postnikov (or alternating strand) diagram D consists of a set 
of n oriented curves in the disc, called strands, connecting the boundary marked points, 
such that each marked point is incident with one incoming and one outgoing strand. The 
following axioms must be satisfied.
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Fig. 2.2. A Postnikov diagram.

Local axioms:

(a1) Only two strands can cross at a given point and all crossings are transverse.
(a2) There are finitely many crossing points.
(a3) Proceeding along a given strand, the other strands crossing it alternate between 

crossing it left to right and right to left.

Global axioms:

(b1) A strand cannot cross itself.
(b2) If two strands cross at distinct points U and V , then one strand is oriented from 

U to V and the other is oriented from V to U .

For axioms (a3) and (b2), the two strands meeting at a marked point are regarded as 
crossing at this point in the obvious way. We call D connected if the union of its strands 
is a connected set. An example of a connected Postnikov diagram is shown in Fig. 2.2.

A Postnikov diagram divides the interior of the disc into regions, the connected com-
ponents of the complement of the union of the strands. A region is alternating if the 
strands incident with it alternate in orientation going around its boundary. It is oriented
if the strands around its boundary are all oriented clockwise, or all anticlockwise. It is 
easy to see that every region of a Postnikov diagram must be alternating or oriented.

An alternating region with an edge on the boundary is called a boundary region, 
otherwise it is an internal region. The labelling of boundary points by C1 gives a canonical 
map from C0 onto the set of boundary regions. This map is a bijection when the Postnikov 
diagram is connected, so that each boundary region meets the boundary in a single edge.

A Postnikov diagram D determines a permutation πD of C1, with πD(i) = j when the 
strand starting at i ends at j. If πD(i) = i + k (modulo n) for some fixed k, we call D
a (k, n)-diagram. These diagrams will play a special role for us, since they are related 
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to the (k, n)-Grassmannian cluster algebra and its categorification by Jensen–King–Su 
[22]. However, most of our results apply to more general diagrams, which describe cluster 
structures on more general positroid varieties [16,38], categorified in [34].

Definition 2.2. A lollipop in a Postnikov diagram D is a strand starting and ending at 
the same point on the disc, corresponding to a fixed point of πD.

Proposition 2.3. A lollipop has no crossings with other strands of D.

Proof. Let s be a lollipop, and consider its first crossing with another strand s′. By (b1), 
s is a simple closed curve, and by (a3) strand s′ must cross into the inside of this curve. 
To end on the boundary s′ must therefore cross s a second time, later on s. But this 
violates (b2), hence we obtain a contradiction. �

As a result, connected Postnikov diagrams have no lollipops, except in the most de-
generate case n = 1.

The information in a Postnikov diagram may also be encoded in a reduced plabic 
(planar bicoloured) graph in the disc, as in [31, §11–14]. For our purposes it is sufficient 
to assume that this graph is actually bipartite.

Definition 2.4. To any Postnikov diagram D, there is an associated bipartite graph Γ(D)
embedded into the disc, defined as follows. The nodes correspond to the oriented regions 
of D and are coloured black or white when the boundary of the region is oriented an-
ticlockwise or clockwise, respectively, and the internal edges of Γ(D) correspond to the 
points of intersection of pairs of oriented regions. We call the nodes corresponding to 
regions meeting the boundary of the disc boundary nodes, and the others internal nodes. 
We also include in Γ(D) the data of half-edges, which connect each boundary node to 
the marked points on the boundary that its corresponding region meets. We label the 
half-edges by C1, so that half-edge i meets marked point i. The tiles of Γ(D), i.e. the con-
nected components of its complement in the disc, correspond to the alternating regions 
of D.

Definition 2.5 (cf. [27, §3.1]). Let D be a Postnikov diagram. The type of D is (k, n), 
where

k = #{white nodes in Γ(D)} − #{black nodes in Γ(D)}
+ #{half-edges in Γ(D) incident with a black node},

and n is the number of strands, or equivalently the number of half-edges in Γ(D).

We will see in Section 8 that a (k, n)-diagram has type (k, n). The Postnikov diagram 
in Fig. 2.3 has type (3, 7), but it is not a (3, 7)-diagram. In this example, each black 
boundary node is incident with a unique half-edge, so that
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Fig. 2.3. The bipartite graph corresponding to the Postnikov diagram in Fig. 2.2.

k = #{white nodes} − #{internal black nodes},

but this need not always be the case, as in the example in Fig. 3.3.
We may also associate a quiver to any Postnikov diagram. Recall that a quiver Q is 

a directed graph encoded by a tuple Q = (Q0, Q1, h, t), where Q0 is the set of vertices, 
Q1 is the set of arrows and h, t : Q1 → Q0, so that each α ∈ Q1 is an arrow tα → hα. 
We will write Q = (Q0, Q1), with the remaining data implicit, and we will also regard it 
as an oriented 1-dimensional CW-complex. Given a quiver Q, we write Qcyc for the set 
of oriented cycles in Q (up to cyclic equivalence).

Definition 2.6. A quiver with faces is a quiver Q = (Q0, Q1), together with a set Q2 of 
faces and a map ∂ : Q2 → Qcyc, which assigns to each F ∈ Q2 its boundary ∂F ∈ Qcyc.

We shall often denote a quiver with faces by the same letter Q, regarded now as the 
triple (Q0, Q1, Q2). We say that Q is finite if Q0, Q1 and Q2 are all finite sets. The 
number of times an arrow α ∈ Q1 appears in the boundaries of the faces in Q2 will 
be called the face multiplicity of α. The (unoriented) incidence graph of Q, at a vertex 
i ∈ Q0, has vertices given by the arrows incident with i. The edges between two arrows 
α, β correspond to the paths of the form

α−→ i
β−→

occurring in the cycle ∂F for some face F .

Definition 2.7. A (finite, connected, oriented) dimer model with boundary is a finite 
connected quiver with faces Q = (Q0, Q1, Q2), where Q2 is written as disjoint union 
Q2 = Q+

2 ∪Q−
2 , satisfying the following properties:

(a) the quiver Q has no loops, i.e. no 1-cycles (but 2-cycles are allowed),
(b) all arrows in Q1 have face multiplicity 1 (boundary arrows) or 2 (internal arrows),
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(c) each internal arrow lies in a cycle bounding a face in Q+
2 and in a cycle bounding a 

face in Q−
2 ,

(d) the incidence graph of Q at each vertex is non-empty and connected.

Note that, by (b), each incidence graph in (d) must be either a line (at a boundary
vertex) or an unoriented cycle (at an internal vertex).

In cluster algebras literature, internal vertices are usually called mutable and boundary 
vertices called frozen, terminology which is sometimes [36] extended to internal and 
boundary arrows, but we opt here for the more geometric terms.

If we realise each face F of a quiver with faces Q as a polygon, whose edges are labelled 
(cyclically) by the arrows in ∂F , then we may, in the usual way, form a topological space 
|Q| by gluing together the edges of the polygons labelled by the same arrows, in the 
manner indicated by the directions of the arrows. If Q is a dimer model with boundary 
then, arguing as in [4, Lemma 6.4], we see that conditions (b) and (d) ensure that |Q| is a 
surface with boundary, while (c) means that it can be oriented by declaring the boundary 
cycles of faces in Q+

2 to be oriented positive (or anticlockwise) and those of faces in Q−
2

to be negative (or clockwise). Note also that each component of the boundary of |Q| is 
(identified with) an unoriented cycle of boundary arrows in Q.

On the other hand, suppose that we are given an embedding of a finite quiver Q =
(Q0, Q1) into a compact oriented surface Σ with boundary, such that the complement 
of Q in Σ is a disjoint union of discs, each of which is bounded by a cycle in Q. Then 
we may make Q into an oriented dimer model in the above sense, for which |Q| ∼= Σ, by 
setting Q2 to be the set of connected components of the complement of Q in Σ, separated 
into Q+

2 and Q−
2 using the orientation of Σ.

Definition 2.8. The quiver Q(D) with faces of a Postnikov diagram D has vertices Q0(D)
given by the alternating regions of D. The arrows Q1(D) correspond to intersection points 
of two alternating regions, with orientation consistent with the strand orientation, as in 
Fig. 2.4. We refer to the arrows between boundary vertices as boundary arrows; these are 
naturally labelled by C1 in an analogous way to the half-edges of Γ(D). The faces Q2(D)
are the cycles of arrows determined by an oriented region of D; these lie in Q+

2 (D) if the 
region (equivalently the cycle) is oriented anticlockwise, and in Q−

2 (D) if it is clockwise.

As in [2, Rem. 3.4], the quiver Q(D) associated to a connected Postnikov diagram D
in a disc is naturally a dimer model in the disc as above—connectedness of D is required 
for connectedness of incidence graphs as in Definition 2.7(d). The Postnikov diagram is 
recovered as the collection of zig-zag paths of the dimer model; the global conditions 
(b1) and (b2) on the Postnikov diagram correspond to zig-zag consistency for the dimer 
model [3, Thm. 5.5], [21, Defn. 3.5].

We may also describe Q(D), as a quiver with faces, directly and more combinatorially 
as the dual of the bipartite graph Γ(D), as in [13, §2.1] for a general bipartite field 
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Fig. 2.4. The quiver and bipartite graph associated to the Postnikov diagram in Fig. 2.2.

theory. In other words, Q0(D) is in bijection with the set of tiles of Γ(D) and Q1(D)
with the set of edges, with boundary arrows corresponding to half-edges. An arrow joins 
the two tiles in Γ(D) that share the corresponding edge and is oriented so that the black 
node is on the left and/or the white node is on the right. The faces (plaquettes in [13]) 
F ∈ Q+

2 (D) correspond to the black nodes, while those in Q−
2 (D) correspond to the 

white nodes. For this reason, we will usually refer to the faces of a general dimer model 
with boundary as black, if they lie in Q+

2 , or white, if they lie in Q−
2 . The boundary ∂F

of a face F is given by the arrows corresponding to the edges incident with the node of 
Γ(D) corresponding to F , ordered anticlockwise round black nodes and clockwise round 
white ones. This duality is illustrated in Fig. 2.4, for D as in Fig. 2.2.

Remark 2.9. The reverse of the above procedure can be used to exhibit an arbitrary 
dimer model with boundary Q as the dual of a bipartite graph Γ in the surface |Q|, and 
it is this graph that is sometimes, more traditionally, called the dimer model [20]. When 
Q = Q(D) is the quiver of a Postnikov diagram, the dual bipartite graph is precisely 
Γ(D) as in Definition 2.4.

Remark 2.10. Note that Marsh–Scott [26] associate white nodes of the bipartite graph 
to anticlockwise regions and black nodes to clockwise regions, whereas our convention is 
more consistent with the rest of the literature, e.g. [11,27]. Thus when quoting results 
from [26], we will swap black and white, usually without further comment.

Definition 2.11. Given a dimer model with boundary Q, we define the dimer algebra
AQ as follows. For each internal arrow α ∈ Q1, there are (unique) faces F+ ∈ Q+

2 and 
F− ∈ Q−

2 such that ∂F± = αp±α , for paths p+
α and p−α from hα to tα. Then the dimer 

algebra AQ is the quotient of the complete path algebra ĈQ by (the closure of) the ideal 
generated by relations

p+
α = p−α , (2.1)
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for internal arrows α ∈ Q1. When D is a connected Postnikov diagram, so that Q(D) is 
a dimer model with boundary, we abbreviate AD = AQ(D).

Remark 2.12. Note that the orientation is not strictly necessary to define AQ; we only 
need to know that F± are the two faces that contain the internal arrow α in their 
boundaries, but not which is which. On the other hand, given the orientation, we may 
also define a (super)potential WQ by the usual formula (e.g. [11, §2])

WQ =
∑

F∈Q+
2

∂F −
∑

F∈Q−
2

∂F.

Then AQ may also be described as the quotient of ĈQ by the so-called ‘F-term’ relations

∂α(WQ) = 0,

for each internal arrow α in Q, where ∂α is the usual cyclic derivative (e.g. [18, §1.3] or 
[4, §3]). Thus the algebra AQ is a frozen Jacobian algebra (e.g. [32, Defn. 5.1]).

Definition 2.13. Let Q be a dimer model with boundary. Since the incidence graph of 
Q at each vertex is connected, it follows from the defining relations of AQ that, for any 
vertex i ∈ Q0, the products in AQ of the arrows in any two cycles that start at i and 
bound a face are the same. We denote such a product by ti, and write

t =
∑

i∈Q0(D)

ti. (2.2)

It similarly follows from the relations that t commutes with every arrow and hence is in 
the centre of AQ. Thus AQ is a Z-algebra for Z = C[[t] ].

A key property of dimer algebras that arise from Postnikov diagrams in the disc is 
the following. It is the analogue of algebraic consistency [5, §5] in this context.

Definition 2.14. We say that a Z-algebra A is thin if HomA(P, Q) is a free rank one 
module over Z for any indecomposable projective A-modules P and Q.

In practice, we will only consider Z-algebras A defined via quivers, for which the 
indecomposable projectives are, up to isomorphism, Aei for i ∈ Q0. Such an algebra is 
thin if and only if HomA(Aej , Aei) = ejAei is a free rank one module over Z for each 
i, j ∈ Q0, and in this case A is free and finitely generated over Z.

It was shown in [2, Cor. 9.4] that the dimer algebra AD is thin when D is a (k, n)-
diagram. In fact, this is true for any connected Postnikov diagram D.

Proposition 2.15. If D is a connected Postnikov diagram in the disc, then AD is thin.
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Proof. As in [2, §4], we may weight the arrows of Q = Q(D) by elements of ZC0 . A path 
in Q is weighted by the sum of w weights of its arrows, and its total weight is defined to 
be 

∑
i∈C0

w(i), which is always at least 1.
The proof of [2, Cor. 4.4], stated for (k, n)-diagrams, remains valid in our more general 

setting to show that the path bounding any face of Q has constant weight w(i) = 1 for 
all i ∈ C0. If p+ = p− is an F-term relation, then there is an arrow α ∈ Q1 such that 
both αp+ and αp− are such boundary cycles, from which it follows that the weights of 
p+ and p− agree. Therefore the weight, and hence the total weight, is invariant under 
F-term equivalence, and thus descends to a grading of AD.

Now let i, j ∈ Q0. Since the disc is connected, there is some path from i to j in Q
[2, Rem. 3.3], and we choose p to be such a path with minimal total weight. If q is any 
other path from i to j, then [2, Prop. 9.3] applies to show that there is a path r : i → j

and non-negative integers Np and Nq such that

p = tNpr, q = tNqr

in AD. As before, this proposition is stated only in the case that D is a (k, n)-diagram, 
but its proof is still valid under our weaker assumptions—the key property of D here is 
(b2).

Since the total weight of t is non-zero, and p has minimal total weight among paths 
from i to j, we must have Np = 0 and p = r. Thus q = tNqp is a Z-multiple of p, showing 
that ejAei is a rank one Z-module. It is free since each element of {tNp : N � 0} has 
a different total weight, which implies that these elements are linearly independent in 
AD. �
Remark 2.16. In some parts of the paper, particularly Section 9 concerning the Marsh–
Scott formula, it will be necessary to consider bipartite graphs such that all boundary 
nodes have the same colour. Any bipartite graph can be made into one with this property 
by introducing a bivalent node on any half-edge incident with a boundary node of the 
wrong colour; up to isomorphism, adding this extra node does not affect AQ, where Q is 
the dual dimer model. In Q, this addition of a node corresponds to gluing a digon (i.e. a 
2-cycle bounding a face) onto the boundary arrow of a boundary face. If Q = Q(D) for 
some Postnikov diagram D, then one can achieve the same effect by modifying D via a 
twisting move [2, Defn. 2.2] at the boundary.

We will refer to bipartite graphs with only white boundary nodes as ◦-standardised
and those with only black boundary nodes as •-standardised, and extend this terminology 
to the associated Postnikov diagrams and dimer models with boundary. Note for example 
that in a ◦-standardised diagram D of type (k, n), the value k is simply the number of 
white nodes minus the number of black nodes in Γ(D), whereas in a •-standardised 
diagram the number of black nodes minus the number of white nodes is n − k.

Definition 2.17. Given a Postnikov diagram D, we denote by Dop its opposite diagram, 
obtained by reversing the orientation of each strand.
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Fig. 3.1. The double quiver Q(C).

Remark 2.18. The quiver, dimer algebra, bipartite graph, and type of Dop are related to 
the corresponding objects associated to D in the following way.

(1) We have Q(Dop) = Q(D)op, where the opposite Qop of a dimer model Q with 
boundary is the opposite quiver with faces. This has the same set of vertices, arrows 
and faces as Q, but with hop(a) = t(a) and top(a) = h(a) on arrows, with ∂opF =
(∂F )op on faces, and with (Qop

2 )± = Q∓
2 .

(2) It then follows directly from Definition 2.11 that ADop = Aop
D , that is, the identity 

map on vertices and arrows of Q(Dop) = Q(D)op induces an isomorphism of these 
algebras.

(3) The bipartite graph Γ(Dop) is obtained from Γ(D) by swapping the colours of all 
nodes.

(4) It then follows from Definition 2.5 that if D has type (k, n) then Dop has type 
(n − k, n), using that the total number of half-edges in either associated bipartite 
graph is n.

3. Boundary algebras

In this section, we fix 1 � k < n, and explain how Postnikov diagrams of type (k, n)
are related to the categorification of the Grassmannian Grnk by Jensen–King–Su [22].

Consider again the n-vertex circular graph C = (C0, C1), as in Fig. 2.1. We associate 
to C a quiver Q = Q(C) with vertex set Q0 = C0 and arrow set Q1 = {xi, yi : i ∈ C1}
with xi clockwise and yi anticlockwise, as illustrated in Fig. 3.1 in the case n = 7.

Definition 3.1. Write x =
∑

i∈C1
xi and y =

∑
i∈C1

yi. Then the (complete) preprojec-
tive algebra Π of C is the quotient of the complete path algebra of Q(C) by the closed 
ideal generated by xy − yx; multiplying this by the vertex idempotents produces one 
commutativity relation beginning at each vertex.

For our fixed 1 � k < n, we write C for the quotient of Π by the additional relation 
yk = xn−k. Again, this implies one relation of this kind beginning at each vertex. Writing 
t = xy ∈ C, the centre of C is Z = C[[t] ], and C is a thin Z-algebra [22, §3].
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Since C is free and finitely generated over Z, it is natural to consider the category

CM(C) = {X ∈ modC : X is free over Z}.

The notation here refers to (maximal) Cohen–Macaulay C-modules, meaning C-modules 
which are Cohen–Macaulay when restricted to the commutative (Gorenstein) ring Z; 
Auslander [1, §I.7] refers to these modules as C-lattices. Note that CM(C) coincides 
with the category

GP(C) = {X ∈ modC : ExtiC(X,C) = 0 for i > 0}

of Gorenstein projective C-modules (see [22, Cor. 3.7] and [23,32]).
By Proposition 2.15, the dimer algebra A of any Postnikov diagram D is also free and 

finitely generated over Z and, since Z is a principal ideal domain, so is any subalgebra 
B of A. Later, we will also consider the categories CM(A) and CM(B), but note that 
these do not usually coincide with GP(A) and GP(B).

The rank of M ∈ CM(C), when treated as a Z-module, is always divisible by n =
|Q0|, so we ‘normalise’ by dividing out this constant. This normalised rank may also be 
computed as the length of M ⊗Z K over the simple algebra C ⊗Z K ∼= Mn(K), where 
K = C( (t) ) is the field of fractions of Z [22, Defn. 3.5].

Definition 3.2 ([22, Defn. 5.1]). For any I ⊆ C1, we can define a Π-module MI as follows. 
For each i ∈ C0, set eiMI = Z. The arrows of Q(C) act by

xi · z =
{
tz i ∈ I,

z i /∈ I,
yi · z =

{
z i ∈ I,

tz i /∈ I.

Then xy and yx both act as multiplication by t, and so MI is a Π-module.
If I is a k-subset, then MI is actually a C-module: if the product of n − k successive 

arrows xi acts by ts, then the product of the remaining k arrows xj acts by tk−s. Hence 
the product of the corresponding k arrows yj acts again by tk−(k−s) = ts, and so we 
conclude that yk and xn−k always have the same action. By construction, MI is free and 
finitely generated as a Z-module, so it is in CM(C), and furthermore it has rank 1.

Remark 3.3. Note that we use complementary naming conventions to those in [22]: our 
module MI would be denoted there by MIc , that is, using the complementary subset of 
C1. It is explained in [22] how the category CM(C), for C = Π/(yk − xn−k), provides 
a categorification of Scott’s cluster algebra structure [37] on the Grassmannian Grnn−k

of (n − k)-planes in Cn; in particular, there is a cluster character CM(C) → C[Grnn−k]. 
Because of the difference in conventions, it takes our C-module MI to the Plücker coor-
dinate ϕIc . However, by composing with the isomorphism C[Grnn−k] → C[Grnk ] satisfying 
ϕIc �→ ϕI for each k-subset I ⊆ C1, which relates Scott’s cluster structures on these two 
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Fig. 3.2. An inconsistent dimer model.

isomorphic Grassmannians, we obtain a cluster character Ψ: CM(C) → C[Grnk ] sending 
MI to the Plücker coordinate ϕI .

Every rank 1 module in CM(C) is isomorphic to MI for some k-subset I ⊆ C1 [22, 
Prop. 5.2]. Certain cluster-tilting objects in CM(C), all of which are mutation equivalent, 
have the property that all of their indecomposable summands have rank 1, and the cluster 
character Ψ induces a bijection from the mutation class of these objects to the set of 
clusters of the Grassmannian cluster algebra [22, Rem. 9.6].

Now let D be any Postnikov diagram of type (k, n), with dimer algebra AD. We may 
define the boundary idempotent e =

∑
i∈C0

ei ∈ AD, and consider the boundary algebra
B = eADe. This algebra is quite closely related to the algebra C, which depends only 
on the type (k, n), as we now explain.

Let i ∈ C1. If the boundary arrow of Q(D) labelled by i is clockwise, we name this 
arrow αi, and let βi be the (unique) path completing αi to a boundary face. Conversely, 
if the boundary arrow labelled by i is anticlockwise, then we call this arrow βi, and write 
αi for the path completing it to a face. Writing α =

∑
i∈C1

αi and β =
∑

i∈C1
βi, we have 

αβ = te = βα, and hence there is a canonical map

ε̃ : Π → B,

fixing the vertex idempotents ej , for j ∈ C0, and with ε̃(xi) = αi and ε̃(yi) = βi for each 
i ∈ C1. The existence of the map ε̃ can also be deduced from the description of B as the 
boundary algebra of the frozen Jacobian algebra AD, by [33, Prop. 8.1].

Claim 3.4. When D is connected and has type (k, n), the map ε̃ : Π → B factors through 
a map ε : C → B. In other words, ε̃(yk − xn−k) = 0.

Remark 3.5. It would be nice to have a direct algebraic proof of Claim 3.4, but we 
currently use facts about perfect matching modules proved in Section 4, so the proof 
is postponed until after Proposition 4.5. The statement depends on consistency of the 
dimer model, as the example in Fig. 3.2 shows. Here the combinatorics tells us that k = 1
and n = 3, but the relation x2 = y does not follow from the dimer relations.
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Fig. 3.3. A dimer algebra AD for a Postnikov diagram D of type (2, 4).

Assuming Claim 3.4 for the moment, we have the following.

Proposition 3.6. Let B = eADe be the boundary algebra of AD, for D a connected Post-
nikov diagram of type (k, n). Then the canonical map ε : C → B is injective and the 
corresponding restriction functor ρ : CM(B) → CM(C) is fully faithful.

Proof. It follows from Proposition 2.15 and [22, §3] that both B and C are thin. Hence 
when restricted to each piece eiCej , for i, j ∈ C0, the canonical map ε : C → B from 
Claim 3.4 becomes a map of free Z-modules of rank 1, so it is either injective or zero. The 
image of a generator of eiCej is a path in the dimer algebra AD, i.e. the F-term equiva-
lence class of a path in the defining quiver. It follows from the proof of Proposition 2.15
that no path is zero in AD, and so ε must be injective, as required.

Let Z[t−1] = C( (t) ) be the field of formal Laurent series in t and, for any Z-module 
X, let X[t−1] = X⊗Z Z[t−1]. In particular, if M is a B-module, then M [t−1] is a B[t−1]-
module. Because B and C are thin, the inclusion ε : C → B induces an isomorphism 
C[t−1] ∼= B[t−1] and so we may consider that B ⊆ C[t−1].

Thus any modules M, N in CM(B) can be considered to be B-submodules of the 
C[t−1]-modules M [t−1], N [t−1]. Now t acts injectively on M and N , so any map in 
HomC(ρM, ρN) commutes with t−1 and so commutes with any element of B. Thus 
HomC(ρM, ρN) = HomB(M, N), that is, ρ is fully faithful, as required. �

Note that the canonical map ε : C → B is typically not surjective, and the more 
general restriction map modB → modC is typically not fully faithful. An example is 
shown in Fig. 3.3. There every vertex of Q(D) is on the boundary, so B = AD, but the 
map ε : C → B from Claim 3.4 is not surjective, since the internal arrow of AD is not in 
its image.

4. Perfect matching modules

Let D be a Postnikov diagram of type (k, n). In this section we associate a module 
for the dimer algebra AD to each perfect matching of the bipartite graph Γ(D). To start 
with, we may consider an arbitrary quiver with faces Q (see Definition 2.6).
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Fig. 4.1. A perfect matching of a dimer model with boundary. The perfect matching is indicated by the 
thicker arrows.

Definition 4.1. A perfect matching on a quiver with faces Q is a subset μ of Q1 such that 
the boundary of each face in Q2 contains precisely one arrow in μ.

An example of a perfect matching is given in Fig. 4.1.

Remark 4.2. If Q is a dimer model with boundary, its arrows are in bijection with the 
edges and half-edges of the dual bipartite graph Γ, in such a way that the arrows incident 
with a given face correspond to the edges and half-edges incident with the dual node. 
A perfect matching of Q is thus equivalent to the data of a subset μ of the edges and 
half-edges of Γ with the property that each node of Γ is incident with precisely one 
element of μ. When |Q| is closed, so that Γ is an honest bipartite graph, such a set μ
is a perfect matching of Γ in the usual, graph-theoretic sense, hence the terminology. In 
general, a boundary node of Γ need not be matched with another node, but may instead 
be incident with a half-edge in μ.

Any perfect matching of a quiver Q with faces determines a ĈQ-module in the fol-
lowing way.

Definition 4.3. To each perfect matching μ on Q, we associate a ĈQ-module Nμ as 
follows. Let eiNμ = Z for all i ∈ Q0. An arrow α acts as multiplication by t if α ∈ μ, 
and as the identity otherwise.

We may extend the quiver Q(C) from Section 3 to a quiver with n faces, the boundaries 
of which are the 2-cycles xiyi for i ∈ C1. Then, given any subset I ⊆ C1, the set 
μ(I) = {xi : i ∈ I} ∪ {yj : j /∈ I} ⊆ Q1 is a perfect matching of Q(C), and the module 
Nμ(I) is precisely the Π-module MI from Definition 3.2.

If Q is a dimer model with boundary and μ is a perfect matching, p+
α and p−α act on Nμ

in the same way for any α ∈ Q1, and so Nμ is a module for the dimer algebra AQ. Note 
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that the central element t ∈ AQ from Definition 2.13 acts on any Nμ as multiplication 
by t ∈ Z, justifying the abuse of notation.

Definition 4.4. Any perfect matching μ of a quiver with faces Q determines a grading of 
the path algebra ĈQ with

degμ α =
{

1, α ∈ μ,

0, α /∈ μ.

If Q is a dimer model with boundary, this descends to a grading of AQ since the defining 
relation p+

α − p−α has degree 0 if α ∈ μ and degree 1 otherwise. For any μ, we have 
degμ t = 1. Grading Nμ by putting deg 1 = 0 for each generator 1 ∈ ejNμ = Z makes 
Nμ into a graded ĈQ-module for the above grading on ĈQ.

Proposition 4.5. Let Q be a quiver with faces such that |Q| is simply connected. Let N
be a ĈQ-module such that the vector space ejN is equipped with the structure of a free 
Z-module of rank 1 for each j ∈ Q0, in such a way that ∂F acts as multiplication by t
for every F ∈ Q2. Then there exists a unique perfect matching μ of Q such that N ∼= Nμ.

Proof. We associate to N , as a representation of Q, the set μ of arrows whose arrow 
maps are non-invertible. Choosing a Z-module generator for ejN for j ∈ Q0, each arrow 
α acts, relative to these generators, as multiplication by λαt

mα with λα ∈ Z×; we use 
here that Z is a local ring with maximal ideal (t). Since the boundary of any face acts 
by t, we must have mα ∈ {0, 1}, equal to 1 for exactly one arrow in each face. These are 
precisely the arrows in μ, which is thus a perfect matching.

Moreover, the λα multiply to 1 around each face, so λ = (λα)α∈Q1 is a 1-cocycle for 
Q with coefficients in Z×. As |Q| is simply connected, λ = dκ for some 0-cochain κ. 
Rescaling the generators by κ sets λα = 1 for all α, and thus N ∼= Nμ.

Uniqueness follows because μ is the set of arrows acting non-invertibly on Nμ, and 
this set is an isomorphism invariant. �

When N is an AD-module for some connected Postnikov diagram D, we will always 
give N (and hence the fibres ejN for j ∈ Q0) the Z-module structure arising from the 
restriction to Z ⊆ AD (see Definition 2.13). In particular, this means that ∂F always 
acts on N as multiplication by t for every F in Q2, and so Proposition 4.5 simplifies as 
follows.

Corollary 4.6. Let D be a connected Postnikov diagram with dimer algebra A = AD, and 
let N be an A-module such that the Z-module ejN is free of rank 1 for each j ∈ Q0. 
Then N ∼= Nμ for a unique perfect matching μ of Q(D). This applies in particular when 
N = Aei is an indecomposable projective A-module.
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Proof. The first statement is just Proposition 4.5, the condition on ∂F being automatic 
as above. For an indecomposable projective Aei, the fibre ejAei = HomA(Aej , Aei) is 
free of rank one since A is thin (Proposition 2.15). �
Definition 4.7. Let D be a Postnikov diagram with quiver Q(D). Then a perfect matching 
μ on Q(D) has a boundary value ∂μ ⊆ C1, defined as follows: ∂μ consists of those i ∈ C1
such that either the boundary arrow of Q(D) labelled by i is clockwise and contained in 
μ, or this arrow is anticlockwise and not contained in μ.

The boundary value of the perfect matching in Fig. 4.1 is {1, 3, 5}. Note that if D is 
◦-standardised in the sense of Remark 2.16, then all boundary arrows are clockwise and 
so ∂μ consists simply of the labels in C1 of the boundary arrows in μ. Conversely, in a 
•-standardised diagram all of the boundary arrows are anticlockwise, and ∂μ consists of 
the labels of those boundary arrows not in μ.

Proposition 4.8. If D is a Postnikov diagram of type (k, n) and μ is a perfect matching 
of Q(D), then ∂μ has cardinality k.

Proof. Since k is defined in terms of the graph Γ(D), we view μ as a subset of the 
edges and half-edges of Γ(D) as in Remark 4.2. In this language, the boundary value ∂μ
consists of those I ∈ C1 such that the corresponding half-edge of Γ(D) is either incident 
with a white node and contained in μ, or is incident with a black node and not contained 
in μ.

Now consider the disjoint union S of the set of white nodes of Γ(D) with the set of 
half-edges of Γ(D) incident with a black node, and its subset Sμ consisting of white nodes 
joined to a black node by an edge of μ, together with the half-edges in μ ∩S. Since μ is 
a perfect matching, the cardinality of Sμ is equal to the number of black nodes, and so 
S \ Sμ has cardinality k by a direct comparison with Definition 2.5. On the other hand, 
S \ Sμ consists of those white nodes incident with a (necessarily unique) half-edge in μ, 
together with the half-edges of S which are not in μ, and so its cardinality also agrees 
with that of ∂μ. �

The modules Nμ provide a convenient way to prove Claim 3.4 and hence to complete 
the proof of Proposition 3.6.

Proof of Claim 3.4. We need only check that ε̃(yk − xn−k) = 0, or equivalently, that 
ε̃(yk) and ε̃(xn−k) have the same action on any indecomposable projective B-module 
Bei, for i ∈ C0. Now Bei = eADei is a subspace of the projective AD-module ADei
which, by Corollary 4.6, is isomorphic to Nμ for some perfect matching μ. In fact, the 
elements ε̃(yk) and ε̃(xn−k) of B ⊆ AD act in the same way on Nμ for any perfect 
matching μ, as we now show.

Fix i ∈ C1. By construction, ε̃(xi) = αi acts on the relevant fibres of Nμ either by the 
identity or as multiplication by t, and ε̃(yi) = βi acts complementarily. If the boundary 
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arrow of Q(D) labelled by i is clockwise, then αi is this arrow, which acts as t on Nμ

if and only if i ∈ ∂μ. On the other hand, if the boundary arrow βi labelled by i is 
anticlockwise, then αi is the path completing βi to a face, which acts as t on Nμ if and 
only if βi acts as 1, again if and only if i ∈ ∂μ. Thus by Proposition 4.8, exactly k = |∂μ|
of the αi act as multiplication by t. Verifying that ε̃(yk) and ε̃(xn−k) have the same 
action on Nμ is then straightforward (cf. Definition 3.2). �

Proposition 4.9. Let D be a Postnikov diagram, let μ be a perfect matching for the 
associated quiver Q(D) with corresponding AD-module Nμ, and let e be the boundary 
idempotent of AD. Then ρ(eNμ) = M∂μ, where ρ : CM(B) → CM(C) denotes the re-
striction functor from Proposition 3.6.

Proof. Consider eNμ, which by definition has vertex components eiNμ = Z for each 
i ∈ C0, under our identification of C0 with the boundary vertices of Q. Exactly as in the 
proof of Claim 3.4, the arrow xi acts as multiplication by t if i ∈ ∂μ, and as the identity 
otherwise. Since xiyi bounds a face, it must act by multiplication by t. Hence the arrow 
yi acts as the identity when xi acts by t, i.e. when i ∈ ∂μ, and as multiplication by t
otherwise. Comparing to Definition 3.2, we see that ρ(eNμ) = M∂μ. �

Since ρ is fully faithful by Proposition 3.6, we immediately have the following.

Corollary 4.10. The boundary module M = eNμ ∈ CM(B) of a perfect matching μ is 
determined up to isomorphism by the boundary value ∂μ of the matching.

Definition 4.11. We will refer to an A-module N together with a preferred isomorphism 
Nμ

∼−→ N as a perfect matching module. Specifying such an isomorphism is equivalent 
to choosing a preferred generator gj for each ejN (necessarily a rank one Z-module) 
in such a way that the arrows act by multiplication by a power of t, relative to these 
generators. The isomorphism is then given by mapping 1 ∈ ejNμ = Z to gj , and the 
power of t is necessarily 0 or 1, as in the proof of Proposition 4.5.

Lemma 4.12. Any submodule N of a perfect matching module M is canonically a perfect 
matching module.

Proof. We have a generator gj for each ejM as in Definition 4.11. Each ejN is a Z-
submodule of ejM and is thus canonically generated by tmgj for some m (depending on 
j). Since t is central in A, the arrows still act on these new generators by multiplication 
by a power of t, as required. �
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5. Induction and restriction

Let D be a connected Postnikov diagram in the disc with quiver Q = Q(D), and write 
A = AD for its dimer algebra, with boundary idempotent e. Write B = eAe and T = eA. 
The restriction functor

e : modA → modB : L �→ eL = T ⊗A L = HomA(Ae,L)

has right and left adjoints F, F̃ : modB → modA given by

FM = HomB(T,M),

F̃M = Ae⊗B M.

Since eF and eF̃ are naturally isomorphic to the identity on modB, there is a universal 
map

ιM : F̃M → FM. (5.1)

We write F ′M = im ιM ; this defines a functor F ′ : modB → modA, sometimes called 
the intermediate extension associated to the idempotent e. See [10,24] for some general 
discussion of this construction. We may also compute F ′M as the torsion-free part of 
F̃M (as a Z-module), so that F ′ becomes the honest left adjoint of e upon its restriction 
to a functor CM(A) → CM(B).

Let N ∈ CM(A). Then, viewing N as a quiver representation, the fibre of eiN over 
each i ∈ Q0 is a free and finitely generated Z-module. Moreover, each a ∈ Q1 begins 
a cycle bounding a face. Since the cycle acts on N as multiplication by t, and so in 
particular injectively, a must also act injectively on M , and so rkZ(ehaN) � rkZ(etaN). 
Since Q is strongly connected, meaning any two vertices lie on some cycle, it follows that 
in fact rkZ(eiN) is constant in i. We define rk(N) to be this constant value. Observe 
that rk(Nμ) = 1 for any perfect matching μ by construction, and that if rk(N) = 1 then 
N ∼= Nμ for some perfect matching μ by Corollary 4.6.

Lemma 5.1. When M is in CM(B), both FM and F ′M are in CM(A).

Proof. Since Z is a principal ideal domain, any submodule of a free and finitely generated 
Z-module is again free and finitely generated. By Proposition 2.15, T ∈ CM(A).

It follows that F ′M ⊆ FM ⊆ HomZ(T, M) are free and finitely generated whenever 
M ∈ CM(B), since T and M are. Thus F ′M, FM ∈ CM(A) for all M ∈ CM(B). �

A consequence of Lemma 5.1 is that for any M ∈ CM(B), there exists N ∈ CM(A)
with eN = M (for example, take N = FM). Thus eiM = eiN for any boundary vertex 
i, and so rkZ(eiM) = rk(N) is constant in i. We define rk(M) to be this constant, the 
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above argument showing that rk(M) = rk(N) for any N ∈ CM(A) with eN = M . It also 
follows by a direct comparison of the definitions that the rank of M ∈ CM(B) agrees 
with that of ρ(M) ∈ CM(C).

Lemma 5.2. Let f : M → N be a morphism in CM(A) such that its restriction 
e(f) : eM → eN is injective. Then f is injective.

Proof. Since CM(A) is closed under submodules, K = ker f is Cohen–Macaulay. If i ∈ Q0

is a boundary vertex, then eiK ⊆ eK = 0 since e(f) is injective. Since for any j ∈ Q0
we have rkZ(ejK) = rkZ(eiK) = 0, and ejK is free over Z, it follows that ejK = 0 for 
all j, and thus that K = 0. �
Lemma 5.3. For M, N ∈ CM(A), the restriction HomA(M, N) → HomB(eM, eN) is 
injective.

Proof. As in any adjunction, the restriction map can be factored as

HomA(M,N) −→ HomA(M,FeN) ∼−→ HomB(eM, eN),

where the first map is HomA(M, −) applied to the counit N → FeN , and the second 
is adjunction. In this case, the counit map restricts to the identity eN → eN and so is 
injective by Lemma 5.2. Since HomA(M, −) is left exact, the restriction map is injective 
as required. �

One immediate consequence of these lemmas is the following.

Proposition 5.4. Let M ∈ CM(B) and N � FM . Then eN = M if and only if F ′M � N .

Proof. Note that the statement makes the canonical identification eFM = M . For the 
backwards implication, note that the map F̃M → FM restricts to the identity M → M

on the boundary and therefore eF ′M = M . Hence, if F ′M � N , then eN is sandwiched 
between eF ′M = M and eFM = M , so eN = M . For the forward implication, the left 
and right adjunctions provide universal (unit and counit) maps

F ′eN → N → FeN.

By general properties of adjunctions, the composition of these maps restricts to id: eN →
eN on the boundary (using our canonical identification), and so by Lemma 5.3 agrees 
with the inclusion map F ′eN → FeN , which also has this restriction. If eN = M , then 
a similar argument shows that the second map is the given inclusion N → FM . Thus 
we have shown in this case that the inclusion of F ′M into FM factors over that of N
into FM , and so F ′M � N . �
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Proposition 5.5. Let M ∈ CM(B) with rk(M) = 1. Then there is a bijection

θ : {N � FM : eN = M} → {μ : eNμ
∼= M}

determined by θ(N) = μ when N ∼= Nμ.

Proof. Since eFM = M has rank 1, we also have rk(FM) = 1 and so by Proposition 4.5
we may choose a perfect matching module structure, in the sense of Definition 4.11, on 
FM . This induces such a structure on any N � FM by Lemma 4.12. Thus N ∼= Nμ

for a perfect matching μ, unique by Corollary 4.6. In addition, by restriction to the 
boundary, the perfect matching module structure on N induces a preferred isomorphism 
eNμ

∼−→ M , and so θ is a well-defined map.
For injectivity, suppose μ = θ(N). Being a perfect matching module, N is the image 

of a canonical map Nμ → FM , as in Definition 4.11. Since eN = M , this map restricts 
to the preferred isomorphism eNμ

∼−→ M on the boundary and, by Lemma 5.3, there 
can only be one such map. Thus N is uniquely determined by μ. For surjectivity, let 
μ be a perfect matching with eNμ

∼= M . This induces an isomorphism FeNμ
∼−→ FM

and, precomposing with the unit of the adjunction, a monomorphism Nμ → FM . This 
map restricts to the given isomorphism eNμ

∼−→ M on the boundary, and so its image 
N has eN = M and θ(N) = μ. �
Remark 5.6. We can use Proposition 5.4 to rewrite the domain of θ in Proposition 5.5
as

{N � FM : eN = M} = {N : F ′M � N � FM}.

We can also use Corollary 4.10 to rewrite the codomain of θ in purely combinatorial 
terms:

{μ : eNμ
∼= M} = {μ : ∂μ = I},

where I ⊆ C1 is the unique k-subset such that ρ(M) ∼= MI [22, Prop. 5.2].

Lemma 5.7. Let D be a Postnikov diagram, B the boundary algebra of AD and M ∈
CM(B) with rk(M) = 1. Then

(1) any two perfect matchings of Q(D) with boundary module M coincide on all arrows 
not incident with the set S ⊆ Q0 of vertices on which FM/F ′M is supported, and

(2) if μ is such a perfect matching, and ω is a cycle of arrows in Q(D) bounding a face 
and passing through S, then the unique arrow of μ in ω is incident with S.

Proof. Using the bijection θ of Proposition 5.5, let μ0 = θ(FM), let μ be another perfect 
matching with boundary module M and let N = θ−1(μ).
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Since F ′M � N � FM by Proposition 5.4, the module N coincides with FM away 
from the vertices supporting FM/F ′M . Thus if a ∈ Q1 is an arrow not incident with 
these vertices, then etaN = etaFM and ehaN = ehaFM , and since N is a submodule 
of FM , the action of a is the same in the two module structures. It follows that a is an 
arrow of μ if and only if it is an arrow of μ0, establishing (1).

We first prove (2) for the perfect matching μ0 = θ(FM). If every arrow of ω has 
both head and tail in S, then there is nothing to prove, so assume otherwise. Then 
there must be an arrow a of ω with ha ∈ S but ta /∈ S. Since FM/F ′M is 0 at ta, we 
have etaFM = etaF

′M . Since F ′M is a submodule of FM , the action of a takes the 
Z-generator of etaF ′M to an element of ehaF ′M , which is properly contained in ehaFM

since ha ∈ S. Thus this image cannot be the Z-generator of the codomain, so the arrow 
map on a is not an isomorphism and a ∈ μ0.

The statement for any other matching μ with boundary M then follows from (1), 
since μ agrees with μ0 on the arrows of ω not incident with S, meaning none of these 
arrows can appear in μ. �

This result will help us to show that the computation of the set of perfect matchings in 
Proposition 5.5 can be reduced to a potentially much smaller computation, only involving 
the vertices on which FM/F ′M is supported. To explain how this works, it will be helpful 
to use the description of a perfect matching as a set of edges in a bipartite graph, rather 
than as a set of arrows in the dual quiver.

Proposition 5.8. In the setting of Lemma 5.7, let ΓM be the graph consisting of those 
edges and nodes of Γ(D) incident with the tiles corresponding to the vertices of Q(D)
supporting FM/F ′M . Then the perfect matchings of Q(D) with boundary module M
are in bijection with those of ΓM via intersection, i.e. by taking a perfect matching μ
to the set of edges of ΓM dual to arrows of μ. Precomposing with the bijection from 
Proposition 5.5, we obtain a bijection

{N � FM : eN = M} → {μ : μ is a perfect matching of ΓM}.

Proof. Let μ be a perfect matching of Q(D) with boundary module M . Each node v
of ΓM corresponds to a face of Q(D) whose boundary cycle ω intersects S, the support 
of FM/F ′M . The edges of ΓM incident with v are dual to arrows of ω incident with 
S, and by Lemma 5.7(2), one of these arrows is the unique arrow of ω lying in μ. Thus 
intersection indeed gives a perfect matching of ΓM .

It remains to show that any perfect matching of ΓM arises in this way. Let μ0 be the 
matching of Q(D) such that FM ∼= Nμ0 , and let μ be a perfect matching of ΓM . Then 
we may take μ̂ to be the set of arrows of Q(D) dual to the edges of μ, together with 
those arrows in μ0 not incident with S. By Lemma 5.7(2) again, μ̂ is a perfect matching 
of Q(D). By construction, the intersection of μ̂ with ΓM is μ, and it remains to check 
that μ̂ has the correct boundary module.
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Since eF ′M = M = eFM , the support of FM/F ′M does not contain any boundary 
vertices, and hence ΓM contains none of the half-edges. Thus ∂μ̂ = ∂μ0. By Corol-
lary 4.10, we see that μ̂ has the same boundary module as μ0, namely M . �
Remark 5.9. The set {N � FM : eN = M} is naturally a poset under inclusion. 
It has the unique maximal element FM and, by Proposition 5.4, the unique minimal 
element F ′M . Thus the bijection in Proposition 5.5 puts a poset structure on the set of 
perfect matchings μ with eNμ

∼= M , that is, with ∂μ = I for the appropriate k-subset 
I (cf. Remark 5.6), and there are unique maximal and minimal matchings (similar to 
[28, Defn. 4.7]). We also get a poset structure on the perfect matchings of the subgraph 
ΓM ⊆ Γ(D) from Proposition 5.8. When the full subquiver of Q(D) on the vertices 
supporting FM/F ′M is an orientation of an An quiver, so in particular FM/F ′M is an 
indecomposable string module, Proposition 5.8 corresponds to [9, Thm. 3.9].

The quotient FM/F ′M has another description, which plays a key role later on. To 
obtain this description, we use that the dimer algebra of a Postnikov diagram is internally 
3-Calabi–Yau [32, Defn. 2.1], which is proved in [34, Thm. 3.7], and has the following 
consequences.

Proposition 5.10. Let D be a connected Postnikov diagram, with associated dimer algebra 
A = AD and boundary algebra B = eAe, and set T = eA.

(i) The natural map A → EndB(T )op is an isomorphism of algebras.
(ii) Ext1B(T, T ) = 0.

In particular,

(iii) The natural map Ae → HomB(T, B) is an isomorphism of A-modules.
(iv) Ext1B(T, B) = 0.

Proof. Statements (i) and (ii) are among the conclusions of [32, Thm. 4.1], and the pair 
(A, e) satisfies the assumptions of this theorem by [34, Thm. 3.7, Prop. 4.4]. Then (iii) 
and (iv) follow immediately, since Te = B. �

It in fact follows from [34, Thm. 3.7] together with the general theory from [32] that 
T is a cluster-tilting object in the Frobenius category GP(B) of Gorenstein projective 
B-modules, in which B is injective. We will return to this in Section 10, but for now we 
need only the resulting vanishing of extension groups in Proposition 5.10.

Corollary 5.11. In the setting of Proposition 5.10, let M ∈ CM(B). Then F ′M is the 
subspace of FM consisting of maps factoring through a projective B-module, and hence

FM/F ′M = HomB(T,M) = GΩM,
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where ΩM is a first syzygy of M , i.e. the kernel of a projective cover, and G =
Ext1B(T, −).

Proof. By Proposition 5.10(iii) the map ιM of (5.1) may be identified with the compo-
sition map

HomB(T,B) ⊗B HomB(B,M) → HomB(T,M)

and the first equality follows.
Consider a short exact sequence

0 −→ ΩM −→ PM −→ M −→ 0 (5.2)

where PM → M is a projective cover of M . Applying the functor F = HomB(T, −) to 
(5.2) yields the long exact sequence

0 −→ FΩM −→ FPM −→ FM −→ GΩM −→ 0 (5.3)

where the final zero follows from Proposition 5.10(iv), since PM ∈ add(B). Thus the 
second equality follows. �

While ΩM depends on the choice of projective cover PM , since we do not insist that 
the cover is minimal, the A-module GΩM is independent of this choice. By Corollary 5.11, 
the image of the middle map in (5.3) is F ′M , yielding the two exact sequences

0 −→ FΩM −→ FPM −→ F ′M −→ 0, (5.4)

0 −→ F ′M −→ FM −→ GΩM −→ 0. (5.5)

6. A projective resolution

In this section, we construct an explicit projective resolution for each perfect matching 
module. This will play a key role for us later on, both in Section 7 when determining which 
perfect matchings describe the indecomposable projective modules of the dimer algebra 
of a Postnikov diagram, and in Sections 9 and 10 when we relate the combinatorial 
information appearing in Marsh–Scott’s dimer partition function to the homological 
information in the Caldero–Chapoton cluster character formula.

Let Q be a dimer model with boundary. Recall that the dimer algebra A = AQ is a 
Z-algebra, for Z = C[[t] ], as in Definition 2.13.

Given a perfect matching μ of Q, let Qμ
1 = Q1 \ μ. We write

Qμ
2 = {f ∪ f ′ : f, f ′ ∈ Q2 with boundaries sharing some arrow of μ}.
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In other words, Qμ
2 is obtained from the set of faces of Q by merging those faces adjacent 

along an arrow in the matching μ, and deleting those whose intersection with μ is a 
boundary arrow. In what follows, it will be convenient to identify Qμ

2 with the set of 
defining relations r(β) = p+

β − p−β ∈ ĈQ corresponding to internal arrows β ∈ μ; we do 
this by identifying r(β) with the union of the two faces containing β.

We will also want to consider various (projective) A-modules of the form⊕
x∈X

Aehx ⊗Z etxNμ,

where X is some set together with head and tail maps h, t : X → Q0, and Nμ is the 
module attached to μ in Definition 4.3. For the rest of the section, we will write ⊗ =
⊗Z . Since ejNμ = Z for all j by definition, each element of Aehx ⊗ etxNμ is of the 
form a ⊗ 1 for some unique a ∈ Aehx. Denoting the image of a ⊗ 1 under the map 
Aehx ⊗ etxNμ →

⊕
x∈X Aehx ⊗ etxNμ by a ⊗ [x], each element of this direct sum can be 

written ∑
x∈X

ax ⊗ [x],

for some unique elements ax ∈ Aehx. To define an A-module homomorphism ϕ :⊕
x∈X Aehx ⊗ etxNμ → M , it suffices to specify ϕ(ehx ⊗ [x]) ∈ ehxM for each x ∈ X, 

which may be done freely.
Now consider the complex

ξμ :
⊕
r∈Qμ

2

Aehr ⊗ etrNμ
∂2−→

⊕
α∈Qμ

1

Aehα ⊗ etαNμ
∂1−→

⊕
j∈Q0

Aej ⊗ ejNμ
∂0−→ Nμ,

whose terms are in homological degrees 2, 1, 0 and −1, and whose maps are defined as 
follows. First, ∂0 is just the action of A on Nμ. For a ∈ ekAej , we also write a : Aek → Aej
for right multiplication by a, and denote by a∗ : ejNμ → ekNμ the action of a on Nμ. 
Then, for any α ∈ Qμ

1 , the α component of ∂1 is

(α⊗ 1,−1 ⊗ α∗) : Aehα ⊗ etαNμ → (Aetα ⊗ etαNμ) ⊕ (Aehα ⊗ ehαNμ).

Since α is unmatched, α∗ is the identity Z → Z, so we have

∂1(ehα ⊗ [α]) = α⊗ [tα] − ehα ⊗ [hα].

For any path p = αm · · ·α1 of Q and any arrow α ∈ Q1, we define

Δα(p) =
∑
αi=α

αm · · ·αi+1 ⊗ (αi−1 · · ·α1)∗ : Aehp ⊗ etpNμ → Aehα ⊗ etαNμ.

The components of ∂2 are then
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∂
r(β),α
2 = Δα(p+

β ) − Δα(p−β ) : Aetβ ⊗ ehβNμ → Aehα ⊗ etαNμ

for β ∈ μ internal and α /∈ μ. Since β ∈ μ, none of the arrows of p+
β or p−β are in μ, and 

so writing p+
β = α+

m · · ·α+
1 and p−β = α−

� · · ·α−
1 , we have

∂2(etα ⊗ [r(β)]) =
m∑
i=1

α+
m · · ·α+

i+1 ⊗ [α+
i ] −

�∑
i=1

α−
� · · ·α−

i+1 ⊗ [α−
i ],

and in particular ∂2 takes values in the appropriate sum of projective modules. In the 
above formula, an empty product of arrows is interpreted as the appropriate idempotent 
(for example, α+

m · · ·α+
m+1 should be read as ehα+

m
).

The goal of this section is to prove, in the case that A = AD for D a connected 
Postnikov diagram, that ξμ is exact; in other words, its non-negative degree part is a 
projective resolution of the perfect matching module Nμ. A priori, we will show this 
for any dimer algebra A = AQ which is thin, and for which the cell complex Q has 
H2(Q) = 0, although it will then follow from exactness of ξμ that |Q| is the disc.

Using the grading degμ from Definition 4.4, each map ∂i in ξμ has degree 0, since this 
is true of every arrow in Qμ

1 . This makes ξμ into a graded complex, which is exact if and 
only if its degree d part (ξμ)d is exact for all d. Moreover, as vector spaces, each complex 
(ξμ)d decomposes as the direct sum

(ξμ)d =
⊕
i∈Q0

ei(ξμ)d,

so, extending the refinement by degree, ξμ is exact if and only if ei(ξμ)d is exact for all 
i ∈ Q0 and d ∈ Z.

Remark 6.1. The degree 0 part of ξμ is a complex of modules for the algebra A0, which 
can be presented as the path algebra of the quiver (Q0, Q

μ
1 ) modulo the ideal of relations 

generated by r ∈ Qμ
2 , i.e. r = r(β) for β ∈ μ. In fact, (ξμ)0 is the start of the standard 

resolution (see for example [6, 1.2]) of the A0-module (Nμ)0, which is given by C at 
each vertex, with all arrows (in Qμ

1 ) acting as the identity. Thus (ξμ)0 is always exact in 
homological degrees 1, 0 and −1.

In order to study the complexes ei(ξμ)d, we interpret them topologically. Recall that 
the quiver with faces Q can be thought of as a cell complex (Q0, Q1, Q2) for the topo-
logical space |Q|. Given a subset S ⊆ Q0, we denote by Q[S] the full subcomplex of Q
with vertex set S, that is, the edges of Q[S] are those edges of Q with both endpoints 
in S and the faces of Q[S] are those faces of Q incident only with vertices in S. The 
geometric realisation |Q[S]| is naturally embedded into |Q|. We also consider the cell 
complex Qμ = (Q0, Q

μ
1 , Q

μ
2 ), used above in the construction of the chain complex ξμ, 

and its full subcomplexes Qμ[S] for S ⊆ Q0.
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For any perfect matching μ on Q, vertex i ∈ Q0 and d � 0, we define the subset

S(μ, i, d) = {j ∈ Q0 : there is a path p : j → i with degμ(p) = d}
= {j ∈ Q0 : (eiAej)d = 0}

Lemma 6.2. An arrow α ∈ Qμ
1 , respectively a face r ∈ Qμ

2 , lies in Qμ[S(μ, i, d)] if and 
only if hα, respectively hr, does.

Proof. Any α ∈ Qμ
1 has degμ(α) = 0. Thus if j ∈ S(μ, i, d), so that there is a path 

p : j → i with degμ(p) = d, then any α ∈ Qμ
1 with hα = j determines a path pα : tα → i

with degμ(pα) = d, and hence tα ∈ S(μ, i, d). Thus any such α has both endpoints in 
S(μ, i, d) and so lies in Qμ[S(μ, i, d)].

Similarly, every arrow in the boundary of r ∈ Qμ
2 has degree 0, and any vertex 

in this boundary begins a path consisting of these arrows and ending at hr. Thus if 
hr ∈ S(μ, i, d), so is every vertex incident with r. �

If A is thin, in the sense of Definition 2.14, then any two paths p : j → i with degμ(p) =
d, as appearing in the definition of S(μ, i, d), are F-term equivalent, and so all determine 
the same element of A, which we denote by pdi,j. This element is then a preferred basis for 
the one-dimensional vector space (eiAej)d. Recall from Proposition 2.15 that if A = AD

for some Postnikov diagram D, then A is thin.

Proposition 6.3. When A is thin, the complex ei(ξμ)d computes the reduced cohomology 
of the cell complex Q[S(μ, i, d)] with coefficients in C.

Proof. Write S = S(μ, i, d). The first step is to observe that Q[S] is homotopy equivalent 
to Qμ[S]. Indeed, these two complexes differ only when there is an α ∈ μ such that 
tα ∈ S. If α is contained in two faces of Q[S], then these faces are merged in Qμ[S], 
leaving the geometric realisation unchanged. If α is contained in only a single face F of 
Q[S], then it lies in the boundary of the geometric realisation and we can contract F
onto the union of its other edges in this realisation, corresponding to the removal of F
in Qμ[S]. Since μ is a perfect matching, the contractions operate independently of one 
another and collectively describe a homotopy equivalence between |Q[S]| and |Qμ[S]|. 
Thus we can instead prove the result for the reduced cohomology of the cell complex 
Qμ[S].

Each face r ∈ Qμ
2 [S] is the union of two faces of Q[S], one black and one white; we 

write r+ for the set of arrows of Qμ
1 [S] lying in the boundary of the black face, and r−

for the set of arrows of Qμ
1 [S] lying in the boundary of the white face. Then the chain 

complex computing the reduced cohomology of the cell complex, using an anticlockwise 
orientation on faces and the given orientation of the edges, has non-zero terms

ζ :
⊕

μ

C · r δ2−→
⊕

μ

C · α δ1−→
⊕
j∈S

C · j δ0−→ C,
r∈Q2 [S] α∈Q1 [S]
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in homological degrees 2, 1, 0, −1. The maps are defined on generators as follows.

δ0(1 · j) = 1, δ1(1 · α) = 1 · tα− 1 · hα,

δ2(1 · r) =
∑

α+∈r+

1 · α+ −
∑

α−∈r−

1 · α−

We now construct an isomorphism of complexes ψ : ζ → ei(ξμ)d. In homological degree 
−1, we have, by definition, eiNμ = Z, so (eiNμ)d = C · td and so we start with ψ−1 : 1 �→
td.

To compare the other terms, we note that each summand in the higher degree terms 
of ξμ is of the form Aehx ⊗ etxNμ, for some cell x of Qμ. As before, we denote the single 
generator of etxNμ by [x], which has degμ[x] = 0. Thus the corresponding term of ei(ξμ)d
is (eiAehx ⊗ etxNμ)d, which, as A is thin, is either a one-dimensional vector space with 
basis pdi,hx ⊗ [x], if hx ∈ S, or zero, if hx /∈ S. Hence we may define

ψ0(1 · j) = pdi,j ⊗ [j], ψ1(1 · α) = pdi,hα ⊗ [α], ψ2(1 · r) = pdi,hr ⊗ [r].

Once we have checked that this is a morphism of complexes, it follows that it is a (well-
defined) isomorphism by Lemma 6.2, because α ∈ Qμ

1 [S] if and only if hα ∈ S and 
r ∈ Qμ

2 [S] if and only if hr ∈ S. There is nothing to prove in homological degree 0
because Qμ

0 [S] = S, as already used in writing down the complex ζ.
It remains to check that the maps ψ• commute with the differentials. For j ∈ S,

∂0ψ0(1 · j) = ∂0(pdi,j ⊗ [j]) = td = ψ−1δ0(1 · j),

where the middle equality follows precisely because degμ pdi,j = d, so pdi,j acts on Nμ as 
multiplication by td. For α ∈ Qμ

1 [S], we check ∂1ψ1(1 · α) = ψ0δ1(1 · α), i.e.

∂1
(
pdi,hα ⊗ [α]

)
= pdi,hαα⊗ [tα] − pdi,hα ⊗ [hα] = ψ0(1 · tα− 1 · hα),

because pdi,hαα = pdi,tα, that is, it is a path tα → i of degree d.
Finally, when r = r(β) ∈ Qμ

2 [S], write p+
β = α+

M · · ·α+
1 and p−β = α−

L . . . α−
1 , so that 

r+ = {α+
1 , . . . , α

+
M} and r− = {α−

1 , . . . , α
−
L}. Then ∂2ψ2(1 · r) = ψ1δ2(1 · r), i.e.

∂2
(
pdi,hr ⊗ [r]

)
=

M∑
m=1

pdi,hrα
+
M · · ·α+

m+1 ⊗ [α+
m] −

L∑
�=1

pdi,hrα
−
L · · ·α−

�+1 ⊗ [α−
� ]

=
M∑

m=1
pd
i,hα+

m
⊗ [α+

m] −
L∑

�=1

pd
i,hα−

�
⊗ [α−

� ]

= ψ1

( ∑
α+∈r+

1 · α+ −
∑

α−∈r−

1 · α−

)
,

completing the proof. �
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Lemma 6.4. Assume A is thin. Then for any i ∈ Q0 and sufficiently large d, the coho-
mology of the complex ei(ξμ)d is the reduced cohomology of |Q|.

Proof. By Proposition 6.3, the cohomology of ei(ξμ)d is that of Q[S(i, μ, d)]. On the 
other hand, every j ∈ Q0 admits some path j → i, hence one of minimal degree. So, if d
is larger than the maximum, over j ∈ Q0, of these minimal degrees, then S(i, μ, d) = Q0
and Q[S(i, μ, d)] = Q. �
Lemma 6.5. Assume A is thin and H2(Q) = 0. Then, for any μ, the map ∂2 in ξμ is 
injective.

Proof. As A is thin, 
⊕

r∈Qμ
2
Aehr ⊗ etrNμ is a free Z-module and hence so is the sub-

module K = ker ∂2. However, by Lemma 6.4 and the assumption on Q, we have Kd = 0, 
for sufficiently large d, and hence K = 0. �
Lemma 6.6. Assume A is thin and H2(Q) = 0. Then the complex (ξμ)0 is exact for all μ.

Proof. Injectivity of ∂2 follows from Lemma 6.5 and the exactness elsewhere has already 
been noted in Remark 6.1. �

We are now ready to complete the proof that ξμ is exact under the assumptions of 
Lemma 6.6. Our strategy is to show that each of the subsets S = S(μ, i, d) is equal to 
S(ν, i, 0), for some other matching ν. Then the cohomology of Q[S] is computed by both 
of the complexes ei(ξμ)d and ei(ξν)0. Since the second of these complexes is exact by 
Lemma 6.6, it will follow that ei(ξμ)d is also exact. To construct the new matching ν, 
we use the following two results.

Lemma 6.7. Assume A is thin. Let i ∈ Q0 be a vertex, α ∈ Q1 be an arrow, and μ be a 
matching of Q. For each j ∈ Q0, choose a minimal degree path pj : j → i, and for each 
α ∈ Q1 write εα = degμ(α); i.e. εα = 1 when α ∈ μ, and εα = 0 otherwise. Then

degμ(ptα) − εα � degμ(phα) � degμ(ptα) + 1 − εα.

It follows that degμ(ptα) can be strictly smaller than degμ(phα) only when α /∈ μ, and 
strictly larger only when α ∈ μ, the difference being bounded by 1 in each case.

Proof. The path phαα : tα → i has degree degμ(phα) + εα, and the first inequality 
follows. Consider a path q : hα → tα completing α to the boundary of a face of Q. 
Since μ is a perfect matching, this boundary has degree 1, and so degμ(q) = 1 − εα. 
The second inequality then follows by considering the path ptαq : hα → i, of degree 
degμ(ptα) + 1 − εα. �
Proposition 6.8. Assume A is thin, and let μ be a matching of Q, i ∈ Q0 and d � 1. 
Then there exists a matching ν such that S(μ, i, d) = S(ν, i, d − 1).
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Proof. As in Lemma 6.7, choose a minimal degree path pj : j → i for each j ∈ Q0. Define

X = {α ∈ Q1 : degμ(ptα) = d, degμ(phα) = d− 1},
Y = {β ∈ Q1 : degμ(ptα) = d− 1, degμ(phα) = d}.

Then, by Lemma 6.7, we have X ⊆ μ, and μ ∩ Y = ∅. Let ν = (μ \X) ∪ Y . We claim 
first that ν is a perfect matching, and secondly that, for any j ∈ Q0,

degν(pj) =
{

degμ(pj) if degμ(pj) � d− 1,
degμ(pj) − 1 if degμ(pj) � d.

From these two claims it immediately follows that S(μ, i, d) = S(ν, i, d − 1), because

S(μ, i, d) = {j ∈ Q0 : degμ(pj) � d}.

We now prove the claims, beginning with the statement that ν is a perfect matching. 
Let F be a face of Q, the boundary of which contains exactly one arrow α ∈ μ, which 
lies either in X or μ \X. For F to intersect ν in exactly one arrow, we must show that 
the boundary of F contains exactly one arrow from Y in the case that α ∈ X, and no 
arrows from Y if α ∈ μ \X.

First assume α ∈ X, and consider the path q completing α to ∂F . By the assumption 
on α, we have degμ(phq) = d and degμ(ptq) = d − 1. Moreover, q contains no arrows of 
μ and so degμ(phγ) � degμ(ptγ) for every arrow γ of q, by Lemma 6.7. It follows that 
these two degrees are equal for all but one γ, which is the unique element of ∂F ∩ Y .

Now assume that β ∈ ∂F ∩Y = ∅, and let α be the unique arrow of μ in ∂F ; we aim 
to show that α ∈ X. Let q be the path completing β to ∂F , so that degμ(phq) = d − 1
and degμ(ptq) = d by the assumption on β. Using Lemma 6.7 as in the previous case, 
degμ(phγ) � degμ(ptγ) for every arrow γ = α of q, since these arrows are not in μ, 
whereas degμ(phα) � degμ(ptα) − 1 since α ∈ μ. Comparing to degμ(phq) and degμ(ptq)
we see that all of these inequalities are in fact equalities, and so α ∈ X.

Now to prove the second claim, concerning the degrees degν(pj), observe first that for 
any arrow α of the path pj we get inequalities

degμ(ptα) − 1 � degμ(phα) � degμ(ptα).

Indeed, the first inequality holds for any arrow α ∈ Q1, since degμ(ptα) � degμ(phαα)
and degμ(α) � 1. For the second, write pj = p1αp2. By minimality of degμ(pj), we must 
have degμ(p1) = degμ(phα) and degμ(p1α) = degμ(ptα), and so the second inequality 
follows.

From these inequalities, it follows that the degrees degμ(p�) are weakly decreasing as 
� runs through the vertices of pj in the direction of the path, and two successive degrees 
in this sequence differ by at most 1. Thus if degμ(pj) � d − 1, so that j ∈ S(μ, i, d − 1), 
then pj only passes through vertices in this subset, so it contains no arrows of X or Y . 
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Hence the matchings μ and ν agree on all arrows of pj and degν(pj) = degμ(pj). On the 
other hand, if degμ(pj) � d, then the path pj contains a unique arrow α ∈ X ⊆ μ and 
no arrow of Y . By construction, the arrow α does not appear in ν, but the matchings μ
and ν agree on the other arrows of the path. Thus degν(pj) = degμ(pj) − 1, completing 
the argument. �

Putting everything together, we obtain the following theorem.

Theorem 6.9. Let Q be a dimer model with boundary such that AQ is thin and H2(Q) = 0, 
and let Nμ be the A-module corresponding to a perfect matching μ. Then the complex 
(extended by zeroes)

ξμ :
⊕
f∈Qμ

2

Aehf ⊗ etfNμ
∂2−→

⊕
α∈Qμ

1

Aehα ⊗ etαNμ
∂1−→

⊕
j∈Q0

Aej ⊗ ejNμ
∂0−→ Nμ

is exact, yielding a projective resolution of Nμ. This result applies in particular to the 
case that A = AD for a connected Postnikov diagram D.

Proof. To recap, we show that ei(ξμ)d is exact, for every vertex i ∈ Q0 and degree 
d � 0. By Proposition 6.3, ei(ξμ)d computes the (reduced) cohomology of Q[S], for 
S = S(μ, i, d). By applying Proposition 6.8 inductively, we may construct a matching 
ν for which S = S(ν, i, 0). Hence the (reduced) cohomology of Q[S] vanishes, because 
(again by Proposition 6.3) it is computed by ei(ξν)0, which is exact by Lemma 6.6. Thus 
ei(ξμ)d is exact, as required.

If D is a connected Postnikov diagram, then H2(Q(D)) = 0 since |Q(D)| is a disc, 
and AD is thin by Proposition 2.15. �
Corollary 6.10. If Q is a dimer model with boundary admitting a perfect matching μ, and 
such that H2(Q) = 0 and AQ is thin, then |Q| is a disc.

Proof. The complex ξμ is exact by Theorem 6.9, and so ei(ξμ)d must also be exact for 
all d � 0 and all i ∈ Q0. By Lemma 6.4, the reduced cohomology of |Q| vanishes, and so 
|Q| is a contractible compact surface with boundary, i.e. a disc. �

As an immediate consequence of Theorem 6.9, Nμ has finite projective dimension 
and so we can associate to it a class [Nμ] in the (free abelian) Grothendieck group 
K0(projA). Indeed, the resolution enables us to write several explicit expressions for 
this class, written in the canonical basis [Pj ] = [Aej ], for j ∈ Q0.

We do this for the case A = AD for a connected Postnikov diagram D. Recall from 
Definition 2.7 that vertices and arrows of Q are either internal (abbreviated ‘int’ below) 
or boundary (abbreviated ‘bdry’). Note that every internal arrow γ of Q is contained in 
a unique ‘black cycle’, the boundary of a black face of Q, which we denote by bl(γ) and 
which corresponds to a black node of the dual bipartite graph Γ(D). We write bl0(γ) for 
the vertices in this cycle and
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bl′0(γ) = bl0(γ) � {tγ, hγ}. (6.1)

Similarly, γ is also contained in a unique white cycle wh(γ) passing through vertices 
wh0(γ), and we write

wh′
0(γ) = wh0(γ) � {tγ, hγ}. (6.2)

Without loss of generality (i.e. without changing AD up to isomorphism), we may assume 
that D is standardised (Remark 2.16). If D is ◦-standardised then the boundary arrows 
of Q(D) are αi = ε(xi) for i ∈ C1, whereas if D is •-standardised then the boundary 
arrows are βi = ε(yi) for i ∈ C1. Recall that a perfect matching μ is a subset of Q1, 
with boundary value ∂μ ⊆ C1 (Definition 4.7). For standardised D, the description of ∂μ
simplifies—it is either the set of i ∈ C1 such that the boundary arrow αi is in μ, if D is 
◦-standardised, or the set of i ∈ C1 such that the boundary arrow βi is not in μ if D is 
•-standardised.

For an arrow γ ∈ Q1, write

wt◦MS(γ) =
∑

j∈bl′0(γ)

[Pj ], wt•MS(γ) =
∑

j∈wh′
0(γ)

[Pj ], (6.3)

where bl′0(γ) is the truncated black cycle (6.1), and wh′
0(γ) is the truncated white cycle 

(6.2). For a perfect matching μ of Q, we may then define

wt◦(μ) =
∑
γ∈μ
int

wt◦MS(γ), wt•(μ) =
∑
γ∈μ
int

wt•MS(γ). (6.4)

The weight wt◦MS(γ) in (6.3) is the edge weight used by Marsh–Scott [26] to write down 
a formula for a twisted Plücker coordinate as a dimer partition function, and wt•MS(γ)
is a natural variant of it. Strictly speaking, Marsh–Scott define wt(e), for an edge e of 
the dual bipartite graph, in terms of face weights. Recall also from Remark 2.10 that in 
[26] the colours black and white have opposite meanings to here. We will return to the 
Marsh–Scott formula in Section 9.

Proposition 6.11. Let D be a ◦-standardised connected Postnikov diagram with dimer 
algebra A = AD, and let μ be a perfect matching of Q(D). In K0(projA), the class of 
Nμ is given by the formula

[Nμ] =
∑
j∈Q0
int

[Pj ] +
∑
i∈∂μ

[Phαi
] − wt◦(μ). (6.5)

If instead D is •-standardised, then

[Nμ] =
∑
j∈Q0

[Pj ] +
∑
i/∈∂μ

[Phβi
] − wt•(μ). (6.6)
int
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Proof. Using Theorem 6.9, recalling that Qμ
1 = Q1 \μ and noting that the faces f ∈ Qμ

2
correspond one-to-one to the internal arrows α ∈ μ in such a way that hf = tα, we get

[Nμ] =
∑
j∈Q0

[Pj ] −
∑
γ /∈μ

[Phγ ] +
∑
γ∈μ
int

[Ptγ ]. (6.7)

When D is standardised, each boundary vertex is the head of a unique boundary arrow 
and so we can write the first term above as∑

j∈Q0

[Pj ] =
∑
j∈Q0
int

[Pj ] +
∑
γ∈Q1
bdry

[Phγ ]. (6.8)

If D is ◦-standardised, then the boundary arrows are the clockwise arrows αi for 
i ∈ C1, and those not in the matching μ are precisely those for which i /∈ ∂μ. Thus 
substituting (6.8) into (6.7) and simplifying yields

[Nμ] =
∑
j∈Q0
int

[Pj ] +
∑
i∈∂μ

[Phαi
] −

∑
γ /∈μ
int

[Phγ ] +
∑
γ∈μ
int

[Ptγ ].

Thus, to prove (6.5), it remains to prove

wt◦(μ) =
∑
γ∈Q1
int

wtμ(γ), (6.9)

where

wtμ(γ) =
{
−[Ptγ ], γ ∈ μ,

[Phγ ], γ /∈ μ.
(6.10)

To this end, we observe that∑
γ∈Q1
int

wtμ(γ) =
∑
γ∈Q1
int

[Phγ ] −
∑
γ∈μ
int

(
[Phγ ] + [Ptγ ]

)
.

Every internal arrow is in a unique black cycle and, since D is ◦-standardised, every 
arrow in a black cycle is internal. Since each black cycle contains a unique (internal) 
arrow of μ, we can rewrite the preceding expression as∑

γ∈Q1
int

wtμ(γ) =
∑
γ∈μ
int

( ∑
j∈bl0(γ)

[Pj ]
)
−

∑
γ∈μ
int

(
[Phγ ] + [Ptγ ]

)
=

∑
γ∈μ
int

∑
j∈bl′0(γ)

[Pj ]

=
∑
γ∈μ
int

wt◦MS(γ),
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which yields (6.9) and hence (6.5).
On the other hand, if D is •-standardised then the boundary arrows are the anticlock-

wise arrows βi for i ∈ C1, which are not in μ if and only if i ∈ ∂μ, and so

[Nμ] =
∑
j∈Q0
int

[Pj ] +
∑
i/∈∂μ

[Phβi
] −

∑
γ /∈μ
int

[Phγ ] +
∑
γ∈μ
int

[Ptγ ],

and so (6.6) will follow from

wt•(μ) =
∑
γ∈Q1
int

wtμ(γ). (6.11)

This is proved similarly to (6.9), using the fact that white cycles contain only internal 
arrows, because D is •-standardised. �
Remark 6.12. We use the notation wt◦ and wt• to emphasise that these functions should 
be applied to matchings of ◦-standardised and •-standardised diagrams respectively. It 
can happen that a ◦-standardised diagram and a •-standardised diagram have isomorphic 
dimer algebras (for example, by starting with an arbitrary diagram and then standardis-
ing it in each way as in Remark 2.16), in which case this isomorphism induces a bijection 
between the two sets of perfect matchings via Proposition 4.5. However, the value of wt◦

on a matching of the ◦-standardised diagram typically does not agree with the value of 
wt• on the corresponding matching of the •-standardised diagram, despite the fact that 
the right-hand sides of (6.9) and (6.11) appear to coincide, since the two quivers have 
different sets of internal arrows.

Remark 6.13. Consider the reduced cochain complex of the quiver with faces Q

Z
c−→ ZQ0 d−→ ZQ1 d−→ ZQ2 , (6.12)

where the first map is the inclusion of the constant functions and the other two are the 
coboundary maps. Note that the faces are all oriented so that second coboundary map 
d : ZQ1 → ZQ2 is simply the face-arrow incidence matrix, with all coefficients 0 or 1. 
Since |Q| is contractible, this complex (with 0 added at both ends) is exact.

Let w ∈ ZQ2 be the function with constant value 1 on faces and let M = d−1Zw be the 
sublattice in ZQ1 of functions with the same sum around every face. Define deg: M → Z

to give the value of that sum, that is, df = deg(f)w, for all f ∈ M. Then (6.12) restricts 
to the exact sequence

Z
c−→ ZQ0 d−→ M

deg−→ Z. (6.13)

Observe that perfect matchings μ, as in Definition 4.1, may be characterised as func-
tions μ ∈ M such that μ(γ) � 0 for all γ ∈ Q1 and deg(μ) = 1. We can then also observe 
that (6.7) from (the proof of) Proposition 6.11 can be formulated as
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[Nμ] = η(μ), (6.14)

where η : M → K0(projA) is defined by

η(f) = deg(f)
∑
j∈Q0

[Pj ] −
∑
γ∈Q1

(deg(f) − f(γ))[Phγ ] +
∑
γ∈Q1
int

f(γ)[Ptγ ]. (6.15)

Note that the matching lattice M and the map η are insensitive to the addition of 
boundary digons to the quiver with faces Q, as in Remark 2.16. More precisely, suppose 
that γ ∈ Q1 is a boundary arrow and that we add a digon with boundary γγ, where γ
is opposite to γ and becomes the new boundary arrow. Then we can uniquely extend 
f ∈ M from the old to new Q by setting f(γ) = deg(f) − f(γ). The formula on the right 
of (6.15) gains two new terms, which cancel.

In the special case that Q is ◦-standardised, the derivation of (6.5) from (6.7) gener-
alises to give

η(f) = deg(f)
∑
j∈Q0
int

[Pj ] +
∑
i∈C1

f(αi)[Phαi
] −

∑
γ∈Q1
int

f(γ) wt◦MS(γ). (6.16)

Similarly, when Q is •-standardised, the derivation of (6.6) gives

η(f) = deg(f)
∑
j∈Q0
int

[Pj ] +
∑
i∈C1

f(βi)[Phβi
] −

∑
γ∈Q1
int

f(γ) wt•MS(γ). (6.17)

Remark 6.14. The map η appears implicitly in [27]. There M appears as the kernel of 
the map Z ⊕ZQ1 → ZQ2 : (n, f) �→ nw−df . They also consider the map Z ⊕ZQ1 → ZQ0

given by

(n, f) �→ n
∑
j∈Q0

(1 −Bj)pj +
∑
γ∈Q1

f(γ)
(
phγ + χγptγ

)
, (6.18)

where {pj : j ∈ Q0} is the standard basis of ZQ0 , while Bj = #{γ ∈ Q1 : hγ = j} and χγ

is 1 (resp. 0) when γ is internal (resp. on the boundary). Identifying ZQ0 with K0(projA)
using pj �→ [Pj ] and comparing to (6.15), we see that η is obtained by restricting this 
second map to M.

For comparison, in [27, Lemma 5.1] these two maps are combined into a single map 
X : Z ⊕ ZQ1 → ZQ0 ⊕ ZQ2 and described in terms of the bipartite graph dual to Q. 
However, η itself appears more explicitly in the proof of [27, Prop 5.5]. The facts that 
X and η are isomorphisms are the content of these two results in [27].

With our interpretation of η in terms of projective resolution, we can give a more 
conceptual proof of the fact that it is an isomorphism.
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Lemma 6.15. The map η : M → K0(projA), defined in (6.15), is an isomorphism.

Proof. By Corollary 4.6, every indecomposable projective Pj = Aej is (isomorphic to) 
some perfect matching module Nμj

. Hence [Pj ] = η(μj) by Proposition 6.11 and so, 
since {[Pj ] : j ∈ Q0} is a basis of K0(projA), we see that η is surjective. However, as the 
sequence (6.13) is exact, M has the same rank (namely |Q0|) as K0(projA) and so η is 
an isomorphism, as required. �
Corollary 6.16. Let M1, M2 ∈ CM(A). If rk(M1) = rk(M2) = 1 and [M1] = [M2] in 
K0(projA), then M1 ∼= M2.

Proof. As rk(Mi) = 1, Proposition 4.5 implies that Mi
∼= Nμi

, for perfect matchings 
μi ∈ M, and so [Mi] = η(μi). Since η is injective, the fact that [M1] = [M2] implies that 
μ1 = μ2 and thus Nμ1

∼= Nμ2 , as required. �
One consequence of Corollary 6.16 is that, to identify the matching μ for which Pj

∼=
Nμ, as in Corollary 4.6, it suffices to show that [Nμ] = [Pj ]. We do this in the next 
section, using the calculation (6.5) of [Nμ].

Lemma 6.15 has a further consequence for the ‘cluster ensemble sequence’

Z
c−→ ZQ0 β−→ ZQ0 rk−→ Z, (6.19)

where we identify the first ZQ0 with K0(fdA) via its basis of simples [Si], for i ∈ Q0, and 
the second ZQ0 with K0(projA) via its basis of projectives [Pi], for i ∈ Q0. As before, c
is the inclusion of constant functions, while rk[Pi] = 1 for all i. The map β corresponds 
to projective resolution, but can just be described combinatorially as

β[Si] = [Pi] −
∑

a:ta=i

[Pha] +
∑

a:ha=i

χa[Pta] − χi[Pi] (6.20)

where χa (resp. χi) is 1 or 0 depending on whether the arrow a ∈ Q1 (resp. vertex i ∈ Q0) 
is internal or on the boundary. Note that β is an extension of the exchange matrix (or 
its negative, depending on the convention used), when Q is interpreted as the ice quiver 
of a cluster algebra seed as in [16].

Proposition 6.17. The cluster ensemble sequence (6.19) is exact.

Proof. Two straightforward (but not entirely trivial) calculations, which we describe 
below, show that the map η fits into the following commutative diagram.

Z ZQ0 M Z

Z ZQ0 ZQ0 Z

c d deg

η

c β rk

(6.21)
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Since η is an isomorphism by Lemma 6.15, this diagram describes an isomorphism of 
complexes from the exact cochain complex (6.12) to the cluster ensemble sequence (6.19), 
which is therefore also exact.

The first calculation is that η(d[Si]) = β[Si]. We start by noting that deg(d[Si]) = 0, 
so we calculate from (6.14) that

η(d[Si]) =
∑

a:ha=i

(
[Pha] + χa[Pta]

)
−

∑
a:ta=i

(
[Pha] + χa[Pta]

)
,

using the indicator function χa to convert a sum over internal arrows into a sum over 
all arrows. Thus, comparing to (6.20), we need to prove that∑

a:ha=i

[Pha] −
∑

a:ta=i

χa[Pta] = (1 − χi)[Pi].

When i is internal, all incident arrows a are internal and there are as many with ha = i

as with ta = i. When i is on the boundary, there is one more arrow a with ha = i than 
with ta = i, when we ignore any boundary arrows of the latter type.

The second calculation is that rk(η(f)) = deg(f). For this we observe, from (6.14)
and the fact that rk[Pi] = 1 for all i ∈ Q0, that

rk(η(f)) = deg(f)
(
|Q0| − |Q1|

)
+

∑
a∈Q1

f(a)(1 + χa).

The sum on the right-hand side is equal to deg(f)|Q2|, as f ∈ M. But |Q0| −|Q1| +|Q2| =
1, that is, the Euler characteristic of the disc. �
Remark 6.18. The commutativity of (6.21) in fact shows that the exactness of (6.19) is 
equivalent to η being an isomorphism; one direction is as given in the proof of Proposi-
tion 6.17, while the converse follows from the five lemma.

Indeed, if one calculates the maps η and β combinatorially in the inconsistent example 
in Fig. 3.2, then one finds that η is not an isomorphism and the sequence (6.19) is not 
exact.

7. Muller–Speyer matchings

Let D be a Postnikov diagram, with Q = Q(D) and A = AD, and consider the map 
η̂ : M → ZQ0 given by

η̂(f) = deg(f)
∑
j∈Q0

pj −
∑
γ∈Q1

(deg(f) − f(γ))phγ +
∑
γ∈Q1
int

f(γ)ptγ (7.1)

where {pj : j ∈ Q0} is the standard basis of ZQ0 . When D is connected, we use the 
isomorphism ZQ0 → K0(projA) : pj �→ [Pj ] as a (silent) identification, so that the map 
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Fig. 7.1. The Muller–Speyer matching mj for j the circled vertex.

η̂ in (7.1) is identified with the map η in (6.15). In this case, Lemma 6.15 shows that η̂
is an isomorphism.

In this section we will want to evaluate η̂ on perfect matchings μ ∈ M, for which we 
have (cf. (6.7))

η̂(μ) =
∑
i∈Q0

pi −
∑
γ /∈μ

phγ +
∑
γ∈μ
int

ptγ . (7.2)

In [27, §5.2], without requiring D to be connected, Muller–Speyer defined a special 
matching mj , associated to any vertex j ∈ Q0 (or more strictly to a face of the dual 
plabic graph Γ(D)), by

α ∈ mj ⇐⇒ j ∈ DS(α) (7.3)

where DS(α) is the downstream wedge of the arrow α ∈ Q1, as illustrated in Fig. 7.2(a). 
One of their results [27, Cor. 5.6] is that {mj : j ∈ Q0} is a basis of M, which can be 
formulated as saying that

M : ZQ0 → M : pj �→ mj (7.4)

is an isomorphism. To make the comparison, note that [27, §5.3] actually uses −M to 
describe a monomial map between the tori (C×)|Q1|/(C×)|Q2|−1 and (C×)|Q0| whose 
character lattices are M and ZQ0 respectively. Furthermore these tori are described in 
terms of the bipartite graph dual to the quiver with faces Q.

Our main goal in this section is to show that, in fact, η̂ = M−1. We do this by showing 
that η̂ ◦ M = id, i.e. η̂(mj) = pj for all j ∈ Q0. In the case that D is connected, this 
means that η(mj) = [Pj ] and so, since we also have η(mj) = [Nmj

] by (6.14), we may 
conclude via Corollary 6.16 that Pj

∼= Nmj
.

An example of a Muller–Speyer matching mj is shown in Fig. 7.1 and one can verify 
in this case that Nmj

∼= Pj .
Interestingly, Muller–Speyer [27, proof of Prop. 5.5] also show that η̂ = M−1, but by 

instead proving that M ◦ η̂ = id. They deduce this identity by defining larger matrices
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Fig. 7.2. (a) downstream wedge of an arrow, (b) wedges round a face.

Fig. 7.3. Strand polygons.

X : Z⊕ ZQ1 → ZQ0 ⊕ ZQ2 and X ′ : ZQ0 ⊕ ZQ2 → Z⊕ ZQ1 ,

with M a component of X ′, and showing [27, Lemma 5.1] that X ′ ◦ X = id (cf. Re-
mark 6.14). It then follows that X ◦X ′ = id, and one component of this identity implies 
that each mj is indeed a matching.

On the other hand, we will show directly that mj is a matching, by observing that the 
downstream wedges of the arrows in a face of Q partition the vertices Q0, as illustrated 
in Fig. 7.2(b). This is a special case of a more general wedge-covering property that we 
now explain.

Recall that, by the Jordan curve theorem, the complement of a simple closed curve 
in the disc has one component not intersecting the boundary, which we call the inside
(the other components being the outside). Furthermore, the curve is the boundary of its 
inside.

Definition 7.1. In a Postnikov diagram D, a strand polygon P is an oriented simple closed 
curve consisting of a collection of contiguous segments, either of the boundary of the disc 
or of strands oriented consistently with P. We further require that P turns towards its 
inside at each vertex, i.e. the point at which one segment ends and the next begins. 
See Fig. 7.3 for examples and Fig. 7.4 for non-examples. Note that edges of the strand 
polygon may cross other strands in the diagram.

Each vertex v of the polygon has a tendril fv, defined as follows. If the preceding 
edge ev is a strand segment, then fv is the continuation of the strand from ev until it 
ends on the boundary of the disc. If ev is a boundary segment, then fv is the point v by 
definition.
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Fig. 7.4. Not strand polygons.

v

w

ew

fw

fv

ev

Fig. 7.5. A strand polygon and its tendrils. The wedge at v is shaded.

Each vertex v of the polygon determines a (downstream) wedge, which is the subset 
of the disc bounded by the tendril fv, the edge ew following v, the tendril fw, and the 
boundary segment from the endpoint of fv to that of fw in the direction (clockwise or 
anticlockwise) of the orientation of P. This construction is illustrated in Fig. 7.5.

Note that whenever v is on the boundary, fv is just the single point v (by definition or 
by construction). The turning condition implies that non-trivial tendrils start by moving 
into the outside of P.

Each wedge is well-defined (and wedge-shaped) because of condition (b2) in the def-
inition of a Postnikov diagram, which implies that the strand segments fv and ew ∪ fw
intersect only at v. If v is on the boundary, then its wedge is trivial if the next edge of 
P is a boundary segment, and otherwise is just one side of the strand on which the next 
edge lies.

Note that the boundary of an oriented region of D, corresponding to a face F of Q, 
is an example of a strand polygon. The inside of the polygon is the oriented region and 
the downstream wedges of its vertices are those of the arrows in ∂F (see Fig. 7.2(b)).

Lemma 7.2. Let P be a strand polygon in D. Then the tendrils of P meet P only at their 
starting vertices.

Proof. Fix a vertex v of P and let ev, from u to v, and ew, from v to w, be the edges 
incident with v. Let sv be the strand containing ev and fv. We may assume that fv is 
non-trivial, i.e. that v is not on the boundary.
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We first observe that fv only intersects ev and ew at its start v. A second intersection 
of fv with ev would imply either a self-intersection of sv, contradicting (b1), or that sv is 
a closed loop, or that u lies on the boundary and sv is a lollipop with both endpoints at u. 
But lollipops have no crossings by Proposition 2.3, and sv has a crossing at v. Similarly, 
fv cannot have a second intersection with ew, since this would either contradict condition 
(b2) because sv already intersects ew at v, or imply that sv contributes both edges ev
and ew, and so has a self-intersection at v.

If fv meets P again, let α be the piece of fv from v to its second meeting with P
(which may not be a vertex of P) and let γ be the path in P completing α to a simple 
closed curve in such a way that the inside R of α ∪ γ is entirely outside of P. Note that 
the interior of γ never intersects the boundary of the disc, because it always has R on 
one side and the inside of P on the other. On the other hand, our initial observation 
that fv meets ev and ew only at their intersection v implies that the interior of γ must 
contain either u or w.

If u is in the interior of γ, then in particular it is not on the boundary. Thus we may 
consider the non-trivial tendril fu, contained in the strand su crossing sv at u. Since fu
starts by entering R, it must cross α ∪ γ to reach the boundary. Since su crosses sv at 
u, it cannot then cross α ⊆ sv or eu ⊆ sv without violating (b2), and so fu must exit R
by crossing γ before ev.

Applying the same argument to fu, we construct curves α′ and γ′ bounding R′ ⊆ R. 
The curve γ′ must be contained in γ, but it ends at u and so has at least one fewer vertex 
in its interior. As γ contained only finitely many vertices, by iterating this procedure we 
eventually arrive at γ̄ with no interior vertices. But then the corresponding ᾱ starts at 
a vertex v̄ of the polygon and ends on the preceding edge, violating (b1).

The case that w is in the interior of γ is similar, using instead the tendril fw. This 
tendril cannot intersect fv, because the underlying strands met at v, and cannot intersect 
ew since this would be a self-intersection. Thus fw has the same pathological behaviour 
as fv, but cuts off fewer vertices of P, leading inductively to a contradiction. �
Proposition 7.3. Let P be a strand polygon in a Postnikov diagram D. Then the tendrils 
of P are disjoint. In particular, the tendrils end on the boundary in the same cyclic 
order as they start on the polygon, and the outside of P is partitioned by the downstream 
wedges of its vertices.

Proof. Consider an edge ev, from u to v. We first observe that the tendrils fv and fu do 
not cross. If ev is a boundary segment then fu and fv are distinct single points and there 
is nothing to prove, so we may assume that ev lies on a strand sv. If the edge ending at 
u is a boundary segment, then fu is the single point u, which is not on fv by Lemma 7.2. 
Otherwise, u lies on a strand su, which crosses sv at u, and so fv cannot intersect fu
without violating (b2).

So assume there is some v′ = v for which fv and fv′ cross, and let α be the path which 
follows fv until its first crossing with fv′ and then follows fv′ backwards until reaching 



46 İ. Çanakçı et al. / Advances in Mathematics 443 (2024) 109570
P. By Lemma 7.2, α is a simple curve from v to v′, intersecting P only at these points. 
Let γ be the curve in P such that the inside R of α ∪ γ is entirely outside of P. By the 
preceding paragraph, v and v′ are not the two ends of a single edge, and so there is at 
least one vertex v′′ of P in the interior of γ.

We may now argue similarly to Lemma 7.2. The vertex v′′ is not on the boundary, so 
the segment fv′′ begins by entering R, but it must leave R before terminating. It cannot 
do so through P by Lemma 7.2, so it must meet α, either on fv or fv′ . Thus we may 
replace either fv or fv′ by fv′′ and run the argument again. This replaces γ by a curve 
γ′ containing fewer vertices, and hence leads inductively to a contradiction.

Thus we have proved the disjointness, and the remaining two statements follow directly 
from this. �
Corollary 7.4. For each j ∈ Q0, the subset mj ⊆ Q1 is a perfect matching.

Proof. Apply Proposition 7.3, taking P to be the boundary of the oriented region of D
corresponding to j. �

This recovers part of [27, Thm. 5.3], as promised. The more general covering property 
from Proposition 7.3 also enables us to prove the main objective of this section.

Theorem 7.5. Let Q = Q(D) for D a Postnikov diagram. For each j ∈ Q0, we have 
η̂(mj) = pj, where mj is the Muller–Speyer matching (7.3).

Proof. We need to calculate the coefficient of pi in the formula (7.2) for η̂(mj) and 
show that this coefficient is 1 when i = j and 0 otherwise. Since the first sum in (7.2)
contributes 1 for each pi, what we need to show is

#{γ ∈ mj : hγ = i} − #{int γ ∈ mj : tγ = i} =
{

1 if i = j

0 if i = j
(7.5)

Since the matching mj contains all arrows γ with hγ = j and no arrows with tγ = j, the 
case i = j is immediate.

For the case i = j we consider the union of the alternating region Ri corresponding 
to the vertex i ∈ Q0 with the clockwise (oriented) regions adjacent to Ri, corresponding 
to the clockwise faces in Q2 that have i as a vertex. The boundary P◦

i of this union 
is made up of the clockwise edges and boundary edges of Ri together with the edges 
of each adjacent clockwise region, except the (necessarily unique) edge shared with Ri. 
These bounding edges are all distinct, as are the points at which they meet; the main 
ingredient here is that any point in the disc is incident with at most one clockwise region.

Hence P◦
i is a simple closed curve, and it is even a strand polygon as follows. We 

observe that all vertices of P◦
i apart from those at the ends of a boundary edge are 

corners of clockwise regions, and P◦
i turns towards the region at these points. Moreover, 

the boundary edges of P◦
i are edges of Ri, which is inside P◦

i . See Fig. 7.6 for examples.
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Fig. 7.6. Two examples of the strand polygon P◦
i and its tendrils; the vertex i is circled in each case.

Note that every quiver vertex j = i is outside of P◦
i , and hence by Proposition 7.3 is 

contained in a unique downstream wedge of this polygon. Consider a vertex of P◦
i not 

incident with Ri, i.e. a vertex of one of the clockwise regions added to Ri to obtain P◦
i . 

Then the wedge of P◦
i at this vertex is the wedge of the corresponding arrow, which is 

not incident with i but lies in a clockwise face incident with i. On the other hand, the 
remaining vertices of P◦

i either start a boundary edge, in which case the wedge is trivial, 
or end a boundary edge, in which case the wedge is one side of the strand starting at 
this vertex.

Consider an arrow γ with hγ = i. If γ does not lie in a clockwise face, then γ is a 
boundary arrow at which a boundary edge of P◦

i ends, and we let Wγ be the wedge of 
P◦
i at its vertex on γ, which is the complement of the wedge of γ. Otherwise, γ lies in a 

clockwise face F in which the next arrow γ′ has tγ′ = i. If γ′ is internal, let Wγ be the 
union of wedges of the vertices of P◦

i on ∂F , whereas if γ′ is a boundary arrow, let Wγ

be the union of these wedges together with the wedge of the vertex of P◦
i on γ′ (which 

is just the wedge of γ′ in this case). Note that every arrow incident with i is either one 
of the arrows γ or γ′ considered above, or is a boundary arrow with tail at i, and thus 
irrelevant to the calculation (7.5). Note further that every wedge of P◦

i , and hence every 
quiver vertex j = i, is contained in Wγ for a unique arrow γ with hγ = i.

Suppose j ∈ Wγ . If γ is not in a clockwise face, this means that j is not in the 
downstream wedge of γ, and so γ /∈ mj counts 1 on the left-hand side of (7.5). Otherwise, 
γ is followed by γ′ in a clockwise face F . If γ′ is internal, then j ∈ Wγ means that j
is in the wedge of some arrow in F different from γ and γ′. Then γ /∈ mj counts 1 in 
(7.5), whereas γ′ /∈ mj counts 0. If γ′ is on the boundary, then its wedge is also contained 
in Wγ , so we could have γ′ ∈ mj , but it contributes 0 in (7.5) anyway. Thus whenever 
j ∈ Wγ , the total contribution of γ and γ′ (if it exists) to (7.5) is 1.

Now suppose j /∈ Wγ . If γ is not in a clockwise face, this means that γ ∈ mj counts 0
in (7.5). If γ is followed by a boundary arrow γ′ in a clockwise face F , this means that 
γ ∈ mj , since the wedges of all other arrows of F are contained in Wγ . Thus γ counts 0
in (7.5), as does γ′ since it is on the boundary. On the other hand, if γ is followed by an 
internal arrow γ′, then Wγ consists of the wedges of arrows in F different from γ and γ′, 
so either γ ∈ mj or γ′ ∈ mj . If γ ∈ mj it counts 0 in (7.5), as does γ′ /∈ mj . If γ′ ∈ mj it 
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counts −1 in (7.5), while γ /∈ mj counts 1. In any case, the total contribution of γ and 
γ′ is 0.

Summing up, we see that the total contribution in (7.5) of all arrows incident with 
i = j is 1, as required. �

Note that we could equally well have used the strand polygon P•
i , bounding the union 

of Ri with its adjacent anticlockwise regions, in place of P◦
i in the preceding proof. As 

already observed, Theorem 7.5 leads directly to the following results.

Corollary 7.6. We have M−1 = η̂.

Proof. Theorem 7.5 proves that η̂ ◦ M = id, which is sufficient because they are maps 
between lattices of the same rank. �

Alternatively, having shown that η̂ ◦ M = id, we may reach the same conclusion by 
using that M (or η̂, if D is connected) is known to be an isomorphism.

Corollary 7.7. If D is connected, then the indecomposable projective AD-module Pj = Aej
is isomorphic to the matching module Nmj

.

Proof. Combining (6.14) with Theorem 7.5 gives [Nmj
] = η(mj) = [Pj ]. The result then 

follows from Corollary 6.16. �
Muller–Speyer also consider [27, §5.6] the matching m∨

j defined analogously to mj but 
using the upstream wedge of an arrow in place of its downstream wedge. Theorem 7.5
also allows us to identify the perfect matching module Nm∨

j
.

Corollary 7.8. If D is connected, then (ejA)∨ := HomZ(ejA, Z) is isomorphic to the 
matching module Nm∨

j
for each j ∈ Q0.

Proof. Consider the opposite diagram Dop (Definition 2.17), for which QDop = Qop

and ADop = Aop (Remark 2.18). We write mop
j for the Muller–Speyer matching of Qop

associated to vertex j, to distinguish this from the Muller–Speyer matching of Q for 
this vertex. Applying Corollary 7.7 to Dop shows that the Aop-module ejA = Aopej is 
isomorphic to Nm

op
j

.
Since Q and Qop have the same set of arrows, we may also view mop

j as a matching 
of Q, where it coincides with m∨

j . Moreover, the set of arrows of Qop acting as t on a 
rank one Aop-module N agrees with the set of arrows of Q acting as t on the rank one 
A-module N∨ (that is, (AopNμ)∨ ∼= ANμ for any perfect matching μ), and so we conclude 
that (ejA)∨ ∼−→ Nm∨ as required. �
j
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8. Labelling

Let D be a Postnikov diagram with quiver Q = Q(D). Following, among others, [37, 
§3] and [27, §4], we associate a label Ij ⊆ C1, to each vertex j ∈ Q0. To define this 
label, note that each strand in D divides the disc into two parts: the left-hand side and 
right-hand side, relative to the orientation of the strand.

Definition 8.1. For j ∈ Q0, define the (left) source label Ij ⊆ C1 to consist of those i ∈ C1

such that the strand of D starting at i has j on its left-hand side.

Fig. 8.1 shows the labels Ij , drawn in place of the quiver vertices, in our running 
example (cf. Fig. 2.4). The significance of these labels comes from cluster algebras, which 
we will discuss further in Section 9: each Postnikov diagram determines an initial seed 
for a cluster algebra structure on the corresponding (open) positroid variety [16,38], 
for which the initial cluster variables are restrictions of the Plücker coordinates ϕIj for 
j ∈ Q0.

We are now able to interpret these labels algebraically, as follows. Write A = AD and 
B = eAe, and let ρ : CM(B) → CM(C) be the restriction functor from Proposition 3.6.

Theorem 8.2. Let D be a connected Postnikov diagram. For each j ∈ Q0, the indecom-
posable projective A-module Aej satisfies

ρ(eAej) ∼= MIj , (8.1)

so that ρ(eA) =
⊕

j∈Q0
MIj . In particular, a Postnikov diagram D with n strands has 

type (k, n) if and only if each Ij has cardinality k.

4

3

2

1
7

6

5
134

123

127

167

367

356

345
135

137

357

Fig. 8.1. The source labels Ij for a Postnikov diagram of type (3, 7).
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Proof. Since Aej ∼= Nmj
by Corollary 7.7, it follows from Proposition 4.9 that

ρ(eAej) ∼= M∂mj
.

But by [27, Thm. 5.3], the boundary value ∂mj is precisely the set Ij . In particular, if 
D has type (k, n) then Ij has cardinality k by Proposition 4.8. �

It is shown in [37] that when D is a (k, n)-diagram, meaning that the associated 
permutation has πD(i) = i + k (mod n) and that the seed attached to D generates a 
cluster algebra structure on the Grassmannian Grnk , then each label Ij has cardinality 
k. It thus follows from Theorem 8.2 that (k, n)-diagrams have type (k, n), as promised 
in Definition 2.5.

Corollary 8.3. For any connected Postnikov diagram D, there is an isomorphism

AD
∼−→ EndC

(⊕
j∈Q0

MIj

)op
.

Proof. Writing A = AD, Proposition 5.10(i) provides an isomorphism

A
∼−→ EndB(eA)op = EndB

(⊕
j∈Q0

eAej

)op
.

Since ρ : CM(B) → CM(C) is fully faithful by Proposition 3.6, and ρ(eAej) ∼= MIj by 
Theorem 8.2, we get a further isomorphism

EndB

(⊕
j∈Q0

eAej

)op ∼−→ EndC

(⊕
j∈Q0

MIj

)op
,

as required. �
Remark 8.4. Several sources, including [27,30], also consider the target labels I∨j con-
sisting of those i ∈ C1 such that the strand ending at i has j on its left-hand side (see 
Fig. 8.2). The analogous statement to Theorem 8.2 for these labels is that

ρ((ejAe)∨) ∼= MI∨
j
, (8.2)

where (−)∨ = HomZ(−, Z)—this follows from Corollary 7.8 together with the analogue 
of [27, Thm. 5.3] for the upstream wedge matchings m∨

j , showing that ∂m∨
j = I∨j .

Applying Proposition 5.10 to Dop, with dimer algebra Aop, yields

Aop ∼−→ EndBop(Ae)op ∼−→ EndB((Ae)∨),
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Fig. 8.2. The target labels I∨
j for a Postnikov diagram of type (3, 7).

where the second isomorphism uses that B and Ae are free and finitely generated over 
Z, so that the duality (−)∨ is an equivalence CM(Bop) ∼−→ CM(B)op. Then the same 
argument as for Corollary 8.3 shows that there is an isomorphism

AD
∼−→ EndC

(⊕
j∈Q0

MI∨
j

)op
.

Remark 8.5. When D is a (k, n)-diagram, [2, Thm. 10.3] also exhibits an isomorphism of 
AD with an endomorphism algebra; using our notation and conventions (see Remark 3.3), 
the isomorphism is

AD
∼−→ EndC̃

(⊕
j∈Q0

MIc
j

)
.

Here C̃ = Π/(yn−k − xk), i.e. it is the algebra of Definition 3.1 but with parameters 
(n − k, n), noting that Ic

j has cardinality n − k, and unlike in Corollary 8.3 we do not 
take the opposite of the endomorphism algebra.

This isomorphism is, however, equivalent to the isomorphism of Remark 8.4 for the 
(n − k, n)-diagram Dop. Each vertex j of Q(Dop) has target label Ic

j , where Ij is the 
source label of j in D. Thus Remark 8.4 tells us that

ADop = Aop
D

∼−→ EndC̃

(⊕
j∈Q0

MIc
j

)op
,

which is equivalent to [2, Thm. 10.3] by taking opposite algebras.
Similarly, one obtains a fourth isomorphism

AD
∼−→ EndC̃

(⊕
M(I∨

j )c
)
.

j∈Q0
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of AD with an endomorphism algebra.

An important special case of Theorem 8.2 is when j ∈ Q0 is a boundary vertex, 
so that eAej = Bej , which is an indecomposable projective for the boundary algebra 
B = eAe. Thus ρ(Bej) = MIj and the labels Ij for the n boundary vertices j ∈ Q∂

0 are 
precisely the source necklace associated to the Postnikov diagram D or just to the strand 
permutation (cf. [27, Prop. 4.3], where it is called the reverse necklace). Similarly, the 
target necklace (or just necklace in [27]) consists of the labels I∨j for j ∈ Q∂

0 and we have 
ρ(ejB∨) = MI∨

j
by (8.2), noting that ejB∨ are the indecomposable injective objects in 

CM(B).
Given a functor ρ : B → C, recall that its essential image is defined to be the full 

subcategory of C on objects isomorphic to ρ(X) for some object X ∈ B.

Proposition 8.6. Consider the restriction functor ρ : CM(B) → CM(C). For each k-
subset J , the C-module MJ is in the essential image of ρ if and only if J ∈ P, where P
is the positroid associated to D.

Proof. By [27, Thm. 3.1], the positroid P consists of boundary values of perfect match-
ings on the graph Γ(D), or, from our point of view, on the quiver Q(D). For any such 
perfect matching μ we have M∂μ

∼= ρ(eNμ) in the essential image of ρ by Proposi-
tion 4.9. Conversely, assume MJ

∼= ρ(M). Then M , and hence FM , has rank 1, and 
so by Corollary 4.6 there is a perfect matching μ of D such that FM ∼= Nμ. Then 
M∂μ

∼= ρ(eNμ) ∼= ρ(eFM) = ρ(M) ∼= MJ , and so J = ∂μ. �
An alternative point of view is to note that C ⊆ B ⊆ C[t−1] by the proof of Propo-

sition 3.6. Any C-module M is naturally a subspace of the C[t−1]-module M [t−1], and 
asking that M is in the essential image of ρ is equivalent to asking if this subspace is a 
B-submodule; if it is, we simply say that M is a B-module. Using the combinatorics of 
profiles [22, §6], one can show that the combinatorial condition (see [27, §2.1] or [29, §5]) 
that determines whether J is in the positroid, in terms of the source (or reverse [27], or 
upper [29]) necklace, is precisely the condition that MJ is a B-module.

9. The Marsh–Scott formula

Let D be a Postnikov diagram, and consider the associated quiver Q(D). Being a 
quiver with frozen vertices (those corresponding to boundary regions of D), we may 
associate to it a cluster algebra with frozen variables. We may choose whether to adopt 
the convention that frozen variables are invertible, in which case we call the resulting 
cluster algebra AD, or that they are not, in which case we obtain the cluster algebra 
AD. In either case, the cluster algebra is defined as a subalgebra of the field of rational 
functions in the initial cluster variables xj for j ∈ Q0.
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If D has type (k, n), recall from Section 8 that each quiver vertex j ∈ Q0 determines 
a k-subset Ij ⊆ C1, and hence a Plücker coordinate ϕIj on the Grassmannian Grnk . This 
yields a natural specialisation map

C(xj : j ∈ Q0) → C(Grnk ) : xj �→ ϕIj , (9.1)

taking rational functions in the xj to rational functions on the (k, n)-Grassmannian. 
When D is a (k, n)-diagram, this specialisation map restricts to an isomorphism AD

∼−→
C[Grnk ], yielding Scott’s cluster structure [37] on C[Grnk ]. For a more general Postnikov 
diagram D, the specialisation restricts to an isomorphism of AD with the (homogeneous) 
coordinate ring of the open positroid variety corresponding to the permutation πD [16], 
yielding the source-labelled cluster structure on this variety.

The Grassmannian Grnk carries a birational automorphism called the Marsh–Scott 
twist [26, §2], or simply the twist, which we denote by x �→ ←−x . By [26, Prop. 8.10], 
if x is a cluster variable in Scott’s cluster structure, then ←−x is a product of a cluster 
variable with a monomial in frozen variables; indeed, the twist is even a quasi-cluster 
automorphism in the sense of Fraser [14, Rem. 6.6]. Related twist automorphisms exist 
for open positroid varieties [27], but in the general case they relate cluster variables 
in two different cluster algebra structures on the coordinate ring. It has been shown 
recently [35, Thm. 7.2], [8, Thm. B] that these more general twist maps are quasi-cluster 
equivalences between the two relevant cluster structures.

The Marsh–Scott formula, introduced in [26] for a uniform Postnikov diagram, is a 
certain dimer partition function which was used in [26] to compute the twisted Plücker 
coordinates ←−ϕI . However, as a formula in the associated cluster algebra, it makes sense 
for a general ◦-standardised Postnikov diagram D of type (k, n) and can be written as 
follows, for any k-subset I ⊆ C1:

MS◦(I) = x−wt(D)
∑

μ:∂μ=I

xwt◦(μ), (9.2)

where wt◦(μ) is as in (6.4) and

wt(D) =
∑
j∈Q0
int

[Pj ]. (9.3)

Thus the formula associates to each k-subset I ⊆ C1 a formal Laurent polynomial in 
C[K0(projA)], or equivalently a Laurent polynomial in the initial cluster variables xj :=
x[Pj ] for j ∈ Q0. When I is not in the associated positroid P(D), so is the boundary 
value of no matchings, the formula gives MS◦(I) = 0. Note, for comparison, that (9.2) is 
written in terms of the quiver Q(D), whereas [26] writes an equivalent formula in terms 
of the bipartite graph Γ(D).

To apply their formula, Marsh–Scott need to evaluate it in C[Grnk ] using the special-
isation (9.1), and then prove the following.
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Theorem 9.1 ([26, Thm. 1.1]). Let D be a ◦-standardised (k, n)-diagram, let I ⊆ C1 be a 
k-subset and ←−ϕI ∈ C[Grnk ] the associated twisted Plücker coordinate. Then

←−ϕI = MS◦(I)|xj 	→ϕIj
.

In the remainder of the paper, we give a categorical interpretation of this result 
by relating the Marsh–Scott formula to the more general cluster character formula of 
Fu–Keller [12], which computes cluster monomials from (reachable) rigid objects in a 
Frobenius cluster category. Almost all our results will apply for all connected Postnikov 
diagrams, except in Section 11, when we come to use Theorem 9.1 to interpret MS◦(I)
as a twisted Plücker coordinate.

To that end, assume that D is connected, of type (k, n) and ◦-standardised. Thus the 
boundary arrows of Q(D) are αi for i ∈ C1, and all of these arrows are oriented clockwise. 
Given any I ⊆ C1, we can define

P ◦
I =

⊕
i∈I

Phαi
=

⊕
i∈I

Aehαi
. (9.4)

This leads immediately to the following way to rewrite (9.2).

Proposition 9.2.

MS◦(I) = x[P◦
I ]

∑
μ:∂μ=I

x−[Nμ]. (9.5)

Proof. We use Proposition 6.11, noting that (9.3) is the first term on the right-hand side 
of (6.5), while the second term is [P ◦

∂μ]. Hence we can rearrange (6.5) as

wt◦(μ) − wt(D) = [P ◦
∂μ] − [Nμ],

to transform (9.2) into (9.5). �
We now want to rewrite (9.5) in a module-theoretic way, that is, as a function of the 

rank 1 module M ∈ CM(B) such that ρ(M) ∼= MI ∈ CM(C), as in Definition 3.2. Note 
that such an M will exist provided {μ : ∂μ = I} is non-empty, i.e. provided I is an 
element of the positroid associated to D, by Proposition 8.6. In that case, M and I are 
equivalent data because ρ : CM(B) → CM(C) is fully faithful, by Proposition 3.6, while 
the module ρ(M) ∈ CM(C) has rank 1 and every C-module of rank 1 is isomorphic to 
MI for a unique I ⊆ C1, by [22, Prop. 5.2].

As a result we can consider, as a function of such a rank 1 M ∈ CM(B) with ρ(M) ∼=
MI , the projective B-module

P◦M = eP ◦
I =

⊕
i∈I

Behαi
(9.6)

and thereby realise our goal of rewriting (9.5) module-theoretically.
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Theorem 9.3. Let M ∈ CM(B) with rk(M) = 1, and let I ∈ C1 be the k-subset such that 
ρ(M) ∼= MI ∈ CM(C). Then

MS◦(I) = x[FP◦M ]
∑

N�FM
eN=M

x−[N ]. (9.7)

Proof. Combining Proposition 5.5 and Remark 5.6, we have a bijection

θ : {N � FM : eN = M} → {μ : ∂μ = I}

such that θ(N) = μ when N ∼= Nμ. On the other hand, the natural map P ◦
I → FP◦M

is an isomorphism by Proposition 5.10(iii), since P ◦
I ∈ add(Ae). �

We may also observe that P◦M has a more special relationship to M .

Lemma 9.4. For M as in Theorem 9.3, there is a (non-minimal) projective cover P◦M →
M .

Proof. Since Behαi
is projective with top at hαi and the fibre ehαi

M is a free rank one 
Z-module, there is a map πi : Behαi

→ M (unique up to rescaling by Z×) such that the 
restriction ehαi

Behαi
→ ehαi

M to fibres over hαi is surjective. Let π : P◦M → M be 
the map with components given by the πi.

Now consider ρ(π) : ρ(P◦M) → ρ(M) ∼= MI . As a map of vector spaces, this is 
identical to π, so it suffices to show that ρ(π) is surjective. Note that, since the canonical 
map C → B is injective by Proposition 3.6, the top of any B-module N is a quotient 
of the top of the C-module ρ(N). Thus top ρ(P◦M) has all the vertices ehαi

, for i ∈ I, 
in its support, and top ρ(M) = topMI is supported on a subset of these vertices by 
construction. Since ρ(π) maps any Z-module generator of ehαi

Behαi
to a Z-module 

generator of ehαi
M , it induces a surjective map top ρ(P◦M) → top ρ(M) and so is 

surjective as required. �
The use of ◦-standardised diagrams in this section reflects the choices made in [26], 

but we can equally well work with •-standardised diagrams throughout. In this context, 
given a k-subset I ⊆ C1, we define

MS•(I) = x−wt(D)
∑

μ:∂μ=I

xwt•(μ), (9.8)

and given additionally M ∈ CM(B) with ρ(M) ∼= MI we define

P •
I =

⊕
i�∈I

Phβi
, P•M = eP •

I .

By analogous arguments to those for MS◦(I), one may show that
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MS•(I) = x[P•
I ]

∑
μ:∂μ=I

x−[Nμ] = x[FP•M ]
∑

N�FM
eN=M

x−[N ] (9.9)

and that there is a projective cover P•M → M .
Given a diagram D of type (k, n) and a k-subset I, we may either choose a ◦-

standardisation of D and compute MS◦(I), or choose a •-standardisation of D and 
compute MS•(I). Comparing (9.7) and (9.9), we see that

MS•(I) = x[FP•M ]−[FP◦M ] MS◦(I).

Since P•M and P◦M are projective B-modules, it follows that FP•M and FP◦M

are projective A-modules with top supported on the boundary vertices, and so 
x[FP•M ]−[FP◦M ] is a Laurent monomial in frozen variables. Thus the conclusions of 
Marsh–Scott’s Theorem 9.1 also hold for •-standardised diagrams with MS•(I) in place 
of MS◦(I).

If D is a ◦-standardised Postnikov diagram of type (k, n), then by the observations 
of Remark 2.18 its opposite diagram Dop is •-standardised of type (n − k, n). Since 
Q(Dop) = Q(D)op has the same set Q0 of vertices as Q(D), and ADop = Aop

D , there is 
a canonical isomorphism K0(projAD) ∼−→ K0(projADop) given by [ADei] �→ [ADopei]
for each i ∈ Q0, which we will treat as an identification, exploiting that the basis of 
projectives in each Grothendieck group yields an isomorphism with the lattice ZQ0 . 
Thus we may identify the spaces of polynomials with exponents in the two lattices, and 
view Marsh–Scott formulae computed with respect to D and Dop as taking values in 
the same Laurent polynomial ring. This allows us to make another comparison of the 
formulae (9.2) and (9.8).

Proposition 9.5. Let D be a ◦-standardised Postnikov diagram of type (k, n) and I ⊆ C1
a k-subset. Then

MS◦
D(I) = MS•

Dop(Ic),

where each Marsh–Scott formula is calculated using the diagram indicated in the sub-
script.

Proof. Note that the right-hand side of the claimed formula makes sense, since Dop is a •-
standardised diagram of type (n −k, n). As already observed, we have Q(Dop) = Q(D)op, 
and so Q(D) and Q(Dop) have the same set of arrows, and the same set of perfect 
matchings. Each perfect matching thus has two boundary values, depending on whether 
it is viewed as a matching of Q(D) or of Q(Dop), but since a boundary arrow is clockwise 
in Q(D) if and only if it is anticlockwise in Q(Dop), it follows directly from the definition 
that these two boundary values are complementary to each other. In particular, the set of 
perfect matchings of Q(D) with boundary value I is equal to the set of perfect matchings 
of Q(Dop) with boundary value Ic.
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Given a perfect matching μ, we can compute wt◦(μ) viewing μ as a perfect matching 
of the ◦-standardised quiver Q(D), or wt•(μ) viewing μ as a perfect matching of the 
•-standardised quiver Q(Dop), where these weights are defined in (6.3). Since Q(D) and 
Q(Dop) have the same set of faces, but a face is white in Q(D) if and only if it is black in 
Q(Dop), these two calculations are the same (recalling that we identify K0(projAD) with 
K0(projADop) using the common set of quiver vertices), which completes the proof. �
10. The Caldero–Chapoton formula

Let D be a connected Postnikov diagram of type (k, n) with dimer algebra A = AD

and boundary algebra B = eAe, and let T = eA ∈ CM(B). As mentioned in Section 5, 
it follows from [34, Thm. 3.7] and the general theory from [32] that T is a cluster-tilting 
object in the category GP(B) of Gorenstein projective B-modules, that this category is 
a stably 2-Calabi–Yau Frobenius category, and moreover that gldimA � 3.

Thus we may consider the Caldero–Chapoton cluster character formula, as described 
by Fu–Keller [12] in the context of Frobenius categories. For each X ∈ GP(B), we define 
ΦT (X) by the formula

ΦT (X) = x[FX]
∑

E�GX

x−[E], (10.1)

giving a sum of formal Laurent monomials xv for v ∈ K0(projA). Note that it may be 
that, for some v ∈ K0(projA), the set

Grv(GX) = {E � GX : [E] = v}

is infinite and, in this case, we count this set by its Euler characteristic, i.e. in the sum in 
(10.1) the coefficient of x−v is χ(Grv(GX)). By [12, Thm. 3.3], the function X �→ ΦT (X)
is a cluster character on GP(B) in the sense of [12, Def. 3.1].

Remark 10.1. Here we have used some of the homological properties of A, such as the 
fact that gldimA � 3, to simplify the exponents in the cluster character formula in [12]; 
an explanation of this may be found in [19, §3] (see also [12, Rem. 3.5]), together with 
the observation that we can relax the requirement in [12] that the Frobenius category is 
Hom-finite.

The cluster-tilting object T = eA has a natural decomposition into indecomposable 
summands Tj = eAej for j ∈ Q0, yielding a basis [Pj ] = [FTj ] for K0(projA). We may 
use this basis to write the formal monomials above as actual monomials in the variables 
xj := x[Pj ] = ΦT (Tj). This is how the formula is written in [19], using the Euler pairing 
to compute the coefficient of each indecomposable projective in the expression for an 
arbitrary K-theory class in this basis.

Note that the formula ΦT (X) makes sense for any X ∈ CM(B) (or even for any 
X ∈ modB) although it is only the restriction of the function X �→ ΦT (X) to objects of 
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the stably 2-Calabi–Yau Frobenius category GP(B) which need have the properties of a 
cluster character as described in [12].

Proposition 10.2. Let M ∈ CM(B), and consider any (exact) syzygy sequence

0 −→ ΩM −→ PM −→ M −→ 0,

where the map PM → M is a (possibly non-minimal) projective cover. Then

ΦT (ΩM) = x[FPM ]
∑

N�FM
eN=M

x−[N ].

Proof. Proposition 5.4 tells us that

{N � FM : eN = M} = {N : F ′M � N � FM},

so, using the definition of ΦT (ΩM) from (10.1), what we wish to prove is that

x[FΩM ]
∑

E�GΩM

x−[E] = x[FPM ]
∑

N :F ′M�N�FM

x−[N ]. (10.2)

From the short exact sequence (5.5), we know that GΩM = FM/F ′M and so there 
is a bijection between {N : F ′M � N � FM} and {E � GΩM} given by setting 
E = N/F ′M . Combining this with (5.4), we obtain

[N ] − [E] = [F ′M ] = [FPM ] − [FΩM ]

when E and N are related by this bijection, and thus

[FPM ] − [N ] = [FΩM ] − [E].

as required for (10.2). �
Now, for any rank 1 module M ∈ CM(B), let Ω◦M be the syzygy computed as the 

kernel of the projective cover P◦M → M from Lemma 9.4. The main result of this 
section is then the following.

Theorem 10.3. Let D be a connected Postnikov diagram, with dimer algebra A and bound-
ary algebra B. Let M ∈ CM(B) be a rank 1 module, with ρ(M) ∼= MI . Then we have

MS◦(I) = ΦT (Ω◦M),

where the left-hand side is the Marsh–Scott formula, as in (9.2), with respect to a ◦-
standardisation of D, and the right-hand side is the cluster character (10.1), with respect 
to the cluster-tilting object T = eA.
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Proof. Applying Proposition 10.2 in the case that PM = P◦M , so that ΩM = Ω◦M , 
we see that

ΦT (Ω◦M) = x[FP◦M ]
∑

N�FM
eN=M

x−[N ].

Then the right-hand side coincides with MS◦(I) by Theorem 9.3. �
In stating Proposition 10.2 and Theorem 10.3, we used the fact that the formula 

(10.1) for ΦT (X) makes sense for X ∈ CM(B), even though this function is only strictly 
a cluster character on GP(B). However, it turns out that this caveat is not needed, 
because of the following lemma, the proof of which was pointed out to us by Bernt Tore 
Jensen.

Lemma 10.4. For M ∈ CM(B), any syzygy ΩM is in GP(B).

Proof. We have to prove that ExtkB(ΩM, B) = 0 for all M ∈ CM(B) and all k � 1. 
However, since Extk+1

B (ΩM, B) = ExtkB(Ω2M, B) and CM(B) is closed under syzygies, 
it suffices to prove that Ext1B(ΩM, B) = 0, for all M ∈ CM(B).

The restriction functor ρ : CM(B) → CM(C) is exact and fully faithful by Proposi-
tion 3.6 and so, dropping ρ from the notation, we have Ext1B(M1, M2) ⊆ Ext1C(M1, M2)
for all M1, M2 ∈ CM(B). We also have Ext1C(M1, M2) = Ext1C(M2, M1)∗, since CM(C)
is stably 2-Calabi–Yau. Thus it suffices to prove that Ext1C(B, ΩM) = 0.

Now consider the syzygy sequence 0 −→ ΩM −→ PM
p−→ M −→ 0 as a sequence 

in CM(C), where p is a B-projective cover. Then part of the long exact sequence for 
HomC(B, −) is

HomC(B,PM) p∗−→ HomC(B,M) −→ Ext1C(B,ΩM) −→ Ext1C(B,PM)

and p∗ is surjective, using again that ρ is fully faithful. Because B is rigid, Ext1C(B,

PM) = 0, and hence we obtain the required result. �
Corollary 10.5. Let D be a connected Postnikov diagram with boundary algebra B. Then 
B is Iwanaga–Gorenstein with Gorenstein dimension at most 2.

Proof. The algebra B is Noetherian since it is free and finitely generated over Z by 
Proposition 2.15. Let M ∈ modB and choose first and second syzygies ΩM and Ω2M . 
Then ΩM ∈ CM(B) since Z is a PID, and so

Ext3B(M,B) = Ext1B(Ω2M,B) = 0

by Lemma 10.4. Thus B has injective dimension at most 2 on the left. Since Bop is 
the boundary algebra of the connected Postnikov diagram Dop, we may apply the same 
argument to Bop to see that B has injective dimension at most 2 on the right. �
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Remark 10.6. Corollary 10.5 improves on the upper bound of 3 for the Gorenstein di-
mension of B coming from the general results of [32], applied to connected Postnikov 
diagrams via [34, Thm. 3.7]. When D is a (k, n)-diagram, so B ∼= C, its Gorenstein 
dimension is 1 by [22]; this is the reason why CM(C) = GP(C) in this case. We expect 
that in all other cases the Gorenstein dimension is exactly 2, and so GP(B) is a proper 
subcategory of CM(B).

11. The Marsh–Scott twist

When D is a (k, n)-diagram, the situation is simpler. The canonical map C → B is an 
isomorphism, so ρ : CM(B) → CM(C) is an equivalence. Suppressing this equivalence in 
the notation, it follows from Theorem 8.2 that the indecomposable summand Tj = eAej
of the cluster-tilting object T is isomorphic to the rank 1 C-module MIj . Moreover, 
CM(C) = GP(C) is a stably 2-Calabi–Yau Frobenius category, on which ΦT is an honest 
cluster character.

Proposition 11.1. For any k-subset I ⊆ C1, we have

ΦT (MI)|xj 	→ϕIj
= ϕI . (11.1)

Proof. In [22] (see also Remark 3.3), Jensen, King and Su exhibit a cluster character 
Ψ: CM(C) → C[Grnk ] such that Ψ(MI) = ϕI for all I. In particular, since Tj

∼= MIj by 
Theorem 8.2, we have Ψ(Tj) = ϕIj .

On the other hand, the map X �→ ΦT (X)|xj 	→ϕIj
is again a cluster character, because 

this class of functions is closed under postcomposition with arbitrary maps of rings. By 
Proposition 5.10, for each j ∈ Q0 we have GTj = 0 and

ΦT (Tj) = x[FTj ] = x[Pj ] = xj ,

so that ΦT (Tj)|xj 	→ϕIj
= ϕIj .

Thus the two cluster characters ΦT (after the substitution xj �→ ϕIj ) and Ψ agree 
on the indecomposable summands Tj of T , and hence by the multiplication formula 
[12, Def. 3.1(3)] they agree on all rigid indecomposable objects reachable from T , i.e. 
appearing as a summand of some cluster-tilting object obtained from T by a sequence 
of mutations. As a consequence of [22, Thm. 9.5], this class of objects includes MI for 
all k-subsets I ⊆ C1, and so

ΦT (MI)|xj 	→ϕIj
= Ψ(MI) = ϕI

as required. �
Furthermore, when D is a (k, n)-diagram we may interpret the Marsh–Scott formula 

as a twisted Plücker coordinate via Theorem 9.1, and so Theorem 10.3 becomes
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ΦT (Ω◦MI)|xj 	→ϕIj
= ←−ϕI . (11.2)

Comparing (11.1) and (11.2), we see that the operation Ω◦ on CM(C) can be considered 
a categorification of the Marsh–Scott twist.

Remark 11.2. Note that the stable 2-Calabi–Yau property of CM(C) means that, as 
functors on the stable category, Ω ∼= τ−1 is the inverse Auslander–Reiten translation. 
In particular, when I is not an interval, so that MI is not itself projective, any syzygy 
ΩMI is indecomposable in the stable category CM(C) and so has a single non-projective 
indecomposable summand in CM(C). In view of (11.2), this corresponds to the fact [26, 
Prop. 8.10] that ←−ϕI is a product of a single mutable cluster variable with a monomial in 
frozen variables.

The fact that ΦT (Ω◦MI)|xj 	→ϕIj
and ←−ϕI coincide after setting frozen variables to 1

follows from a result of Geiß–Leclerc–Schröer [17, Thm. 6]. Our choice of projective cover 
P◦MI is designed to ensure that the frozen variables appearing in ΦT (Ω◦MI)|xj 	→ϕIj

coincide precisely with those appearing in Marsh–Scott’s twisted Plücker coordinate ←−ϕI .
Defining instead Ω•MI to be the kernel of the projective cover P•MI → MI , we may 

show in an exactly analogous way that

MS•(I) = ΦT (Ω•MI),

so that Ω• again categorifies a birational twist automorphism, differing from the Marsh–
Scott twist by multiplication by a Laurent monomial in frozen variables.

12. The Muller–Speyer twist

Muller and Speyer [27] describe twist automorphisms for open positroid varieties in 
general. These maps involve inverting frozen variables and so are not defined on the closed 
positroid varieties, in contrast to the Marsh–Scott twist for the Grassmannian, i.e. the 
closed uniform positroid variety. Indeed, even in the uniform case, Muller–Speyer’s twist 
differs from Marsh–Scott’s by multiplication by a Laurent monomial in frozen variables, 
which can have a non-trivial denominator. Our methods also give categorifications of 
these more general twists.

A key ingredient in Muller–Speyer’s construction is the map M : ZQ0 → M as defined 
in (7.4), where M is the matching lattice as introduced in Remark 6.13. This map is an 
isomorphism, with inverse η̂ as defined in (7.1), by [27, Prop. 5.5] or Corollary 7.6.

Let P be the positroid associated to D and let Π◦ = Π◦(P) be the correspond-
ing open positroid variety. In [27, Sec. 6], Muller–Speyer define a twist automorphism 
tw: C

[
Π̃◦] → C

[
Π̃◦], where C

[
Π̃◦] is the homogeneous coordinate ring, i.e. the coordi-

nate ring of the cone on Π◦, and show the following (in the current notation).
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Theorem 12.1 ([27, Prop. 7.10]). For any I ∈ P, we have

tw(ϕI) =
∑

μ:∂μ=I

x−η̂(μ)|xj 	→ϕIj
. (12.1)

Note: here and later in this section, we abuse notation by writing ϕI for the restriction 
of this Plücker coordinate to Π◦ ⊆ Grnk . The right-hand side of (12.1) is a formal Laurent 
polynomial in C

[
ZQ0

]
, or equivalently a Laurent polynomial in variables xj = xpj , where 

pj is a standard basis vector as in Section 7.

Proof. By [27, Thm. 7.1], we have the following commutative diagram, in which the 
horizontal maps are isomorphisms.

C
[
M

]
C
[
ZQ0

]

C
[
Π̃◦] C

[
Π̃◦]

C[−η̂]

net

tw

clu

This is the right-hand square in [27, Thm. 7.1], rewritten in terms of maps between 
coordinate rings. Now (12.1) follows by tracing ϕI ∈ C

[
Π̃◦] through this diagram.

To further aid comparison with [27], we recall the ingredients in the diagram. Firstly, 
C
[
M

]
is the coordinate ring of the torus (written (C×)|Q1|/(C×)|Q2|−1 in [27]) whose 

character lattice is M. In other words, it is the ring of formal Laurent polynomials with 
exponents in M. Similarly, C

[
ZQ0

]
is the coordinate ring of the torus (C×)Q0 .

The map C[−η̂] is the isomorphism of torus coordinate rings induced by the map 
−η̂ : M → ZQ0 of their character lattices, which is the inverse of −M by Corollary 7.6. 
The map net is given by dimer partition functions (see [27, §3.2])

ϕI �→
∑

μ:∂μ=I

xμ

and corresponds to (a lift of) the embedding of the network torus by the boundary 
measurement map of [31].

The map clu corresponds to the embedding of the cluster torus in Π̃◦. More precisely, 
it is obtained by composing the inverse of the map AD → C

[
Π̃◦] induced by the substi-

tution xj �→ ϕIj from (9.1), which is a well-defined isomorphism by [16, Thm. 3.5], with 
the inclusion AD ⊆ C

[
ZQ0

]
. �

Now assume D is connected. As in Section 7, we identify ZQ0 with K0(projA) by 
pj �→ [Pj ], which identifies η̂(μ) with η(μ) = [Nμ]; see (6.14). In this case we may, just 
as in Theorem 9.3, rewrite (12.1) as

tw(ϕI) =
∑

μ:∂μ=I

x−[Nμ]|xj 	→ϕIj
=

∑
N�FM

x−[N ]|xj 	→ϕIj
, (12.2)
eN=M
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for (the unique) M ∈ CM(B) with ρM ∼= MI , which exists since I ∈ P.
Recall from (10.1) the Fu–Keller cluster character ΦT : GP(B) → C[K0(projA)], 

where B = BD is the boundary algebra of D and T = eAD ∈ GP(B) is the initial 
cluster-tilting object.

Theorem 12.2. Let M ∈ CM(B) such that ρM ∼= MI ∈ CM(C). Let PM be any (possibly 
non-minimal) projective cover of M , fitting into a short exact sequence

0 → ΩM → PM → M → 0.

Then

tw(ϕI) = ΦT (ΩM)
ΦT (PM)

∣∣∣∣
xj 	→ϕIj

. (12.3)

Proof. By Proposition 10.2,

ΦT (ΩM) = x[FPM ]
∑

N�FM
eN=M

x−[N ]. (12.4)

Since PM is projective, it is in addT , so GPM = 0 and ΦT (PM) = x[FPM ]. Thus we 
obtain (12.3) by rearranging (12.4) and using (12.2). �
Remark 12.3. Theorem 12.2 is the analogue for positroid varieties of Geiß–Leclerc–Schrö-
er’s result [17, Thm. 6] for unipotent cells in Kac–Moody groups. Indeed, the uniform 
open positroid variety in Grnk is an example of such a cell (cf. Remark 11.2).
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