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Abstract. We study braid varieties and their relation to open positroid varieties. We discuss four

different types of braids associated to open positroid strata and show that their associated Legendrian

links are all Legendrian isotopic. In particular, we prove that each open positroid stratum can be
presented as the augmentation variety for four different Legendrian fronts described in terms of

either permutations, juggling patterns, cyclic rank matrices or Le diagrams. We also relate braid

varieties to open Richardson varieties and brick manifolds, showing that the latter provide projective
compactifications of braid varieties, with normal crossing divisors at infinity.
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1. Introduction

This article studies braid varieties [8, 51] and their relation to open positroid varieties [42]. In a
nutshell, we study four braids associated to any open positroid variety, and develop new techniques
to algebraically study their braid varieties. In addition, this paper brings to bear insight from contact
and symplectic topology to explicitly study these braid varieties, with a focus on Legendrian links
and their relation to open positroid varieties in Grassmannians.

An open positroid variety Π of the Grassmannian Gr(k, n) can be indexed by either of the following
four pieces of data. First, a pair of permutations u,w ∈ Sn such that u ≤ w in the Bruhat order
and w is a k-Grassmannian permutation. Second, a k-bounded affine permutation f : Z −→ Z of size
n. Third, a cyclic rank matrix r and, fourth, a Le diagram. The bijections between these objects
and the description of their associated positroid varieties are provided in [42, 57]. In this article, we
study four braids, one associated to each of these four pieces of data, and introduce and study their
associated Legendrian links.

The first result of this manuscript, within the realm of algebraic combinatorics, is showing that these
four braids close up to links in R3 that are smoothly isotopic, up to trivially adding unlinks. For that,
we develop new results using the positroid data above: k-Grassmannian permutations, k-bounded
affine permutations, cyclic rank matrices and Le diagrams. In particular, this requires addressing
the dissonance in the number of strands between these braids, which we address by introducing a
Markov-type destabilization move that suits the algebraic combinatorics associated to positroids.

2020 Mathematics Subject Classification. 13F60, 14M15, 53D12, 57K43.
1The reason she loved Richardson was not that she had read him — A.S. Pushkin, Eugene Onegin (tr. V. Nabokov).
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The main contact geometric result of this manuscript is then showing that the four associated Legen-
drian links are all Legendrian isotopic, up to trivially unlinked unknots. In particular, we show that
our results and constructions in the smooth case, related to the algebraic combinatorics of positroids,
can all be realized by contact isotopies. To our knowledge, the conceptual insight that certain Legen-
drian links, not just smooth links, underlie each of these four presentations of a positroid variety is
also new. It has the important consequence of allowing the description and study of positroid strata in
terms of contact topology, which has already been initiated in other works with fruitful consequences,
cf. [1, 7, 8, 9, 11]. In particular, [8, Theorem 1.1] established the relationship between braid varieties
and augmentation varieties. The contact isotopies between the four Legendrian links above imply that
the four braid varieties associated to these Legendrians are isomorphic to the corresponding positroid
variety, up to trivially adding frozens.

Finally, the article includes new results relating braid varieties to projective brick manifolds and open
Richardson varieties. In particular, we show that brick varieties are good projective compactifica-
tions of our affine braid varieties. This also allows us to relate their homology to the top a-degree
Khovanov-Rozansky homology of the underlying smooth link and establish the curious Lefschetz
property for open Richardson varieties. The article concludes with a brief discussion on conjectural
matters regarding cluster structures and Legendrian links.

1.1. Scientific Context. Positroid varieties first appeared in the study of total positivity [48, 49,
57, 59] and in the context of Poisson geometry [4]. Let Πu,w be the open positroid variety of the
Grassmannian Gr(k, n) indexed by a pair of permutations u,w ∈ Sn, where u ≤ w in Bruhat order
and w is k-Grassmannian. We consider the bijections between such pairs (u,w), bounded affine
permutations f : Z −→ Z, cyclic rank matrices r, and Le-diagrams Lestablished in [42, 57].

For instance, the bounded affine permutation f(u,w) : Z −→ Z corresponding to a pair (u,w) is
f(u,w) := u−1tkw, where tk is the translation by the kth fundamental weight; conversely, f recovers
(u,w). Here f is interpreted as a bijection f : Z → Z such that f(i+n) = f(i)+n and i ≤ f(i) ≤ i+n
for all i ∈ Z. The four pieces of data (u,w), f , r and Lare said to represent the same positroid type
if they correspond to each other under these bijections. Each piece of data, (u,w), f , r, and L, yields
an open stratum Πu,v, Πf , Πr, and Π Lin Gr(k, n), and Πu,v = Πf = Πr = Π Lif (u,w), f , r, and L
represent the same positroid type, cf. [42].

In Section 2 we explain how each of these pieces of data, (u,w), f , r and L, also yields a braid
word. In consequence, we can associate braids and links to each such four types of positroid data.
These four braids, which we correspondingly denote Rn(u, v), Jk(f), Mk(r) and Dk( L), are studied
in detail in this article. Either of these four braids will be referred to as a positroid braid. We also
connect the results in Section 2 to previous works in the literature, including [29, 42, 61].

In Section 3 we associate a Legendrian link to each such positroid braid. This has an important
consequence: we can construct the corresponding positroid strata in a contact geometric manner.
Namely, for the Legendrian links we construct from positroid braids, the corresponding positroid
stratum is recovered as a Legendrian invariant. Specifically, as the spectrum of the 0th homology of
the Legendrian contact dg-algebra. Therefore, it becomes a central question whether these Legendrian
links are Legendrian isotopic if they are obtained from data representing the same positroid type. This
is the content of Section 3, where we develop the necessary results to show that this is the case. Note
that these Legendrian links and their connection to positroid strata and their cluster algebras have
already featured in the recent preprints [1, 7, 9, 31, 30].

In Section 4 we study the braid varieties associated to these positroid braids. Braid varieties have
featured prominently in the series of articles [8, 7, 31, 30], where their cluster structures are studied.
The present manuscript is the second part of a trilogy: the first part is [8], where braid varieties
were studied through weaves, and third part is [7], which establishes the general existence of cluster
algebra structures on braid varieties. The current article studies some relevant algebraic geometric
aspects of braid varieties associated to positroid data in Section 4. These include their relation to open
Richardson varieties, the construction of smooth projective compactifications with normal crossing
divisors, and the computation of their torus-equivariant homology, among others.
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1.2. Main Results. By definition, two positive braid words β1, β2 are said to be equivalent if they
represent the same element in the braid group Brm. By [32], two equivalent β1, β2 represent the same
element in the braid monoid Br+m.

The first result, proven in Section 2, establishes the relation between the four types of positroid braids
Rn(u, v), Jk(f), Mk(r) and Dk( L).

Theorem 1.1. Let u,w ∈ Sn be such that u ≤ w in the Bruhat order and w is a k-Grassmannian
permutation, f a bounded affine permutation, r a cyclic rank matrix, and La Le-diagram. Suppose
that these four pieces of data represent the same positroid type. Then

(i) The n-stranded braid ∆nRn(u,w) and the k-stranded braid ∆kJk(f) are equivalent, up to
positive Markov stabilizations and adding unlinked disjoint strands.

(ii) The k-stranded braid Jk(f) and the k-stranded braid ∆kDk( L) are equivalent.

(iii) The k-stranded positive braids ∆kJk(f) and Mk(r) are equivalent. □

Note that Theorem 1.1.(i) relates two braids, Rn(u,w) and Jk(f), on a different number of strands.
Section 2.4 develops a Markov-type destabilization which is well-suited for comparing the different
types of algebraic combinatorics related to positroids.

The second result, established in Section 3, is a contact geometric counterpart of Theorem 1.1. Sec-
tion 3.1 introduces four Legendrian links Λ(u,w),Λ(f),Λ(r) and Λ( L) in (R3, ξst), each one associated
to a different type of positroid data.

Theorem 1.2. Let u,w ∈ Sn be such that u ≤ w in the Bruhat order and w is a k-Grassmannian
permutation, f a bounded affine permutation, r a cyclic rank matrix, and La Le-diagram. Suppose
that these four pieces of data represent the same positroid type.

Then the four Legendrian positroid links Λ(u,w),Λ(f),Λ(r),Λ( L) ⊆ (R3, ξst) are Legendrian isotopic,
up to unlinked max-tb Legendrian unknots. □

An important consequence of Theorem 1.2 is that the Legendrian contact dg-algebras associated
to each of these Legendrian links are stable tame isomorphic. In particular, the spectra of their
0th homology algebras are isomorphic up to torus factors and they coincide with the corresponding
positroid stratum, also up to torus factors. This provides an intrinsic and geometric way to recover
positroids from these Legendrian links.

The third result studies braid varieties associated to positroid braids. In particular, it relates braid
varieties to open Richardson varieties. Braid varieties X(β;w) associated to a braid (word) β and a
permutation w were introduced in [8], their definition is recalled in Section 4.1 below. The proof of
the following result uses Theorem 1.2 together with [42] to show that any positroid variety Πu,w in
the Grassmannian Gr(k, n) can be expressed in terms of braid varieties, either using the n-stranded
braid Rn(u,w) or the k-stranded braid Jk(f).

Theorem 1.3. Let u,w ∈ Sn with u ≤ w in Bruhat order, w a k-Grassmannian permutation, and
f := utkw

−1 the corresponding k-bounded affine permutation. Then we have algebraic isomorphisms

(i) Πu,w
∼= X(β(u−1w0,n)β(w0,nww0,n);w0,n)

(ii) X(β(u−1w0,n)β(w0,nww0,n);w0,n) ∼= X(Jk(f);w0,k)× (C∗)n−k−φ

of affine algebraic varieties, where φ := #{i ∈ [1, n] : f(i) = i} is the number of fixed points of f . □

Theorem 1.3 is proven in Section 4.3. Section 4 offers a fourth result as well. Section 4.4 shows that
the brick manifolds introduced in [18, Definition 3.2] provide smooth projective compactifications of
braid varieties. We denote the brick manifold of β by brick(β) and its maximal open stratum by
brick◦(β), cf. [18]. The precise relation we establish between braid varieties and brick manifolds is
the following:

Theorem 1.4. Let β = σi1 · · ·σiℓ ∈ Bn be a positive braid word, β∈ Bn its opposite, δ(β) the
Demazure product of β, and consider the truncations βj := σi1 · · ·σij , j ∈ [1, ℓ]. The following holds:



4 R. CASALS, E. GORSKY, M. GORSKY, AND J. SIMENTAL

(i) The algebraic map Θ : Cℓ −→ F ℓℓ+1
n , (z1, . . . , zℓ) 7→ (F st,F 1, . . . ,F ℓ), where F j is the flag

associated to the matrix B−1
βj
(zℓ−j+1, . . . , zℓ), restricts to an algebraic isomorphism

Θ : X( β; δ(β))
∼=−→ brick◦(β).

(ii) The complement to X( β; δ(β)) in brick(β) is a normal crossing divisor. Its components cor-
respond to all possible ways to remove a letter from βwhile preserving its Demazure product.

In particular, brick(β) is a smooth projective good compactification of the affine variety X( β; δ(β)).

Note that brick(β) depends on the choice of braid word β ∈ B+, and not just the braid element
[β] ∈ Br+, whereas X(β;w0) only depends on the positive braid [β]. Therefore, Theorem 1.4.(ii) can
be used to construct several smooth projective SNC compactification of the same braid variety.

In addition, Theorem 1.4, in combination with [18], clarifies the connection between braid varieties and
the combinatorics of subword complexes. This allows us to translate properties of spherical subword
complexes via brick manifolds to braid varieties, and vice versa.

Finally, Section 4.5 explains how to compute the torus-equivariant homology of braid varieties asso-
ciated to positroids. The article concludes in Section 5 with a brief discussion on conjectural matters.
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Notational Conventions: Here are our notational conventions and a comparison to those in the
existing literature. As usual, Sn is the symmetric group and si ∈ Sn is the simple transposition that
just swaps i and i+1. We multiply permutations as we compose functions. For example, s2s1 ∈ S3 is
the permutation s2s1(1) = 3, s2s1(2) = 1, s2s1(3) = 2. Our notion of a k-Grassmannian permutation
coincides with that of [42] but differs from the one in [29]. A reason to choose this convention is
Lemma 4.3 below.

Let Brn be the braid group in n strands with Artin generators σ1, . . . , σn−1. Let Br+n ⊆ Brn be
the monoid of positive braids. Braids are multiplied so that the map σi 7→ si, Brn → Sn is a group
homomorphism. When drawing braid diagrams, the convention is that the strands are enumerated
by 1, . . . , n from top to bottom. Due to the convention above, we draw the braid diagram of a braid
word as follows: we read the crossings (generators) of the braid word right-to-left and we draw them
in the braid diagram left-to-right. Thus, the following is a picture of the braid diagram for the braid
word σ2σ1 ∈ Br3:

3

2

1

σ1 σ2

σ2σ1 =

Note that the underlying permutation is indeed s2s1. We denote by Bn the set of braid words on
in the n Artin generators σ1, . . . , σn−1, of Brn, and B+

n the set of positive braid words. Two braids
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ak−1

...

ai+1

ai

ai−1

...

aj

b

aj−1

...

a1

ak−1

...

ai+1

c

ai

...

aj+1

aj

aj−1

...

a1

Figure 1. The interval braid σiσi−1 · · ·σj .

are said to be equivalent if they represent the same element in the braid group. Equivalently, if they
are represented by braid words which are related by a sequence of braid moves. The set of braids
equivalent to the braid represented by a braid word β ∈ Bn is denoted by [β]. Given a braid word
β, read left to right, its opposite βis defined to be the braid word β read right to left, i.e. in reverse
order. The half-twist word we use will be denoted by

∆n := (σ1)(σ2σ1)(σ3σ2σ1) · . . . · (σn−1σn−2 . . . σ2σ1) ∈ B+
n ,

and its Coxeter projection is denoted by w0,n ∈ Sn. If u,w ∈ Sn, we denote u ≤ w if u is less than w
in the Bruhat order. The tautological braid lift of a reduced expression of a permutaion w ∈ Sn to a
braid word in Br is denoted by β(w) ∈ Br or simply w ∈ Br. For a permutation w ∈ Sn, we denote
by w∗ its conjugation by the longest element: w∗ := w0,nww0,n. In particular, we have s∗i = sn−i.
Finally, the braid matrices we use in Section 4 coincide with those used in [8, 10] but differ from those
used in [7]. The two conventions differ by taking inverse matrices.

Finally, sometimes (in particular, in Section 2.3) we will consider permutation braids where the
strands are labeled in a non-standard way. In this case, we clearly state the labels and their order both
on the left and on the right, and how the left labels are connected to the right ones. This determines
a permutation braid uniquely up to braid moves.

In particular, we define interval braids as follows. An interval braid on k strands is a braid of
the form σiσi−1 · · ·σj for some 1 ≤ j ≤ i ≤ k − 1. When depicting such braids diagrammatically,
we label strands on the left and on the right by a pair of k-element subsets of [1, n] differing in
precisely one element, in the decreasing order from top to bottom on both sides. Explicitly, assume
that a1 > . . . > ak−1, aj−1 > b > aj for some 1 ≤ j ≤ k − 1 or b > a1, and ai > c > ai+1 for some
1 ≤ j ≤ k−2, c > a1 or ak−1 > c. The interval braid has labels a1, . . . , aj−1, b, aj , . . . , ak−1 on the left
and a1, . . . , ai, c, ai+1, . . . , ak−1 on the right. The labels a1, . . . , ak−1 are connected with the namesake
labels on the right, while b on the left is connected to c on the right. The resulting permutation braid
has i− j crossings. See Figure 1 for a visual description. □

2. Positroid Braids and Equivalences

In this section we introduce positroid braids and start discussing equivalences between them. After
setting up the necessary combinatorics in Subsection 2.1, we study positroid braids as follows:

(i) The Richardson braid is presented in Subsection 2.2 and the Juggling braid is presented in
Subsection 2.3. The former is an n-stranded braid and the latter is a k-stranded braid.

(ii) Subsection 2.4 shows how to relate the Richardson braid and the Juggling braid via a sequence
of generalized destabilization moves, which are also discussed in that subsection.
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(iii) The Le braid is introduced in Subsection 2.5, which also establishes its relation with the
Juggling braid, and the matrix braid is discussed in Subsection 2.6.

2.1. Combinatorial Data. Let us introduce the combinatorial data used to describe positroid
braids. Fix two natural numbers k, n ∈ N such that k ≤ n. There are four equivalent families
of combinatorial objects indexing open positroid strata that we employ: certain pairs of permuta-
tions u,w ∈ Sn, certain bijections f : Z −→ Z, Le diagrams and cyclic rank matrices. These are
schematically depicted in Figure 2. The object of this first subsection is to define part of these pieces
of combinatorial data and review the bijections we will need.

Figure 2. The four types of combinatorial data indexing positroid braids.

2.1.1. k-Grassmannian permutations and positroid pairs. By definition, a permutation w ∈ Sn is said
to be k-Grassmannian if

w(1) < w(2) < · · · < w(k), and w(k + 1) < · · · < w(n).

Similarly, X ∈ Sn is said to be a k-shuffle if X−1 is k-Grassmannian, that is, if

X−1(1) <X−1(2) < · · · <X−1(k), and X−1(k + 1) < · · · <X−1(n).

The set of k-Grassmannian permutations in Sn (equivalently, the set of k-shuffles) is in bijection
with the set of partitions λ whose Young diagram fits inside a k × (n− k)-rectangle, cf. [57, Section
19]. We do not distinguish between a partition λ and its Young diagram; we draw the latter in French
notation. Thus, if the Young diagram of λ fits inside a k × (n− k)-rectangle, we write λ ⊆ (n− k)k.
Such λ can be written as

λ = (λ1, . . . , λk)

where n − k ≥ λ1 ≥ · · · ≥ λk ≥ 0. Note that it is possible that λ has a zero part, e.g. λk = 0 is
allowed. Similarly, the transposed partition can be written as

λt = (λt1, . . . , λ
t
n−k)

where k ≥ λt1 ≥ · · · ≥ λtn−k ≥ 0. Again, it is allowed that λtn−k = 0; this happens if and only if
n− k > λ1.

For λ ⊆ (n − k)k, we denote by wλ ∈ Sn its associated k-Grassmannian permutation. By using
one-line notation, we can write

(2.1) wλ = [1 + λk, 2 + λk−1, . . . , k + λ1, k + 1− λt1, k + 2− λt2, . . . , n− λtn−k].

Note that the length of wλ is ℓ(wλ) = |λ| := λ1+. . .+λk. In fact, we can obtain reduced decompositions
for wλ as follows:

(2.2)
wλ = (sλk

· · · s1) · · · (sk+λ2−2 · · · sk−1)(sk+λ1−1sk+λ1−2 · · · sk)
= (sn−λt

n−k
· · · sn−1) · · · (sk+2−λt

2
· · · sksk+1)(sk+1−λt

1
· · · sk−1sk).

This expression can be read pictorially: we draw the Young diagram λ and fill the box in row i and
column j with the number k+j− i. The first reduced expression in Equation 2.2 above is obtained by
reading this diagram by rows. The second reduced expression is obtained by reading it by columns.
Throughout the paper, we use the convention that empty rows (with λi = 0) do not contribute to the
first product and the empty columns (with λti = 0) do not contribute to the second product.

Example 2.1. Let us consider the values k = 3 and n = 7 and the Young diagram λ = (4, 3, 1). By
filling the (i, j)-box of λ with 3 + (j − i) we obtain:

3

2

1

4

3

5

4

6
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The associated 3-Grassmannian permutation is

wλ = (s1)(s4s3s2)(s6s5s4s3) = (s6)(s4s5)(s3s4)(s1s2s3),

and note that the length ℓ(wλ) is indeed |λ| = 8. □

We can also read the permutation wλ as follows. First, we identify a partition λ ⊆ (n− k)k with a
sequence of n vertical and horizontal steps, that start from the northwest corner of the rectangle and
follow the shape of the partition until they reach the southeast corner. For example, the partition in
Example 2.1 corresponds to the sequence (H,V,H,H, V,H, V )2. Enumerate these steps consecutively
along the border of the partition. We will refer to these as the right labels of λ. We also enumerate
the left border of the rectangle with the numbers 1, . . . , k, reading top-to-bottom, and the bottom
border with the numbers k + 1, . . . , n, reading left-to-right. We refer to these as the left labels of λ.

For each vertical (resp. horizontal) step in the border of λ, draw a horizontal (resp. vertical) ray
to the left (resp. down). The resulting diagram is known as the wiring diagram of λ, and it gives the
permutation wλ by mapping the left labels to the right labels along the rays. See Figure 3.

7

65

432

1

7654

3

2

1

Figure 3. In one-line notation, wλ = [2, 5, 7, 1, 3, 4, 6]. Right labels shown in bold.

Definition 2.2. A pair of permutations (u,w) with u,w ∈ Sn is said to be a k-positroid pair if u ≤ w
in the Bruhat order and w is k-Grassmannian. A k-positroid pair will be simply referred to as a
positroid pair if k is understood from context. □

2.1.2. Le diagrams. In order to additionally record the data of u in a positroid pair (u,w), u,w ∈ Sn,
one enhances the Young diagram λ for w into a Le diagram. Let us recall that the hook of a box in
a Young diagram λ consists of all the boxes above it (in the same column) as well as all the boxes to
its right (in the same row). By definition, a Le diagram L= (λ, P ) consists of a partition λ together
with a collection P of boxes of λ, such that any box belonging to the hooks of two different boxes in
P must also be in P . Pictorially, we depict a Le diagram Las a partition λ together with dots in
some of its boxes, precisely in those that belong to P . We thus refer to boxes in P as boxes with a
dot.

Fixing a partition λ ⊆ (n − k)k, [57, Theorem 19.1] shows that there is a bijection between Le
diagrams with underlying partition λ and elements u ∈ Sn with u ≤ wλ. To a Le diagram L= (λ, P ),
the bijection associates the permutation u that is obtained by deleting the simple transpositions
corresponding to boxes in P in either of the reduced decompositions (2.2) of wλ. See Example 2.3.
Thus, for each k ∈ [n], there is a bijection between k-positroid pairs (u,w) in Sn and Le diagrams
whose underlying partition fits into a k × (n− k)-rectangle.

Example 2.3. Let us consider the values (k, n) = (4, 6) and the Young diagram λ = (2, 2, 2, 2).
The associated permutation is wλ = (s2s3s4s5)(s1s2s3s4).Choose the permutation u = (s4)(s2s3) ∈
S6,which satisfies u ≤ w. The Le diagram associated to this pair (u,w) is drawn on Figure 4.(B). In
one-line notation we have

w−1 = [5, 6, 1, 2, 3, 4], w = [3, 4, 5, 6, 1, 2],

u−1 = [1, 4, 2, 5, 3, 6], u = [1, 3, 5, 2, 4, 6]

Note that w−1 is a 4-shuffle in S6. □

2Note that the sequence of steps depends on the size of the box k × (n − k) and not just on the partition λ. For

example, the partition in Example 2.1 considered inside a 4× 4 box yields the sequence (V,H, V,H,H, V,H, V ).
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4

3

2

1

5

4

3

2

(a) The Young diagram λ = (2, 2, 2, 2) as-
sociated to wλ = (s2s1)(s3s2)(s4s3)(s5s4) =
(s2s3s4s5)(s1s2s3s4).

•

•

•

•
•

(b) The Le diagram associated to the pair
(u,wλ), for u = (s2)(s4s3) = (s4)(s2s3).

Figure 4. Constructing a Le diagram from a pair (u,w).

Note that from a Le diagram L= (λ, P ), we can read the permutation u in a similar way to how we
read the permutation w from the Young diagram λ. Simply make the following change to any box
with a dot:

In Example 2.3 we have:

•

•

•

•
•1

2

3

4

5 6

1 2

3

4

5

6

which coincides with u = [1, 3, 5, 2, 4, 6].

2.1.3. Bounded affine permutations. Finally, let us discuss k-bounded affine permutations of size n,
following [42]. By definition, an affine permutation f : Z → Z of size n is a bijection such that
f(i + n) = f(i) + n for all i ∈ Z; we often denote affine permutations in one-line window notation
f = [f(1) . . . f(n)]. By definition, an affine permutation is said to be k-bounded if the following
conditions are satisfied:

i ≤ f(i) ≤ i+ n, i ∈ Z and

n∑
i=1

(f(i)− i) = nk.

By [42, Prop. 3.15], a k-bounded affine permutation f admits a unique decomposition of the form

(2.3) f = uf tkw
−1
f , where tk := [1 + n, 2 + n, . . . , k + n, k + 1, k + 2, . . . , n],

with (uf , wf ) ∈ Sn a positroid pair. This is to say, any k-bounded affine composition admits a unique
decomposition of the form

f = U−1tkX

where X is a k-shuffle permutation and U ≤ X.

Let us provide an explicit description of the permutations uf , wf appearing in (2.3). For that, we
note that there exist exactly k values i1 < i2 < . . . < ik of ir ∈ [1, n] such that n < f(ir), and exactly
(n − k) values j1 < j2 < · · · < jn−k of jt ∈ [1, n] such that f(jt) ≤ n. The permutations uf , wf are
then described as follows:

(2.4) wf := [i1, i2, . . . , ik, j1, j2, . . . , jn−k],

(2.5) uf := [f(i1)− n, . . . , f(ik)− n, f(j1), . . . , f(jn−k)].
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Note that wf is a k-Grassmannian permutation and u ∈ Sn, since n < f(ir) ≤ 2n for every r ∈ [1, k].
The permutations uf , wf coincide with the permutations in [42, Proposition 3.15]. 3

Example 2.4. First, for the trivial n-translation f = tk = [1 + n, . . . , k + n, k + 1, . . . , n], we have
(i1, . . . , ik) = (1, . . . , k) and thus wf = [1, 2, . . . , n]. Similarly, uf = [1, 2, . . . , n] is also the identity.

Second, for the k-bounded permutation f defined by f(i) = i + k, we obtain that (i1, . . . , ik) =
(n − k + 1, . . . , n) and hence wf = [n − k + 1, . . . , n, 1, . . . , n − k] is the maximal k-Grassmannian
permutation. In this second case, the permutation uf = [1, 2, . . . , n] is still the identity. □

Next, we record some facts translating the notations between Le diagrams and bounded affine per-
mutations.

Lemma 2.5. Suppose that u ≤ w correspond both to the Le diagram of shape λ and to the bounded
affine permutation f , so that f = utkw

−1. Let i1, . . . , ik and j1, . . . , jn−k be as above. Then:

a) i1 = 1+λk, i2 = 2+λk−1, . . . , ik = k+λ1 and j1 = k+1−λt1, j2 = k+2−λt2 . . . , jn−k = n−λtn−k.

b) If the Le diagram for u ≤ w has no dots in the rightmost column then

f(jn−k) = u(n) = w(n) = jn−k.

Otherwise f(jn−k) = u(n) = n− d+ 1, with d the row number of the lowest dot in the last column.

Proof. Part (a) follows by comparing the two formulas (2.1) and (2.4) for w in one-line notation. The
first part of Part (b) holds by construction. To prove the second part, observe that

w = (sn−λt
n−k

· · · sn−1) · · · (sk+1−λt
1
· · · sk)

and that we have u = (asn−d+1 · · · sn−1)b, where b does not contain sn−1 and a is a subword of
(sn−λt

n−k
· · · sn−d−1). Therefore u(n) = n− d+ 1. □

Lemma 2.5 above gives us a direct way for moving from the Le diagram to the corresponding
bounded affine permutation. Let us fix a Le diagram Lwith the underlying partition λ. Recall the
left and right labels for λ from Section 2.1.1. It follows from identity (2.4) that i1, . . . , ik are the right
labels corresponding to the vertical steps of λ, while j1, . . . , jn−k are the right labels that correspond
to the horizontal steps.

Now we consider the wiring diagram of L. The following two facts are a consequence of (2.5).

(a) Consider the wire starting at the bottom of the s-th column of Lwith the left label s + k.
Then, f(js) is the right label of the endpoint of this wire.

(b) Consider the wire starting on the left of the ℓ-th row of Lwith the left label ℓ. Then,
f(iℓ) = n+ t, where t is the right label of the endpoint of this wire.

Note that (a) and (b) imply that the dotless columns of Lcorrespond to the fixed points of f ; while
the dotless rows correspond to x ∈ {1, . . . , n} satisfying f(x) = x+ n. See Figure 5 for an example.

For 1 ≤ s ≤ n− k we define

(2.6) inv(s) := ♯{t > s : f(jt) < f(js)}.

Lemma 2.6. For all s ∈ [1, n− k], we have the inequalities

js ≤ f(js)− inv(s) ≤ k + s

The first inequality is sharp unless f(js) = js.

Proof. If t > s then jt > js. If f(jt) < f(js) then

js < jt ≤ f(jt) < f(js),

and since f is injective all such f(jt) are distinct. Therefore either f(js) = js and inv(s) = 0, or
inv(s) ≤ f(js)− js − 1, so f(js)− inv(s) ≥ js + 1.

For the second inequality, observe that

(2.7) ♯{t > s : f(jt) > f(js)} = n− k − s− inv(s),

3Our notation coincides with that of [42]. Note that what [29] calls a k-Grassmannian permutation is what we call

a k-shuffle, so the decomposition in [29, Proposition 4.2] is in fact the decomposition f = U−1
tkX.
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•

•

•

•

•

1 2

3

4

5

6

Figure 5. The wiring diagram for the Le diagram of Example 2.3. If f
is the corresponding bounded affine permutation, then f(1), f(2) < n, while
f(3), f(4), f(5), f(6) > n. Moreover, to find f(1) we follow the red strand start-
ing opposite to 1, and see that f(1) = 4. Similarly, f(2) = 6. Likewise, to find f(3)
we follow the blue strand starting opposite to 3, and see that f(3) = 1+6. Similarly,
f(4) = 3+6, f(5) = 5+6, f(6) = 2+6. Note that the only dotless row has the right
label 5: this corresponds to 5 being the only x ∈ {1, . . . , 6} satisfying f(x) = x+ 6.

so we have at least n − k − s − inv(s) distinct integers between f(js) + 1 and n. Therefore f(js) +
n− k − s− inv(s) ≤ n and f(js)− inv(s) ≤ k + s. □

2.2. Richardson Braids. Given a permutation v ∈ Sn, we will denote by β(v) ∈ Br+n its reduced
positive braid lift to the n-stranded braid group. A positive braid word for the braid β(v) ∈ Br+n ,
which we also denote by β(v) ∈ B+

n , is obtained by considering a reduced expression v = si1 . . . siℓ(v)
for

v ∈ Sn in terms of a product of the simple transpositions s1, . . . , sn−1 ∈ Sn generating the symmetric
group Sn and substituting each si by the Artin braid generator σi, i ∈ [1, n], i.e. β(v) = σi1 . . . σiℓ(v)

.

The braid word β(v) depends on the choice of a reduced expression of v, but all such words for
a given v are related by braid relations σiσi+1σi = σi+1σiσi+1, a.k.a. Reidemester III moves, and
commutation relations, and thus represent the same braid. Recall the notation v∗ := w0vw0.

Definition 2.7 (Richardson braid). Let u,w ∈ Sn be two permutations such that u ≤ w in the
Bruhat order. The Richardson braid word Rn(u,w) ∈ Bn associated to the pair (u,w) is

Rn(u,w) := β(u∗)−1β(w∗).

By definition, the smooth Richardson link is the smooth link Λ(u,w) ⊆ R3 given by the 0-framed
closure of the n-stranded braid word Rn(u,w). □

Definition 2.7 is inspired by [29, Section 1.5]. The reason we have to conjugate by w0 is Corollary 4.6.
See also Remark 4.7. Let us also define a version of the Richardson braid with only positive Artin
generators, together with its associated smooth link:

Definition 2.8 (Positive Richardson braid). Let u,w ∈ Sn be two permutations such that u ≤ w in
the Bruhat order. The positive Richardson braid word R+

n (u,w) ∈ Bn associated to the pair (u,w) is

R+
n (u,w) := β(u−1w0)β(w

∗).

By definition, the positive Richardson link is the smooth link Λ+(u,w) ⊆ R3 associated to the 0-
framed closure of the n-stranded braid word ∆−1

n R+
n (u,w). □

Remark 2.9. We emphasize that the braid words in Definitions 2.7 and 2.8 depend on the choice
of reduced expressions of u and w, but the braids Rn(u,w), R

+
n (u,w), and ∆−1

n R+
n (u,w) depend only

on the pair (u,w). The smooth links Λ(u,w) and Λ+(u,w) thus also depend only on the pair (u,w).

By construction, the smooth links Λ(u,w) and Λ+(u,w) are smoothly isotopic. Indeed, note that
we can find a reduced expression ∆n = β(u−1w0)β(u

∗), so that

∆−1
n = β(u∗)−1β(u−1w0)

−1

and it follows that, in the braid group Brn, the braids ∆−1
n R+

n (u,w) and Rn(u,w) are equivalent. □
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2.3. Juggling Braid. Let f be a k-bounded affine permutation. In this section, we construct a braid
Jk(f) on k-strands, called the juggling braid of f , and provide an explicit braid word for it.

Given a k-bounded affine permutation f : Z −→ Z, we picture it as follows. We consider the
plane R2 with Cartesian coordinates (x, y). For each number i ∈ Z, we join i to f(i) using the
upper-circumference arc Af(i)(f)

4:

Af(i)(f) =

{
(x, y) ∈ R2 :

(
x− i+ f(i)

2

)2

+ y2 =
(f(i)− i)2

4

}
∩ {y ≥ 0} ⊆ R2.

If f(i) = i, then Ai(f) = Af(i)(f) is an arc of radius zero that we represent by a dot at (i, 0). The
union of the arcs Ai, i ∈ Z is referred to as the affine juggling diagram of f , cf. [42].

Example 2.10. Let us choose k = 3, n = 7 and f = [3, 4, 9, 6, 7, 12, 8]. Then the affine juggling
diagram has the following form.

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
. . .

Since the function f is n-periodic, so is its affine juggling diagram. Thus, to recover the affine
juggling diagram it is enough to consider the arcs Aj , j = 1, . . . , n, whose rightmost points are at
(j, 0) with j = 1, . . . , n. The union of all such arcs will be referred to as simply the juggling diagram
of f . Moreover, we orient the arcs in a counterclockwise direction.

Example 2.11. The juggling diagram of the function f from Example 2.10 is

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8

By virtue of f being a k-bounded affine permutation, there exist exactly k values 1 ≤ i1 < . . . <
ik ≤ n such that n < f(is) ≤ 2n. Equivalently, 0 < f(is)− n ≤ n, and f−1(f(is)− n) = is − n ≤ 0.
Thus, we obtain k arcs Af(i1)−n, . . . , Af(ik)−n in the juggling diagram of f whose leftmost point is
at (i, 0) with i ≤ 0. We call these upper-circumferences special. The juggling braid is defined via a
tangle diagram obtained from the juggling diagram, as follows:

Definition 2.12 (Juggling Braid). Let f : Z −→ Z be a k-bounded affine permutation of size n, and
consider the juggling diagram for f as defined above, which is the union of all the arcs of non-zero
radius among A1, . . . , An oriented in the counterclockwise direction. By definition, the juggling braid
Jk(f) is the braid defined by this tangle, declaring all the crossings between these arcs to be positive
and smoothing the intersections with the x-axis according to the local models depicted in Figure 6.

Figure 6. Local models constructing the juggling braid from the juggling diagram.

4For convenience, cf. Definition 2.12, we choose to label the upper-circumference arc Af(i)(f) by its rightmost point.
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Remark 2.13. Let us comment on the number of strands of Jk(f), as well as their labeling. Note
that the elements i1, . . . , ik satisfying f(ik) > n are precisely those points which are not the leftmost
point of an arc in the juggling diagram of f . We thus have k strands and with initial points i1, . . . , ik.
We label the strands so that the j-th strand is precisely the strand whose initial point is ik−j+1.

To see that Jk(f) has precisely k strands we can alternatively think of a juggler with k balls and
think of the arcs in Jk(f) as being the trajectories for these balls while being juggled. Here x denotes
the time coordinate and y denotes the height of a ball. This implies the following simple fact:

Proposition 2.14. Each vertical line with non-integer coordinate intersects Jk(f) in at most k arcs,
which correspond to distinct strands of the juggling braid. □

Example 2.15. The following will be our running example. Consider the 4-bounded affine permuta-
tion of rank 6, f = [4, 6, 7, 9, 11, 8]. The juggling diagram of f is as follows:

-3 -2 -1 0 1 2 3 4 5 6 7 8

And thus the juggling braid is as follows:

Remark 2.16. One can use parabolas, which correspond to actual juggling trajectories, or other
curves instead of circles in the definition of Jk(f). As long as these curves are convex and each pair
of curves intersects at most once, the resulting braids are all related by Reidemeister III moves. □

Thanks to the previous remark, we may assume that all the crossings between special arcs come
after all other crossings. This means that we have a decomposition

Jk(f) = J
(2)
k (f)J

(1)
k (f)

where J
(2)
k (f) records the crossings between special arcs, and J

(1)
k (f) records all other crossings. Note

that by definition, J
(2)
k (f) is a reduced k-stranded braid. In our running Example 2.15 we have:

J (1)(f) J (2)(f)

Finally, we define the link associated to the juggling diagram.

Definition 2.17. Let f be a k-bounded affine permutation. The juggling link Λ(f) ⊆ R3 is the
smooth 0-framed closure of ∆−1

k Jk(f).

2.3.1. The braid J
(1)
k (f). In this section, we express the braid J

(1)
k (f) as a product of (n− k) interval

braids, some of which may be empty, that naturally correspond to the columns of the Le diagram L

corresponding to f . As defined above, a crossing in Jk(f) belongs to the braid J
(1)
k (f) if and only if

at least one of the arcs involved in the crossing is not special. Here is the construction.

Definition 2.18. Suppose that s < t < u < f(s) < f(t) < f(u), so that the arcs Af(s), Af(t) and
Af(u) pairwise intersect. We say that Af(s), Af(t) and Af(u) are in good position if Af(s) ∩ Af(u) is
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inside Af(t). Equivalently, Af(s) ∩Af(t) is outside Af(u) and Af(t) ∩Af(u) is outside Af(s) (see Figure
7). Otherwise we say that these three arcs form an inversion triple. We say that a juggling diagram
is in good position if all triples of arcs as above are in good position. □

s t u f(s) f(t) f(u) s t u f(s) f(t) f(u)

Figure 7. Good position (left) and inversion triple (right).

Lemma 2.19. Up to braid moves, we can draw a juggling diagram for J
(1)
k in good position.

Proof. First, consider a reduced braid with strands labeled on the left. Following [16] (see also [50]),
we denote by (s|t) a crossing between the strands labeled by s and t. Three strands labeled by s, t,
and u form an inversion triple if s < t < u and the crossings between the respective strands appear
from left to right in the order (t|u), (s|u), (s|t) (called the antilexicograhic order in [16]). Now [16,
Proposition 3.15, Corollary 3.16] state that any reduced braid can be transformed via braid moves
to a unique braid word without inversion triples. Furthermore, this can be achieved by braid moves
which always reduce the number of inversion triples.

Our braid J
(1)
k is not reduced, but any two arcs intersect at most once. Therefore any collection

of arcs where each arc belongs to a different strand of J
(1)
k is reduced, and we can repeatedly apply

the above result and Proposition 2.14 as we scan the braid from right to left. This would ensure
that the number of inversion triples to the right of a given vertical line can be decreased to zero, and
eventually we will eliminate all inversion triples. □

To describe the braid J
(1)
k , we use the Le diagram Lcorresponding to f and the notations

i1, . . . , ik, j1, . . . , jn−k as above. In particular, f(is) > n and Af(is)−n are special arcs, while f(jt) ≤ n

and Af(jt) are non-special arcs. Moreover, Ai1 , . . . , Aik are the initial arcs of the k strands of J
(1)
k .

Lemma 2.20. For t > s ≥ 0, we have f(jt) ∈ {i1, . . . , ik, jn−k, . . . , js+1}.

Proof. Note that w = [i1, . . . , ik, j1, . . . , jn−k] is a permutation of [1, . . . , n], hence

{1, . . . , n} = {j1, . . . , js} ⊔ {i1, . . . , ik, jn−k, . . . , js+1}.
For t > s, we have f(jt) ≥ jt > js, so f(jt) /∈ {j1, . . . , js}. □

We define the sets

(2.8) Tn−k−s := {i1, . . . , ik, jn−k, . . . , js+1} \ {f(jn−k), . . . , f(js+1)}, s = 0, . . . , n− k.

By Lemma 2.20 these have exactly k elements for each s. Note that if js is a fixed point of f , then
js ̸∈ Ti for all i. Also note that

T0 = {i1, . . . , ik},
Tn−k = {i1, . . . , ik, jn−k, . . . , j1} \ {f(jn−k), . . . , f(j1)} = {f(i1)− n, . . . , f(ik)− n},

and
Tn−k−s+1 = (Tn−k−s ∪ {js}) \ {f(js)}

so that, if js is a fixed point of f , we get Tn−k−s+1 = Tn−k−s.

Lemma 2.21. In the notation above, the following hold:

(a) Assume that J
(1)
k is in good position. Then it can be written as a product of braids

J
(1)
k = I1 · · · In−k,

where Is is given by the crossings of the arc Af(js) with arcs Af(jt), t < s, as well as all the
crossings of Af(js) with the special arcs.
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(b) If f(js) = js then the braid Is is trivial.
(c) If f(js) > js, label the strands by the set Tn−k−s on the left, and by Tn−k−s+1 on the right,

in decreasing order from top to bottom. Then the braid Is is the interval braid which connects
f(js) on the left to js on the right, and all other elements of Tn−k−s+1 to themselves.

Proof. For Part (a), the definition of good position implies that all crossings between Ajt and Ajt′

with t, t′ > s (resp. t, t′ < s) are located to the right (resp. left) of Ajs . Furthermore, if t < s < t′

then the crossing Ajt ∩Ajs is to the left of the crossing Ajs ∩Ajt′ , so we can indeed sort the crossings
as desired. Part (b) is immediate since f(js) = js is a dot in the juggling diagram which we ignore in
the juggling braid.

For Part (c) first note that, since it − n < 0 < js ≤ f(js), the arcs Af(js) and Af(it)−n cross if and
only if js < f(it) − n < f(js). It follows that the braid Is records the crossings of Af(js) only with

arcs whose right endpoint is to the left of f(js), and thus it must be an interval braid. Let Ĩs denote

the interval braid connecting Tn−k−s+1 and Tn−k−s as above, we need to verify that Is = Ĩs. Note

that the crossings in Ĩs are labeled by x ∈ Tn−k−s+1 such that js < x < f(js). If x = f(it) − n for
some t, then we have it − n ≤ 0 < js < f(it − n) < f(js) so the arcs Af(js) and Af(it)−n intersect
once. Now assume that x is not of the form f(it) − n, so it must be of the form f(jt) for some t.
Note that necessarily t < s, for otherwise f(jt) ̸∈ Tn−k−s. So we have jt < js < f(jt) < f(js) and

the arcs Af(js) and Af(jt) intersect once. It follows that both Is and Ĩs involve crossings between the
same strands, and since both are interval braids the result follows. □

Example 2.22. Let us take the bounded affine permutation of Example 2.15. We have f = [4, 6, 7, 9, 11, 8]
and, as we have seen, the juggling diagram of f is:

-3 -2 -1 0 1 2 3 4 5 6 7 8

◦
◦

◦

◦

The crossings marked with ◦ represent crossings between two special arcs, and thus they will not

be represented in the braid J
(1)
k (f). Note that i1 = 3, i2 = 4, i3,= 5, i4 = 6, while j1 = 1 and j2 = 2.

Thus, we start with the set T0 = {3, 4, 5, 6}. Note that T1 = (T0 ∪ {2}) \ {f(2)} = {2, 3, 4, 5}, and we
find the interval I2 as follows:

3

4

5

6

T0

2

3

4

5

T1I2

Now, T2 = (T1 ∪ {1}) \ {f(1)} = (T0 ∪ {2, 1}) \ {f(2), f(1)} = {1, 2, 3, 5}, and we find the interval I1
that is concatenated to I2 on the right:

3

4

5

6

T0

2

3

4

5

T1

1

2

3

5

T2I2 I1

Comparing to Example 2.15, this braid coincides with J
(1)
k (f). □

In order to find an explicit description of the interval Is, we need to find the relative positions of
f(js) in Tn−k−s and of js in Tn−k−s+1. This is achieved in the following lemma.
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Lemma 2.23. Assume f(js) > js. Then:

(a) The set {x < f(js) | x ̸∈ Tn−k−s} has precisely inv(s) + s elements.

(b) The set {x < f(js) | x ∈ Tn−k−s} has precisely f(js)− inv(s)− s− 1 elements.

(c) The set {x < js | x ∈ Tn−k−s+1} has precisely js − s = k − λts elements.

Proof. For Part (a), Lemma 2.20 implies

{1, . . . , n} \ Tn−k−s = {j1, . . . , js} ⊔ {f(js+1), . . . , f(jn−k)}.
Assume that x /∈ Tn−k−s and x < f(js). We have the following two cases:

1) x ∈ {j1, . . . , js}, then x ≤ js < f(js) and x /∈ Tn−k−s. This accounts for s elements.

2) x = f(jt) for t > s and f(jt) < f(js). This accounts for inv(s) elements.

Part (b) follows from Part (a). For Part (c), among js − 1 elements {1, . . . , js − 1} there are s − 1
elements j1, . . . , js−1 and (js−s) elements it < js. None of them belongs to {f(js), . . . , f(jn−k)}. The
former are all not in Tn−k−s+1 but the latter all are. The last equation follows from Lemma 2.5. □

Corollary 2.24. The interval braid Is is given by

Is = sλt
s−1 · · · sk−f(js)+inv(s)+s+1.

and

J
(1)
k = I1 · · · In−k.

Proof. This follows from Lemma 2.21 and Lemma 2.23. □

2.3.2. The braid J (2)(f). The braid J (2)(f) takes care of all the crossings between special arcs and
it is reduced. Recall that these arcs are Af(i1)−n, . . . , Af(ik)−n, where the special arc Af(iℓ)−n joins
iℓ − n to f(iℓ − n) = f(iℓ)− n. If ℓ < s, then we have iℓ − n < is − n ≤ 0 < f(iℓ − n), so the special
arcs Af(iℓ)−n and Af(is)−n will cross precisely when f(iℓ−n) < f(is−n), that is, when f(iℓ) < f(is).
This implies the following result:

Proposition 2.25. Let f be a k-bounded affine permutation. Then the braid J (2)(f) is a positive
reduced lift of the inverse of the permutation that sorts (f(i1), . . . , f(ik)) in decreasing order. □

In Example 2.15 we have that i1 = 3, i2 = 4, i3 = 5, i4 = 6, while f(i1) = 7, f(i2) = 9, f(i3) = 11,
f(i4) = 8 so that J (2)(f) is

7

8

9

11

i4

i3

i2

i1

This concludes our presentation of the braid Jk(f) and its properties. Let us now compare the links
we obtain from Jk(f) to those obtained from Richardson braids.

2.4. Generalized destabilizations and comparison of Λ(u,w) and Λ(f). The main result of
this subsection is to establish that, possibly up to unlinked unknots, the smooth links Λ(u,w) and
Λ(f) are smoothly isotopic.

Theorem 2.26. Let (u,w) be a positroid pair and f = utkw
−1 its associated bounded affine permu-

tation. Then the smooth link Λ+(u,w) ⊆ R3 is smoothly isotopic to the smooth link Λ(f) ⊆ R3, up to
a possibly empty collection of unlinked unknots.

Theorem 2.26 is proven by appropriately using the following lemma iteratively.

Lemma 2.27. Let β1 ∈ Brn be a positive braid on n strands in the generators σ1, . . . , σn−1 and

β2 ∈ Brn+1 the lift of a permutation w ∈ Sn+1 on (n+1) strands. Set j := w−1(n+1), let β̃1 ∈ Brn+1

be the braid obtained from β1 by shifting the indices of the Artin generators up by 1, and let β′
2 ∈ Brn

be the braid obtained from β2 by removing the strand that ends at the bottom on the right of β2.
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Figure 8. The sequence of moves starting with R(u,w), on the upper left corner,
and finishing with Jk(f) on the lower right corner. We have marked in blue the
occasions where we use Lemma 2.27, and we have chosen to draw the link diagrams
as fronts, as in Lemma 3.7, for easier reference. (So all crossings in these link diagrams
are over-crossings.)

(1) Consider the braid words η1 := ∆n+1β2(σℓ · . . . · σj+1σj · . . . · σ2σ1)β̃1 ∈ Brn+1, an (n + 1)-
stranded positive braid, and η2 := ∆nβ

′
2(σℓ−1 ·. . .·σj+1)β1 ∈ Brn, an n-stranded positive braid.

Then the 0-framed smooth closure of η1 is smoothly isotopic to that of η2.

(2) Consider the braid words η1 := ∆n+1β2(σjσj−1 · . . . · σ1)β̃1 ∈ Brn+1, an (n + 1)-stranded
positive braid, and η2 := ∆nβ

′
2β1 ∈ Brn, an n-stranded positive braid.

Then the 0-framed smooth closure of η1 is smoothly isotopic to the unlinked union of the
0-framed smooth closure of η2 and an unknot.

□

For now, Lemma 2.27 will be left unproven and we just directly use it. In the next section we will
independently prove Lemma 3.7, which is a stronger version that implies Lemma 2.27.

Example 2.28. Before proving Theorem 2.26, we verify it in Example 2.15 as follows. Recall that
f = [4, 6, 7, 9, 11, 8], so that w = [3, 4, 5, 6, 1, 2] and u = [1, 3, 5, 2, 4, 6]. From Example 2.3 we obtain:

β(w) = (σ2σ3σ4σ5)(σ1σ2σ3σ4) ⇒ β(w∗) = (σ4σ3σ2σ1)(σ5σ4σ3σ2),

and u−1w0 = [1, 4, 2, 5, 3, 6]w0 = [6, 3, 5, 2, 4, 1]. Figure 8 then shows the sequence of moves, using
Lemma 2.27, that starts with the Richardson link and ends with the Juggling link. □

Now, Subsection 2.2 defines the Richardson link Λ(u,w) to be smooth 0-framed closure of the braid
∆−1

n β(u−1w0)β(w
∗) , where (u,w) is a positroid pair. It will be more convenient to write this braid

word as ∆−2
n ∆nβ(u

−1w0)β(w
∗) and focus on the piece ∆nβ(u

−1w0)β(w
∗), where all our changes will

take place, see e.g. Figure 8. Let f = fu,w = utkw
−1 be the associated bounded affine permutation,

as in Subsection 2.1.3. By the identity (2.5),

u = [f(i1)− n, . . . , f(ik)− n, f(j1), . . . , f(jn−k)]

and therefore

uw0 = [f(jn−k), . . . , f(j1), f(ik)− n, . . . , f(i1)− n].

Now note that

(2.9) u−1w0 = (w0(uw0)w0)
−1.
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In particular, up to conjugation by the longest element w0, the inverse of the restriction of the
permutation u−1w0 to {n − k + 1, . . . , n} is the permutation J (2)(f) which sorts f(i1), . . . , f(ik) in
decreasing order, see Proposition 2.25.

The iterative applications of Lemma 2.27 that will lead to a destabilization procedure from Rn(u,w)
to Jk(f) are indexed by the columns of the corresponding Le diagram. The two basic steps we need
are as follows:

(1) First, suppose that the Le diagram for (u,w) has dots in the rightmost column, with the
lowest dot in row d. Then we schematically draw the braid as follows:

1
...
d

...

λt
n−k + 1

w∗
n

u−1w0 ∆n

w̃

x = 0 x = 1 x = 2

Write w = (sn−λt
n−k

· · · sn−1)w
′, so that w∗ = (sλt

k−t
· · · s1)w̃, and note that, by (2.9),

u−1w0 is a permutation braid that connects n on the right with w0u(n) = w0(f(jn−k)) =
w0(n − d + 1) = d on the left, where the equation f(jn−k) = n − d + 1 follows from Lemma
2.5. Then, the thick blue strand in the figure above can be removed by Lemma 2.27, leaving
a braid which can be described as follows. On the side of w0ww0 = w∗, we get(

sλt
n−k

· · · sd
)
· w̃ = w̃ ·

(
sλt

n−k+n−k−1 · · · sd+n−k−1

)
.

On the side of u−1w0, we just remove the strand connecting d to n and leave the rest un-
changed. On the side of ∆n, we remove the strand connecting n to 1, and get ∆n−1.

(2) Second, suppose that the last column of the Le diagram is empty. Then by Lemma 2.5
u(n) = f(jn−k) = n− λtn−k, so by (2.9) we get u−1w0(λ

t
n−k + 1) = n, and thus the diagram

has the following form:

1
...
...

...

λt
n−k + 1

w∗
n

u−1w0 ∆n

w̃

x = 0 x = 1 x = 2

In this case the thick line closes up to an unknot. By Lemma 2.27 this unknot is unlinked
from the rest of the link diagram. After moving it away, we are left with w̃ instead of w.

We refer to either of the two operations above as a (generalized) destabilization. Let us now prove
Theorem 2.26 by appropriately applying it (n− k) times, as follows.

Lemma 2.29. At the m-th step, 1 ≤ m ≤ n− k+ 1, of the above destabilization procedure we get an
(n+ 1−m)-strand braid that can be decomposed into the following three parts:
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(a) The first part β
(1)
m is the product of interval braids

n−k∏
h=m

(
sλt

n−k+1−h+h−1 · · · sh
)
×

m−2∏
ℓ=0

(
sλt

n−k−m−2+ℓ+n−k−1 · · · s2n−k−m−ℓ+3+inv(n−k−m+2−ℓ)−f(jn−k−m+2−ℓ)

)
,

where for m = 1 the second product is assumed to equal 1 and for m = n − k + 1 the first
product is assumed to equal 1.

(b) The second part β
(2)
m is a permutation braid obtained as a part of the wiring diagram for u−1w0

connecting 1, . . . , n−m+ 1 on the right with u−1(n), . . . , u−1(m) on the left.

(c) The third part is ∆n−m+1.

Proof. We prove this by induction in m. For notational convenience, we refer to the left end of β
(1)
m

as x = 0, to the right end of β
(1)
m which coincides the left end of β

(2)
m as x = 1 and to the right end of

β
(2)
m as x = 2 (see figures above). For m = 1 we get

(2.10) β
(1)
1 = w∗ =

(
sλt

n−k
· · · s1

)
· · ·

(
sλt

1+n−k−1 · · · sn−k

)
.

and β
(2)
1 = u−1w0.

Assume that the statement holds for all 1 ≤ j ≤ m. To prove the step of induction, we mark in
blue the bottom-most strand at x = 2. It is labeled by n −m + 1 at x = 2 and by (u−1w0)

−1(n −
m+ 1) = w0u(n−m+ 1) = w0(f(jn−k−m+1)) = n+ 1− f(jn−k−m+1) at x = 1. For brevity, denote
m′ := n− k −m+ 1.

By assumption, the rightmost interval braid in β
(1)
m is

(2.11) sm−1+λt
n−k−m+1

· · · sm = sm−1+λt
m′

· · · sm.

We need to verify that we can apply Lemma 2.27. Let us count the number of strands above the
blue strand n+1−f(jm′) we have removed at x = 1. Note that such strands correspond to 1 ≤ ℓ < m
such that n+1−f(jℓ′) < n+1−f(jm′) where ℓ′ := n−k− ℓ+1, that is, they correspond to elements
n− k ≥ ℓ′ > m′ such that f(jℓ′) > f(jm′). Thanks to (2.7), there are precisely n− k −m′ − inv(m′)
such strands. We conclude that the blue strand occupies the position

n+ 1− f(jm′)− (n− k −m′ − inv(m′)) = k + 1 +m′ + inv(m′)− f(jm′)

and, in order to verify we can apply Lemma 2.27, we need to verify that

k +m′ + inv(m′)− f(jm′) ≤ λtm′ = k +m′ − jm′ ⇔ jm′ ≤ f(jm′)− inv(m′)

which holds thanks to Lemma 2.6. So we can indeed use Lemma 2.27 in order to destabilize. We have
cases:

- If jm′ = f(jm′)− inv(m′), then we remove a disjoint blue unknot and erase the interval braid
completely.

- If jm′ = f(jm′)− inv(m′)− 1, then we also erase the interval braid completely.
- Else, we delete the part (sm+k+m′+inv(m′)−f(jm′ ) · · · sm) intersecting the blue strands out of
the interval braid (2.11) and are left with

sm−1+λt
m′

· · · sm+k+m′+inv(m′)−f(jm′ )+1 = sm−1+λt
m′

· · · sn+inv(m′)−f(jm′ )+2.

Now we push this interval through the m′ − 1 remaining interval braids and get

(2.12) sm−1+λt
m′+m′−1 · · · sn+inv(m′)−f(jm′ )+2+m′−1 = sn−k−1+λt

m′
· · · sn+inv(m′)−f(jm′ )+m′+1.

This agrees with the interval braid in β
(1)
m+1.

□

Proof of Theorem 2.26. We apply n− k destabilization steps in Lemma 2.29 and obtain a k-stranded
braid at m = n− k + 1, which is described by the following three pieces. First,

β(1)
m =

(
sλt

1+n−k−1 · · · s2n−f(j1)+inv(1)−n+2

)
· · ·

(
sλt

n−k+n−k−1 · · · s2n−k−f(jn−k)+inv(n−k)+1

)
.
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Since we did not relabel the strands yet, we need to shift all the subindices of the Coxeter generators
down by n− k and obtain(

sλt
1−1 · · · sk−f(j1)+inv(1)+1+1

)
· · ·

(
sλt

n−k−1 · · · sk−f(jn−k)+inv(n−k)+n−k+1

)
.

The second part β
(2)
m is a permutation braid obtained as a part of the wiring diagram for u−1w0

connecting 1, . . . , k on the right with 2n− f(i1) + 1, . . . , 2n− f(ik) + 1 on the left. Finally, the third
part is ∆k. By Corollary 2.24 and Proposition 2.25, this implies that we have obtained Jk(f). □

2.5. Le Braid. In this section, we define the Le braid Dk( L) associated to a Le diagram Land
compare it to Jk(f), where f is the bounded affine permutation associated to L. See Theorem 2.34

below. The Le braid will be a concatenation of two braids in k-strands: Dk( L) = D
(2)
k ( L)D

(1)
k ( L), in

such a way that D
(1)
k ( L) is positive and (typically) not reduced, while D

(2)
k ( L) is negative and reduced.

Let us start with the braid D
(2)
k ( L), since it is easier to define. In order to do this, recall the wiring

diagram of L: there are exactly k wires starting on the left border of the Young diagram λ. We obtain
a k-stranded braid by:

• Reading these wires in the northeast to southwest direction. Note that this direction is
opposite to that in Section 2.1.

• Delcaring all crossings to be negative.

The obtained braid is by definition the braid D(2)( L). Clearly, it is reduced. Note that D(2)( L) is
the inverse of the braid obtained by joining is to f(is), s = 1, . . . , k. See Figure 9 for an example.

• • •
• •

• •
• • •

• • • •
• • •

•
•

Figure 9. The braid D
(2)
k ( L). All of the crossings are negative.

Lemma 2.30. Let Lbe a Le diagram and f its associated bounded affine permutation. Then, the

k-stranded braids D
(2)
k ( L) and ∆−1

k J (2)(f) are braid equivalent.

Proof. The statement is equivalent to showing that the positive braids ∆k(f) and J
(2)(f)(D(2)( L))−1

are braid equivalent. This is equivalent to showing that in the positive braid J (2)(f)(D(2)( L))−1 each
pair of strings cross exactly once. For this, we picture this braid as follows:

i1

i2

...

ik

f(ia1)

f(ia2)

...

f(iak
)

ik

ik−1

...

i1

J (2)(f)D(2)( L)−1

Here f(iak
), . . . , f(ia1

) in the middle column are ordered in decreasing order when reading top to
bottom, the braid D(2)( L)−1 joins is to f(is), and the braid J (2)(f) joins f(is) to is.

Let 1 ≤ s < t ≤ k. If f(is) < f(it), the strands whose left labels are is and it will not meet in
the D(2)( L)−1 part of the braid, but they will meet exactly once in the J (2)(f) part of it. If, on the
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contrary, f(it) < f(is), then the same strands will meet exactly once in the D(2)( L)−1 part of the
braid, and they will not meet in the J (2)(f) part of it. The result follows. □

Let us now define D(1)( L). We need an auxiliary diagram, close in spirit to the wiring diagram,
that essentially keeps track of all the crossings between non-special circumferences in the juggling
diagram of the associated bounded affine permutation.

Definition 2.31. The bounded wiring diagram of a Le diagram Lis defined as follows. For each
non-empty column of L, draw a wire from the top of the column to the lowest dot on it, always
passing through the left of every dot of the column. Right after the lowest dot on the column take
a right U-turn (going under that lowest dot), and then proceed with the usual wiring rules. This
wire connects the top of the starting column with either the rightmost edge of a row, or the top of a
different column. If the latter situation occurs, then further connect the wire with the wire starting
at the top of this second column. □

See Figure 10 for an instance of such a bounded wiring diagram from Definition 2.31.

• • •
• •

• •
• • •

• • • •
• • •

•
•

1 2

3

4

5

6 7

8

Figure 10. The labeled diagram W̃( L).

Definition 2.31 creates a (typically) non-reduced braid with k′ strands, k′ ≤ k. Indeed, note that
we have an injective map from the set of wires to the rows of L. In fact, it follows from identities (2.4)
and (2.5) that these wires correspond to chains of non-special circumferences in the juggling braid of
the associated bounded affine permutation f . Moreover, the crossings in the bounded wiring diagram
correspond precisely to the crossings between these non-special circumferences.

Let us enhance the bounded wiring diagram by enumerating both the right ends of the rows which
do not have a wire ending on them and the top ends of those columns where a wire starts, as follows.
Reading the steps of the diagram from northwest to southeast (both vertical and horizontal steps),
we enumerate the following two types of steps in the order in which these steps are found:

- A horizontal step at the top of a column which is the initial step of a wire. (In particular,
there is no wire starting in a column to its left that goes up to the top of that column.)

- A vertical step at the right of a row which is not the endpoint of a wire.

In this manner, we have labeled exactly k steps. Let us denote by W( L) the bounded wiring diagram

of Land by W̃( L) its labeled version. We are ready to define the braid D(1)( L).

Definition 2.32. The k-stranded braid D
(1)
k ( L) of a Ldiagram with at most k rows is defined

inductively on the columns of Las follows.

(1) If Lis the empty Young diagram, D
(1)
k ( L) is the trivial braid on k strands.

(2) Assume D
(1)
k ( L) has been defined and let L′ be a Le diagram obtained from Lby attaching a

column of height h to the left of L. Then:
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(i) If this column has no dots, then we define D
(1)
k ( L′) := D

(1)
k ( L).

(ii) Else, we first draw the bounded wiring diagram W( L′) of L′. The wire associated to the
first column of L′, i.e. to the column that does not belong to L, ends in a labeled step of

W̃( L); say with label t. Then we define

D
(1)
k ( L′) := (σh−1 · · ·σk−t+1) ·D(1)

k ( L).

□
See Figure 11 for an example.

1

2

3

4

D
(1)
k ( L)

⇝

•
•

•

1

2

3

4

D
(1)
k ( L′)

•
•

•

1

2

3

4
⇝

D
(1)
k ( L)

•
•

•

1
2

3

4

•

•

D
(1)
k ( L′)

Figure 11. Adding a column to the left of a Le diagram, and its effect on the braid

D
(1)
k ( L). Here k = 4. On the left-hand side of the figure, we add a column to a Le

diagram associated to the empty partition. Since we are adding a column of height
h = 4 and the endpoint of the new strand is t = 4, we have to multiply by the
interval braid σh−1 . . . σk−t+1 = σ3σ2σ1. On the right-hand side of the figure, we add
a column to a nonempty Le diagram. On this side, h = 4 and t = 3, so we have

D
(1)
k ( L′) = (σ3σ2)D

(1)
k ( L).

The comparison to Jk(f) needs the analogue of Lemma 2.30, which reads as follows:

Lemma 2.33. Let Lbe a Le diagram and f its associated bounded affine permutation. Then the

k-stranded braids D
(1)
k ( L) and J (1)(f) are braid equivalent.

Proof. Let us work by induction on the number of columns of L. If Lhas no columns, i.e. if it is

associated to the empty Young diagram, then D
(1)
k ( L) is the trivial braid. In that case, all the arcs in

the juggling diagram for f are special, which implies that J (1)(f) is the trivial braid as well. Let us
now assume the result for the Le diagram L, with associated bounded affine permutation f , and let
L′ be a Le diagram (with permutation f ′) obtained from Lby adjoining an extra column to the left.

We let n be the width of the Le diagram L, so that n+ 1 is the width of L′.

If this added column is empty then D
(1)
k ( L) = D

(1)
k ( L′) by definition. Since f ′(1) = 1 and f ′(i) =

f(i− 1) + 1 for i > 1, the juggling braids for f and f ′ coincide, and thus J (1)(f) = J (1)(f ′).

If this added column is non-empty, let us study first how the bounded affine permutation f ′ is obtained
from the bounded affine permutation f . For this, let h be the height of the added column. Note that,
if i < k − h + 1 then f ′(i) = n + 1 + i = f(i) + 1. On the other hand, if i > k − h + 1 then
f ′(i) = f(i − 1) + 1, this follows from (2.5), see e.g. Figure 5. Finally, the juggling diagram of f ′ is
then obtained from that of f by inserting a new non-special arc, which is precisely the arc joining

f ′(k − h+ 1) to k − h+ 1. Recall now that t is the label in W̃( L) of the strand starting in this new
column of L′. Then, k − t + 1 is the position of the strand in J (1)(f) that we join to this new arc.
The end position of this strand is k − (k − h + 1) + 1 = h. Thus, J (1)(f ′) = σh−1 · · ·σk−t+1J

(1)(f)
and the result follows. □

Lemmas 2.30 and 2.33 thus imply the following result:

Theorem 2.34. Let Lbe a Le diagram with corresponding bounded affine permutation f . Then, the
braids ∆2

kDk( L) and ∆kJk(f) are braid equivalent.
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Proof. By Lemma 2.33, ∆2
kDk( L) = ∆2

kD
(2)
k ( L)D

(1)
k ( L) = ∆2

kD
(2)
k ( L)J

(1)
k (f). By Lemma 2.30, this

also equals ∆2
kD

(2)
k ( L)J

(1)
k (f) = ∆2

k∆
−1
k J

(2)
k (f)J

(1)
k (f) = ∆kJk(f). □

This concludes our discussion of braids directly associated to Le-diagrams. A Legendrian link associ-
ated to Dk( L) will be discussed in Section 3.

2.6. Matrix Braids. Let us finally introduce cyclic rank matrices r = (rij), their associated matrix
braids Mk(r) ∈ Brk, and conclude Theorem 1.1.(ii).

Definition 2.35. A cyclic rank matrix of type (k, n) is an array r = (rij) indexed by (i, j) ∈ Z2

satisfying the following conditions:

(i) rij = 0 if j < i and rij = k if i+ n− 1 ≤ j.
(ii) rij − r(i+1)j ∈ {0, 1}, rij − ri(j−1) ∈ {0, 1}, and rij = r(i+n)(j+n), for all i, j ∈ Z.
(iii) If r(i+1)(j−1) = r(i+1)j = ri(j−1) then rij = r(i+1)(j−1).

Note that we can restrict to the grid j ∈ [1, n] due to the condition rij = r(i+n)(j+n), for all i, j ∈ Z.□

Given a cyclic rank matrix r = (rij), and each i ∈ Z, there is a unique index f(i) such that

ri f(i) = r(i+1) f(i) = ri (f(i)−1) = r(i+1) (f(i)−1) + 1.

Then the map f : Z −→ Z defined by f(i) = j if and only if

rij = r(i+1)j = ri(j−1) = r(i+1)(j−1) + 1,

defines a bounded affine permutation. In fact, this establishes a bijection between cyclic rank matrices
and bounded affine permutations, as explained in [42, Section 3.3].

Remark 2.36. Note that ri(j+1) = rij +1 = r(i+1)j +1 = r(i+1)(j+1)+1 can only happen if i = j+1
and rij = r(i+1)j = r(i+1)(j+1) = 0, see e.g. [42, Corollary 3.12].

Figure 12. The local models for the matrix braid Mk(r) associated to a cyclic rank
matrix r = (rij), drawn near each four entries of the matrix. The value of a given
entry rij is denoted by rij = ρ and the braid is depicted in red strands. The yellow
lines are used to separate the matrix entries of r. Note that, by Remark 2.36, the
middle model of the top row can only happen if ρ = 0.

Definition 2.37. Let r = (rij) be a cyclic rank matrix of type (k, n), (i, j) ∈ Z2. By definition,
the infinite matrix braid M∞

k (r) is given by the tangle diagram obtained by drawing in R2 the six
local tangles according to Figure 12. By definition, the matrix braid Mk(r) ∈ Bk is obtained from
the infinite matrix braid M∞

k (r) ∈ Bk by restricting its diagram to the grid j ∈ [1, n]. We define the
matrix link Λ(r) ⊆ R3 to be the smooth 0-framed closure of Mk(r). □

Thanks to Remark 2.36, the following gives a procedure for drawing the infinite matrix braid
M∞

k (r) for a cyclic rank matrix associated to a bounded affine permutation f .

- For each i such that i ̸= f(i), connect (i, f(i)) to (i, i) using a horizontal line.
- For each i such that i ̸= f(i), connect (i, i) to (f−1(i), i) using a vertical line.
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See Figure 13 for an example of a matrix braid Mk(r). We remark that we are using matrix
notation, so (i, j) is the ij-th entry of a matrix: the coordinate i increases down, and the coordinate
j increases to the right.

Remark 2.38. In Definition 2.37, we orient the strands so that they point northwest. □

i
j

−3

−2

−1

0

1

2

3

4

5

6

−3 −2 −1 0 1 2 3 4 5 6

1 2 3 4 4 4 4 4 4 4

1 2 3 4 4 4 4 4 4

1 2 3 3 4 4 4 4

1 2 2 3 3 4 4

1 2 3 3 4 4

1 2 3 4 4

1 2 3 4

1 2 3

1 2

1

Figure 13. Cyclic rank matrix and matrix braid for the bounded affine permutation
f = [4, 6, 7, 9, 11, 8] of Example 2.15. The dashed lines indicate that we restrict to
1 ≤ j ≤ 6, and we have marked in gray the boxes (i, f(i)).

The conditions in Definition 2.35 imply that the matrix braid Mk(r) ∈ Bk is a k-stranded tangle.
These braids were introduced in [61, Section 3.2]. The following result compares the braids Mk(r) to
the juggling braids Jk(f).

Theorem 2.39. Let r = (rij) be a cyclic rank matrix of type (k, n), (i, j) ∈ Z2, and f its associated
bounded affine permutation. The matrix braid Mk(r) ∈ Bk is equivalent to the braid Jk(f)∆k ∈ Bk.

Proof. Let us first restrict to the case i ∈ {f−1(1), . . . , f−1(n)} and let us look at the horizontal
segment separating the rows i and i+ 1. If f(i) = i, then there is no horizontal segment of the braid
separating these rows. Else, we have a horizontal segment of the braid connecting (i, f(i)) to (i, i) (or
to (i, 1), if i ≤ 0), which corresponds to the arc Af(i) in the juggling diagram of f , connecting f(i) to
i.

Assume now i ̸∈ {f−1(1), . . . , f−1(n)}. If f(i) < 0, and i ̸= f(i), then the horizontal segment of
the infinite braid M∞

k (r) separating the rows i and i + 1 is contained entirely outside (to the left)
of the strip 1 ≤ j ≤ n. The same holds if f(i) > n and i ̸∈ {1, . . . , n}. It remains to see the case
i ∈ {1, . . . , n} and f(i) > n. Note that there are exactly k such values of i. In this case, we will
have a horizontal segment in the braid Mk(r) connecting (i, n) to (i, i). This horizontal segment will
intersect exactly once with any strand in the braid that contains a vertical segment separating j and
j + 1 for j > i. Thus, up to braid moves pulling the strands to the right, the braid Mk(r) is of the
form Jk(f)∆k, as needed.

□

3. Legendrian Links and positroid data

The goal of this section is to associate Legendrian links to positroid data and show that equiva-
lent positroid data yield Legendrian isotopic links, up to trivially adding unlinked unknots. These
Legendrian links are introduced in Subsection 3.1. Theorem 3.6 establishes the necessary Legendrian
isotopies. It is proven in Subsection 3.3, after the main technical lemma is proven in Subsection 3.2.
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3.1. Legendrian links associated to positroid data. In Section 2 we introduced the following
braid words associated to positroid data:

(1) For u,w ∈ Sn permutations and w k-Grassmannian, the positive Richardson braid word
R+

n (u,w) = β(u−1w0)β(w
∗), in Subsection 2.2. It is a positive n-stranded braid word.

(2) For a bounded affine permutation f of size n, the juggling braid Jk(f) = J
(2)
k (f)J

(1)
k (f), in

Subsection 2.3. It is a positive k-stranded braid word. By Corollary 2.24, J
(1)
k is a product

of interval braids, and Proposition 2.25 shows that J
(2)
k (f) is a permutation braid.

(3) For a Le diagram L, the Le braid Dk( L) = D
(2)
k ( L)D

(1)
k ( L), in Subsection 2.5. It is a k-

stranded braid word. By construction, D
(1)
k ( L) is a positive braid word and D

(2)
k ( L) is a

permutation braid with all its crossings being negative.

(4) For a cyclic rank matrix r, the matrix braid Mk(r), in Subsection 2.6. It is a k-stranded
positive braid word.

Let us use [10, Section 2.2] to associate a Legendrian link in (R3, ξst) to a positive braid word.
Recall that the front projection of a Legendrian link in (R3, ξst) with the standard contact form
ξst = ker{dz−ydx} is its projection onto the (xz)-plane R2

x,z. The front of a Legendrian link recovers
the link, cf. [33, Section 3.2].

Definition 3.1 ([10]). Let β be a positive braid word. By definition, the (−1)-closure of β is the
Legendrian link Λβ ⊆ (R3, ξst) whose front projection is drawn in Figure 14 (left). □

β

...

...
...

β...
...

Figure 14. (Left) (−1)-closure of a positive braid word β. (Right) A front in S1×R
associated to β: its satellite along the standard Legendrian unknot yields the (−1)-
closure on the left.

Let β′ be a positive braid word obtained from β by applying braid moves. The Legendrian Reide-
meister moves can then be used the show that Λβ′ is Legendrian isotopic to Λβ , cf. [19, Section 2.3]
and [39]. In particular, the Legendrian isotopy type of Λβ is independent of the choice of braid word
representing the element inside the positive monoid.

Definition 3.1 can now be applied to the positive Richardson and juggling braids, both of which
are positive braids. This leads to the following definitions:

Definition 3.2 (Richardson Legendrians). Let u,w ∈ Sn be two permutations such that u ≤ w in the
Bruhat order and w is k-Grassmannian. By definition, the Legendrian Richardson link Λ+(u,w) ⊆
(R3, ξst) is the (−1)-closure of ∆nR

+
n (u,w). □

To ease notation, we often denote the Legendrian link Λ+(u,w) ⊆ (R3, ξst) in Definition 3.2 by
Λ(u,w) ⊆ (R3, ξst). See Subsection 3.4 for results making this abuse of notation justified.

Definition 3.3 (Juggling Legendrians). Let f : Z −→ Z be bounded affine permutation of size n.
By definition, the Legendrian juggling link Λ(f) ⊆ (R3, ξst) is the (−1)-closure of ∆kJk(f). □

Definition 3.4 (Matrix Legendrians). Let r be a cyclic rank matrix of type (k, n). By definition,
the Legendrian matrix link Λ(r) ⊆ (R3, ξst) is the (−1)-closure of Mk(r). □
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Note that Theorem 2.39 implies that the matrix braidMk(r) ∈ Bk is directly equivalent to ∆kJk(f) ∈
Bk and they are both positive and k-stranded.

By construction, the smooth links underlying the Legendrian links Λ(u,w) and Λ(f) in Definitions
3.2, 3.3 and 3.4 above coincide with the homonymous links introduced in Section 2. This justifies
using the same notation. Since the Le braid Dk( L) is not a positive braid, Definition 3.1 cannot be
used directly. An appropriate modification will suffice, as follows.

Definition 3.5 (Le Legendrians). Let Lbe a Le diagram. By definition, the (−1)-closure of a positive

braid of the form ∆kβ(w0D
(2)
k ( L))D

(1)
k ( L) is said to be a Legendrian Le link Λ( L) ⊆ (R3, ξst). □

First, β(w0D
(2)
k ( L)) denotes a positive braid lift of the permutation w0D

(2)
k ( L), e.g. as in Definition

2.7. Second, any two different choices of such lifts lead to equivalent braid words and it follows that
the Legendrian links they define are Legendrian isotopic. Thus our use of the notation Λ( L) for any
such Legendrian links, which does not explicitly refer to the choice of lift. By construction, the smooth
link underlying any such Λ( L) in Definitions 3.5 coincides with the homonymous link introduced in
Section 2.

The main goal of the rest of this section is to prove the following result:

Theorem 3.6. Let u,w ∈ Sn be two permutations with w is k-Grassmannian, f : Z −→ Z be bounded
affine permutation of size n and La Le diagram all representing the same positroid data. Then the
Legendrian links Λ(u,w),Λ(f),Λ( L) and Λ(r) are all Legendrian isotopic in (R3, ξst), up to adding
unlinked max-tb Legendrian unknots.

Theorem 3.6 is proven in Subsection 3.3 below, once we have established Lemma 3.7. In fact, the proof
shows that Λ(f),Λ( L) ⊆ (R3, ξst) are Legendrian isotopic, without adding any max-tb Legendrian
unknots. Here max-tb stands for maximal Thurston-Bennequin number, cf. [19, Section 2.6] for details
on the Thurston-Bennequin invariant.

3.2. Variations on the Markov move. The Legendrian links that we are comparing are associated
to braids with different number of strands. For instance, the Richardson braids are n-stranded and
the juggling braids are k-stranded for a positroid in Gr(k, n). In order to show that these Legendrian
links are Legendrian isotopic, we must therefore apply a type of (de)stabilization. This is also the
reason to work in (R3, ξst) instead of the 1-jet space (J1S1, ξst). The following destabilization lemma,
which implies Lemma 2.27, will suffice for our purposes:

Figure 15. Lemma 3.7 states that two fronts (1.a) and (1.b), resp. (2.a) and (2.b)
have front homotopic (−1)-closures, resp. front homotopic (−1)-closures up to an
unlinked max-tb unknotted component. Note that these fronts, if to be understood
cyclically in S1

θ ×Rz, do not yields Legendrian (or even smoothly) isotopic links. This
forces considering (−1)-closures so as to find the Legendrian isotopy in (R3, ξst).

Lemma 3.7 (Legendrian destabilizations). Let β1 ∈ Brn be a positive braid on n strands in the Artin
generators σ1, . . . , σn−1 and β2 ∈ Brn+1 a reduced positive lift of a permutation w ∈ Sn+1 on (n+ 1)

strands. Set j := w−1(n+ 1), let β̃1 ∈ Brn+1 the braid obtained from β1 by shifting all the indices of
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the Artin generators up by 1, and let β′
2 ∈ Brn be the braid obtained from β2 by removing the strand

that ends at the bottom on the right of β2. Then the following two statements hold:

(1) Consider the following two positive braid words:

(a) η1 := ∆n+1β2(σℓ · . . . · σj+1σj · . . . · σ2σ1)β̃1 ∈ Brn+1, the (n+ 1)-stranded positive braid
depicted in Figure 15.(1.a),

(b) η2 := ∆nβ
′
2(σℓ−1 · . . . · σj+1)β1 ∈ Brn, the n-stranded positive braid depicted in Figure

15.(1.b).

Then the Legendrian link Λη1
is Legendrian isotopic to Λη2

.

(2) Consider the following two positive braid words:

(a) η1 := ∆n+1β2(σjσj−1 · . . . ·σ1)β̃1 ∈ Brn+1, the (n+1)-stranded positive braid depicted in
Figure 15.(2.a),

(b) η2 := ∆nβ
′
2β1 ∈ Brn, the n-stranded positive braid depicted in Figure 15.(2.b).

Then the Legendrian link Λη1 is Legendrian isotopic to the Legendrian link given by a max-tb
Legendrian unknot unlinked union with Λη2

.

Figure 16. In (1) the starting piece of a front. From (2)-(6), the Legendrian isotopy
that proves Lemma 3.7 for its (−1)-closure.
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Proof. The proof is contained in Figure 16, for item (1), and 17, for item (2), which we now explain.
First item (1). Choose a braid word for the half-twist ∆n+1 which is of the form ∆n(σnσn−1 . . . σ2σ1).
The resulting braid is then as in Figure 16.(1) and its (−1)-closure is depicted in Figure 16.(2).

The fronts in Figure 16.(2)-(6) are then front homotopic, i.e. realized by Legendrian isotopies,
as follows. Front (2) to (3) consists of a series of Reidemeister III moves followed by a sequence
of Reidemeister II moves that pull the top (blue) strand to the right of the front past ∆n and n
right cusps. Front (3) to (4) is the reverse of that sequence applied to the piece of the (blue) strand
above the rightmost (blue) cusp: first a sequence of Reidemeister II moves and then a sequence of
Reidemeister III moves. Front (4) to (5) is a sequence of Reiedemeister III and Reidemeister II moves
that pull the right blue cusp pointing down up to the center region. The sequence of Reidemeister
III moves necessary to realize this Legendrian isotopy from (4) to (5) exists because β2 is (the lift
of) a permutation braid. In particular, the blue strand inside the β2-box in Front (4) always goes
above the other strands. Then the isotopy from (4) to (5) is as follows: first pull the blue strand
exiting the right blue cusp from above across part of the β2-box via Reidemeister III moves; then
use Reidemeister II moves to pull the right blue cusp through the β2-box so as to reach Front (5).
Finally, Front (5) to (6) is a sequence of Reidemeister II moves that pulls the top leftmost blue cusp
to the region containing the right blue cusp. Front (6) is homotopic to the (−1)-closure of η2 via a
Reidemeister I move applied to the crossing between β1 and β2, which proves item (1) of the lemma.

For item (2), proceed as in item (1) by choosing a braid word for the half-twist ∆n+1 of the form

∆n(σnσn−1 · . . . · σ2σ1).

The resulting braid is drawn in Figure 17.(1) and its (−1)-closure is in Figure 17.(2). From Front (2)
to Front (3) we perform a sequence of Reidemeister III and then Reidemeister II moves moving the
right piece of the blue strand (under the cusps). This is the same first step as for item (1). From
Front (3) to Front (4) we perform a movie similar to the previous one but to the left piece, using
the left cusps. The only difference is that we must pull the strand through a piece of the β2-box,
as indicated by the red arrows in Figure 17.(3). This is indeed possible because β2 is a permutation
braid. Once at Front (4), the blue component is a max-tb Legendrian unknot which is unlinked from
the other components of the Legendrian link, thus item (2) follows.

□

Figure 17. In (1) the starting piece of a front. From (2)-(4), the Legendrian isotopy
that proves Lemma 3.7 for its (−1)-closure.

Remark 3.8. Lemma 3.7 does not hold for general positive braid words β2 ∈ Brn+1. Fortunately,
the hypothesis of β2 being a permutation braid is met for the positroid Richardson braids. □



28 R. CASALS, E. GORSKY, M. GORSKY, AND J. SIMENTAL

3.3. Proof of Theorem 3.6. Let us conclude Theorem 3.6 from the results established so far. Let us
first show that Λ(u,w) and Λ(f) are Legendrian isotopic in (R3, ξst), up to adding unlinked max-tb
Legendrian unknots. For that we follow the proof of Theorem 2.26 in Subsection 2.4. Thanks to
Lemma 3.7, we claim that the same argument gives a Legendrian isotopy, not just a smooth one.
Indeed, it suffices to note the following two facts:

(i) All braids being used in the proof of Theorem 2.26 are positive braids. Therefore, at any
stage, we can consider the (−1)-closure and have the argument be about Legendrian links.

(ii) The only result that is used in the proof of Theorem 2.26 is Lemma 2.27. Since Lemma 3.7 is
precisely a Legendrian realization of Lemma 2.27, we can apply the argument in the proof of
Theorem 2.26 to Legendrian links and use instead Lemma 2.27 each time that Lemma 2.27
is invoked in that smooth proof.

This concludes the desired statement about Λ(u,w) and Λ(f). The Legendrian links Λ(f) and Λ(r) are
Legendrian isotopic because they are (−1)-closures of equivalent positive k-stranded braids, thanks
to Theorem 2.39.

Finally, let us now show that Λ(f) and Λ( L) are Legendrian isotopic. Sections 2.3 and 2.5 provided

the decompositions Jk(f) = J
(2)
k (f)J

(1)
k (f) and Dk( L) = D

(2)
k ( L)D

(1)
k ( L). Here, J

(1)
k (f) and D

(1)
k ( L)

are k-stranded positive braids and J
(2)
k (f) and D

(2)
k ( L) are reduced, but the latter has negative

crossings. We claim that the two positive braid words ∆kJ
(2)
k (f)J

(1)
k (f) and ∆kβ(w0D

(2)
k ( L))D

(1)
k ( L)

are equivalent through positive braid words. For ease of notation, we denote Ji := J
(i)
k (f) and

Di := D
(i)
k ( L), i = 1, 2, and write β1

+∼ β2 if two positive braid words are equivalent through positive
braid words.

Let us prove the claim. First, Lemma 2.33 and its proof imply that J1
+∼ D1. Second, we now need

J2
+∼ β(w0D2). Lemma 2.30 and its proof show that J2D

−1
2

+∼ ∆k, where D
−1
2 is a positive braid

word. By construction, ∆k
+∼ β(w0D2)D

−1
2 and thus J2D

−1
2

+∼ β(w0D2)D
−1
2 . By [13, Prop. II.4.7],

the positive braid monoid is right-cancellative and thus J2D
−1
2

+∼ β(w0D2)D
−1
2 implies J2

+∼ β(w0D2).

Therefore, we have J1
+∼ D1 and J2

+∼ β(w0D2). Combined, these imply ∆kJ2J1
+∼ ∆kβ(w0D2)D1.

Hence, their (−1)-closures Λ(f) and Λ( L) are Legendrian isotopic. □

3.4. Lagrangian projections and negative crossings. This subsection is not logically needed for
the rest of the results in this manuscript, but we include this brief discussion for completeness. Both in
Section 2 above and the literature, see e.g. [29, Section 3], braids with negative crossings are discussed
in relation to positroids. In the former instance, both the Richardson braid word, in Definition 2.7
in Subsection 2.2, and the Le braid Dk( L), in Subsection 2.5, typically have negative crossings. This
raises the question of whether there are Legendrian links in (R3, ξst) that can be naturally associated
to them. In particular, this would allow us to describe certain types of varieties and their algebraic
combinatorics, associated to such braid words (with some negative crossings), intrinsically in terms
of Legendrian links and their invariants, cf. [8, 10].

The answer is affirmative in this context, as the Lagrangian projection allows for the introduction of
negative crossings in the following case. It is possible to introduce a cancelling pair vv−1 where v is
a reduced positive braid word for a permutation braid. This technique is known as dipping in the
literature. For dipping, also known as splashing in [28, Section 3.2], we refer to [46, Section 2.4]. We
refer to [10, Section 2.2] for the definition and details on the Lagrangian (−1)-closure of a braid word.
In conclusion, we can use the following lemma to associate Legendrian links to both the Richardson
and Le braids, which are described by braid words with some negative crossings.

Lemma 3.9. Let γ ∈ Br+n be a positive braid word and v ∈ Sn a permutation. Then:

(1) There exists a Legendrian link Λ(v, γ) ⊆ (R3, ξst) whose Lagrangian projection is Hamiltonian
isotopic to the Lagrangian (−1)-closure of the braid word ∆2

nβ(v)
−1γ, for a choice of positive

braid word ∆n for the half-twist.

(2) Λ(v, γ) is Legendrian isotopic to the Legendrian (−1)-closure of ∆nβ(w0v
−1)γ.
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Proof. By [10, Prop. 2.7] the positive braid word ∆nβ(w0v
−1)γ is admissible, as defined in loc. cit..

In particular, there exists a Legendrian link Λ′(v, γ) ⊆ (R3, ξst) whose Lagrangian projection is the
Lagrangian (−1)-closure of the braid word ∆nβ(w0v

−1)γ. Note that ibid. also implies that Λ′(v, γ)
is Legendrian isotopic to the Legendrian (−1)-closure of ∆nβ(w0v

−1)γ. By dipping according to the
permutation v, introducing β(v)β(v−1) to the Lagrangian diagram exactly between β(w0v

−1) and
γ, there exists a Legendrian isotopy from Λ′(v, γ) to a Legendrian link Λ(v, γ) whose Lagrangian
projection is the Lagrangian (−1)-closure of the braid word ∆nβ(w0v

−1)β(v)β(v−1)γ. This braid
is a positive braid word for ∆2

nβ(v)
−1γ. Note that we can dip according to β(v)−1β(v), instead of

β(v)β(v)−1. Indeed, this is because the differences in height between the strands in the front diagram
provided by [10, Prop. 2.7], away from a neighborhood of the crossings, are strictly increasing as we
move to the right, instead of left, as in the Ng resolution [56]. □

Lemma 3.9 can be applied to Richardson and Le braids, as follows:

(a) γ = w and v = u, with u,w ∈ Sn, w a k-Grassmannian permutation, and u ≤ w in the
Bruhat order. Then Lemma 3.9 implies that Λ(u,w) is a Legendrian representative for the
Richardson braids in Definition 2.7, even if they contained negative crossings. Lemma 3.9.(2)
implies that Λ(u,w) is Legendrian isotopic to Λ+(u,w) as introduced in Definition 3.2.

(b) For a Le diagram L, we can choose γ = D
(1)
k ( L) and v = (D

(2)
k ( L))−1. Then Lemma 3.9

constructs a Legendrian link Λ((D
(2)
k ( L))−1, D

(1)
k ( L)) for the Le braid D

(2)
k ( L)D

(1)
k ( L), even if

it has negative crossings. By Lemma 3.9.(2), Λ((D
(2)
k ( L))−1, D

(1)
k ( L)) is Legendrian isotopic

to Λ( L) as introduced in Definition 3.5.

In particular, the above gives a symplectic geometric enhancement of the smooth links presented in
[29, Section 3]: they can be naturally defined as Legendrian links, from which positroid strata can be
extracted by studying the Legendrian contact dg-algebra, see e.g. [8, 10, 11].

4. Braid Varieties, Richardson varieties and Brick Manifolds

In this section, we study braid varieties associated to positroid braids. In particular, we prove
Theorems 1.3 and 1.4. In Subsection 4.3, we show that open Richardson varieties in type A, i.e. G =
GL(n,C), are braid varieties. Subsection 4.4 shows that brick manifolds brick(β), for any choice of
braid word β ∈ B, provide different smooth projective compactifications of the same braid variety
X(β). Finally, Subsection 4.5 uses Subsection 4.4 to present a description of the homology of braid
varieties in terms of brick manifolds and also establishes the relation to Khovanov-Rozansky homology.

4.1. Preliminaries on braid varieties. Braid varieties are defined as follows:

Definition 4.1 ([8]). Let β be a positive braid word β ∈ B+
n , β = σi1 · · ·σiℓ , and π ∈ GL(n,C) a

permutation matrix. By definition, the braid variety associated to β and π is

X(β;π) := {(z1, . . . , zℓ) : Bβ(z1, . . . , zℓ)π is upper-triangular} ⊆ Cℓ,

where the matrix Bβ(z1, . . . , zℓ) ∈ GL(n,C[z1, . . . , zℓ]) is defined to be the matrix product

Bβ(z1, . . . , zℓ) := Bi1(z1) · · ·Biℓ(zℓ),

and the braid matrices Bi(z) ∈ GL(n,C[z]) are defined by:

(Bi(z))jk :=


1 j = k and j ̸= i, i+ 1

1 (j, k) = (i, i+ 1) or (i+ 1, i)

z j = k = i+ 1

0 otherwise;

, i.e. Bi(z) :=



1 · · · · · · 0
...

. . .
...

0 · · · 0 1 · · · 0
0 · · · 1 z · · · 0
...

. . .
...

0 · · · · · · 1


.

Here the only non-trivial (2× 2)-block of Bi(z) is at the ith and (i+ 1)st rows. □
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Braid varieties were introduced in [8, 51], where part of their geometry was studied. In particular,
we proved in [8] that X(β1;π) ∼= X(β2;π) if β1 and β2 are related by Reidemeister III moves or braid
commutation; hence the name braid varieties. In this article, the permutation (matrix) π will often
be π = w0,n = [n, n− 1, . . . , 1] ∈ Sn, and we sometimes abbreviate X(β) for X(β;w0,n).

4.2. Richardson and Positroid varieties. We introduce Richardson and positroid varieties, fol-
lowing [42], see also [62]. Let us consider the flag variety F ℓn associated to the group G := GL(n,C).
That is, F ℓn = G/B where B is the Borel subgroup of upper triangular matrices. We denote by FA

the flag associated to a matrix A ∈ G. Namely, the i-th space in Cn for the flag FA is spanned by the
first i columns of the matrix A. Let us denote by F st := (0 ⊆ ⟨e1⟩ ⊆ ⟨e1, e2⟩ ⊆ · · · ⊆ ⟨e1, . . . , en−1) ⊆
Cn) the standard flag, and by F ant := (0 ⊆ ⟨en⟩ ⊆ ⟨en, en−1⟩ ⊆ · · · ⊆ ⟨en, . . . , e2⟩ ⊆ Cn) the
anti-standard flag. Note that we have an action of G on G/B = F ℓn by left multiplication. By
restricting, we also have an action of B on F ℓn. Similarly, if B− is the opposite Borel subgroup of
lower triangular matrices, we also have an action of B− on F ℓn by left multiplication.

Let w ∈ Sn be a permutation. The Schubert cell X◦
w associated to w ∈ Sn is defined to be the

B-orbit of the flag wB/B, where w is understood as a permutation matrix:
◦
Xw:= BwB/B = {F ∈ F ℓn | dim(F st

p ∩ Fq) = #{i ≤ q | w(i) ≤ p} for all p, q ∈ [1, n]}.

The opposite Schubert cell of w ∈ Sn is defined to be the B−-orbit of the flag wB/B:
◦
X w := B−wB/B.

Similarly to
◦
Xw, the opposite Schubert cell

◦
X w admits a explicit description as follows. Let w0 be

the longest element of Sn. Then:
◦
X w = {F ∈ F ℓn | dim(Fp ∩ F ant

q ) = #{i ≤ q | w0w(i) ≤ p} for all p, q = 1, . . . , n}.

Definition 4.2. Let u,w ∈ Sn be two permutations. The open Richardson variety R◦(u,w) ⊆ F ℓn
is the intersection:

R◦(u,w) :=
◦
Xw ∩

◦
X u.

It is known that R◦(u,w) is nonempty if and only if u ≤ w in the Bruhat order, cf. [62], in which case
it is a smooth affine variety of dimension ℓ(w)− ℓ(u). In particular, R◦(w,w) is a single point.

Now fix k ≤ n and consider the Grassmannian Gr(k, n) of k-planes in Cn. In fact, Gr(k, n) = G/P ,
where P is the subgroup of G = GL(n,C) consisting of block-upper-triangular matrices with blocks
of sizes k and n − k. We have the associated subgroup WP = Sk × Sn−k ⊆ Sn. Again, we have an
action of B on Gr(n, k) and, given a permutation w ∈ Sn, we have an associated Schubert cell in the
Grassmannian:

Cw := BwP/P ⊆ Gr(k, n).

In fact, Cw = Cw′ if the cosets wWP and w′WP coincide.

Note that we have a natural projection π : F ℓn → Gr(k, n). In terms of flags, π(F ) = Fk is the

k-th subspace of the flag. This map is B-equivariant and thus π(
◦
Xw) ⊆ Cw. The following result

underscores the importance of k-Grassmannian permutations.

Lemma 4.3 (Section 5, [42]). The map π| ◦
Xw

:
◦
Xw→ Cw is an isomorphism of algebraic varieties if

and only if w is a k-Grassmannian permutation.

In particular, if w is a k-Grassmannian permutation and u ≤ w then we have:

F ℓn ⊇ R◦(u,w) ∼= π(R◦(u,w)) ⊆ Gr(k, n).

Definition 4.4. Let u,w ∈ Sn, with w a k-Grassmannian permutation and u ≤ w. The open positroid
variety Πu,w ⊆ Gr(k, n) is:

Πu,w := π(R◦(u,w)).

By definition, the positroid variety Πu,w is isomorphic to the Richardson variety R◦(u,w). Since
positroids can be defined inside the Grassmannian, they are specially nice amongst other Richardson
varieties, see e.g. [29, 42, 43, 62].
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4.3. Open Richardson varieties as braid varieties. The following result is the main theorem of
this subsection. It states that open Richardson varieties can be described as braid varieties.

Theorem 4.5. Let β1, β2 ∈ B+
n be two reduced positive braid words, and w1, w2 ∈ Sn be their Coxeter

projections.

(a) The map

ι : Cℓ(β1) × Cℓ(β2) −→ F ℓn, (z1, z2) 7→ FB−1
β1

(z1), (z1, z2) ∈ Cℓ(β1) × Cℓ(β2),

restricts to an isomorphism

X(β1β2;w0) −→ ι(X(β1β2;w0)) ∼=
◦
Xw−1

1
∩

◦
X w2w0

of affine algebraic varieties.

(b) The map

ȷ : Cℓ(β1) × Cℓ(β2) −→ F ℓn, (z1, z2) 7→ Fw0B
−1
β1

(z1), (z1, z2) ∈ Cℓ(β1) × Cℓ(β2)

restricts to an isomorphism

X(β1β2;w0) −→ ȷ(X(β1β2;w0)) ∼=
◦
X w0w

−1
1 ∩

◦
Xw∗

2

of affine algebraic varieties.

Corollary 4.6. Let u,w ∈ Sn be such that u ≤ w in Bruhat order, and β(w), β(u−1w0), β(w
∗) ∈ Brn

positive lifts of w, u−1w0, w
∗. Then restrictions give the following isomorphisms of affine algebraic

varieties

ι : X(β(w)β(u−1w0);w0)
∼→ R◦(u−1, w−1), ȷ : X(β(u−1w0)β(w

∗);w0)
∼→ R◦(u,w).

Theorem 4.5, through Corollary 4.6, implies Theorem 1.3, as discussed in Subsection 4.3.3 below.
Subsections 4.3.1 and 4.3.2 now prove Theorem 4.5.

Remark 4.7. We note that interpreting open Richardson varieties as braid varieties allows for a clear
description of certain isomorphisms between them. In particular, the composition ι ◦ ȷ−1 associated
with β1 = β(u−1w0), β2 = β(w∗) gives an isomorphism

R◦(u,w)
∼→ R◦(w0w,w0u).

Also, we have an explicit isomorphism

ψ : X(β(w)β(u−1w0);w0) ∼= X(β(u−1w0)β(w
∗);w0)

given by a “cyclic rotation” of the braid word. The description of ψ and the proof that it is an
isomorphism can be found in [7, Lemma 3.10]. 5 The composition ȷ ◦ψ ◦ ι−1, with ι, ȷ as in Corollary
4.6, gives an isomorphism

R◦(u−1, w−1)
∼→ R◦(u,w).

In fact, the existence of these isomorphisms implies that we could have chosen slightly different
braids throughout the paper so that their varieties would be isomorphic to open Richardson and
positroid varieties, at the cost of changing such isomorphisms. Namely, our positive Richardson braid
is R+

n (u,w) = β(u−1w0)β(w
∗), and we use the isomorphism ȷ from Corollary 4.6 to realize open

Richardson varieties as braid varieties. Instead, we could have used the braid β(w)β(u−1w0) and its
braid variety throughout the paper and applied the isomorphism ȷ ◦ ψ to realize open Richardson
varieties as braid varieties. All the other positroid braids would have changed accordingly. □

5The paper [7] uses different conventions to define braid varieties, but the same arguments apply in our setting.
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4.3.1. Technical lemmas for Theorem 4.5. The open Schubert cell
◦
Xw is isomorphic to an affine space

of dimension ℓ(w), the length of w, which can be described as follows. Consider w as a permutation
matrix and let Elm be the (lm)-elementary matrix, so that the (s, t) entry of Elm is the product

(δl,s)(δm,t) of Kronecker deltas. Inside the space of (n × n)-matrices Mn(C) ∼= Cn2

, consider the
unique affine subspace Mw which contains w ∈Mn(C) and is spanned by all the matrices Ew(j),i such

that the pair (i, j) satisfies (i, j) ∈ inv(w).6 It can be proven, see e.g. [62, Proposition 1.12], that the
map

ι : GL(n,C) −→ F ℓn, A 7→ FA,

restricts to an isomorphism between Mw and the Schubert cell
◦
Xw, i.e. ι(Mw) ∼=

◦
Xw. Let us now

relate this to braid matrices. Indeed, braid matrices serve as a parametrization of the affine spaces
Mw, and thus of the corresponding Schubert cells. This is the content of the following lemma, for a
proof see e.g. [51, Proposition 5.1.5] and [8, Section 2].

Lemma 4.8. Let w ∈ Sn be a permutation and β = σi1 · · ·σiℓ ∈ Bn a choice of reduced positive lift
for w. Then the map

Cℓ(w) →Mw, (z1, . . . , zℓ) 7→ B−1
i1

(z1) · · ·B−1
iℓ

(zℓ)

is an isomorphism of affine algebraic varieties. □

The opposite open Schubert cell
◦
X w is also an affine space, as we now show.

Lemma 4.9. Let w ∈ Sn. The opposite Schubert cell
◦
X w is an affine space of dimension ℓ(ww0) =

ℓ(w0)− ℓ(w). Moreover, if β = σj1 · · ·σjs is a reduced positive lift of ww0 then the map

Cℓ(ww0) →
◦
X w, (t1, . . . , ts) 7→ FBβ(t)w0

is an isomorphism of affine algebraic varieties.

Proof. This follows from Lemma 4.8, as follows. By definition,
◦
X w = B−wB/B = (w0Bw0)wB/B = w0

◦
Xw0w

so that
◦
X w is an affine space of dimension ℓ(w0w) = ℓ(ww0). Now, w0w = (ww0)

∗, and thus the
word σi1 · · ·σis , where σik = σ∗

jk
= σn−jk , for 1 ≤ k ≤ s, is a reduced braid word for β(w0w). Then,

according to Lemma 4.8, we have a parametrization of
◦
X w by flags associated to matrices of the

form:
w0B

−1
i1

(t1) · · ·B−1
is

(ts), (t1, . . . , ts) ∈ Cs.

It remains to notice that B−1
i (t) = w0Bn−i(−t)w0, that is proved by a direct verification. □

Lemmas 4.8 and 4.9 suffice to prove Theorem 4.5. That is, we now show that if β = β1β2, with β1
and β2 both being reduced words, then the braid variety of β is isomorphic to the intersection of the
corresponding Schubert and opposite Schubert cells.

4.3.2. Proof of Theorem 4.5. Let us first verify that, in fact, Statements (a) and (b) are equivalent.
Indeed, let A ∈ GL(n,C). Then,

FA ∈ R◦(w2w0, w
−1
1 ) = ((w0Bw0)(w2w0)B/B) ∩ (Bw−1

1 B/B)

if and only if
Fw0A ∈ (Bw∗

2B/B) ∩ ((w0Bw0)(w0w
−1
1 )B/B) = R◦(w0w

−1
1 , w∗

2),

and the equivalence of Statements (a) and (b) follows.

Now we show (a), from which (b) will follow by the above equivalence. First, let us verify that
the image ι(X(β1β2;w0)) is indeed in the required intersection, i.e. that for each z1 ∈ Cℓ(β1), the flag

FB−1
β1

(z1) belongs to both cells
◦
Xw−1

1
and

◦
X w2w0 . By Lemma 4.8, and since β1 = β((w1)

−1), the

matrix B−1
β1

(z1) belongs to the affine subspace Mw−1
1

, and thus FB−1
β1

(z1) ∈
◦
Xw−1

1
, as needed. For the

6Recall that an inversion of w is a pair (i, j) where i < j and w(i) > w(j), and inv(w) denotes the set of inversions

of w; note that ℓ(w) = # inv(w).
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inclusion FB−1
β1

(z1) ∈
◦
X w2w0 , we note that for each z2 ∈ Cl(β2) such that (z1, z2) ∈ X(β1β2, w0), we

have the identity
Bβ1

(z1)Bβ2
(z2)w0 = U

for some upper triangular matrix U . This implies that

B−1
β1

(z1) = Bβ2(z2)w0U
−1,

and, since U−1 is upper triangular, we conclude that FB−1
β1

(z1) = FBβ2
(z2)w0U

−1

= FBβ2
(z2)w0 . Then

Lemma 4.9, together with the observation that β2 is a reduced braid word for (w2w0)w0, shows that

the flag FBβ2
(z2)w0 belongs to

◦
X w2w0 , as needed.

Second, in order to show that ι restricts to a bijection, consider a flag F ∈
◦
Xw−1

1
∩

◦
X w2w0 . By

Lemma 4.8, we can find a unique element z1 ∈ Cℓ1 such that F = FB−1
β1

(z1). Finally, there exists

a unique element z2 ∈ Cℓ2 such that (z1, z2) ∈ X(β1β2;w0). Indeed, since F ∈
◦
X w2w0 , Lemma 4.9

implies that there exists a unique z2 ∈ Cℓ2 such that F = FBβ2
(z2)w0 . So B−1

β1
(z1) = Bβ2(z2)w0U

for an upper triangular matrix U and the result follows. □

4.3.3. Proof of Theorem 1.3. We are now in position to prove Theorem 1.3 from the introduction.
Recall that a positroid pair (u,w) yields the open positroid variety Πu,w ⊆ Gr(k, n) in the Grass-
mannian. By [42, Theorem 5.9], there exists an algebraic isomorphism Πu,w

∼= R◦(u,w) between
the positroid stratum for (u, v) and the Richardson variety R◦(u,w). By Corollary 4.6, we have the
algebraic isomorphism R◦(u,w) ∼= X(β(u−1w0)β(w

∗)) given by the restriction of ȷ, where, as usual,
β(u−1w0), β(w

∗) are positive braid lifts of their corresponding arguments. The composition of these
two isomorphisms proves Part (i).

For Part (ii), we use Section 3. In particular, that both X(R+
n (u,w)) and X(Jk(f);w0,k)× (C∗)d

are Legendrian invariants associated to the Legendrian links Λ(u,w) and Λ(f), respectively. For that,
we use [10, Section 5.1], which explicitly describes the Legendrian contact dg-algebra AΛ(β) for a
Legendrian (−1)-closure Λ(β) in terms of braid matrices. It follows from loc. cit., similarly to [8,
Section 2.6], that there is an algebraic isomorphism X(β) ∼= Spec H0(AΛ(β∆)), where we choose one
marked point per strand. By [12, Theorem 3.4], the quasi-isomorphism type of AΛ(β) is a Legendrian
isotopy invariant. Therefore X(β) ∼= X(β′) if Λ(β) is Legendrian isotopic to Λ(β′).

Let Λ(f) ⊆ (R3, ξst) be the Legendrian link given by the unlinked union of Λ(f) with m unlinked
max-tb Legendrian unknots, each of the unknots with one unique marked point. Then

Spec H0(A
Λ(f)

) ∼= Spec H0(AΛ(f))× (C∗)m.

Indeed, H0(AΛ(e)) ∼= C[t, t−1] for the 1-stranded braid e with one marked point t ∈ C∗, which corre-

sponds to a max-tb Legendrian unknot with one marked point, and Spec H0(AΛ1∪Λ2
) ∼= Spec H0(AΛ1

)×
Spec H0(AΛ2

) is a Cartesian product if the components Λ1,Λ2 of the link Λ1 ∪Λ2 are unlinked from

each other. By Theorem 3.6, Λ(u,w) is Legendrian isotopic to Λ(f) ⊆ (R3, ξst) for some m ∈ N. The
number m is determined by the number of destabilizations as in Lemma 3.7.(2) in Subsection 3.2,
equivalently the number of destabilizations using Lemma 2.27.(2) in Subsection 2.4. Following the
proof of Theorem 2.26 gives m = n − k − φ, where φ is the number of fixed points of f . Therefore,
we obtain the following sequence of isomorphisms:

X(R+
n (u,w))

∼= Spec H0(AΛ(u,w)) ∼= Spec H0(A
Λ(f)

) ∼=
∼= Spec H0(AΛ(f))× (C∗)n−k−φ ∼= X(Jk(f))× (C∗)n−k−φ.

This proves Part (ii) and thus finishes the argument for Theorem 1.3. □

4.4. Brick manifolds and compactifications of braid varieties. This subsection discusses smooth
compactifications of braid varieties. Let β = σi1 · · ·σiℓ ∈ B+

n be a positive braid word. We first define
the brick manifold brick(β) associated to β, following [18]. These brick varieties brick(β) will provide
natural smooth compactifications of our braid varieties X(β).

By definition, the Bott-Samelson variety BS(β) associated to β is the moduli space of collections
of flags (F 0, . . . ,F ℓ) ∈ F ℓn such that F 0 is the standard flag and either F j = F j+1, or the two
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contiguous flags F j ,F j+1 differ precisely in the ij+1-subspace. This projective variety BS(β) contains
a natural subvariety, called the open Bott-Samelson variety OBS(β) in [8], defined by the additional
condition that two contiguous flags must be different, i.e. F j ̸= F j+1 for every j ∈ [0, ℓ− 1].

The Bott-Samelson variety BS(β) admits a natural projection map

mβ : BS(β) −→ F ℓn, mβ(F
0, . . . ,F ℓ) := F ℓ,

onto the last, rightmost, flag.

Definition 4.10. Let β ∈ B+
n be a positive braid word. By definition, the brick variety brick(β)

associated to β is
brick(β) := m−1

β (δ(β)F st),

where δ(β) ∈ Sn denotes the Demazure product of β. The associated open brick variety is defined as

brick◦(β) := m−1
β (δ(β)F st) ∩OBS(β).

□

Here the Demazure product δ(β) ∈ Sn is the (unique) maximal permutation with respect to the Bruhat
order such that β contains its positive braid lift. The brick manifold brick(β), unlike the braid variety
X(β), significantly depends on the braid word β ∈ B, and not only on the braid [β] ∈ Br.

Let us prove Theorem 1.4 in the introduction. Given β = σi1 · · ·σiℓ ∈ Bn, denote its opposite braid
word by β:= σiℓ · · ·σi1 . Braid varieties relate to brick varieties, up to this mirroring, as follows:

Theorem 4.11. Let β = σi1 · · ·σiℓ ∈ Bn be a positive braid word, and consider the truncations
βj := σil · · ·σil−j+1

, j ∈ [1, ℓ].The following holds:

(i) The algebraic map

Θ : Cℓ −→ F ℓℓ+1
n , (z1, . . . , zℓ) 7→ (F st,F 1, . . . ,F ℓ),

where F j is the flag associated to the matrix B−1
βj
(zℓ−j+1, . . . , zℓ), restricts to an isomorphism

Θ : X( β; δ(β))
∼=−→ brick◦(β),

of affine varieties. In particular, the braid variety X( β; δ(β)) is smooth.

(ii) The complement to X( β; δ(β)) in brick(β) is a normal crossing divisor. Its components cor-
respond to all possible ways to remove a letter from β while preserving its Demazure product.

Proof. For Part (i), we first verify Θ(X( β; δ(β))) ⊆ brick◦(β). For that, note that

B−1
βj+1

(zℓ−j , . . . , zℓ) = B−1
βj
(zℓ−j+1, . . . , zℓ)B

−1
ij+1

(zℓ−j),

and thus the two flags F j and F j+1 are indeed in position ij+1, as required. In order to check that

FB−1
β (z1,...,zℓ) = δ(β)F st,

we observe that we have B β(z1, . . . , zℓ)δ(β) = U , where U is an upper triangular matrix, and hence

B−1
β (z1, . . . , zℓ) = δ(β)U−1, from which this conclusion follows. The fact that the map Θ restricts

to an isomorphism follows from the statement of Lemma 4.12 below. The smoothness claim follows
from [18, Theorem 3.3].

For Part (ii), we proceed as follows. For a subset I ⊆ [1, ℓ], let brick(β)◦I ⊆ brick(β) be defined by
the conditions that F i−1 ̸= F i if and only if i ∈ I, where F 0 = F st. For example, brick(β)◦[1,ℓ] =

brick(β)◦. Now let brick(β)I := brick(β)◦I , which is similarly defined by the condition that F i−1 = F i

if i ̸∈ I. Note that brick(β)I ⊆ brick(β)J if I ⊆ J , and that brick(β)◦I is nonempty if and only if
δ(βI) = δ(β), where βI is the subword of β indexed by I. Moreover, in this case we have natural
isomorphisms

brick(βI)
◦ ∼→ brick(β)◦I , brick(βI)

∼→ brick(β)I .

Now we have the following the composition

brick(β) = brick(β)◦ ⊔
⋃

I⊊[1,ℓ]

brick(β)I = X( β; δ(β)) ⊔
⋃

I⊊[1,ℓ]
δ(βI)=δ(β)

brick(βI).
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If δ(βI) = δ(β), then brick(βI) is a smooth variety of dimension |I| − ℓ(δ(β)), see [18, Theorem 3.3].
Therefore, in this case

brick(βI) = brick(β)I =
⋂
j ̸∈I

brick(β)[1,ℓ]\{j} =
⋂
j ̸∈I

brick(β[1,ℓ]\{j}).

Hence brick(βI) is a complete intersection, and the divisors brick(β[1,ℓ]\{j}) ⊆ brick(β) intersect
transversely, if the intersection is non-empty. □

Lemma 4.12. Let us consider an invertible matrix A ∈ GLn and i ∈ [1, n− 1]. Then, the map

C −→ F ℓ, z 7−→ FAB−1
i (z),

yields an isomorphism from C to the set of all flags that are in position i with respect to FA.

Proof. Let F := FA, F ′ another flag that is in position i with respect to F and consider the
projection F ′

i −→ Fi+1/Fi−1. The latter space has basis {ai, ai+1}, where ai, ai+1 are the ith and
(i+1)st columns of the matrix A. Since the image is a one-dimensional subspace that cannot coincide
with Cai, it is of the form C(ai+1 + zai) for a unique z ∈ C. The result follows. □

Remark 4.13. Note that Corollary 4.6 also follows from Theorem 4.11 by results of [18], since an
open Richardson variety is an open brick variety for the word considered in Corollary 4.6. Resolu-
tions of Richardson varieties via fibers of the Bott-Samelson map first appeared in [2], reformulating
constructions in [3]; the latter were also studied in [43]. □

Remark 4.14. In [8, Theorem 2.34] we compared braid varieties with the diagonal open Bott-
Samelson varieties. These are subvarieties of OBS(β) defined by an additional condition F 0 = F l,
but this flag (which is simultaneously the first and the last one) is not fixed. Open brick varieties are
defined by a different condition, as one fixes both the first and the last flags. This difference explains
the additional appearance of G and B in [8, Theorem 2.34].7. □

Since the brick manifold brick(β) depends on the braid word β ∈ B, and the braid variety X(β)
does not, Theorem 4.11.(ii) allows us to construct many different compactifications for a given braid
variety. These compactification are all smooth and projective and the compactifying divisor is a
smooth normal crossing divisor.

Example 4.15. Let us consider the equivalent braid words

β1 = σ1σ2σ1σ2σ1, β2 = σ1σ2σ2σ1σ2.

In both cases, the braid varieties are algebraic tori

X( β1;w0) ∼= X( β2;w0) ∼= (C∗)2.

The variety brick(β1) has X(β1;w0) as an open stratum, 5 codimension-1 strata (all isomorphic to C∗),
and 5 codimension-2 strata, which are points. In fact, brick(β1) is a toric degree 5 del Pezzo surface,
i.e. the toric variety associated to the pentagon, and these various strata correspond to toric orbits. In
contrast, X(σ1σ

3
2 ;w0) is empty and there are only 4 codimension-1 strata and 4 codimension-2 strata

in brick(β2). In fact, brick(β2) ∼= P1 × P1, which is a different toric variety. □

Theorem 4.11 also brings forth a connection between braid varieties and the subword complexes
introduced in [44]. For that, note that the open brick variety brick◦(β) is the higher-dimensional
stratum in the stratification of the brick variety brick(β) given in [18, Theorem 24], and we claim that
all other strata of this stratification can also be realized as braid varieties, as follows.

Let β′ be a subword of β such that the Demazure product of β′ coincides with that of β. Then,
X( β′; δ(β)) is a strata of brick(β), given by the conditions that F j = F j+1 whenever ij+1 ̸∈ β′.
This stratification is dual to the subword complex (β, δ(β)), as defined in [44]. Subword complexes
are defined for arbitrary pairs (β, π), where π is an element of a finite Coxeter group and β is a
word in simple generators; the latter can also be seen as a positive braid word in the corresponding
braid group. In [44] it is proven that a subword complex is spherical if and only if δ(β) = π. Thus,
brick manifolds bijectively correspond to spherical subword complexes and they are stratified by braid
varieties, with the adjacency of strata described by the dual complexes.

7Note that the Borel subgroup B is denoted by B in [8, Theorem 2.34].
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Example 4.16. Let us choose n = 2 and β = σ3
1. The braid variety X(σ3

1 ; s1) is a smooth surface in
C3 defined by the equation

X(σ3
1 ; s1) = {(z1, z2, z3) ∈ C3 : z1 + z3(1 + z1z2) = 0}.

If 1 + z1z2 = 0, we get z1 = 0, and thus come to a contradiction. Therefore, 1 + z1z2 ̸= 0. Then
z3 = − z1

1+z1z2
, and so X(σ3

1 ; s1) is isomorphic to the complement

Y = {(z1, z2) ∈ C2 : 1 + z1z2 ̸= 0}

of a smooth hyperbola in C2. The braid variety X(σ2
1 ; s1) is isomorphic to C∗ and X(σ1; s1) is a

point. The corresponding brick manifold is brick(σ3
1)

∼= P1 × P1, and these different braid varieties
stratify it as follows. Consider the homogeneous coordinates (x, y) ∈ P1 × P1, and denote [0 : 1] by 0
and [1 : 0] by ∞. Note that the homogenized hyperbola C̄ contains the points (0,∞) and (∞, 0). The
stratification of the brick variety P1 × P1 given by the braid varieties has the following seven strata:

- One 2-dimensional stratum Y , which is the complement of the smooth hyperbola in C2.

- Three 1-dimensional strata, each isomorphic to C∗. Two such strata are given by

S1 := {(x, y) ∈ P1 × P1 : x = ∞, y ̸= 0,∞}, S2 := {(x, y) ∈ P1 × P1 : x ̸= 0,∞, y = ∞},

and the third one S3 := {(z1, z2) ∈ C2 : 1 + z1z2 = 0} is the affine hyperbola itself.

- Three 0-dimensional strata, each a point: p1 := (∞, 0), p2 := (0,∞) and p3 := (∞,∞).

The subvarieties S1 := S1 ∪ {p1, p3}, S2 := S2 ∪ {p2, p3} and S3 := S3 ∪ {p1, p2} are all smooth
projective lines P1 ⊆ brick(σ3

1), transversely intersecting each other. The compactifying divisor of
X(σ3

1 ; s1) ⊆ brick(σ3
1) is the union S1 ∪ S2 ∪ S3. Its dual complex, which records the intersections of

these strata, coincides with the spherical subword complex for β = σ3
1. □

4.5. Equivariant homology and Lefschetz property for braid varieties. Theorem 4.11.(ii)
also allows us to compute the equivariant homology of braid varieties, as follows.

By Theorem 4.11.(ii), we can express the weight filtration on homology of the braid variety X( β;w0)
in terms of homologies of brick manifolds brick(βI) as follows. Consider the big complexes

C• :=
⊕
I

H∗(brick(βI)), CT
• :=

⊕
I

HT
∗ (brick(βI))

where the summation is over the subsets I ⊆ [1, ℓ] such that δ(βI) = δ(β), and the differential is given
by inclusions brick(βI) ↪→ brick(βJ) for I ⊂ J, |J | = |I| + 1. The torus T = (C∗)n−1 has a natural
action on braid varieties as in [8, Section 2.2], and the brick compactification is T -equivariant. One
can also consider the complexes

C• :=
⊕
I

H∗(brick(βI)), C•
T :=

⊕
I

H∗
T (brick(βI)),

where all inclusions of brick manifolds correspond to maps in cohomology in the opposite direction.

Proposition 4.17. In the notation above, we have the isomorphism

H∗(C•) = grWH∗(X( β;w0)), H∗(C
T
• ) = grWHT

∗ (X( β;w0)),

where grW is the associated graded for the weight filtration.

Proof. By Theorem 4.11.(ii), the homology of the complex C• (resp. CT
• ) is the E2-page of the

spectral sequence computing the homology (resp. T -equivariant homology) of X( β;w0). Since all
brick manifolds are smooth and projective, the weight filtrations in their homology agree with the
homological gradings. By [14, 15], the higher differentials preserve weights and the spectral sequence
collapses at the E2 page. Therefore we obtain the equality

H∗(C•) = grWH∗(X( β;w0)), H∗(C
T
• ) = grWHT

∗ (X( β;w0)).

□
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In order to describe the complexes C•
T in more detail, we need notation from the theory of Soergel

bimodules, see [17] for details and references. Let

R := C[x1, . . . , xn] = H∗
T (pt).

We need the following R-R- bimodules. For 1 ≤ i ≤ n− 1, we write

(4.1) Bi :=
C[x1, . . . , xn, x′1, . . . , x′n]

xi + xi+1 = x′i + x′i+1, xixi+1 = x′ix
′
i+1, xm = x′m (m ̸= i, i+ 1)

.

Note that we have a natural map bi : Bi → R defined by

bi(f(x1, . . . , xn, x
′
1, . . . , x

′
n) = f(x1, . . . , xn, x1, . . . , xn).

Given a braid word β = si1 . . . sir , we define the Bott-Samelson bimodule

Bβ = Bi1

⊗
R

· · ·
⊗
R

Bir .

Alternatively, one can write Bβ as a quotient of the polynomial ring C
[
x
(i)
j , 0 ≤ ℓ ≤ r, 1 ≤ j ≤ n

]
by

the relations of the form (4.1) between (x
(ℓ)
j )j∈[1,n] and (x

(ℓ+1)
j )j∈[1,n] for all ℓ ∈ [0, r − 1].

Proposition 4.18. In the notation above, the following hold:

(a) We have the isomorphism H∗
T (BS(β)) ≃ Bβ.

(b) If β′ is a subword of β then we have a commutative diagram

H∗
T (BS(β)) Bβ

H∗
T (BS(β

′)) Bβ′ ,

≃

≃

where the vertical arrows correspond to the inclusion BS(β′) ↪→ BS(β) and to the composition
of maps bi respectively.

Proof. These facts are well-established, cf. [17], but we review the key geometric ideas for com-

pleteness. The variables x
(ℓ)
j correspond to the first Chern classes of the tautological line bundles

L(ℓ)
j = F ℓ

j /F
ℓ
j−1 on the Bott-Samelson variety BS(β). Since BS(β) is a tower of P1-bundles, it can

be proven that x
(ℓ)
j generate the equivariant cohomology. If two flags F and F ′ are in position si,

and Li = Fi/Fi−1, L′
i = F ′

i/F
′
i−1, then the rank two bundle

Fi+1/Fi−1 = F ′
i+1/F

′
i−1

is filtered both by Li,Li+1 and by L′
i,L′

i+1, hence the first Chern classes xi = c1(Li), x
′
i = c1(L′

i)
satisfy the relations (4.1). This implies Part (a).

For Part (b), consider the inclusion of the diagonal BS(1) ↪→ BS(si) and note that the corresponding
map in equivariant cohomology agrees with bi : Bi → R. □

Lemma 4.19. Assume that δ(β) = w0, and let

Bβ = Bβ/
(
x
(0)
j = x

(r)
n+1−j , 1 ≤ j ≤ n

)
.

Then the following hold:

(a) We have an isomorphism H∗
T (brick(β)) ≃ Bβ.

(b) If β′ is a subword of β with δ(β′) = δ(β) = w0 then we have a commutative diagram

H∗
T (brick(β)) Bβ

H∗
T (brick(β

′)) Bβ′ .

≃

≃
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Proof. The key observation is that, by [37, Corollary 6.5(b)] and [60, Corollary 4.12], the restriction
map in equivariant cohomology

H∗
T (BS(β)) → H∗

T (brick(β))

is surjective. In particular, H∗
T (brick(β)) is generated by x

(ℓ)
j as in Proposition 4.18 subject to addi-

tional relations x
(0)
j = x

(r)
n+1−j . Part (b) is immediate from Proposition 4.18(b). □

By combining the above results, we can relate the homology of braid varieties to Khovanov-Rozansky
link homology [40, 41]. The following result gives an alternative proof of [63, Corollary 4].

Theorem 4.20. Let β be a positive braid and suppose that δ(β) = w0. Then we have an isomorphism

grWH∗
T (X( β;w0)) ≃ HHHa=n(β∆) ≃ HHHa=0(β∆−1),

where HHHa=0, resp. HHHa=n, is the Khovanov-Rozansky homology in lowest, resp. highest, a-degree.

Proof. We prove this by combining the above results. Similarly to Proposition 4.17 we get

grWH∗
T (X( β;w0)) ≃ H∗(C•

T )

where
C•

T =
⊕
I

H∗
T (brick(βI)),

the sum runs over subsets I such that δ(βI) = w0 and the differential is given by the restriction maps
in equivariant cohomology corresponding to the inclusions brick(βI) ↪→ brick(βJ).

By Lemma 4.19 we can replace each H∗
T (brick(βI)) by BβI

and the maps between these by the maps

bi. Furthermore, one can show using the results of [47] that BβI
≃ Hom(Tw0

,BβI
), where Tw0

is the
Rouquier complex [17] corresponding to ∆. By the main result of [47] (see also [34, Corollary A.6])
we have Hom(Tw0

,BβI
) = 0 whenever δ(βI) ̸= w0.

To sum up, we can replace the complex C•
T by

⊕
I Hom(Tw0 ,BβI

) where the sum runs over all
possible subsets I, and the restriction maps are induced by the maps bi. This latter complex is
precisely ⊕

I

Hom(Tw0
,BβI

) = Hom

(
Tw0

, [Bi1

bi1−−→ R]⊗R · · · ⊗R [Bir

bir−−→ R]

)
=

Hom(Tw0
, Ti1

⊗
R

· · ·
⊗
R

Tir ) = Hom(Tw0
, Tβ) = Hom(R, TβT

−1
w0

) = HHHa=0(β∆−1).

Finally, by the main result of [34] we conclude HHHa=0(β∆−1) ≃ HHHa=n(β∆). □

Finally, [51] studied the curious Lefschetz property, as defined by [38], for cohomology rings of
character varieties. In [51], a stratification of a certain vector bundle over a given character variety is
shown to be equal to a stratification by vector bundles over braid varieties. In particular, [51] proves
the curious Lefschetz property for each braid variety. Therefore, Corollary 4.6 implies:

Corollary 4.21. Let u,w ∈ Sn be such that u ≤ w in Bruhat order. Then the open Richardson
variety R◦(u,w) for G := SL(n,C) satisfies the curious Lefschetz property. □

This result was first conjectured by T. Lam and D. Speyer [45, Section 1.5.1], see also further discussion
in a recent paper by P. Galashin and T. Lam [29].

5. Concluding remarks on cluster structures and Legendrian links

Let us conclude this article with a few comments and conjectures on cluster structures. The reader
is referred to [25, 26] and [22, 21] for the necessary preliminaries on cluster structures, and see also
[23, 27, 35, 45, 52, 53, 54, 58]. See [11, Section 2.8] and [24, Section 6] for a discussion on cluster
structures on spaces, and we refer to [5, 6] and references therein for recent developments.

Let Λ ⊆ (R3, ξst) be a Legendrian link and T ⊆ Λ a set of marked points, with at least one marked
point per component. From now onward, unless otherwise specified, we assume that Λ is isotopic to
the Legendrian lift Λβ of a (−1)-closure of a positive braid β. Let us denote by M(Λ, T ) either of the
two smooth affine varieties:



POSITROID LINKS AND BRAID VARIETIES 39

(1) M(Λ, T ) = Spec(H0(A(Λ, T ))), where A(Λ, T ) denotes the (commutative) Legendrian con-
tact dg-algebra associated to (Λ, T ). This dg-algebra was defined in [12], see [20] for a survey.

(2) M(Λ, T ) is the moduli stack of pseudo-perfect objects of microlocal rank one in ShΛ(R2, T )
with a trivialization of the microlocal functor on Λ \ T . See [11, Section 2.7] for more details.

These varieties are isomorphic, cf. [11, Section 4] and [10, Prop. 5.2], or [55]. If T is chosen so that
every strand of the positive braid word β associated to Λ = Λβ has exactly one marked point, then
M(Λβ , T ) is isomorphic to the braid variety of β, cf. [8, Section 2]. In [7] we proved that the algebra
of regular functions C[M(Λ, T )] is a cluster algebra satisfying many interesting properties, such as
local acyclicity and the existence of a Donaldson-Thomas transformation, see also [11, 31]. This fact
was conjectured in the initial version of this manuscript, prior to ibid.

Let us consider a contact isotopy {ϕt}t∈[0,1], so that each ϕt ∈ Contc(R3, ξst) is a compactly
supported contactomorphism and ϕ0 = Id. Note that any Legendrian isotopy extends to a contact
isotopy [33]. Then the contact isotopy {ϕt}t∈[0,1] induces an algebraic isomorphism of affine varieties

Φt : M(Λ, T ) −→ M(ϕt(Λ), ϕt(T )).

Indeed, this is proved in [12] for the Floer-theoretic approach with the dg-algebra, and holds by
[36] in the sheaf-theoretic approach. We conjecture that these are not just isomorphisms of affine
varieties, but also quasi-cluster isomorphisms. See [27] for details on quasi-cluster structures and
their morphisms. The precise conjecture reads as follows:

Conjecture 5.1 (Legendrian invariance of cluster structures). Let Λ0 and Λ1 be two Legendrian links
in (R3, ξst) and let {ϕt} be a contact isotopy ϕt ∈ Contc(R3, ξst), t ∈ [0, 1], such that ϕ1(Λ0) = Λ1.
Consider a set of marked points T0 ⊆ Λ0, with at least one marked point per component and write
T1 := ϕ1(T ). Then the induced algebraic morphism

Φ∗
t : C[M(Λ1, T1)] −→ C[M(Λ0, T0)]

is a quasi-cluster isomorphism, where both target and domain are endowed with the cluster structures
constructed in [7]. That is, the quasi-cluster isomorphism type of the cluster algebra C[M(Λ, T )] is a
Legendrian isotopy invariant of a Legendrian link Λ ⊆ (R3, ξst) with a set of marked points T ⊆ Λ.

Following the symplectic geometry behind the construction of the cluster structures in [7, 11], it is
natural to expect a generalization of our previous work and the above conjecture to any Legendrian link
Λ ⊆ (R3, ξst), even if it is not the (−1)-closure of a positive braid. A first challenge is structural: the
spaces M(Λ, T ) are in general just D−-stacks and there is no definition known to us of what it means
for a derived stack to admit a cluster structure. More generally, both the dg-category ShΛ(R2, T )
of sheaves above and the stable tame isomorphism type of A(Λ, T ) are Legendrian invariant. The
geometry indicates that they should admit a sort of “cluster structure”; a challenge is that we do not
know what it means for a (finite type) dg-category to admit a cluster structure8 or for a dg-algebra
to be a “cluster” dg-algebra. The characteristic algebra, as introduced in [56, Section 3], or the
graded augmentation variety, modulo dg-homotopies, might be reasonable objects to study from this
viewpoint. In either case, based on the geometry, we conjecture that such generalizations of cluster
structures exist and are Legendrian invariant, up to quasi-cluster isomorphisms.
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