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Abstract. Using the non-semisimple Temperley–Lieb calculus, we study the additive and
monoidal structure of the category of tilting modules for SL2 in the mixed case. This simultane-
ously generalizes the semisimple situation, the case of the complex quantum group at a root of
unity, and the algebraic group case in positive characteristic.

We describe character formulas and give a presentation of the category of tilting modules as
an additive category via a quiver with relations. Turning to the monoidal structure, we describe
fusion rules and obtain an explicit recursive description of the appropriate analog of Jones–Wenzl
projectors. We also discuss certain theta values, the tensor ideals, mixed Verlinde quotients and
the non-degeneracy of the braiding.
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1. Introduction

Let k be a field of characteristic p, fix a non-zero element q ∈ k∗, and let K be an algebraically
closed field containing k. Tilting modules for SL2, the reductive group SL2(K) if q = ±1 or
Lusztig’s divided power quantum group for sl2 if q 6= ±1, are among the most well-studied
objects in representation theory. In this paper, we use diagrammatic methods to study monoidal
categories of tilting modules in the mixed case, i.e. for arbitrary (k,q). As a modern day
perspective, the mixed case can be thought of as the culmination of the following cases:

(a) The semisimple case, where e.g. k = C and q = 1.
(b) The complex quantum group case (at a root of unity), where e.g. k = C and q2` = 1.
(c) The characteristic p case, where e.g. k = Fp and q = 1.
(d) The (strictly) mixed case, where e.g. k = Fp and q2` = 1.
Tilting modules form a monoidal category, so one can ask questions concerning objects,

morphisms, and how these behave under the tensor product. Concentrating on objects and their
characters is the classical approach in representation theory. Recently, the focus has shifted
to understanding morphisms between tilting modules, especially from a monoidal perspective,
which has been driven by work from quantum topology and categorification. A more thorough
understanding of the associated diagrammatic and combinatorial model that underpins the
behavior of these tilting modules, known as the Temperley–Lieb category, was a key ingredient in
recent progress.
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In this paper, we let Tiltk,q for arbitrary (k,q) denote the monoidal category obtained by
idempotent completion from the Temperley–Lieb category TLk,q, see Remark 2.22. We study
Tiltk,q with a focus on the behavior of objects and morphisms with respect to its monoidal
structure, a natural progression of previous work [TW19] and [TW20]. The main results of this
paper are contained within Sections 3 to 5 and can be summarized as follows.

In Section 3B we define mixed JW projectors Ev−1 in TLk,q for v ∈ N and show that they
correspond to indecomposable tilting modules T(v−1) of highest weight v−1. These idempotents
have been constructed independently in [MS21] and they are a simultaneous generalization of the
classical Jones–Wenzl projectors [Jo83], [We87], the projectors of Goodman–Wenzl [GW93], and
the pJones–Wenzl projectors of Burrull–Libedinsky–Sentinelli [BLS19].

In Section 3C we study morphisms between mixed JW projectors in TLk,q and obtain a
presentation of Tiltk,q as an additive category by generators and relations. Specifically, we
exhibit Tiltk,q as the category of projective modules for the path algebra of a quiver with relations
explicitly described in Theorem 3.25, which can be interpreted as the (semi-infinite) Ringel dual
of SL2.

In Section 4 we turn to the monoidal structure and study fusion rules for Tiltk,q and their
categorified analogs in TLk,q. Classically, fusion rules express the structure constants for the
representation ring, i.e. the decomposition multiplicities of tensor products of modules, such
as T(v) ⊗ T(w), into indecomposable modules. On the categorified level one is interested in
explicitly describing the projection and inclusion maps realizing such decompositions. In the
Temperley–Lieb context this means decomposing the tensor products Ev ⊗ Ew into idempotents
that project onto the indecomposable summands predicted by the fusion rule.

A famous example is the recursion for the classical Jones–Wenzl projectors

v−1 = v + 1
g∗
·

v−1

v−1

v−2 ,
1
g∗

= − [v − 1]q
[v]q

,(1-1)

which witnesses the decomposition T(v − 1) ⊗ T(1) ∼= T(v) ⊕ T(v − 2) that holds whenever all
involved tilting modules are simple. In fact, the Jones–Wenzl recursion (1-1) is often taken as
(part of) the definition of the Jones–Wenzl projectors.

In Theorem 4.15 we establish decompositions analogous to (1-1) in the mixed setting of TLk,q.
These provide a recursive description of the mixed JW projectors, which appear to be new in this
generality, even new when specialized to the positive characteristic or complex quantum group
cases, cf. [BDRM19]. As an example, we show an instance going beyond (1-1), which witnesses a
decomposition T(v − 1)⊗ T(1) ∼= T(v)⊕ T(v − 2) with summands that need not be simple:

v−1 = v +

 1
g∗
·

v−1

v−1

v−2 − f∗
g∗
·

v−1

v−1

v−2

v−2

 .(1-2)

(Here and throughout the paper we use colored boxes to encode mixed JW projectors corresponding
to tilting modules that need not be simple.) The middle part of the rightmost diagram in (1-2)
corresponds to a nilpotent endomorphism of T(v− 2). In particular, if T(v− 2) is simple, then the
rightmost diagram is zero and we recover (1-1). In general, however, the decompositions provided
by Theorem 4.15 are more complex than suggested by the example (1-2). In particular, arbitrary
many summands can appear, with multiplicities up to two.

In Section 4C we consider the more general problem of splitting the tensor product of projectors
Ew−1 ⊗ Ex−1, the first step towards a non-semisimple version of recoupling theory in the sense of
Kauffman–Lins [KL94]. Realizing that a solution to this problem is well beyond current reach,
we restrict to the case when the tilting modules corresponding to both factors are simple. In
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Theorem 4.32 we give a complete description of the splitting in certain cases, including the
complex quantum group case. Along the way we obtain results that may be of independent
interest, including Theorem 4.27 which computes the non-semisimple analogs of theta values:

w−1 x−1

v−1

v−1

= d∗ · v−1 + d ′∗ ·
v−c−1

v−c−1 c

c

.

The digon removal scalars appearing here will be computed explicitly in Section 4C.
In Section 5 we apply the results from the previous sections to classify tensor ideals in Tiltk,q

and describe modified traces on them. Finally, assuming that q has a square root in k, we
consider Tiltk,q as a braided monoidal category and compute its Müger center. In particular, we
find that the braiding on Tiltk,q is non-degenerate whenever q 6= ±1.

Throughout, we will describe various fractal-like patterns arising from the characteristic p
and the strictly mixed cases, which may be interesting in their own right. We have collected
illustrations of several such fractals in Figures 1 to 5.

A bit of historical background and other works. Tilting modules for SL2 have played a
crucial role in representation theory and low-dimensional topology, even before their introduction
by Donkin [Don93] and Ringel [Rin91]. Let us recall parts of this story.

In the semisimple case, Tiltk,q is well-understood on the level of objects and morphisms: The
characters are given by Weyl’s character formula and the fusion rules by the Clebsch–Gordan rule.
On the morphism level, Tiltk,q was given a diagrammatic presentation early on by Rumer–Teller–
Weyl [RTW32] using what is nowadays called the Temperley–Lieb algebra or category TLk,q.
This diagrammatic presentation, in its quantum version, lies at the heart of constructions and
calculations for the Jones-type invariants of links and 3-manifolds via Jones–Wenzl projectors
(short: JW projectors) and recoupling theory, see e.g. [KL94].

In the complex quantum group case, many of our results have previously appeared in the
literature. The fusion rules on the object level in this case are certainly well-known since the
end of the 1980s, but a bit hard to track down, see however [Don98] for a slightly later reference.
The category TLk,q plays a major role as it provides the diagrammatic and integral model of
Tiltk,q. (While we don’t know an explicit exposition, this can be deduced from [DPS98].) The
appropriate analog of JW projectors in this case were defined by Goodman–Wenzl [GW93], the
Ringel dual quiver was computed in [AT17], and (parts of) recoupling theory was developed
under the umbrella of non-semisimple 3-manifold invariants, see e.g. [BDRM19] or [DGGPR19].

Historically speaking, the characteristic p case came long before the complex quantum group
case, for example, due to its relationship to projective modules of the finite group SL2(Fpk). On
the level of objects, the characteristic p case is intensively studied throughout the literature,
see e.g. [CC76], [AJL83], [Don93], [EH02a], [EH02b] and [DH05]. Of particular importance,
are Steinberg’s and Donkin’s tensor product formulas, which give the characters of simple and
tilting modules. However, not much appears to be known about fusion of objects beyond special
cases, e.g. coming from studying Verlinde quotients, see for example [And19] or [BEO20], or
the situation of the finite group SL2(Fpk), see for example [Cra13]. On the morphism level, the
use of TLk,q is crucial, specifically in the work of Burrull–Libedinsky–Sentinelli [BLS19], which
introduced the pJW projectors, a main ingredient to find the quiver with relations and the
center of Tiltk,q, see [TW19] and [TW20]. When it comes to fusion and recoupling theory for
morphisms, our results are new.
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In the (strictly) mixed case, most of the results in the present paper are new. See, however,
e.g. [Don98] and [And19] for character and fusion formulas, and [MS21] for their (independent)
construction of the mixed JW projectors.

Further directions. A potential application concerns quotients of Tiltk,q, especially in the
characteristic p and the strictly mixed cases, when the category Tiltk,q has infinitely many
⊗-ideals. This is in stark contrast to the semisimple and the complex quantum group case, where
one has no or only one non-trivial ⊗-ideal. The strictly mixed cases turn out to be very appealing
in two directions. First, in generalizing e.g. the results of [BEO20] to the mixed situation, where
Tiltk,q may have universal properties that are similar to those studied in the characteristic p
case. Second, as we will see, Tiltk,q1/2 has a non-degenerate braiding in the mixed case. This
is particularly interesting from the viewpoint of non-semisimple 3d TQFT, where one could try
to apply the strategy of modified traces from e.g. [GKPM11] and [GKPM13], to obtain new
non-semisimple 3d TQFTs.

The fusion rules for Tiltk,q are also of importance in physics (from which its name arose),
although the focus has been on the semisimple and complex quantum group cases. In fact, this
was one motivation to develop the Temperley–Lieb calculus [KL94] and its variations, which
appear under different names in the physics- and mathematics-oriented literature. For example,
idempotent truncations by tensor products of classical JW projectors are studied under the
names valenced Temperley–Lieb algebras in [FP18] and symmetric webs in [RT16]. (See also
[Spe] for a discussion using the p`JW projectors.) Other recent work concerns the non-semisimple
complex quantum group case and its relation to mathematical physics, see e.g. [KS10], but a
non-semisimple recoupling theory along the lines of [KL94] seems largely undeveloped.

Finally, the algorithm given in [JW17] to compute p-Kazhdan–Lusztig basis elements of affine
type A1 played a key role in [BLS19], and one could hope that this is a two-way street. For
example, via quantum Satake [Eli17] and the approach in [RW18] it might be possible to study
analogs of mixed Kazhdan–Lusztig bases.

Acknowledgments. We thank Elijah Bodish, David Craven, Nicolle González, Amit Hazi,
Robert Spencer and Catharina Stroppel for stimulating discussions and helpful exchanges of
emails. Special thanks to Robert Spencer for comments on a draft of this paper.

Significant parts of this work were done when all the authors met at the Hausdorff Research
Institute for Mathematics (HIM) in the fall 2020 during the Junior Trimester Program New Trends
in Representation Theory. Hospitality and support of the HIM are gratefully acknowledged.

Parts of this paper needed extensive computer-based experiments, and all these calculations
were done using Mathematica 12. The first author thanks the Heilbronn Institute for Mathematical
Research for financial support; the second author thanks Covid19 for sponsoring his computer
literacy.

2. Preliminaries

In this section we introduce necessary p`-adic notation, and recall how tilting modules of SL2
and the Temperley–Lieb calculus are related.

2A. Basics of p`-adic expansions. Let k denote a field, and fix an invertible element q ∈ k
throughout. We also let v denote a formal variable. (The element q is allowed to be v, for
example if k = Q(v). But in contrast to q the variable v is always formal.) For any x ∈ k and
a ∈ N we will also use quantum numbers:

[0]x = 0, [a]x = x−(a−1) + x−(a−3) + ... + xa−3 + xa−1, [−a]x = −[a]x.

Remark 2.1 For the purpose of working with the Temperley–Lieb category, it is possible to
start from a parameter δ ∈ k and to define associated quantum numbers inductively by setting
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[0]q = 0, [1]q = 1 and δ[n]q = [n + 1]q + [n − 1]q. On the side of tilting module, however, we
need δ = q+ q−1, so we decided to use the more standard definition of quantum numbers from
the start.

Definition 2.2

(a) Let p ∈ N ∪ {∞} denote the additive order of 1 in k, i.e. p =∞ if k is of characteristic
zero, and p = char(k) otherwise.

(b) For q 6= ±1 let ` ∈ N ∪ {∞} be minimal such that [`]q = 0, with ` =∞ if [a]q 6= 0 for all
a ∈ N. For q = ±1 we set ` = p.

We call mchar(k,q) = (p, `) the mixed characteristic, while p and `, respectively, are called
the characteristic and the quantum characteristic (of the pair (k,q)).

Note that p is a prime number, if finite, but ` can be any element in N>2 ∪ {∞}. Moreover,
for finite ` the equation [`]q = (1−q−`)(q`+1)

q−q−1 = 0 implies that q` = ±1. Conversely, the order
n = ord(q) of the root of unity q, if finite, determines ` and the signs q` and (−q)` as follows:

` =
{
n if n ≡ 1 mod 2,
n/2 if n ≡ 0 mod 2,

q` =
{

1 if n ≡ 1 mod 2,
−1 if n ≡ 0 mod 2,

(−q)` =
{
−1 if n ≡ 0, 1, 3 mod 4,
1 if n ≡ 2 mod 4.

The signs q` and (−q)` will appear in (3-10).

Example 2.3 The examples for (k,q) that the reader should keep in mind are:

(a) The integral case, where the pair is
(
Z[v±1],v

)
. Beware that here k is not a field, and

we will always treat this case separately.
(b) The semisimple case, where p is arbitrary and ` = ∞. Explicit examples include(

Q(v),v
)
, and in fact

(
k(v),v

)
for any field k.

(c) The complex quantum group case (at a root of unity), where p =∞ and ` <∞. For
example, one could take k = C with q = exp(πi/`) or q = exp(2πi/`), the former for all
possible ` and the latter for ` being odd.

(d) The characteristic p case, where p = ` < ∞, e.g. (Fp, 1) or (Fpk , 1). As a word of
warning, when we refer to the characteristic p case we always mean q = 1 and not q = −1
since the signs q` and (−q)` for these two cases are different.

(e) The (strictly) mixed cases are all other cases, i.e. p < ∞, ` < ∞ with p 6= `. An
explicit example is the pair (F7, 2) for which the mixed characteristic is (7, 3).

For the rest of this paper, with the exception of concrete examples, we fix a pair (k,q) of
mixed characteristic (p, `). The numbers p and ` will play a crucial role in this paper, e.g. via
p`-adic expansions:

Definition 2.4 Set p(0) = 1, and for i ∈ N let p(i) = pi−1`. For any v ∈ N we write
[aj , ..., a0]p,` =

∑j
i=0 aip(i) = v with aj 6= 0. The digits are from the sets ai ∈ {0, ..., p − 1} for

i > 0, and a0 ∈ {0, ..., `− 1}. The higher digits are declared to be zero a>j = 0.
Conversely, any tuple (bj , ..., b0) ∈ Zj+1 defines an integer [bj , ..., b0]p,` =

∑j
i=0 bip(i) ∈ Z. Here

we explicitly allow negative digits.

The p`-adic expansion of a natural number v as defined above is clearly unique: a0 is uniquely
determined as the remainder of v upon division by `, and the remaining digits [aj , ..., a1]p are
determined by the usual p-adic expansion of the quotient v−a0

` . We also point out that the two
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digits aj , called the leading digit, and a0, the zeroth digit, will play slightly different roles
than the other digits.

Example 2.5 The p`-adic expansion for p = ` <∞ is the usual p-adic expansion. Moreover, if
` =∞, then the p`-adic expansion of v is simply [v]p,`. Explicitly, for v = 68 we have

68 = [68]p,∞ = [66, 2]∞,3 = [1, 2, 5]7,7 = [3, 1, 2]7,3.

Remark 2.6 As we will see, p is the crucial number for all digits ai with i > 0, while ` appears
only in connection with the zeroth digit. We will henceforth write p∨` for either p or `, depending
on the involved digit.

Remark 2.7 We will repeatedly encounter the law of small primes, losp for short: we see
special behavior in cases when relevant digits are (close to) 0 modulo p∨`. For large characteristics
such cases are exceptions, while for small ones they are the rule.

For any x ∈ k we will also use quantum factorials and binomials:

[0]x! = 1, [a]x! = [a]x[a− 1]x...[1]x,
[
b
0
]
x

= 1,
[
b
a

]
x

= [b]x[b−1]x...[b−a+1]x
[a]x[a−1]x...[1]x .

Here a ∈ N and b ∈ Z, and all of these are elements of k. Note that
[
b
a

]
1 =

(
b
a

)
. We recall the

quantum Lucas’ theorem:

Proposition 2.8 For v = [aj , ..., a0]p,`, w = [bj , ..., b0]p,` and v − w = [cj , ..., c0]p,` we have[
v

w

]
q

= ε

(
aj
bj

)
...
(
a1
b1

)[
a0
b0

]
q

= ε

(
aj
cj

)
...
(
a1
c1

)[
a0
c0

]
q

=
[

v

v − w

]
q

.

The scalar is ε = (q`)A1b0+a0B1+`(A1B1−B2
1) = ±1, where A1 = v−a0

` and B1 = w−b0
` .

Proof. This is folklore, but the first written account might be [Oli65, (1.2.4)]. (Translating
from that paper, which uses a non-symmetric definition of quantum numbers often used in
combinatorics, to our conventions gives the sign ε.) �

Example 2.9 For (F7, 2) and a = 71 = [3, 2, 2]7,3 and b = 1 = [0, 0, 1]7,3 the quantum Lucas’
theorem gives [71]2 =

[71
1
]
2 =

(3
0
)(2

0
)[2

1
]
2 = [2]2 = 6. However, note that [71]3 = −[2]2 because

ε = −1 in this case since 33 = −1 mod 7. In general, [v]q = (q`)A1 [a0]q = ±[a0]q. One can also
see the order of vanishing, say for a = 63 = [3, 0, 0]7,3. Using the second expression one gets
[63]2 =

[63
62
]
2 =

(3
2
)(0

6
)[0

2
]
2, which is thus divisible by 7 and [3]2.

Another useful tool for quantum calculations is using a change of variables method:

Example 2.10 Take v = [aj , ..., ak, 0, ..., 0]p,` and w = [bj , ..., bk, 0, ..., 0]p,` for k > 0 and bk 6= 0.
Clearly, [v]q = [w]q = 0, but the quotient [v]q

[w]q is well-defined (and non-zero if ak 6= 0). To see
this we use qp(k) = (q`)pk−1 = q` = ±1 (the second equation holds trivially if p = 2) to calculate

[v]v
[w]v =

vv−v−v

v−v−1

vw−v−w

v−v−1

=
vv−v−v

vp(k)−v−p(k)

vw−v−w

vp(k)−v−p(k)

=
[v/p(k)]

vp(k)

[w/p(k)]
vp(k)

v 7→q7−−−→ ± [aj ,...,ak]p,p
[bj ,...,bk]p,p

= ±ak
bk
,

where the sign is (q`)
∑j

i=k ai−bi .

The following is taken from [TW19], but for p`-adic expansions.
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Definition 2.11 If v = [aj , ..., a0]p,` ∈ N has only a single non-zero digit, then v is called an
eve. The set of eves is denoted by Eve. If v /∈ Eve, then the mother mv of v is obtained by
setting the rightmost non-zero digit of v to zero.

Assume that v /∈ Eve has k non-zero, non-leading digits. We will also consider the set
A(v) = {mv, m2

v = mmv , ..., mkv , [aj , 0, ..., 0]p,` = m∞v } of (matrilineal) ancestors of v, whose size genv
is called the generation of v. By convention, A(v) = ∅ and genv = 0 for v ∈ Eve. The support
∇supp(v) ⊂ N is the set of the 2genv integers of the form w = [aj ,±aj−1, ...,±a0]p,`.

Note that every v /∈ Eve has an associated eve m∞v . We think of the generation and the
ancestry chart as a measure of the complexity of the associated SL2 modules. For example, in
Proposition 3.3 we will see that a tilting module is simple if and only if its ρ-shifted highest
weight is an eve.

Example 2.12 In the semisimple case ` =∞ every v ∈ N0 is an eve and has no ancestors. In
the complex quantum group case p =∞, ` <∞ every v ∈ N0 is either an eve or of generation
1. In the other cases the generation can be any number in N0. For example, 68 = [68]∞,∞ =
[66, 2]∞,3 = [1, 2, 5]7,7 = [3, 1, 2]7,3 has generation 0, 1, 2 and 2 in the listed mixed characteristics.
In mixed characteristic (7, 3) we have A(v) = {66 = [3, 1, 0]7,3, 63 = [3, 0, 0]7,3} and ∇supp(68 =
[3, 1, 2]7,3) = {68 = [3, 1, 2]7,3, 64 = [3, 1,−2]7,3, 62 = [3,−1, 2]7,3, 58 = [3,−1,−2]7,3}.

The elements w in the support ∇supp(v) of v ∈ N can be described by the sets of indices of
digits of v, which are negated (or “reflected”) to obtain an expression for w. To obtain a bijection
between elements in ∇supp(v) and sets of indices, we enforce certain admissibility conditions on
the latter:

Definition 2.13 For S ⊂ N0 a finite set, we consider partitions S =
⊔
i Si of S into subsets Si

of consecutive integers that we call stretches. For the rest of the definition, we let S =
⊔
i Si be

the coarsest such partition into stretches.
The set S is called down-admissible for v = [aj , ..., a0]p,` if:
(i) amin(Si) 6= 0 for every i, and
(ii) if s ∈ S and as+1 = 0, then s+ 1 ∈ S.

If S ⊂ N0 is down-admissible for v = [aj , ..., a0]p,`, then we define its downward reflection
along S as

v[S] = [aj , εj−1aj−1, ..., ε0 a0]p,`, εk =
{

1 if k /∈ S,
−1 if k ∈ S.

Conversely, S is up-admissible for v = [aj , ..., a0]p,` if the following conditions are satisfied:
(i) amin(Si) 6= 0 for every i, and
(ii) if s ∈ S and as+1 = p− 1, then we also have s+ 1 ∈ S.

If S ⊂ N0 is up-admissible for v = [aj , ..., a0]p, then we define its upward reflection along S as

v(S) = [a′r(S), ..., a
′
0]p,`, a′k =


ak if k /∈ S, k − 1 /∈ S,
ak + 2 if k /∈ S, k − 1 ∈ S,
−ak if k ∈ S,

where we extend the digits of v by ah = 0 for h > j if necessary, and r(S) is the biggest integer
such that a′k 6= 0.

Any down- or up-admissible set S has a unique finest partition into down- or up-admissible
sets, each of which consist of consecutive integers and which we call minimal down- respectively
up-admissible stretches.
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A stretch {k, k − 1, ..., l + 1, l} is minimal down-admissible if and only if

(ak+1, ak, ..., al+1, al) = (ak+1, 0, ..., 0, al) with ak+1 6= 0, al 6= 0.

It is minimal up-admissible if and only if

(ak+1, ak, ..., al+1, al) = (ak+1, p− 1, ..., p− 1, al) with ak+1 6= p− 1, al 6= 0.

Very often (unless losp applies), the minimal stretches will just be singleton sets {i} specifying a
single digit in which we reflect. We also tend to omit the set brackets of down- or up-admissible
sets if no confusion can arise, e.g. we write v[i] instead of v[{i}].

For v ∈ N a finite set S ⊂ N0 is down-admissible if and only if it is up-admissible for v[S],
and in this case v[S](S) = v. For a representation-theoretic interpretation of the admissibility
conditions see Remark 3.1. Note that ∇supp(v) = {v[S] | S down-admissible}.

For the zigzag relation in Theorem 3.25 we need one more definition related to losp:

Definition 2.14 If S is up-admissible for v ∈ N , then we denote by S ⊂ N0 the down-admissible
hull of S, the smallest down-admissible set containing S, if it exists.

Note that S is only defined for up-admissible S, which excludes stretches with rightmost digit
zero. The singleton containing the leading digit is always up-admissible and its down-admissible
hull does not exist.

Example 2.15 The down-admissible sets for 68 = [3, 1, 2]7,3 as in Example 2.12 are

S = ∅! [3, 1, 2]7,3, S = {0}! [3, 1, 2]7,3, S = {1}! [3, 1, 2]7,3, S = {1, 0}! [3, 1, 2]7,3.

Moreover, for v = [3, 1, 2, 2, 4, 4, 1, 0, 2, 3, 2, 4, 1, 0]5,7, and let S = {10, 9, 8, 7} ∪ {4, 3, 2, 1}. Then
S is down-admissible for v with

v[S] = [3, 1, 2, 2, 4, 4, 1, 0, 2, 3, 2, 4, 1, 0]5,7
= [3, 1, 2,−2,−4,−4,−1, 0, 2,−3,−2,−4,−1, 0]5,7 = [3, 1, 1, 2, 0, 0, 4, 0, 1, 1, 2, 0, 4, 0]5,7.

Finally, for v as above we have {4} = {6, 5, 4}.

Remark 2.16 The above admissibility condition it is taken from [TW19, Definition 2.8]. The
whole discussion after [TW19, Definition 2.8] works verbatim. More examples appear there and
in [TW20, Example 2.9].

2B. Tilting modules and their diagrams. Let k ⊂ K denote an algebraically closed field
containing k. We use the symbol SL2 to denote the reductive group SL2 over K if q = ±1 ∈ K
and Lusztig’s divided power quantum group (using the conventions from [APW91]) associated to
sl2 for other values of q. We will identify dominant integral weights of SL2 with N0 and weights
with Z in the usual way.

We consider finite-dimensional (left) SL2-modules of type 1 over K. These form an abelian,
K-linear category fdModK,q = SL2-fdModK,q, for which we additionally choose a monoidal and
a pivotal structure using the comultiplication SL2, and the antipode of SL2 and the analog of the
involution ω from [Jan96, Lemma 4.6]. The category fdModK,q contains four families of highest
weight modules of particular interest for our purpose, all parameterized by N0.

Remark 2.17 Here and in the following, we write the highest weights of these modules often
as v − 1 for v ∈ N. This puts an emphasis on the quantity v, the ρ-shifted highest weight, which
will play a greater role than the highest weight itself.
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The first two families are formed by the Weyl modules ∆(v − 1) and the dual Weyl modules
∇(v − 1). These do not depend on the mixed characteristic in the sense that they can be defined
integrally, i.e. for

(
Z[v±1],v

)
.

The other two families of modules are formed by the simple modules L(v − 1) and the inde-
composable tilting modules T(v − 1). These modules do not admit a construction independent
of the mixed characteristic. Their characters are given by Proposition 3.3 below.

Let TiltK,q = SL2-TiltK,q be the full subcategory of fdModK,q whose objects are direct
sums of T(v − 1) for v ∈ N. We also write T(z) for z < 0 which is zero, by convention. The
category TiltK,q is additive, idempotent closed, Krull–Schmidt (meaning there is a essential
unique decompositions into indecomposables, and an object is indecomposable if and only if its
endomorphism ring is local), K-linear, and pivotal (restricting the structures from fdModK,q

to TiltK,q). It is the main object under study in this paper and called the category of tilting
modules of SL2.

Remark 2.18 Classically TiltK,q would be defined as the full subcategory of fdModK,q whose
objects have Weyl and dual Weyl filtrations, and its closure under tensor product would be
a theorem. The above definition is equivalent to the classical one for SL2, because the sole
fundamental representation (it is T(1)) is tilting and thus all indecomposable tiltings appear as
direct summands of tensor powers thereof. This may fail for other types in small characteristic.

Generally these four types of modules (Weyl, dual Weyl, simple, and indecomposable tilting)
for a fixed highest weight are distinct from one another. If, however, two are isomorphic e.g.
T(v − 1) ∼= ∇(v − 1), then it follows that all four types of modules of the same highest weight
are isomorphic. An example is T(0) ∼= ∆(0) ∼= ∇(0) ∼= L(0) ∼= K, which is the monoidal unit of
TiltK,q and which we denote by 1.

Remark 2.19 Let us comment on the references for the above and some of the material
below, using the terminology from Example 2.3. In the semisimple case, TiltK,q is equivalent
to fdModK,q, is semisimple and has the classical combinatorics of SL2(C), which is covered in
many textbooks. Otherwise TiltK,q is non-semisimple and we refer to [APW91] and [And92] in
the complex quantum group case, to [Rin91] and [Don93] in the characteristic p case, and to
[AK92] as well as [Don98] and [And19] in the mixed case. A summary for tilting modules can
also be found in [AST15].

The diagrammatic incarnation of TiltK,q is sometimes called the Temperley–Lieb category
(abbreviated to TL category) and can be defined as follows. Let TLZ[v±1],v denote the Z[v±1]-
linear category with objects indexed by m ∈ N0, and with morphisms from m to n being
Z[v±1]-linear combinations of unoriented string diagrams drawn in a horizontal strip R× [0, 1]
between m marked points on the lower boundary R × {0} and n marked points on the upper
boundary R × {1}, considered up to planar isotopy relative to the boundary and the relation
that a circle evaluates to −[2]v. The category TLZ[v±1],v is (strict) monoidal with ⊗ given by
horizontal concatenation and admits a (strict) pivotal structure given by the duality maps being
cups and caps, and all objects being self-dual.

We write FG = F ◦G for the composition of morphisms in TLZ[v±1],v, and we read diagrams
from bottom to top and left to right, e.g.

(id⊗G)(F⊗ id) = ◦ ◦

⊗

⊗

...

...
...

...

F

G
=

...

......

...
F G = ◦◦

⊗

⊗

...

...
...

...

G

F
= (F⊗ id)(id⊗G).
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There is an antiinvolution (−)l on TLZ[v±1],v which fixes objects and reflects diagrams in a
horizontal line, as well as an involution (−)↔ which mirrors long the vertical axis. The following
summarizes the important relations and conventions:

= , = , = −[2]v, nl = n↔ = n,

(
...

...
F

)l
= ...

...F ,

(
...

...
F

)↔
= ...

...
F .

Let TLk,q = TLZ[v±1],v⊗Z[v±1]k be the scalar extension and specialization Z[v±1] 3 v 7→ q ∈ k.
Recall that K denotes an algebraically closed field containing k. Recall also that T(1) generates
TiltK,q as a monoidal category.

Proposition 2.20 We have a K-linear, pivotal functor

DK,q : TLK,q → TiltK,q, DK,q(d) = T(1)⊗(d),

which induces an equivalence of K-linear, pivotal categories upon additive idempotent completion.

Proof. This is folklore, the semisimple case dates back to [RTW32], and a proof in general can
be found in e.g. [Eli15, Theorem 2.58] or [AST17, Proposition 2.3]. �

Recall that TLZ[v±1/2],v (we need to add a formal square root of v) admits the structure of
a braided category. The braiding is determined on the generating object by Kauffman’s skein
relation

= v1/2 · + v−1/2 · , = v−1/2 · + v1/2 · .(2-1)

There is also a braiding on TiltK,q, assuming that q has a square root in K, given by the so-called
R-matrix, see e.g. [Kas95, Section IX.7]. (We clear the denominators in these formulas by using
divided powers, and observe that the expression is well-defined on all finite-dimensional modules
without further adjustments.) These two braidings, the only ones we will consider in this paper,
are compatible, as can be seen, e.g. by comparing on generating objects:

Proposition 2.21 If q has a square root in K, then the functor DK,q from Proposition 2.20 is
an equivalence of braided categories. �

Remark 2.22 Note that Proposition 2.20 allows us to identify the additive Karoubi closure
of TLK,q with TiltK,q. Motivated by this, we will also denote the additive Karoubi closure
of TLk,q by Tiltk,q in case of the not necessary algebraically closed field k, and the objects
T(v−1) ∈ Tiltk,q are defined as the images of primitive idempotents under Dk,q. In this notation
the functor Dk,q will be the universal embedding of TLk,q into its Karoubi closure, and we omit
it from the notation.

Remark 2.23 At this point, the reader be warned that Tiltk,q may not be equivalent to the
category of tilting modules over k (as defined via (dual) Weyl filtrations), even in semisimple
cases, if k is finite, see [BD09, Section 5].

In the semisimple situation of TLk(v),v, the primitive idempotents that are mapped to the
indecomposable tilting modules T(v− 1) in T(1)⊗(v−1) are the well-known Jones–Wenzl projectors.
Since T(v−1) is a simple module in this case, we will call these idempotents simple Jones–Wenzl
projectors (simple JW projectors for short), also to distinguish them from their non-simple
analogs. All we need to know about these projectors is summarized in the following proposition,
see e.g. [KL94] for a proof.

Proposition 2.24 For all v ∈ N there exists a unique idempotent ẽv−1 ∈ EndTLk(v),v(v − 1),
which is invariant under duality (ẽv−1)l = (ẽv−1)↔ = ẽv−1 (this implies that the following
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relations hold mirrored as well) and which satisfies:

w−1

v−1
= v−1 ,(2-2) v−1

k

= 0,(2-3) v−1 k = (−1)k [v]v
[v−k]v · v−1−k .(2-4)

Here we use the usual box notation for these projectors, a number k next to a strand means k
parallel strands, and the projector ẽw−1 in (2-2) respectively the cup or cap in (2-3) can be at
arbitrary positions. The idempotent ẽv−1 satisfies the recursion in (1-1) �

In Definition 2.25 and Convention 2.26 we will define various different bases of morphism
spaces in Temperley–Lieb categories. The first example are the integral bases given by sets
of crossingless matchings (a.k.a. Temperley–Lieb diagrams) Bint

v−1,w−1 of v + w − 2 points.
These are integral in the sense that they provide isomorphisms HomTLZ[v±1],v(v − 1, w − 1) ∼=
Z[v±1]Bint

v−1,w−1 of Z[v±1]-modules. Second, TLk,q has projector bases Bq
v−1,w−1 given by

decomposing T(1)⊗(v−1) into indecomposable summands. (For TLk(v),v a basis of the form
Bv
v−1,w−1 is an Artin–Wedderburn basis since these summands are simple.) We stress that

these bases are not unique unless one specifies further properties that these should satisfy. The
existence of these bases follows from abstract theory, see [AST18], and all of these are cellular
and related by unitriangular basis change matrices. To construct these bases explicitly we can
use the light ladder strategy. (The terminology is borrowed from [Eli15] and, in fact, all of the
bases from [AST18] are of light ladder type. The light ladder strategy can be seen as a general
philosophy how to construct bases.)

Definition 2.25 Fix a family of morphisms Gv−1 ∈ EndTLk,q(v − 1) for v ∈ N. Then for each
F ∈ HomTLk,q(w − 1, v − 1) we define morphisms ε̃1(F) ∈ HomTLk,q(w, v) and (provided v > 1)
ε̃−1(F) ∈ HomTLk,q(w, v − 2) by sending:

F =
F

v − 1
7→

F

Gv = ε̃1(F), F =
F

v − 1
7→

F

Gv−2 = ε̃−1(F).

For any path π in the positive Weyl chamber, considered as a finite sequence of ±1 whose partial
sums are non-negative, we associated a down morphism δ(π) by using the operators ε̃±1 in
order specified by π, starting with F being the empty diagram. Similarly, we define an up
morphism υ(π) as δ(π)l, and for a pair (π, π′) an element cλπ,π′ = υ(π′)δ(π) whenever that
makes sense, i.e. for δ(π) ∈ HomTLk,q(v − 1, λ) and υ(π′) ∈ HomTLk,q(λ,w − 1).

Convention 2.26 We will use the light ladder strategy from Definition 2.25 in several different
contexts. The associated down and up morphisms are consistently distinguished throughout this
paper by the following notation convention.

(a) For Gv−1 = idv−1, which works for any ground ring (in particular for
(
Z[v±1],v

)
), we

obtain the integral bases Bintv−1,w−1 for morphism spaces. We reserve the following notation
for these morphisms:

Gv−1 = idv−1 =⇒ d(π),u(π).

(b) For Gv−1 = ẽv−1 and working over
(
k(v),v

)
we get the Artin–Wedderburn basis. The

associated morphisms will be denoted with tilde symbols:

Gv−1 = ẽv−1 =⇒ d̃(π), ũ(π).

(c) For Gv−1 = Ev−1, i.e. for the projectors constructed in Section 3B for non-semisimple
situations, we will use capital letters:

Gv−1 = Ev−1 =⇒ D(π),U(π).



12 LOUISE SUTTON, DANIEL TUBBENHAUER, PAUL WEDRICH, AND JIERU ZHU

These are specializations of morphisms that one gets for Gv−1 = ev−1, and we will use an
overline in this situation:

Gv−1 = ev−1 =⇒ d(π), u(π).

Definition 2.27 A family of morphisms Gv−1 ∈ EndTLk,q(v − 1) for v ∈ N is left-aligned if

Gv−1(Gw−1 ⊗ idv−w) = (Gw−1 ⊗ idv−w)Gv−1 = Gv−1, for all 1 6 w 6 v,

and right-aligned if

Gv−1(idv−w ⊗Gw−1) = (idv−w ⊗Gw−1)Gv−1 = Gv−1, for all 1 6 w 6 v.

We draw morphisms from a left-aligned family as boxes with a bar at the left-hand side, and
vice versa for right-aligned. Using this notation the two conditions in Definition 2.27 read:

Gw−1

Gv−1
= Gv−1 =

Gw−1

Gv−1
,

Gw−1

Gv−1
= Gv−1 =

Gw−1

Gv−1
.

Note that left- and right-aligned families of morphisms are always idempotents, by the v = w

case of the defining relation.

Remark 2.28 The families of identity morphisms idv−1 are both left- and right-aligned and so
are simple JW projectors by (2-2). However, in the mixed case the corresponding projectors Ev−1
form a family that is only left-aligned, see Example 3.12. (Of course, there are also right-aligned
versions (Ev−1)↔.) This asymmetry will play an important role within our setup. For example, in
Definition 2.25 we presented a version of the light ladders strategy that favors left-aligned families
of projectors and when discussing fusion rules for morphisms this will play an important roles.

Example 2.29 There are six paths of length four which stay in the positive Weyl chamber,
and six corresponding down morphisms (simplified by using (2-2)):

λ = 4: d̃(ε1ε1ε1ε1) = 4 ,

λ = 2: d̃(ε1ε−1ε1ε1) =
2

1

, d̃(ε1ε1ε−1ε1) =
2

2

, d̃(ε1ε1ε1ε−1) =
2

3

,

λ = 0: d̃(ε1ε−1ε1ε−1) =
1 1

, d̃(ε1ε1ε−1ε−1) =
2

.

(Here we chose to omit drawing zero boxes.) Flipping these pictures bottom to top, and
stacking them together whenever that makes sense, one obtains the Artin–Wedderburn basis of
EndTLk(v),v(4). Using identities instead of the simple JW projectors gives the integral basis of
EndTLZ[v±1],v(4), while using the projectors from Definition 3.11 below gives the non-semisimple
projector basis of EndTLk,q(4).

The (defining) recursion of the simple JW projectors recalled in (1-1) is an expression of
the classical fusion rules of SL2 and it uses morphisms of light ladder type. To define the
non-semisimple projectors we use a different approach. But we will see in Section 4B that the
non-semisimple projectors still admit a recursive description in terms of morphisms of light ladder
type, using the non-semisimple fusion rules in Proposition 4.7.
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3. Additive structure

In this section, we explain the additive structure of the category of tilting modules. Some of
results in this section are well-known, others generalize the results from [BLS19] and [TW19].
We also added a few new observations.

3A. Character formulas. The Weyl and dual Weyl modules have classical Weyl characters, i.e.

χ∆(v−1) = χ∇(v−1) = [v]v,

which we view as elements of N0[v±1] where the coefficient of vk is the dimensions of the weight
space of weight k.

Each T(v − 1) has a (dual) Weyl filtration and we denote the (dual) Weyl multiplicities by(
T(v − 1) : ∆(w − 1)

)
=
(
T(v − 1) : ∇(w − 1)

)
.

Remark 3.1 The purpose of the admissibility conditions on finite sets S ⊂ N0 from Defini-
tion 2.13 is so that for v ∈ N we have bijections

{S ⊂ N0 | S is down-admissible for v} → {w ∈ N |
(
T(v − 1) : ∆(w − 1)

)
= 1}, S 7→ v[S],

{S ⊂ N0 | S is up-admissible for v} → {w ∈ N |
(
T(w − 1) : ∆(v − 1)

)
= 1}, S 7→ v(S).

Moreover, each (dual) Weyl module has a filtration by simple modules, and we denote the
corresponding simple multiplicities by

[
∆(v − 1) : L(w − 1)

]
=
[
∇(v − 1) : L(w − 1)

]
. These

have a similar description as the Weyl multiplicities:

Definition 3.2 Let v = [aj , ..., a0]p,`. The L-support Lsupp(v) ⊂ N is defined as follows.

(a) If ai 6= 0, p− 1 for all j > i > 0, then for all v[S] ∈ ∇supp(v) we set

v[S]L = v[S]− 2
∑
Si,i>0

pmin(Si) and Lsupp(v) = {v[S]L | S}.

(b) Otherwise, there is a recursive description of Lsupp(v) as in [TW19, Section 5B], working
with p∨` instead of p.

One can check that ∇supp(v) is always of order 2genv , while Lsupp(v) can be of other sizes as
soon as losp applies.

Proposition 3.3 Let v = [aj , ..., a0]p,`.

(a) We have (
T(v − 1) : ∆(w − 1)

)
=
{

1, if w ∈ ∇supp(v),
0, else,

and [
∆(v − 1) : L(w − 1)

]
=
{

1, if w ∈ Lsupp(v),
0, else.

Thus, the tilting characters are

χT(v−1) =
∑

w∈∇supp(v)

χ∆(w−1) =
∑

w∈∇supp(v)

[w]v,

while the simple characters can be obtained by inverting χ∆(v−1) =
∑

w∈Lsupp(v) χL(w−1).



14 LOUISE SUTTON, DANIEL TUBBENHAUER, PAUL WEDRICH, AND JIERU ZHU

(b) We have a version of (Brauer–Humphreys or BGG) reciprocity, i.e. if ai 6= 0, p− 1 for
all j > i > 0, then(
T(v − 1) : ∆(w − 1)

)
=
[
∆(v − 1) : L(wL − 1)

]
=
{

1, if w = v[S] and wL = v[S]L,
0, if w 6= v[S] and wL 6= v[S]L.

In particular,
(
T(v − 1) : ∆(w − 1)

)
=
[
∆(v − 1) : L(w − 1)

]
for v = [a, b]p,`.

Proof. The Weyl multiplicities are known, see [Don98, Section 3.4] for the potentially first written
account in the mixed case. The simple multiplicities can be obtained by direct calculation using
the simple characters in (3-2) below. The reciprocity follows immediately from these. �

See Figure 1 for an illustration of
(
T(v − 1) : ∆(w − 1)

)
(compare to [JW17, Figure 1]), and

Figure 2 for an illustration of
[
∆(v − 1) : L(w − 1)

]
. Note that comparing these four illustrations

shows why reciprocity only holds up to a certain point.

1 100 200 302

1

100

200

302

1 100 200 302

1

100

200

302

1 100 200 302

1

100

200

302

1 100 200 302

1

100

200

302

Figure 1. The tilting-Cartan matrix, counting
(
T(v − 1) : ∆(w − 1)

)
, with

v increasing along rows. The first illustration shows mixed characteristic
mchar(k,q) = (7, 3). Note that the smallest visible gaps are of size 3, the
others of size 7. The second illustration shows characteristic p = 3.

Two remarkable results describing the structure of objects in fdModK,q are Donkin’s (3-1) and
Steinberg’s (3-2) tensor product formulas, which we recall in the following proposition. Both
formulas describe modules of highest weight v − 1 in terms of tensor products of Frobenius–
Lusztig twist of modules of lower weight, following the p`-adic expansion of v. The ith
Frobenius–Lusztig twist will be denoted by (−)p(i) . It acts as the Frobenius twist on digits ai for
i > 0 and as its quantum analog on the zeroth digit. Furthermore, we will accompany the two
famous tensor product formulas with a third one. To this end, we note that we can naively apply
(−)aip(i) to weight spaces, although we loose the module structure for ai 6= 1.

Proposition 3.4 Let v = [aj , ..., a0]p,` and v − 1 = [bj , ..., b0]p,`.
(a) We have

T(v − 1) ∼= T(aj − 1)p(j) ⊗
⊗

ai
T(ai + p∨`− 1)p(i)

,(3-1)

where the monoidal product runs over all non-leading digits of v. Thus, χT(v−1) =
[aj ]vp(j)

∏
ai

(
[ai + p∨`]

vp(i) + [−ai + p∨`]
vp(i)

)
.
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1 100 200 302

1
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200
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1 100 200 302

1
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200

302

1 100 200 302

1
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200

302

1 100 200 302

1
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200

302

Figure 2. The Weyl-Cartan matrix, counting
[
∆(v − 1) : L(w − 1)

]
, with

v increasing along rows. The first illustration shows mixed characteristic
mchar(k,q) = (7, 3), the second illustration shows characteristic p = 3.

(b) We have

L(v − 1) ∼=
⊗

bi 6=0 L(bi)p(i)
,(3-2)

where the monoidal product runs over all (non-zero) digits of v − 1. Thus, χL(v−1) =∏
bi 6=0 [bi + 1]

vp(i) .
(c) We have an isomorphism of Z-graded vector spaces

T(v − 1) ∼= T(m∞v − 1)⊗
⊗

ai 6=0 T(1)(aip(i)),(3-3)

where the monoidal product runs over all non-zero and non-leading digits of v. Thus,
χT(v−1) = [m∞v ]v

∏
ai 6=0 [2]

vaip(i) .

(d) (3-3) can be realized as an isomorphism of SL2-modules if all non-zero digits ai are equal
to 1. In this case T(v − 1) is a tensor product of simple modules.

Proof. For the tensor product formulas (3-1) and (3-2) see [And19, Proposition 5.2] (to be precise,
the above is [TW20, Proposition 4.7] adjusted to mixed characteristic) and [AK92, Theorem 1.10]
for the mixed versions. We will give a diagrammatic proof of the (apparently new) character
formula in (c) in Proposition 3.23 below. For the final statement, by (c), it suffices to observe
that

⊗
ai 6=0 T(1)(aip(i)) is simple by (3-2), which implies that the right-hand side of (3-3) is tilting

by the mixed characteristic analog of [BEO20, Lemma 3.3]. �

Example 3.5 Recall from Example 2.12 that ∇supp(68 = [3, 1, 2]7,3) = {68, 64, 62, 58}.

(a) For 68 we get χT(68−1) = [68]v + [64]v + [62]v + [58]v, as well as χT(68−1) = [3]v21([8]v3 +
[6]v3)([5]v + [1]v) and χT(68−1) = [63]v[2]v3 [2]v2 .

(b) From ∇supp(68) we obtain Lsupp(68) = {68, 64, 58, 48}, since we need to adjust 62 =
[3,−1, 2]7,3 to 62− 2 · 7 = 48. We thus get χL(68−1) = [4]v21 [2]v3 [2]v, using 67 = [3, 1, 1]7,3,
and χL(68−1) = [68]v − χL(64−1) − χL(58−1) − χL(48−1).

Note that (d) of Proposition 3.4 implies a remarkable appearance of losp:
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Corollary 3.6 All indecomposable tilting modules are tensor products of simple modules in
characteristic p = 2. �

The tilting modules T(v − 1) for v ∈ Eve will also be called eves. By Proposition 3.3 these are
the only simple tilting modules, i.e. T(v − 1) ∼= L(w − 1) if and only of v = w ∈ Eve. The prime
eves are those where v = p(i), and they play special role, see e.g. Theorem 5.1.

3B. Non-semisimple projectors. In order to define the projectors Ev−1, we need a few notions.
Crucial will be certain down and up morphisms that are defined in the same spirit as those in
Definition 2.25, but with an emphasis on good compositional properties.

Definition 3.7 Fix a left-aligned family of morphisms Gv−1 ∈ EndTLk,q(v − 1) for v ∈ N as
in Definition 2.25. Let v = [aj , ..., a0]p,` and 0 6 i < j with ai 6= 0. Consider the ancestors
v′ = [aj , ..., ai, 0..., 0]p,` and v′′ = [aj , ..., ai+1, 0..., 0]p,` as well as the difference x = v − v′ =
[ai−1, ..., a0]p,`. Then we define morphisms in TLk,q as follows.

δiidv−1 = idv[i]−1δiidv−1 = aip(i)

x

, idv−1υi = (δiidv−1)l.

The box represents the morphisms Gv′′−1, and we will consider the three variations with their
corresponding notation (meaning di, d̃i, Di) that were introduced in Convention 2.26.

Similarly, if S = {sk > · · · > s1 > s0} is a down-admissible stretch for v, then we define

δS idv−1 = idv[S]−1δs0 · · · δsk
idv−1 = S .

For the final equation we have used that the morphisms Gv−1 form a left-aligned family. The
corresponding upwards version of these morphisms are defined by υS = δS

l.
We will also use the case S = ∅ for which all involved operations are identities.

For simplicity of notation we often only indicate the number of strands at the beginning or
end of a composite of such morphisms, since the other numbers are then determined.

Definition 3.8 Suppose that S = {sk > · · · > s1 > s0} is down-admissible for v and S′ =
{s′l > · · · > s′1 > s′0} is up-admissible for v. Then we define simple trapezes and loops

S = ẽv[S]−1d̃S = ẽv[S]−1d̃s0 · · · d̃sk
idv−1, S′ = ũS′ ẽv−1 = idv(S′)−1ũs′l · · · ũs′0 ẽv−1,

S = L̃Sv−1 = ũS ẽv[S]−1d̃S ,

which we also define for the other three variations from Convention 2.26, with the appropriate
adjustment of notation.

Note that in all cases loops carry an idempotent Gv[S]−1 in the center and down and up
morphisms carry this idempotent on their thin end.

Remark 3.9 Using Convention 2.26, we can give an alternative description of the simple
trapezes. If S is down-admissible for v = [aj , ..., a0]p,`, then we define a sign sequence

πS(v) = + ...+︸ ︷︷ ︸
ajp(j)−1

εj−1...εj−1︸ ︷︷ ︸
aj−1p(j−1)

... ε0...ε0︸ ︷︷ ︸
a0p(0)

∈ {+,−}v−1, εi =
{
− if i ∈ S,
+ if i /∈ S.

We get

S = d̃(πS(v)), S = ũ(πS(v)).



SL2 TILTING MODULES IN THE MIXED CASE 17

Note the subtle, but important difference that d̃(πS(v)) includes an idempotent ẽv[S]−1 on the left,
while d̃S does not. As a consequence, composites of morphisms of type d̃(π) are automatically
zero, while the morphisms of type d̃S can be composed in interesting ways. Remarkably, this
distinction disappears when considering analogs of such morphisms built from mixed projectors,
see Proposition 3.22.

Example 3.10 For v = [a, b, c]p,` we have:

∅ = , {0} =
c

, {1} =
bp(1)c

, {1, 0} =
bp(1)c

.

Recall that we use v = [aj , ..., a0]p,` and write p(i) = pi−1` for i > 0. For v ∈ N and s ∈ N0 let
av,s denote the youngest ancestor of v whose sth digit is zero. (By convention, av,−1 = v.) For
each down-admissible S for v we let

λv,S =
∏
s∈S (−1)asp(s−1) [av,s−1[S]]v

[av,s[S]]v ∈ k(v).

Definition 3.11 generalizes [TW19, Definition 2.22] and Lemma 3.15 below generalizes [BLS19,
Proposition 3.3] to the mixed case.

Definition 3.11 For v ∈ N the semisimple p`JW projector ev−1 ∈ EndTLk(v),v(v − 1) is
defined to be

v−1 = ev−1 =
∑

v[S]∈∇supp(v) λv,S L̃Sv−1 =
∑

v[S]∈∇supp(v) λv,S · S .(3-4)

The choice of name for ev−1 is because the associated tilting module is a direct sum of simple
tilting modules, i.e.

T(v − 1) ∼=
⊕

v[S]∈∇supp(v) T(v[S]− 1) ∼=
⊕

v[S]∈∇supp(v) ∆(v[S]− 1).(3-5)

Note that mchar(k(v),v) = (p,∞), so (3-4) is well-defined. In Theorem 3.19 we will see that
the semisimple p`JW projectors can be base changed to (k,q) with mchar(k,q) = (p, `).

Example 3.12 By construction, (ev−1)l = ev−1. However, (ev−1)↔ 6= ev−1 in general (we will
address this in Lemma 3.16), as can be seen by

3 = + 1
2 · 6= + 1

2 · = 3

which is an example in characteristic p = 3.

Remark 3.13 Further concrete examples for projector expansions (3-4) can be found in
[TW19, Examples 2.20 and 2.23]. Relative to the treatment there, we allow the following two
generalizations. First, the p-adic expansions should be replaced by the p`-adic expansions, and pk
therein by p(k). Second, all coefficients use quantum numbers instead of integers.

The following is reproduced from [TW19, Section 3B], adjusting the scalars.

Lemma 3.14

(a) Suppose that S and S′ are down-admissible for v. Then we have

ẽv[S]−1d̃S ũS′ ẽv[S′]−1 =
v[S]−1

v[S′]−1

S
S′ = δS,S′λ

−1
v,S′ · v[S′]−1 = δS,S′λ

−1
v,S′ ẽv[S′]−1.
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(b) Suppose S is down-admissible for v, and S′ = {s, ..., s′− 1} is a minimal down-admissible
stretch for v. Then we have

S

S′

=


(−1)asp(s) [av,s[S]]v

[av,s−1[S]]v · S\S′ if s ∈ S, s′ /∈ S,

S ∪ S′ if s /∈ S, s′ ∈ S,

0 otherwise.

(c) Suppose that S′ = {s, ..., s′ − 1} is the smallest minimal down-admissible stretch for v
and let S be down-admissible for av,s = mv. Then we have

S

S′

=


S

S ∪ S′ = ũS ẽv[S∪S′]−1d̃S∪S′ if s′ /∈ S,
S ∪ S′

S = ũS∪S′ ẽv[S]−1d̃S if s′ ∈ S.

Proof. Word-by-word as in [TW19, Lemmas 3.7, 3.8 and 3.9]. �

Lemma 3.15 The semisimple p`JW projectors can be expanded as

v−1 =
∑

mv [S]∈∇supp(mv) λmv ,S

 S

S
v[S]−1

asp(s)

asp(s)

+ (−1)asp(s) [v[S][s]]v
[mv [S]]v ·

S

S
v[S][s]−1

asp(s)

asp(s)

 ,(3-6)

where as is the first non-zero digit of v. As a consequence, for any ancestor mjv of v, we have

mj
v−1

v−1
= v−1 .

Proof. With the properties listed in Lemma 3.14, the proof follows verbatim as in [TW19, Lemma
2.24] and [BLS19, Proposition 3.3]. �

The next statement of this section enables us to related the left and right version of the
p`JW projectors. Let v = [aj , ..., a0]p,`, as usual, and let Sv−1 denote the symmetric group on
v − 1 letters. Assuming the existence of square roots, we can use (2-1) to define g = g(v − 1)
to be the positive braid lift of the longest element of Sv−1 (the positive half twist, a Garside
element), and r = r(aj , ..., a0) to be the positive braid lift of a shortest coset representative for
Sv−1/(Sajp(j)−1 × Saj−1p(j−1) × ...× Sa0). See (3-7) for an example which fixes conventions.

Lemma 3.16 Assume that v has a square root in k(v), we have
g−1

v−1
g

=
r−1

v−1
r

= v−1 .

Proof. Using the integral basis Bint
v−1,w−1 of crossingless matchings, it is easy to see that the

conjugation of f ∈ Bint
v−1,w−1 with the half twist g is precisely the operation (−)l. This implies

that the left and the right semisimple p`JW projectors are related by conjugation with g.
Next, we use that JW projectors absorb crossings up to scalars, i.e.

v−1 = v1/2 · v−1 , v−1 = v−1/2 · v−1 ,

which are direct consequences of (2-1) and (2-3). Using this, we see that crossings of the half
twist g are absorbed up to a scalar unless they reorder the bundles of strands corresponding to
the digits of v. After removing all such crossings, the remaining braid is r. (To see this use (3-6)
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inductively, the case of v ∈ Eve being clear.) By symmetry, the same works for g−1, but with
exactly the opposite scalars, so the scalars balance out. �

Example 3.17 Continuing Example 3.12 we have

3 = 3 =

a1p(1)−1a0

a1p(1)−1a0

3 = 3 , v = [a1, a0]3,3 = [1, 1]3,3.(3-7)

By coefficients of a morphism in HomTLk(v),v(v − 1, w − 1) we always mean with respect to
the integral basis. Let Fp be the prime field of k, with F∞ = Q. The question we would like to
address next is whether the denominators of these coefficients are non-zero after specialization to
(k,q). With respect to the below definition the example to keep in mind is:

Example 3.18 For any q with q±3 = 1 we have [63]q = 72[3]q. Thus, when specializing to
(F7, 2) the quantum number [63]v vanishes of order 3, but for (C, exp(πi/3)) it only vanishes of
order 1.

The semisimple p`JW projectors ev−1 are defined over Fp(v), but the algorithm to construct
them generates coefficient that we can view as elements of Q(v), which we will below.

The p`-adic valuation νp,` : Q(v)→ Z ∪ {∞} is defined as follows.

ν`(r) = max{j ∈ N0 ∪ {∞} such that [`]jv ÷ r},

νp,`(r) = ν`(r) + max
{
j ∈ N0 ∪ {∞} such that pj ÷ (r

/̀
[`]ν`(r)

v
)
}
.

Note that νp,`(0) = ∞. For a reduced fraction r
/
s ∈ Q(v) set νp,`(r

/
s) = νp,`(r) − νp,`(s).

Moreover, for a morphism D ∈ HomTLQ(v),v(v − 1, w − 1) we let νp,`(D) be the entry-wise
minimum of the p`-adic valuations of the coefficients of D when expressed in terms of the integral
basis of HomTLQ(v),v(v − 1, w − 1).

Furthermore, for a D ∈ HomTLk(v),v(v − 1, w − 1) we define νp,`(D) of the same diagram when
considered in HomTLQ(v),v(v − 1, w − 1). Note that νp,`(D) > 0 implies that we can specialize to
(k,q) and obtain a well-defined morphism spp,`(D) ∈ HomTLk,q(v − 1, w − 1).

Theorem 3.19 We have νp,`(ev−1) > 0. Thus,

Ev−1 := v−1 := spp,`(ev−1) ∈ EndTLk,q(v − 1)

is a well-defined idempotent whose coefficients are elements of Fp(q). Moreover, Dk,q(Ev−1) =
idT(v−1), and Tiltk,q is Krull–Schmidt.

In particular, under the equivalence induced by DK,q, see Proposition 2.20, the image of the
idempotent Ev−1 is mapped to T(v − 1). We call the Ev−1 mixed JW projectors.

Proof. Note that ev−1 has the correct character, namely χImev−1 = χT(v−1). By Lemma 3.15,
ev−1 ∈ EndTiltk(v),v

(
T(1)⊗(v−1)) is an idempotent and it absorbs the tensor product emv−1⊗idv−mv

of the idempotent for the mother with extra strands. Now we claim there is exactly one idempotent
in EndTiltk(v),v

(
T(1)⊗(v−1)) with this property and the correct character. To see that this is true

let us denote by T(mv − 1) ∈ Tiltk(v),v the direct sum of Weyl modules with the correct character.
Now T(mv − 1) ⊗ T(1)⊗(v−mv) ∈ Tiltk(v),v contains each Weyl factor of T(v − 1) exactly once,
see Lemma 4.5, so there is exactly one idempotent in EndTiltk(v),v

(
T(1)⊗(v−1)) with the correct

character and absorption property, and the claim follows.
Now let L be the localization of k[v] at the ideal (v − q). In other words, the elements of L

are rational functions in v whose denominators do not have a zero at q. Note that there are
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specialization maps and functors

L

k k(v)

v 7→q v 7→v ,

EndTiltL,q

(
T(1)⊗(v−1))

EndTiltk,q

(
T(1)⊗(v−1)) EndTiltk(v),v

(
T(1)⊗(v−1))

Fv 7→q Fv 7→v .

To prove νp,`(ev−1) > 0, we show that ev−1 can be lifted to EndTiltL,q

(
T(1)⊗(v−1)) and its

specialization to k projects to T(v− 1). To this end, we use induction over the ancestry of v, with
the case of v ∈ Eve being clear since T(v − 1) ∼= ∆(v − 1) in these cases. So let emv be liftable
and let lv 7→v(emv ) be its lift. Induction implies

Fv 7→q
(
lv 7→v(emv )

)
= idT(mv−1).

We further know that T(v− 1) is a direct summand of T(mv − 1)⊗ T(1)⊗(v−mv) ∈ Tiltk,q, so, there
is some projector E′ ∈ EndTiltk,q

(
T(1)⊗(v−1)) projecting to this summand, which absorbs the

idempotent corresponding to the mother tensor product with strands. By idempotent lifting, cf.
[Lam01, Theorem 21.31], we can pull E′ back to TiltL,q giving us another projector lv 7→q(E′).
Pushing this forward gives a projector Fv 7→v

(
lv 7→q(E′)

)
in the semisimple case with the correct

character and absorption property. However, as we have seen, such a projector is unique and
thus, has to be ev−1. Hence, we get νp,`(ev−1) > 0 and lv 7→q(E′) is a lift of ev−1.

Thus, we can specialize ev−1 to Ev−1 = E′, and the claims about the coefficients and Ev−1 =
idT(v−1) follow by construction of ev−1. The Krull–Schmidt property then follows inductively as
the above constructs all highest weight projectors. �

Remark 3.20 The crucial ingredient in the proof of Theorem 3.19 and, even more fundamentally,
the construction of the projectors ev−1 are the tilting characters χT(v−1), a certain numerical
datum. There are two other ways to get equivalent numerical data: First, one could use the Soergel
category for affine type A1 and the p-Kazhdan–Lusztig basis as in [BLS19]. A second method is
to calculate the simple multiplicities within the projective cover of the trivial Temperley–Lieb
module, as done in [MS21] (which is a follow-up of [Spe20] where the decomposition numbers of
the Temperley–Lieb algebra are computed). However, it might be that only the tilting characters
approach generalizes beyond SL2, e.g. see [Soe97] and [Soe98] for the complex quantum group
case, very explicitly worked out in [Str97]. The same method as above should cover this case, so
we decided to spell out the argument above.

Diagrammatically, the three types of projectors are distinguished as follows:

ẽv−1 = v−1 , ev−1 =
{

v−1

v−1 for v ∈ Eve,
Ev−1 =

{
v−1

v−1 for v ∈ Eve.
(3-8)

The middle and the rightmost projector have the same character, but ev−1 corresponds to a
direct sum of simple tilting modules in the semisimple setting, cf. (3-5), and Ev−1 corresponds to
the indecomposable T(v − 1). We will use the middle projectors to deduce properties of the right
projectors. Moreover, as illustrated in (3-8), we also use white boxes for eves to indicate that
these satisfy the same diagrammatic properties as the simple JW projectors.

Remark 3.21 We warn the reader that the projectors ẽv−1 descend to well-defined morphisms
in TLk,q if and only if v ∈ Eve. However, scalar multiplies of ẽv−1 may descend to TLk,q even if
v /∈ Eve. For example, in characteristic p = 2 the projector ẽ2 is not well-defined but

2 · 2 = 2 ·
(

+ 1
2 ·

)
= 2 · +
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can be seen as a morphism in TLZ[v±1],v and specializes to a well-defined and non-zero morphism
in TLk,q (indeed, a nilpotent endomorphism of E2). So the white boxes need to be treated with
care whenever one works in (k,q).

We stress again that the non-semisimple projectors do not have a left-right-symmetry, and
their properties do not have such a symmetry either. For the remainder of the paper, each cup
and cap in the illustrations is a parallel bundle of cups and caps, depending on S respectively S′,
or a plain number. (We also omit to illustrate these if no confusion can arise.)

We have the following generalizations of Proposition 2.24, called classical absorption, non-
classical absorption, shortening and partial trace.

Proposition 3.22

(a) The projectors ev−1 form a left-aligned family. That is, for w 6 v we have

w−1

v−1
= v−1 .

(b) Let S be a down-admissible stretch for v. Then we have

v−1
S =

v−1
S , S =

v−1
S ,

where the small box is labeled by av,S−1 for av,S being the youngest ancestor of v for
which all digits indexed by elements of S are zero.

(c) For v = [aj , ..., a0]p,` /∈ Eve let w = [ak, ..., a0]p,` for some k < j. Then we have

v−1 w = (−1)w
∏
ai 6=0

[2]
vaip(i) · mx

v−1 ,

where the product runs over all non-zero digits of w, and mxv = v − w is the corresponding
ancestor. (Note that for q` = ±1 and i > 0 we have (−1)aip(i) [2]

qaip(i) = (−q)aip(i)2.) For
v = [aj , 0, ..., 0]p,` ∈ Eve, v > ` and k 6 v such that v − k = [bi, 0, ..., 0]p,` ∈ Eve with
i < j we additionally have

v−1 k = 0 = v−1k ∈ EndTLk,q(v − k).

(A special case of this is the trace down to the empty diagram.)

Proof. All except the final statement can be shown as in [TW19, Propositions 3.11, 3.13 and
3.14]. The final statement follows by using (2-4) and observing that the projector after taking
partial trace satisfies ẽv−k = ev−k and the zero obtained by (2-4) annihilates it. �

The projectors ev−1 typically do not form a right-aligned family. Example 3.12 gives a
counterexample to right-aligned absorption of id1 ⊗ e2 into e3.

Recall the definition of the categorical dimension dimC of objects in a pivotal category C.

Proposition 3.23 For v = [aj , ..., a0]p,` we have

dimTiltk,q

(
T(v − 1)

)
= (−1)v−1∑

S∈∇supp(v)[v[S]]q = (−1)v−1[m∞v ]q
∏
ai 6=0 [2]

qaip(i) ,

where the product runs over all non-zero and non-leading digits of v.
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Proof. The categorical dimension in TLk,q is given by closing pictures in the usual way, and for
the first equality we calculate

v−1 =
∑

S∈∇supp(v)

λv,S · v[S]−1
S

S

=
∑

S∈∇supp(v)

λv,S ·
v[S]−1

S
S =

∑
S∈∇supp(v)

v[S]−1 .

Observing that (−1)v[S]−1 = (−1)v−1 for all S ∈ ∇supp(v), the first equality follows by classical
theory, see e.g. [KL94, Section 9.5]. The second equation follows then from Proposition 3.22. �

Note that the categorical dimension of T(v − 1) is an element of the underlying field, but
interpreted in N0[v±1] we obtain the character χT(v−1).

3C. Tilting modules as an additive category. Let us define a (locally unital) k-algebra via

Zk,q =
⊕

v,w∈NHomTiltk,q

(
T(v − 1), T(w − 1)

)
.

Let Proj-Zk,q denote the category of finitely generated, projective (right) Zk,q-modules. By
construction we obtain, as instance of Ringel duality (semi-infinite in the sense of [BS18]), that

ℱ : Tiltk,q → Proj-Zk,q, T 7→
⊕

v∈NHomTiltk,q

(
T(v − 1), T

)
is an equivalence of additive, k-linear categories, sending indecomposable tiltings to indecompos-
able projectives. Let us describe Zk,q explicitly.

By construction, morphisms in HomTiltk,q

(
T(v − 1), T(w − 1)

)
are given by flanking TL

morphisms with Ev−1 from the bottom and with Ew−1 from the top, and the primitive idempotents
(which are local units) are the Ev−1 for v ∈ N. Other morphisms, called mixed trapezes and
loops, are diagrammatically given by the analog of Definition 3.8: if S and S′ be down- and
up-admissible for v, respectively, and assume that S and S′ are minimal admissible stretches of
consecutive integers then we define

ES = Ev[S]−1DSEv−1 =
v−1
S , ES′ = Ev(S)−1US′Ev−1 =

v−1
S′ ,

ES = Ev−1LSv−1Ev−1 =
v−1

v−1

S
S ,

(3-9)

where the last equality uses Proposition 3.22.(b). These are the generators of Zk,q, and (up to
losp) the respective minimal stretches are singleton sets S = {i}, reflecting along the ith digit.
The corresponding S-labeled cups and caps in (3-9) consist of aip(i) parallel strands. Finally, note
that these morphisms can be defined more generally for any down- and up-admissible stretches,
but then their diagrammatic incarnation can involve multiple stretch-labeled cups and caps.

To describe the relations between expressions in the generating morphisms, we will use the
same scalars (depending on the digits) as in [TW19, Section 3A], namely

f(a) =
{

(−q)(a+1)`·−2
a if 1 6 a 6 p− 2,

0 if a = 0 or a = p− 1,
g(a) =

{
(−q)`

(
a+1
a

)
if 1 6 a 6 p− 1,

(−q)`2 if a = 0,
fSEv−1 = f(amax(S)+1)Ev−1, gSEv−1 = g(amax(S)+1)Ev−1,

hSEv−1 = g(amax(S)+1 − 1)Ev−1.

(3-10)

In fact, as we will see later, these scalars can be seen as (inverses of higher order) local inter-
section forms in the language of [Eli15].
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Remark 3.24 The quantum version of f and g given in (4-8) will be relevant in Section 4B,
but we do not need quantum numbers to describe f and g for Theorem 3.25. By Proposition 2.8
this is expected: these functions will never be evaluated on the zeroth digit and the quantum
Lucas’ theorem implies that, up to a sign, the only relevant digit for quantum numbers is the
zeroth digit.

We obtain the mixed characteristic version of [TW19, Theorem 3.2]:

Theorem 3.25 The algebra Zk,q is generated by Ev−1 for v ∈ N, and elements DSEv−1 and
US′Ev−1, where S and S′ denote minimal down- and up-admissible stretches for v, respectively.
These generators are subject to the following complete set of relations. (As before, we omit
idempotents from the notation if they can be recovered from the given data.)

(1) Idempotents.
Ev−1Ew−1 = δv,wEv−1,

Ev[S]−1DSEv−1 = Ev[S]−1DS = DSEv−1, Ev(S′)−1US′Ev−1 = Ev(S′)−1US′ = US′Ev−1.

(2) Containment. If S′ ⊂ S, then we have

DS′DSEv−1 = 0, USUS′Ev−1 = 0.

(3) Far-commutativity. If d(S, S′) > 1, then

DSDS′Ev−1 = DS′DSEv−1, DSUS′Ev−1 = US′DSEv−1, USUS′Ev−1 = US′USEv−1.

(4) Adjacency relations. If d(S, S′) = 1 and S′ > S, then

DS′USEv−1 = DS∪S′Ev−1, DSUS′Ev−1 = US′∪SEv−1,

DS′DSEv−1 = USDS′hSEv−1, USUS′Ev−1 = hSUS′DSEv−1.

(5) Overlap relations. If S′ > S with S′ ∩ S = {s} and S′ 6⊂ S, then we have

DS′DSEv−1 = U{s}DSDS′\{s}Ev−1, USUS′Ev−1 = US′\{s}USD{s}Ev−1.

(6) Zigzag.

DSUSEv−1 = USDSgSEv−1 + UTUSDSDTfSEv−1.

Here, if the down-admissible hull S, or the smallest minimal down-admissible stretch T
with T > S does not exist, then the involved symbols are zero by definition.
The elements of the form

Ew−1US′il
· · ·US′i0

DSi0
· · ·DSik

Ev−1,(Basis)

with S′il > · · · > S′i0, and Si0 < · · · < Sik , form a basis for Ew−1Zk,qEv−1.

Any word Ew−1XEv−1 in the generators of Zk,q can be rewritten as a linear
combination of basis elements from (Basis) using only the above relations.

(Complete)

Proof. This is analogous to the ten page proof of the characteristic p case in [TW19], but the
proofs given therein need some adjustment due to e.g. the appearance of signs in f and g from
(3-10). We record the necessary modification to the numerical arguments used in [TW19].

First of all, the scalars λv,S and partial trace formulas for the various JW projectors now involve
fractions of quantum numbers. Moreover, a few signs that have started their lives as −1 = (−1)pi

now have to replaced by (−1)p(i) = (−1)` when i > 0. This concerns the sign of the fraction
of quantum numbers in [TW19, (4-2)] (this replacement leads to the desired interpretation in
terms of g), the sign in q from [TW19, (4-8)] should be (−1)p(s) , which balances against the sign
of λw,R in the following display. Further, in the Proof, which caveat for [TW19, Lemma 4.9],
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the signs (−1)w−u and (−1)w+1−u are to be replaced with (−q)w−u and (−q)w+p(i)−u, which is
again compatible with f and g as desired. The vanishing of q′ from [TW19, (4-4)] follows using
a similar argument using quantum numbers. Finally, the zigzag relation are established by an
inductive argument based on the case of generation 2, which is proved exactly as outlined in
[TW19, Lemma 4.8]. �

Note that the non-idempotent generators of Zk,q are given by down and up morphisms for
minimal stretches, a.k.a. singleton sets if we ignore losp (we will write e.g. Di instead of D{i} for
these to simplify notation). By using the relations, e.g. Theorem 3.25.(4), one obtains down and
up morphisms for more general stretches.

Example 3.26 For the complex quantum group case the only possible stretch is S = {0}, which
is down-admissible unless a0 = 0, where we note that {0} does not exist in this case (and so T
does not exist either). The only relevant relations are the ones in Theorem 3.25.(1) and

D0D0Ev−1 = 0, U0U0Ev−1 = 0, D0U0Ev−1 =
{

g(a1)U0D0Ev−1 if a0 6= 0,
0 if a0 = 0,

and Zk,q has connected components corresponding to (scaled) zigzag algebras for each v < `, and
single vertices for v = [a1, 0]∞,`. Thus, we recover [AT17, Theorem 3.12].

Example 3.27 Let v = [2, 5, 3, 0, 1]7,3 and S = {0}, then the zigzag relation is

D0U0Ev−1 = g(0)U{1,0}D{1,0}Ev−1 + f(0)U2U{1,0}D{1,0}D2Ev−1 = 5U{1,0}D{1,0}Ev−1.

If S = {2}, then the zigzag relation reads

D2U2Ev−1 = g(5)U2D2Ev−1 + f(5)U3U2D2D3Ev−1 = 3U2D2Ev−1 + U3U2D2D3Ev−1.

Example 3.28 Using the containment and adjacency relations we calculate

U0D1D0Ev−1 = 0, Ev−1U0U1D0 = 0,

which is a relation for the corresponding G2T -modules, see [And20, Section 6.3] or [TW20, Section
5B] for the connection.

Example 3.29 One can show the useful relation that

DSUSDSEv−1 = 0, Ev−1USDSUS = 0,(3-11)

for any down-admissible stretch S, cf. [TW19, (3-13)]. In particular, loops square to zero.

All relations in Theorem 3.25 can be interpreted diagrammatically in terms of morphisms in
the Temperley–Lieb category built from mixed JW projectors. Using Proposition 3.22 to simplify
the diagrams, we have the examples

v−1
= 0,

v−1
=

v−1
,

v−1

v−1

= g∗ ·
v−1

v−1

+ f∗ ·
v−1

v−1

,

which illustrate containment, far-commutativity and zigzag relations. Indeed, the former two
types of relations admit diagrammatic proofs.

The following proposition gives explicit versions of the cellular bases constructed in [And20] and
[AST18]. To state it recall from [GL96] that the crossingless matching basis of TLZ[v±1],v together
with (N0, <) and (−)l endows TLZ[v±1],v with the structure of a (strictly object adapted) cellular
category. (We refer to [Wes09, Definition 2.1] and [EL16, Definition 2.4] for the terminology.)
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Proposition 3.30 Let B denote the set given by the elements in Theorem 3.25.(Basis). More-
over, let b̃ respectively b denote the sets obtained from the analogous expressions based on the
projectors ẽv−1 and eq−1 respectively.

(a) The sets b̃ and b give bases for the hom-spaces in Tiltk(v),v while the set B gives a bases
for the hom-spaces in Tiltk,q.

(b) All of these bases are unitriangularly equivalent to the crossingless matching bases (with
respect to (N0, <)).

(c) All of these bases together with (N0, <) and (−)l endow Tiltk(v),v respectively Tiltk,q
with the structure of a (strictly object adapted) cellular category.

Proof. Theorem 3.25 shows that b and B give bases of the respective hom-spaces, and the former
is unitriangularly equivalent to b̃, by construction. Moreover, b̃ is unitriangularly equivalent to
the crossingless matching basis, and a basis change that is unitriangular with respect to the cell
order preserves all structures defining a (strictly object adapted) cellular category. �

Example 3.31 A crucial ingredient in the proof of Theorem 3.25 is the unitriangular basis
change between b̃ and b for endomorphism spaces of T(v − 1) for genv 6 2. In this case the basis
elements are given by loops L̃S′v−1 respectively LS

′

v−1 for down-admissible sets S′, including the
empty set. For genv = 0 only the empty set is down-admissible and we have L̃∅v−1 = L∅v−1. For
genv = 1 there is a unique non-empty down-admissible set S and we have{

L∅v−1 = L̃∅v−1 + (−1)v−mv [v[S]]v
[mv ]v · L̃

S
v−1,

LSv−1 = L̃Sv−1.

{
L̃∅v−1 = L∅v−1 − (−1)v−mv [v[S]]v

[mv ]v · L
S
v−1

L̃Sv−1 = LSv−1.

The basis changes for genv = 2 with minimal down-admissible stretches S < T are:
L∅v−1 = L̃∅v−1 + (−1)v−mv [v[S]]v

[mv ]v · L̃
S
v−1 + (−1)mv−m2

v
[mv [T ]]v

[m2
v ]v · L̃

T
v−1 + (−1)v−m2

v
[v[ST ]]v

[m2
v ]v · L̃STv−1,

LSv−1 = L̃Sv−1 + (−1)v−m2
v

([mv [T ]]v)2

[v[T ]]v[m2
v ]v · L̃

T
v−1,

LTv−1 = L̃Tv−1 + (−1)v−mv [v[ST ]]v
[mv [T ]]v · L̃

ST
v−1,

LSTv−1 = L̃STv−1.

L̃∅v−1 = L∅v−1 − (−1)v−mv [v[S]]v
[mv ]v · L

S
v−1 + (−1)mv−m2

v
[mv [T ]]v

[m2
v ]v ( [v[S]]v[mv [T ]]v

[mv ]v[v[T ]]v − 1) · LTv−1

−(−1)v−m2
v

[v[ST ]]v[v[S]]v[mv [T ]]v
[m2

v ]v[mv ]v[v[T ]]v · LSTv−1,

L̃Sv−1 = LSv−1 − (−1)v−m2
v

([mv [T ]]v)2

[v[T ]]v[m2
v ]v · L

T
v−1 + (−1)mv−m2

v
[v[ST ]]v[mv [T ]]v

[v[T ]]v[m2
v ]v · LSTv−1,

L̃Tv−1 = LTv−1 − (−1)v−mv [v[ST ]]v
[mv [T ]]v · L

ST
v−1,

L̃STv−1 = LSTv−1.

Here we abbreviated ST := S ∪ T .

Finally, we record a useful consequence of Theorem 3.25.Basis.

Lemma 3.32 Suppose that v, w ∈ N are such that ∇supp(v) ∩∇supp(w) = ∅. We have

HomTiltk,q

(
T(v − 1), T(w − 1)

) ∼= Ew−1Zk,qEv−1 = {0}.

In particular, this holds true if the zeroth digit b0 of w satisfies b0 6= a0 and b0 6= ` − a0, or
b0 = a0 6= `

2 but p > 2 and the parity of the sum of the remaining digits of v and w is different.

Proof. The first part of the statement is clear by Theorem 3.25.Basis. The first condition for
when ∇supp(v) ∩∇supp(w) = ∅ is immediate from the definitions as the corresponding p`-adic
expansions of the elements of ∇supp(v) and ∇supp(w) have to agree on the zeroth digit. For the
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second condition note that b0 = a0 6= `
2 ensures that every element of ∇supp(v) is distinguished

from the elements of ∇supp(w) by its zeroth digit or by the parity of the sum of higher digits
(here we use that p is odd). �

Note that the conditions given at the end of Lemma 3.32 are in general only sufficient to ensure
∇supp(v) ∩∇supp(w) = ∅.

Remark 3.33 The statement in Lemma 3.32 is known as a Weyl factor overlap criterion
in the theory of tilting modules and follows from Ext-vanishing, see see e.g. [AST18, Section
2B], using the integrality of these statements which follows from [RH03]. One can see Lemma 3.32
as an explicit incarnation of these (general) facts about tilting modules.

3D. More partial trace formulas. The next lemma deals with partial traces that do not reach
an ancestor. Hence, they are complementary to part (c) of Proposition 3.22.

Lemma 3.34 Let v = [aj , ..., ak, 0..., 0]p,` with k > 0, and ak 6= 0. Suppose that w = (p−ai)p(i)

for some 1 6 i < k. Then we have

v−1 w = v+w−1

x−1

x−1

= DSUSEx−1,

where x = (v + w)[S] = [aj , ..., ak − 1, p− 1, ..., p− 1, ai, 0, ..., 0]p,` with S = {i, ..., k − 1}. The
same holds for 0 < w′ = `− a0 < `, where x′ = (v + w′)[S′] = [aj , ..., ak − 1, p− 1..., p− 1, a0]p,`
and S = {0, ..., k − 1}.

Proof. We compute using projector absorption and shortening:

v−1 w = v−1 w

x−1

x−1

= v+w−1

x−1

x−1

= DSUSEx−1,

where S = {i, ..., k− 1} and we have used that S is the minimal down-admissible stretch of v+w.
The formula for w′ and x′ can be proven verbatim. �

We can now use the zigzag relation from Theorem 3.25.(6) to simplify DSUSEx−1 further. To
use this relation, recall that if the down-admissible hull S, or the smallest minimal down-admissible
stretch T with T > S does not exist, then the involved symbols are zero by definition.

Proposition 3.35 Retain notation as in Lemma 3.34. We have

v−1 w = g(ak − 1) ·USDSEx−1 + f(ak − 1) ·UTUSDSDTEx−1

= g(ak − 1) ·
x−1

x−1

+ f(ak − 1) ·
x−1

x−1

.

Moreover, the formula holds for w′ and x′.

Proof. By the zigzag relation from Theorem 3.25. �

Note that the f-terms in Proposition 3.35 vanish if ak = 1. On the other hand, the g-terms
can be zero only if no admissible hull S exists. Hence, the whole partial trace vanishes if and
only if ak = aj = 1, i.e. if and only if v = p(k) is a prime eve.

We will state more partial trace formulas in Theorem 4.15 later on.
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4. Monoidal structure

In this section, we study Tiltk,q as a monoidal category. In the semisimple and complex
quantum group cases, the results in this section appear throughout the literature.

4A. Fusion rules. We start by recalling the well-known fusion rules for tilting modules lying in
the fundamental alcove, in which tilting modules are simple. Note that in the semisimple case,
i.e. when ` =∞, the fundamental alcove is the whole of N0.

Lemma 4.1 For 1 6 v, w 6 ` and v + w − 2 < ` we have

T(v − 1)⊗ T(w − 1) ∼=
⊕min(v,w)

i=1 T(v + w − 2i).(4-1)

For 1 6 v, w 6 ` and v + w − 2 > ` we have

T(v − 1)⊗ T(w − 1) ∼=
⊕`−max(v,w)

i=1 T
(
[|v − w| − 1 + 2i]p,` − 1

)
⊕
⊕((v+w−`)′−1)/2

i=0 T
(
[1, v + w − 1− `− 2i]p,` − 1

)
,

(4-2)

where, for later use, we indicate the p`-adic expansions of the occurring terms. (The first direct
sum is empty if max(v, w) = `.)

Proof. The first part is classical; the second part is easy using Proposition 3.3. �

Example 4.2 We consider T(17)⊗ T(15). Assuming ` > 17, we have T(17)⊗ T(15) ∼= ∆(17)⊗
∆(15) and the Clebsch–Gordan rule tells us to expect a filtration by Weyl modules ∆(2), ...,∆(32)
of even highest weight, each appearing once. To illustrate (4-2), it is convenient to display this
string of Weyl modules as folded by a fold through the simple ∆(`− 1), for example with ` = 21:

∆(32) ∆(30) ∆(28) ∆(26) ∆(24) ∆(22)

∆(20)

∆(2) ∆(4) ∆(6) ∆(8) ∆(10) ∆(12) ∆(14) ∆(16) ∆(18)

T(2) T(4) T(6) T(32) T(30) T(28) T(26) T(24) T(22) T(20)⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

This folding vertically groups the Weyl modules that make up generation one indecomposable
tilting modules, namely T(22), ..., T(32), or which are simple, namely T(2), T(4), T(6), T(20).

The summands with highest weights in the fundamental alcove appear in the first direct sum
in (4-2). The second direct sum collects all remaining summands. If v + w and ` have the same
parity, then each of the summands are of generation one, otherwise there exists a simple summand
T(`− 1). Equation (4-1) is the Clebsch–Gordan rule.

Remark 4.3 The second direct sum displayed in (4-2) does not appear for the Verlinde category
(as e.g. in [EGNO15, Example 4.10.6]) because these terms are factored out in that category. For
example, in Example 4.2 all tilting modules of weight greater or equal 8 would be zero.

Remark 4.4 Below we will use the following character argument. Over (Z[v±1],v), the
SL2-module ∆(v − 1) ⊗ ∆(w − 1) always has a Weyl filtration whose Weyl factors are given
by (4-1) when ` = ∞ (in which case T(v − 1) ∼= ∆(w − 1)). Thus, we can determine the Weyl
factors of tensor products of tilting modules by using (4-1) together with the tilting characters in
Proposition 3.3. We can further collect the computed Weyl factors into indecomposable tilting
modules since we know that tensor products of tilting modules decompose into indecomposable
tilting modules. We can perform this process recursively by highest weight, using the characters
in Proposition 3.3.
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We note the following consequence, used in the proof of Theorem 3.19:

Lemma 4.5 For all v, w ∈ N such that v /∈ Eve, suppose that
(
T(v − 1) : ∆(w − 1)

)
= 1, then(

T(mv − 1)⊗ T(1)⊗(v−mv) : ∆(w − 1)
)

= 1.

Proof. This follows a character argument: we compute the Weyl factors of T(mv − 1)⊗ T(1)⊗(v−mv)

by repeatedly raising or lowering the corresponding highest weights of these Weyl factors by ±1
since

∆(0)⊗∆(1) ∼= ∆(1), ∆(n)⊗∆(1) ∼= ∆(n+ 1)⊕∆(n− 1) if n 6= 0.(4-3)

In other words, we multiply the character of T(mv − 1) as it appears in part (a) of Proposition 3.3
by [2]v−mv

v . Now observe that any Weyl factor of T(v− 1) is uniquely obtained from the summand
[w]v that appears in the character of T(mv − 1), and so the statement follows. �

To illustrate the argument in this proof, consider Figure 1 which displays
(
T(v− 1) : ∆(w− 1)

)
.

The Weyl factors of the tilting module T(mv − 1) of the mother mv of v can be read off from the
fractal at the next order breaking point before v, which is a distance of v−mv from v. The Weyl
factors of T(mv − 1)⊗ T(1)⊗(v−mv) that are also factors of T(v − 1) are the outer most points in
the horizontal slice for v, and thus, can only be reached in one possible way.

Definition 4.6 We define the tail-length tl(v) of v = [aj , ..., a0]p,` to be the minimal k ∈ N0
such that ai is maximal for all i < k. If a0 is not maximal, then tl(v) = 0.

The first fusion rule, beyond the fundamental alcove that we address, involves tensoring with
the monoidal generator T(1).

Proposition 4.7 Let v = [aj , ..., a0]p,`. We have

T(v − 1)⊗ T(1) ∼= T(v)⊕
tl(v)⊕
i=0

T(v − 2p(i))⊕xi , xi =


0 if ai = 0 or i = j and aj = 1,
2 if ai = 1,
1 if ai > 1.

The proof is given by a character argument and appears below. To warm up, we first comment
on the qualitative differences between the cases found in Proposition 4.7. For the sake of exposition,
we consider ` > 4. Focusing on the zeroth digit, we see:

T(v − 1)⊗ T(1) ∼=


T(v) if a0 = 0,
T(v)⊕ T(v − 2)⊕2 if a0 = 1,
T(v)⊕ T(v − 2) if a0 ∈ {2, ..., `− 2},
generation drop case if a0 = `− 1.

The generation drop case occurs when the zeroth digit is maximal, in which case additional
direct summands may appear. Recall that T(v − 1) has 2genv Weyl factors. Under tensoring with
T(1) ∼= ∆(1), most of them produce two new Weyl factors by (4-3). In total, T(v − 1)⊗ T(1) will
have 2genv+1 or 2genv+1−1 Weyl factors. Observe that we are guaranteed to find a direct summand
T(v) in T(v − 1)⊗ T(1). Now we have three cases depending on whether the generation increases,
stays constant or drops, which are precisely the respective cases a0 = 0, a0 ∈ {1, ..., `− 2} and
a0 = ` − 1, as above. In the first case, T(v) exhausts all newly generated Weyl factors, so it
is the only summand that appears. In the second case, it exhausts roughly half of all Weyl
factors, so one expects a further summand to appear. In the generation drop case, we have
genv+1 = genv − tl(v). Hence T(v) only accounts for a small proportion of the Weyl modules,
and we expect several other tilting summands to appear.
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Proof of Proposition 4.7. This is a neat and direct application of (3-3), as we now explain. First
we observe that a character argument is enough to verify the formulas. We will use

χT(w−1) = [m∞v ]v
∏
bi 6=0

[2]
vbip(i) , χT(v−1)⊗T(1) = [m∞v ]v

∏
ai 6=0

[2]
vaip(i) · [2]v(4-4)

for these character computations, where w = [bj+1, ..., b0]p,` are the relevant p`-adic expansions
for the summands that appear. Hereby, bi = ai whenever tl(v) < i > j and bj+1 6= 0 if and only
if tl(v) = j + 1.

The cases where we do not have generation drops are almost immediate (and have already
been discussed above): The first case where a0 = 0 follows by observing that the corresponding
slot for [2]

va0p(0) = [2]v is not occupied in the expression for χT(v−1) in (4-4), so we end up with
an indecomposable tilting module. In the second case, the slot is occupied by a [2]

vp(0) , and we
calculate that [2]

vp(0) [2]v = [2]
v2p(0) + 2, which splits the character into two, one appearing twice.

The final case without generation drops, where the slot is now given by [2]
a0vp(0) for a0 > 1, can

then be proven by calculating [2]
va0p(0) [2]v = [2]

v(a0+1)p(0) + [2]
v(a0−1)p(0) .

Let tl(v) = k. The generation drop case follows using the relations

[2]
v(p∨`−1)p(i) [2]

vp(i) = [2]
vp(i+1) + [2]

v(p∨`−2)p(i) ,

[2]
v0p(k) [2]

vp(k) = 2[2]
vp(k) ,

[2]
v1p(k) [2]

vp(k) = [2]
v2p(k) + 2,

[2]
vakp(k) [2]

vp(k) = [2]
v(ak+1)p(k) + [2]

v(ak−1)p(k) if ak /∈ {0, 1}.

These equations imply that

[2]
vakp(k)

k−1∏
i=0

[2]
v(p∨`−1)p(i) · [2]v =

[2]
v(ak+1)p(k) + [2]

vakp(k)

k−1∑
i=0

( ∏
j 6=i,06j6k−1

[2]
v(p∨`−1)p(j)

)
[2]

v(p∨`−2)p(i) + [2]
v(ak−1)p(k) ,

for ak /∈ {0, 1}. Now we collect terms, which gives the claimed summands in order using (4-4).
The cases ak ∈ {0, 1} follow by replacing the term [2]

v(ak−1)p(k) by either 0 or 2. Observe that in
the case p∨` = 2 we obtain the claimed doubling of summands since [2]

v(p∨`−2)p(i) = 2. �

Example 4.8 Let us give two examples, one is losp.
(a) For v = [4, 1, 6, 6, 6, 10]7,11 and mchar(k,q) = (7, 11), we have

T(v − 1)⊗ T(1) ∼= T
(
[4, 1, 6, 6, 6, 10]7,11

)
⊕ T
(
[4, 1, 6, 6, 6, 8]7,11

)
⊕ T
(
[4, 1, 6, 6, 4, 10]7,11

)
⊕ T
(
[4, 1, 6, 4, 6, 10]7,11

)
⊕ T
(
[4, 1, 4, 6, 6, 10]7,11

)
⊕ T
(
[4,−1, 6, 6, 10]7,11

)⊕2
.

(b) In the case mchar(k,q) = (2, 2) and v = [1, 1, 1, 1]2,2, one gets

T(v − 1)⊗ T(1) ∼= T
(
[1, 1, 1, 1]2,2

)
⊕ T
(
[1, 1, 1,−1]2,2

)⊕2 ⊕ T
(
[1, 1,−1, 1]2,2

)⊕2 ⊕ T
(
[1,−1, 1, 1]2,2

)⊕2
.

Proposition 4.7 immediately implies the following appearance of losp.

Proposition 4.9 Let d ∈ N. If mchar(k,q) = (2, 2), then 1 is never a direct summand of
T(1)⊗2d, whereas if mchar(k,q) = (3, 3), then 1 appears exactly once.

Note the contrast to the semisimple situation, where the multiplicities of 1 in tensor products
T(1)⊗2d are given by the Catalan numbers, which grow exponentially.

Proof. Let us prove the (harder) case mchar(k,q) = (3, 3) by induction on d. The case d = 1
is just T(1)⊗2 ∼= 1⊕ T(2). For d > 1, we observe that T(v)⊗ T(1) for v > 1 will never contain a
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summand below 2 by Proposition 4.7. Hence, we are done since the summand with the second
lowest highest weight in T(1)⊗(d−1) is T(2), by induction. �

Remark 4.10 For any tilting module T the class [T] acts on the Grothendieck ring of Tiltk,q
by multiplication and thus gives rise to an N0 × N0-matrix with entries in N0 when evaluated on
the basis of classes of indecomposable tilting modules. The fusion graph is the (multi)graph with
this adjacency matrix.

The fusion graph for T(1) has periodic and fractal structures. First, the number of edges going
to lower highest weight summands repeat l-periodically in the order {0, 2, 1, ..., 1}. This is the first
generation of edges. Secondly, the edges also become longer and repeat with bigger periodicity,
depending on p. One can illustrate this fusion graph in many ways in order to highlight its
fractal structure. In Figure 3, we illustrate the fusion graph and a Bratteli diagram (which is
strictly speaking not a fusion graph as vertices appear multiple times). In both of these cases,
the generation drop becomes a long edge.

The fusion rules for eves are as follows. These, together with Lemma 4.1, give a complete
collection of fusion rules for simple tilting modules.

Proposition 4.11 Let a, b ∈ N, k, t ∈ N0, 1 6 a, b < p∨`, and ap(k) > bp(t). Let us write x′ to
denote x, if x is odd, and x− 1, if x is even.

(a) For k > t we have

T(ap(k) − 1)⊗ T(bp(t) − 1) ∼=
b′−1

2⊕
it=0

p′−1
2⊕

it−1=0
...

`′−1
2⊕

i0=0
T
(
[a, 0, ..., 0, b− 1− 2it, p− 1− 2it−1, ..., `− 1− 2i0]p,` − 1

)
,

(4-5)

where the potentially non-zero digits appear at positions k and between t and 0.
(b) For k = t we have

T(ap(k) − 1)⊗ T(bp(k) − 1) ∼=

{
(4-6) if a+ b− 2 < p∨`,
(4-7) if a+ b− 2 > p∨`.

⊕
x

p′−1
2⊕

it−1=0
...

`′−1
2⊕

i0=0
T
(
[x− 1, p− 1− 2ik−1, ..., `− 1− 2i0]p,` − 1

)
,(4-6)

where the leftmost sum is running over all x = a+ b− 2i ∈
{
|a− b|+ 2, ..., a+ b

}
.

⊕
x

p′−1
2⊕

it−1=0
...

`′−1
2⊕

i0=0
T
(
[x− 1, p− 1− 2ik−1, ..., `− 1− 2i0]p,` − 1

)

⊕
⊕
y

p′−1
2⊕

it−1=0
...

`′−1
2⊕

i0=0
T
(
[1, y − 1, p− 1− 2ik−1, ..., `− 1− 2i0]p,` − 1

)
,

(4-7)

where the two leftmost sums are running over x = |a−b|+2i ∈
{
|a−b|+2, ..., 2p∨`−a−b

}
,

respectively y = a+ b− p∨`− 2i ∈
{

(a+ b− p∨`)− (a+ b− p∨`)′ + 1, ..., a+ b− p∨`
}
.

Note that the case k = t is a variation of (4-5) where the kth and k + 1th digits for the tilting
summands that appear are given by the first two digits in (4-1) or (4-2) for T(a− 1)⊗ T(b− 1)
and p∨`, while the other digits are given as in (4-5).
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T(0)

T(1)

T(2) T(0)

T(3) T(1)

T(4) T(2) T(0)

T(5) T(3) T(1)

T(6) T(4) T(2) T(0)

T(7) T(5) T(3) T(1)

T(8) T(6) T(4) T(2) T(0)

T(9) T(7) T(5) T(3) T(1)

T(10) T(8) T(6) T(4) T(2) T(0)

T(11) T(9) T(7) T(5) T(3) T(1)

T(12) T(10) T(8) T(6) T(4) T(2) T(0)

T(13) T(11) T(9) T(7) T(5) T(3) T(1)

T(14) T(12) T(10) T(8) T(6) T(4) T(2) T(0)

T(15) T(13) T(11) T(9) T(7) T(5) T(3) T(1)

T(16) T(14) T(12) T(10) T(8) T(6) T(4) T(2) T(0)

T(17) T(15) T(13) T(11) T(9) T(7) T(5) T(3) T(1)

T(18) T(16) T(14) T(12) T(10) T(8) T(6) T(4) T(2) T(0)

T(19) T(17) T(15) T(13) T(11) T(9) T(7) T(5) T(3) T(1)

T(20) T(18) T(16) T(14) T(12) T(10) T(8) T(6) T(4) T(2) T(0)

T(21) T(19) T(17) T(15) T(13) T(11) T(9) T(7) T(5) T(3) T(1)

T(22) T(20) T(18) T(16) T(14) T(12) T(10) T(8) T(6) T(4) T(2) T(0)

T(23) T(21) T(19) T(17) T(15) T(13) T(11) T(9) T(7) T(5) T(3) T(1)

T(24) T(22) T(20) T(18) T(16) T(14) T(12) T(10) T(8) T(6) T(4) T(2) T(0)

T(25) T(23) T(21) T(19) T(17) T(15) T(13) T(11) T(9) T(7) T(5) T(3) T(1)

11

10

12

1
1

1
0

1
2

1

1

1

1
0

1
2

1

0

1
1
0 1

2
1

2

1

1 0

1 2

1

1

1

1
0

1
2

1

0

1

1
0

1
2

1

2

1

1
0

1
21

1

1

10

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24
25

Figure 3. Top left picture: The full subgraph of the fusion graph for T(1) in
characteristic 3 containing the first 26 vertices. The vertex labels are T(v), the
edge labels indicate multiplicities. Bottom right picture: The first 26 rows
of the Bratteli diagram in characteristic 3. The solid and double edges indicate
multiplicities 1 and 2, respectively; the dotted edges indicate multiplicity 0. (In
both cases, the edges labeled 0 are only to highlight the periodicity.) Note that
the last 2.5 rows in the Bratteli diagram are another illustration of the graph on
the top left.
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Example 4.12 Here are a few examples of (4-5).
(a) The formula is particularly nice if b = 1, i.e. one of the tensor factors is a prime eve,

since then only terms with il = 0 appear. Explicitly, for mchar(k,q) = (7, 3), the tilting
summands are precisely T

(
[a, 0, ..., 0, 0, yt−1, ..., y1, y0]p,`−1

)
with yi ∈ {0, 2, 4, 6} for i > 0

and y0 ∈ {0, 2}. So, e.g. for t = 3 and k > 3, there are 32 such summands.
(b) For p = ` = 2, we get T(2k − 1)⊗ T(2t − 1) ∼= T(2k + 2t − 2).
(c) The fusion rule for T

(
[5, 0, 0, 0]7,3 − 1

)
⊗ T
(
[2, 0, 0]7,3 − 1

)
is illustrated in Figure 4.

1

1

1

1

11

1

1

[2,0,0]{7,3} - 1

[5,1,6,2]{7,3} - 1

[5,1,6,0]{7,3} - 1

[5,1,4,2]{7,3} - 1

[5,1,4,0]{7,3} - 1

[5,1,2,2]{7,3} - 1[5,1,2,0]{7,3} - 1

[5,1,0,2]{7,3} - 1

[5,1,0,0]{7,3} - 1

Figure 4. An illustration of the fusion rule for T
(
[5, 0, 0, 0]7,3−1

)
⊗T
(
[2, 0, 0]7,3−1

)
(a subgraph of the fusion graph as given in Figure 3 for T

(
[5, 0, 0, 0]7,3 − 1

)
).

Proof of Proposition 4.11. As before, we use character computations. We will first focus on the
case k > t, and then on the case k = t.

We decompose [ap(k)]v[bp(t)]v into a sum of indecomposable tilting characters, presented as in
(4-4). Note that [ap(k)]v is already one of the factors expected in the character of every summand,
hence we focus on rewriting [bp(t)]v. We claim:

[bp(t)]v = v−bp
(t)+1 + v−bp

(t)+3 + ... + vbp
(t)−3 + vbp

(t)−1

=

b′−1
2∑

it=0

p′−1
2∑

it−1=0
...

`′−1
2∑

i0=0

(
[2]

v(b−1−2it)p(t) [2]
v(p−1−2it−1)p(t−1) ...[2]

v(`−1−2i0)p(0)
)
,

where we interpret [2]v0 as 1 and not 2. (This is due to the same reason why we need to take the
product over the non-zero digits in (4-4).) In order to verify this, we rewrite the second line as

b′−1
2∑

it=0

p′−1
2∑

it−1=0
...

`′−1
2∑

i0=0

(
[2]

v(b−1−2it)p(t) [2]
v(p−1−2it−1)p(t−1) ...[2]

v(`−1−2i0)p(0)
)

=

b′−1
2∑

it=0
[2]

v(b−1−2it)p(t)

p′−1
2∑

it−1=0
[2]

v(p−1−2it−1)p(t−1) ...

`′−1
2∑

i0=0
[2]

v(`−1−2i0)p(0)

=[b]
vp(t) [p]

vp(t−1) ...[`]
vp(0)

=[bp(t)]v.

The last equation is a telescoping product when writing [n]x = xn−x−n

x−x−1 .
For k = t, the same type of argument leaves us with rewriting [ap(k)]v[b]

vp(k) . To this end, we
will use the quantum number calculations underlying Lemma 4.1. Let us assume that we are in
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the case of (4-6), where we calculate

[ap(k)]v[b]
vp(k) = [a]

vp(k) [b]
vp(k) [p]

vp(k−1) ...[`]
vp(0) =

∑
x

[x]
vp(k) [p]

vp(k−1) ...[`]
vp(0) =

∑
x

[xp(k)]v,

where x runs over the same set as in (4-6), and the second equality is (4-1) for v substituted by
vp(k) . Note that [xp(k)]v are terms of the form [m∞v ]v in (4-4), so we are done in this case. The
case of (4-6) uses the same argument with (4-2) instead of (4-1). �

Remark 4.13 Questions about the structure constants of the representation ring have been
studied for the finite group SL2(Fpk) for a long time. (The connection to our setup is to embed
SL2(Fpk) into SL2(Fpk) via fixed points under the Frobenius twist.) For example, Lemma 4.1 and
[EH02a, Lemma 5] is used in [Cra13, Section 3] to find the finite group analog of fusion rules.

Actually, a bit more is true and worthwhile to point out: Recall that for a finite group a
module T is algebraic if there exists f ∈ N0[X] such that f

(
[T]
)

= 0 holds in the representation
ring; otherwise modules are called transcendental, cf. [Alp76]. As shown in [Cra13, Section
3] the tilting module T(1) considered as a SL2(Fpk)-module is algebraic, and so are eves. Being
algebraic is a measure of how complex fusion rules get. This was a motivation to stick to the
fusion rules presented above. In fact, this is a rare property for modules of groups of Lie type as
[Cra13, Theorem A] shows and most of the time even the vector representation is transcendental,
e.g. for all SLa for a > 2.

4B. Categorified fusion rules for tensoring with the vector representation. The fusion
rule from Proposition 4.7 describes the multiplicities of indecomposable tilting modules in the
tensor product T(v − 1)⊗ T(1). In this section, we consider the refined problem of describing the
morphisms that project onto such summands using the Temperley–Lieb calculus. Specifically, in
Theorem 4.15 we will decompose the idempotent Ev−1 ⊗ id1 into a sum of orthogonal, primitive
idempotents factoring through Ev as well as the other Ev−2p(i) predicted by Proposition 4.7.
Conversely, such a decomposition can also be read as a recursive description of the mixed JW
projector Ev in terms of mixed JW projectors of lower order.

For the following definition, we use scalars determined by evaluating the functions gq and fq
on digits. On all digits, except for the zeroth one, we use (3-10). For the zeroth digit, we instead
use:

fx(a) =
{

(−1)a+1 · −2
[a]x if 1 6 a 6 `− 2,

0 if a = 0 or a = `− 1,
gx(a) =

{
− [a+1]x

[a]x if 1 6 a 6 `− 1,
−[2]x if a = 0.

(4-8)

Armed with this notation, we now define the morphisms that will feature in the decomposition
of Ev−1 ⊗ id1 into orthogonal, primitive idempotents.

Definition 4.14 Let v = [aj , ..., a0]p,`.

(a) If a0 = 1 and j 6= 0, then we consider the morphisms

A0
v =

v−1

v−2

v−1

+

v−1

v−2

v−1

.

Here the caps and cups are of thickness 1 and are thus admissible. If j = 0, then we
declare A0

v = 0 (the diagram makes no sense in this case since v = 1 < 2). We will also
consider the morphism (A0

v)
l reflected along a horizontal line.
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(b) For a0 > 1 we define

B0
v = 1

gq(a0−1) ·
v−1

v−1

− fq(a0)
gq(a0−1) ·

v−1

v−1

S0 , S0 = {0}.

Here the caps and cups are of thickness a0 − 1 and are thus admissible. If j = 0, then we
use the same formula to define B0

v, except we omit the second summand.

We now look at the generation drop case. Suppose that v has a tail of maximal digits, that is

v = [aj , ..., ai, p− 1, ..., p− 1, `− 1]p,` with i 6= 0.

(c) If ai = 1 and i 6= j, then we define

Ai
v =

v−w

v−2w

v−w

w

w

w

+

v−w

v−2w

v−w

w

w

w

w

, w = p(i).

Here the caps and cups have thickness w = p(i), and are thus admissible. If ai = 1 and
i = j, then we declare Ai

v = 0 (the diagram makes no sense in this case since v < 2w).
We will also consider the reflected morphism (Ai

v)
l along a horizontal line.

(d) For ai > 1 and i 6= j we consider

Bi
v = 1

gq(ai−1) ·
v−w

v−w

w

w

− fq(ai)
gq(ai−1) ·

v−w

v−w

w

w

S(i) , w = p(i).

Here the caps and cups are of thickness aip(i) and are thus admissible. If i = j, then we
use the same formula to define Bi

v, except we omit the second summand.

The categorified fusion rule for T(v − 1)⊗ T(1) is now given by the following theorem.

Theorem 4.15 Let v = [aj , ..., a0]p,`.

(a) We have the following decomposition of Ev−1 ⊗ id1 into a sum of orthogonal, primitive
idempotents.

v−1 = v +
∑tl(v)

i=0 Piv where Piv =


0 if ai = 0,
Ai
v + (Ai

v)
l if ai = 1,

Bi
v if ai > 1.

(4-9)

For ai = 1, both the summands A0
v and (A0

v)
l are orthogonal, primitive idempotents.

(b) Further, we have the following partial trace rules. Let 0 6 i 6 tl(v), ai 6= 0, and
w = p(i). For the case i = j, we additionally assume aj > 1. Then we have

v−w w = gq(ai − 1) · v−2w + fq(ai − 1) · Liv−2w.(4-10)

(If ai = 1 or i = j, then the second summand is zero. Even though L0
v−2w is not defined

on its own, this is meaningful in both cases because fq(0) = 0 or v − 2w + 1 is an eve.)
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Example 4.16 Let us consider the two examples from Example 4.8. For v = [4, 1, 6, 6, 6, 10]7,11,
we have tl(v) = 4 and

Ev−1 ⊗ id1 = Ev + B0
v + B1

v + B2
v + B3

v +
(
A4
v + (A4

v)
l)
.

For v = [1, 1, 1, 1]2,2, we have tl(v) = 4 and

Ev−1 ⊗ id1 = Ev +
(
A0
v + (A0

v)
l)+

(
A1
v + (A1

v)
l)+

(
A2
v + (A2

v)
l)
,

where we note A3
v = (A3

v)
l = 0 since the leading digit is a3 = 1, and P4

v = 0 since a4 = 0. The
occurrence of multiple pairs Ai

v + (Ai
v)
l is an instance of losp. For ` 6= 2 and p 6= 2 we encounter

at most one pair of the form Ai
v + (Ai

v)
l since ai = 1 implies that tl(v) 6 i.

Remark 4.17 The fusion rule (1-1) can be used to express classical JW projectors in terms of
JW projectors of lower order. Analogously, Theorem 4.15 gives a recursion of p`JW projectors in
terms of p`JW projectors of lower order. This is in contrast to the defining description in (3-6),
which uses classical JW projectors.

Remark 4.18 In the complex quantum group case and for v 6 2`− 2, the fusion rule (4-9) can
be deduced from [BDRM19, Lemma 3.2]. The three cases of their rule reflect the trichotomy of
a0 = 0, a0 = 1, and a0 > 1.

Remark 4.19 We do not know a good partial trace formula of type (4-10) in the case ai = 1,
not even for i = 0 and w = 1. (One can write down a formula using (4-9), of course.) We expect
this formula to be more complicated, because it deals with a generation increase (on comparison
with the increased complexity of the fusion rule when the generation drops).

Proof of Theorem 4.15. The proof proceeds by induction on v. To do so, we split the statement
of the theorem into the following two types of assertions.

F(v) denotes: The categorified fusion rules are given by (4-9) for v.
PT(v) denotes: The partial trace rules (4-10) hold for v.

The former makes sense for all v > 1 and the latter for v > 2. We will also write F(< v) to
express the assertion that F(w) holds for all 1 6 w < v, and similarly for PT(< v).

The base cases for the inductive argument is F(1), which is immediate.
The induction step will be accomplished by two arguments that we separate into two distinct

statements below. Lemma 4.20 shows the implication F(< v) =⇒ PT(v) for all v > 2.
Lemma 4.21 shows the implication PT(v) =⇒ F(v) for all v > 2. Induction then shows that
both assertions hold for all relevant values of v. �

We now turn to the two lemmas that form the heart of the proof of Theorem 4.15.

Lemma 4.20 We have F(< v) =⇒ PT(v) for all v > 2.

Proof. We first consider i = 0, where we have w = 1 and assume a0 6= 0, i.e. we aim to prove

v−1 = gq(a0 − 1) · v−2 + fq(a0 − 1) · L0
v−2.(4-11)

To verify this, we will use the fusion rule for v − 1 in reverse to expand the projector Ev−1. If
a0 = 1, then we have Ev−1 = Ev−2 ⊗ id1. The claimed statement follows since the circle value is
−[2]q = gq(0) and the second term is zero by definition. If ` = 2, then we are done. Thus, from
now on suppose that ` > 2.



36 LOUISE SUTTON, DANIEL TUBBENHAUER, PAUL WEDRICH, AND JIERU ZHU

We consider the case a0 = 2, where the fusion rule involves A0
v−1 + (A0

v−1)l:

v−1 = v−2 −


v−2

v−3

v−2

+

v−2

v−3

v−2

−


v−2

v−3

v−2

+

v−2

v−3

v−2

 .

The first term in each of the brackets is L0
v−2; the second is (L0

v−2)2, which is zero by (3-11).
Since gq(1) = −[2]q and fq(1) = −2 the claim follows for a0 = 2.

Next we consider a0 ∈ {3, ..., `− 1}. Here we use −[2]q + [a0−2]q
[a0−1]q = − [a0]q

[a0−1]q to get

v−1 = v−2 −

 1
gq(a0−2) ·

v−2

v−2

− fq(a0−1)
gq(a0−2) ·

v−2

v−2

S0


= gq(a0 − 1) · v−2 + fq(a0−1)

gq(a0−2) ·
v−2

v−2

S0 ,

(4-12)

and it remains to compute the final term. To this end, we will use the fusion rule for v − 2a0 + 2
on the mini box (using induction), which corresponds to Ev−2a0+1. The last digit of its relevant
p`-adic expansion is an element of {3, ..., `− 1}, namely `− a0 + 2. We claim that fusion results
in:

v−2

v−2

S0 =
v−2

v−2

+ 1
gq(`−a0+1)L0

v−2 + lower order terms = 1
gq(`−a0+1)L0

v−2.(4-13)

Here, we have three things to check. To start, the first term in the middle is zero because T(v− 2)
and T(v − 2a0 + 2) do not share any common Weyl factors. To see this, first observe that the
relevant zeroth digits are a0 − 1 and respectively ` − a0 + 3. Now the claim follows from the
condition in Lemma 3.32 for any odd ` since one has a0− 1 6= `− a0 + 3 and a0− 1 6= a0− 3. For
even ` it can happen that a0 − 1 = `− a0 + 3, namely for a0 = `+4

2 . However, in this case the
next digit of v − 1 and v − 2a0 + 3 differ by one, so Lemma 3.32 also applies. Second, the fusion
rule includes a term of the form B0

v−2a0+2, which is typically a sum of two diagrams (although
the second may not appear in some cases). The first diagram combines with the present caps
and cups to form 1

gq(`−a0+1)L0
v−2. The second diagram (if it is present at all) vanishes when it

is sandwiched because of the containment relation U0U0 = 0. Third, all possible terms of even
lower order arising from the fusion rule become zero when sandwiched. Such terms only arise if
tl(v − 2a0 + 2) > 0, i.e. if a0 = 3.

Sandwiching a term Bi
v−2a0+2 for i > 0 produces a linear combination of (at most) two

diagrams:
v−2

v−3
v−2

w − 1 1

w − 1 1

1

1

,

v−2

v−3
v−2

w − 1 1

w − 1 1

1

1

,
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where w = p(i). We focus on the common outlined portion. Once we bend up the free strand,
this is in fact the morphism DSEv−5D0Ev−3 for the stretch S = {0, 1, ..., i− 1}, which vanishes by
the containment relation.

The terms Ai
v−2a0+2 or (Ai

v−2a0+2)l for i > 0 only occur when i = tl(v − 2a0 + 2) and ai = 2.
Sandwiching such a term results in a diagram that factors through a morphism from Ev−2 to
Ev−2a0+2−2p(i) , and we claim that such morphisms are zero because the corresponding tilting
modules have no common Weyl factors. Indeed, the relevant p`-adic expansions are

v − 1 = [..., ai, 0, 0, ..., 2]p,` and v−2a0 + 3− 2p(i) = [..., ai − 2, 0, ..., 0]p,`,

and thus the claim follows from Lemma 3.32.
We have finished showing that (4-13) holds, which we use to rewrite (4-12). The coefficient of

L0
v−2 is

fq(a0−1)
gq(a0−2) ·

1
gq(`−a0+1) = fq(a0−1)

gq(a0−2) · gq(a0 − 2) = fq(a0 − 1),

where we have simplified gq(`− a0 + 1)−1 = gq(a0 − 2) using [`]q = 0 (this does not hold in the
semisimple case). Thus we have verified the partial trace claim (4-11).

Finally we consider the case 0 < i 6 tl(v), which, surprisingly, is much easier to prove. Recall
that we assume that ai 6= 0 and aim to prove:

v−w w = gq(ai − 1) · v−2w + fq(ai − 1) · Liv−2w.

To verify this claim, we calculate that v − w + 1 = [aj , ..., ai, 0, ..., 0]p,`. In particular, we can use
(a slight generalization of) Proposition 3.35 to trace off w − 1 = p(i) − 1 strands and we get

v−w w − 1 = gq(ai − 1) ·
x−1

x−1

+ fq(ai − 1) ·
x−1

x−1

,

where x = [aj , ..., ai − 1, 0, ..., 1]p,` (if i = j, the f-term vanishes but the g-term does not because
we assume aj > 1). Now we use shortening to compute the full partial trace as:

v−w w = gq(ai − 1) ·
x−1

x−1

+ fq(ai − 1) ·
x−1

x−1

= gq(ai − 1) · + fq(ai − 1) · ,

which we pull straight to get the claimed partial trace formula. �

Lemma 4.21 We have PT(v) =⇒ F(v) for all v > 2.

Proof. We start with a few observations. First, Proposition 4.7 ensures that we know how many
orthogonal, primitive idempotents to expect in the categorified fusion rule. Second, by the same
arguments as in the proof of Theorem 3.19 (however, it is easier in this case since we only need to
tensor with T(1)) the idempotents projecting onto isotypic components are uniquely determined
by the property of absorbing Ev−1⊗ id1. These isotypic idempotents are automatically orthogonal
because a straightforward computation, using Proposition 3.3 and Lemma 4.1, shows that the
isotypic components share no Weyl factors, which implies that there are no non-zero morphisms
between them by Lemma 3.32.

Combining these observations, it remains to show that the morphisms Bi
v, Ai

v, (Ai
v)
l from

Definition 4.14 satisfy the absorption property and are indeed idempotents whenever they appear
in (4-9). Finally, we also check that Ai

v and (Ai
v)
l are orthogonal.

Absorption. Let us first check that all of the candidate idempotents appearing in Theorem 4.15
absorb Ev−1 ⊗ id1. For Ev, B0

v, A0
v, and (A0

v)
l, this follows immediately from the absorption
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properties of the p`JW projectors – see Proposition 3.22.(a). For the cases with i > 0 we use the
shortening property from Proposition 3.22.(b), e.g. for terms of the form Biv it suffices to observe

v−1

v−w

w − 1v−2w+1

=
v−1

w − 1v−2w+1 =
v−w

w − 1v−2w+1 =
v−w w

.

Absorption for the remaining cases, namely Ai
v and (Ai

v)
l with i > 0, can be similarly shown

using shortening.
We will now verify the idempotency of the candidate expressions on a case-by-case basis.
Idempotency (and orthogonality) of Ai

v and (Ai
v)
l. We start with the term Ai

v (which also
covers the symmetric case (Ai

v)
l), which is defined as the sum of the two diagrams

Ai
v = X + Y, where X =

v−w

v−2w

v−w

w

w

w

and Y =

v−w

v−2w

v−w

w

w

w

w

,

in which w = p(i). Next we compute the pairwise products of X, Xl, and Y. First we use
shortening and absorption of mixed JW projectors to compute

X2 =

v−w

v−2w

v−w

w

w

w

v−w

v−2w

v−w w

=

v−w

v−2w

w

w

w

v−2w

v−2w

v−w w

= X and XY =

v−w

v−2w

v−w

w

w

w

v−w

v−2w

v−w w

w

=

v−w

v−2w

w

w

w

v−2w

v−2w

v−w w

w

= Y.

Symmetrically, we also have (Xl)2 = Xl and Y(Xl) = Y. Now we claim that all other products
are zero, namely (Xl)X = X(Xl) = YX = (Xl)Y = Y2 = 0. This can be seen as follows. Up to
symmetry, these statements all follow from

v−2w

v−w

ww

= 0 ⇔
v−2w

v−w

w

w

=
v−w

v−w

w

w

= Ev−wUiDiUi = 0.

The equivalence is given by bending, as illustrated. On the right-hand side we undid shortening
and translated the caps and cups into morphisms Ui and Di respectively (this is possible since
ai = 1), and then applied (3-11). Taking all of these together shows that

(X + Y)2 = X + Y, (Xl + Y)2 = Xl + Y, (X + Y)(Xl + Y) = (Xl + Y)(X + Y) = 0,

which expresses Ai
v and (Ai

v)
l as orthogonal idempotents.

Idempotency of Biv. Next we check that the terms Biv are idempotents. Recall that Biv for i 6= j

is defined as a linear combination of the following two morphisms

X =
v−w

v−w

w

w

=
v−w

v−w

w

w

and Y =
v−w

v−w

w

w

Si =
v−w

v−w

w

w

Si ,
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where we also write w = p(i). For i = j, we use the same definition for X, but set Y = 0. To
compute the various products of these elements, we will use the following partial trace rule for
Ev−w from (4-10), which holds by assumption PT(v):

v−w w = gq(ai − 1) · v−2w + fq(ai − 1) · Liv−2w.

Since we know from (3-11) that the loop Liv−2w is annihilated by postcomposing with another
down morphism DiEv−2w, we also obtain from (4-11) that

v−w w = gq(ai − 1) · v−2w and v−w w = gq(ai − 1) · v−2w .

Thus we calculate

X2 = gq(ai − 1) ·
v−w

v−w

w

w

+ fq(a0 − 1) ·
v−w

v−w

w

w

Si = gq(ai − 1)X + fq(ai − 1)Y,

XY = gq(ai − 1) ·
v−w

v−w

w

w

Si = gq(ai − 1)Y and Y2 = 0.

The latter holds since (Liv−2w)2 = 0, which follows from (3-11). (Observe that the above relations
also hold in the special case i = j where Y = 0.) Now we verify that Bi

v is an idempotent:

(Bi
v)2 =

( 1
gq(ai−1)X− fq(ai)

gq(ai−1)Y
)2 = 1

gq(ai−1)2 X2 − fq(ai)
gq(ai−1)2 (XY + YX) + 0

= 1
gq(ai−1)X + fq(ai−1)

gq(ai−1)2 Y − 2 fq(ai)
gq(ai−1)Y

= 1
gq(ai−1)X− fq(ai)

gq(ai−1)Y = Bi
v,

where we have used XY = YX and fq(ai−1)
gq(ai−1) = fq(ai). �

4C. Categorified fusion rules for eves. For this section, we fix a, b ∈ N with 1 6 a, b < p∨`
and k, t ∈ N0. We have seen in Proposition 4.11 that the decomposition of a tensor product
of simple tilting modules T(ap(k) − 1) ⊗ T(bp(t) − 1) into indecomposable tilting modules is
multiplicity-free. In fact, its decomposition is Weyl-multiplicity-free, meaning that no Weyl
factor appears twice. This implies that the problem of computing categorified fusion rules for
eves is well-posed.

Lemma 4.22 There exists a unique decomposition of Eap(k)−1⊗Ebp(t)−1 into orthogonal, primitive
idempotents Ev−1

ap(k)−1,bp(t)−1 factoring through Ev−1

ap(k)−1 bp(t)−1 =
∑
v

Ev−1
ap(k)−1,bp(t)−1 =

∑
v

ap(k)−1 bp(t)−1

v−1

ap(k)−1 bp(t)−1

f

f′

,

where v ranges over the set specified by (4-5).
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Proof. The existence of an expansion into idempotents as illustrated follows from the fact that the
tilting modules T(v−1) form a complete collection of indecomposable objects (up to isomorphism)
in Tiltk,q and the associated primitive idempotents are the mixed JW projectors Ev−1. The
summands that occur are determined by (4-5) since Ev−1 represents T(v − 1). The orthogonality
and uniqueness follow from the fact that T(ap(k) − 1)⊗ T(bp(t) − 1) is Weyl-multiplicity-free since
T(ap(k) − 1) ∼= ∆(ap(k) − 1), and T(bp(t) − 1) ∼= ∆(bp(t) − 1). �

Remark 4.23 In general, Ev1−1 ⊗ Ev2−1 still has a decomposition into idempotents factoring
through various Ev−1. However, if T(v1 − 1)⊗ T(v2 − 1) is not Weyl-multiplicity-free or not even
multiplicity-free, then such decompositions are no longer unique. In Section 4B, we will encounter
this issue when giving a complete description of the case T(v − 1)⊗ T(1).

The problem of explicitly computing the idempotents in the decompositions from Lemma 4.22
in full generality is beyond the scope of this paper. Instead, we will compute the idempotents
projecting onto summands T(v − 1) of generation at most one. In particular, we completely
determine the decomposition in the complex quantum group case.

We will consider morphisms of the form

Xw−1
ap(k)−1,bp(t)−1 =

ap(k)−1 bp(t)−1

w−1

ap(k)−1 bp(t)−1

xm n

xm n

and w′−1Dap(k)−1,bp(t)−1
w−1 = ap(k)−1 bp(t)−1

w−1

w′−1
x′

x

.(4-14)

To describe the idempotent of Eap(k)−1 ⊗ Ebp(t)−1 that factors through Ev−1 we will consider the
ansatz

Ev−1
ap(k)−1,bp(t)−1

?=
∑
S

x
(v,S)
ap(k),bp(t) ·X

v[S]−1
ap(k)−1,bp(t)−1(4-15)

with scalars x(v,S)
ap(k),bp(t) ∈ k , and where the sum runs over all S that are down-admissible for v.

To check whether such expressions give the desired idempotent, we have to compute composites
of the morphisms X−−,− . This, in turn, requires us to expand the digon morphisms −D−,−− in a
fixed basis of the relevant morphism space.

Lemma 4.24 Let T(v− 1) and T(v′ − 1) be summands of T(ap(k) − 1)⊗ T(bp(t) − 1) as specified
by (4-5). For v = v′ we have

v′−1Dap(k)−1,bp(t)−1
v−1 =

∑
S

d ap(k),bp(t)

(v,S) · LSv−1(4-16)

with uniquely determined scalars d ap(k),bp(t)

(v,S) ∈ k, and the sum running over all down-admissible

S. If v 6= v′, then v′−1Dap(k)−1,bp(t)−1
v−1 = 0.

Proof. This is a direct consequence of the fact that loops form a basis for the endomorphism
algebra of Ev−1 and that T(ap(k) − 1)⊗ T(bp(t) − 1) is Weyl-multiplicity-free. �

To warm up, we will compute the digon expansion (4-16) in the case when v is of generation
zero, i.e. when the direct summand T(v − 1) of T(ap(k) − 1)⊗ T(bp(t) − 1) is simple. In this case,
the endomorphisms of Ev−1 are just its scalar multiples, and the single relevant scalar d ap(k),bp(t)

v,∅
can be determined using the values of theta webs from [KL94, Chapter 6].

For every triple α, β, γ ∈ N0 such that α+β+ γ is even and the triangle inequalities α 6 β+ γ,
β 6 α+ γ and γ 6 α+ β are satisfied, one can consider the associated theta value in TLk(v),v:
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Θ(α, β, γ) := α β γ

µ ν
χ

= (−1)µ+ν+χ [µ+µ+χ+1]v![µ]v![ν]v![χ]v!
[µ+ν]v![µ+χ]v![ν+χ]v! ∈ k(v).

Let x ∈ N0 be such that (ap(k) − 1) + (bp(t) − 1) = 2x+ (v − 1) and set m = ap(k) − 1− x and
n = bp(t) − 1 − x. (We refer to (4-14) with w = v for a diagrammatic interpretation of these
quantities.) We now define a scalar in k(v) by

d̃ ap(k),bp(t)

v,∅ := (−1)(v−1) Θ(ap(k)−1,bp(t)−1,v−1)
[v]v = (−1)x

[
m+n+x+1

x

]
v[

m+x
x

]
v

[
n+x
x

]
v

.(4-17)

The last equality follows from a straightforward computation with quantum binomials.

Lemma 4.25 Let T(v − 1) be a summand of T(ap(k) − 1) ⊗ T(bp(t) − 1) as specified by (4-5),
which is simple, i.e. of generation zero. Then we have

v−1Dap(k)−1,bp(t)−1
v−1 = d ap(k),bp(t)

v,∅ · Ev−1,

where d ap(k),bp(t)

v,∅ is obtained from d̃ ap(k),bp(t)

v,∅ by specializing v to q.

Proof. We consider the analogous digon morphism in k(v). (This is possible since all of the
involved projectors are simple JW projectors). Abusing notation, we find that

v−1Dap(k)−1,bp(t)−1
v−1 = c · ẽv−1

for some scalar c ∈ k(v). Now taking the trace on both sides gives

Θ(ap(k) − 1, bp(t) − 1, v − 1) = c(−1)v−1[v]v,

which implies c = d̃ ap(k),bp(t)

v,∅ . It follows that this scalar specializes to a well-defined scalar

d ap(k),bp(t)

v,∅ in k and the claim follows. �

Proposition 4.26 Suppose 0 6 ap(k) + bp(t) − v − 1 is even. Then νp,`
(
d̃ ap(k),bp(t)

v,∅
)
> 0, so

d̃ ap(k),bp(t)

v,∅ descends to a well-defined scalar d ap(k),bp(t)

v,∅ ∈ k. Moreover, νp,`
(
d̃ ap(k),bp(t)

v,∅
)

= 0, and

thus d ap(k),bp(t)

v,∅ 6= 0 if and only if T(v − 1) appears as a summand in T(ap(k) − 1)⊗ T(bp(t) − 1).

Note that we have no assumptions on genv in Proposition 4.26.

Proof. Throughout the proof we will use the quantities x, m, and n, defined as above.
First, we shall argue that d̃ ap(k),bp(t)

v,∅ descends to k since the denominator
[
m+x
x

]
v

[
n+x
x

]
v
in (4-17)

does not vanish upon specializing from v to q. Let us expand x = [xk, ..., x0]p,` = [xt, ..., x0]p,`
(allowing zeros on the left). As both ap(k) = (m+ x) + 1 and bp(t) = (n+ x) + 1 are eves, the
quantum Lucas’ theorem Proposition 2.8 implies[

m+x
x

]
q

= ε
[
a−1
xk

]
q

[ p−1
xk−1

]
q
...
[
`−1
x0

]
q
6= 0 and

[
n+x
x

]
q

= ε
[
b−1
xt

]
q

[p−1
xt−1

]
q
...
[
`−1
x0

]
q
6= 0,

since all digits of (m+ x) and (n+ x) are greater than or equal to the corresponding digit of x.
Next we assume that T(v−1) is a summand of T(ap(k)−1)⊗T(bp(t)−1). To show d ap(k),bp(t)

v,∅ 6= 0,
first assume k > t and T(v − 1) takes the form as a typical summand in (4-5). The relevant
p`-adic expansions in d ap(k),bp(t)

v,∅ are given by

v + x = [a, 0, ..., 0, b− 1− xt, p− 1− xt−1, ..., `− 1− x0]p,`,
v = [a, 0, ..., 0, b− 1− 2xt, p− 1− 2xt−1, ..., `− 1− 2x0]p,`.
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The digits of x are constrained by xt 6 b−1
2 and xj 6 p∨`−1

2 for 0 6 j 6 t− 1. Consequently we
also have xt 6 b − 1 − xt, xj 6 p∨` − 1 − xj for 0 6 j 6 t − 1. The quantum Lucas’ theorem
with m+ n+ x+ 1 = v + x thus implies[

v+x
x

]
q

=
[
m+n+x+1

x

]
q

= ε
[
a
0
]
q

[0
0
]
q
...
[0
0
]
q

[
b−1−xt

xt

]
q

[p−1−xt−1
xt−1

]
q
...
[
`−1−x0
x0

]
q
6= 0.

Now suppose k = t, where we again want to use the quantum Lucas’ theorem. To this end,
observe that all digits below the kth one behave as in the k > t case. So let us focus on the digit
of m+ n+ x+ 1 which involves xk. For (4-6), this digit is a+ b− xk − 1, which is bigger or equal
to xk because 2xk 6 a+ b− 1. For (4-7), this digit for the x-sum therein is |a− b|+ 3xk− 1 for xk
at least 1, which is clearly bigger or equal to xk. For the y-sum, this digit is a+ b− p∨`− xk − 1,
which is bigger or equal to xk by the allowed range for xk which gives 2xk 6 a+ b− p∨`− 1.

For the final part of this proof, we assume that T(v − 1) is not a summand of T(ap(k) − 1)⊗
T(bp(t) − 1). To see that the scalar vanishes in this case, we again use the quantum Lucas’
theorem. In particular, the relevant calculations of v + x and v stay the same, but now at least
one of the digits of x leaves the specified range and the corresponding (quantum) binomial in the
factorization for

[
v+x
x

]
q
vanishes. �

We now return to the task of computing digon expansions (4-16). Suppose that genv = 1 with
corresponding minimal down-admissible stretch S, which reflects down along c = dp(i). Then we
define another scalar in k(v) by

d̃ ap(k),bp(t)

v,S =(−1)c+x
(
− [m+n−2c+1]v

[m+n−c+1]v

[
m+n+x+1

x

]
v[

m+x
x

]
v

[
n+x
x

]
v

+
( [m+n−2c+1]v![m]v!

[m+n−c+1]v![m−c]v!
)2 [m+n+x−c+1

x+c
]
v[

m+x
x+c
]
v

[
n+x
x+c
]
v

)
.(4-18)

Theorem 4.27 Retaining notation as above and for genv = 1, we have

v−1Dap(k)−1,bp(t)−1
v−1 = d ap(k),bp(t)

v,∅ · Ev−1 + d ap(k),bp(t)

v,S · LSv−1,(4-19)

where d ap(k),bp(t)

v,S is obtained from d̃ ap(k),bp(t)

v,S by specializing v to q.

The proof appears below.

Example 4.28 For characteristic p = 3, Proposition 4.11 gives

T(8)⊗ T(8) ∼= T(16)⊕ T(14)⊕ T(10)⊕ T(8)

Let v = 15, then m = n = 7, x = 1 and c = 6, so that

d ap(k),bp(t)

v,S = (−1)7

(
−3

9

(16
1
)(8

1
)(8

1
) +

(3!7!
9!1!
)2 (10

7
)(8

7
)(8

7
)) = 1

223 −
5

273 = 33

273 = 0.

In general, when the scalar d ap(k),bp(t)

v,S is zero, the corresponding digon morphism can be written
as a single summand that depends only on the scalar d ap(k),bp(t)

v,∅ . In our case,

14D8,8
14 = 8 8

14

14

17 7

17 7

= d ap(k),bp(t)

v,∅ · E14 = 1
4 · E14 = E14.

For the proof of Theorem 4.27 we need the following lemma about simple JW projectors. We
were not able to find it in the literature, but it is probably known.
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Lemma 4.29 For all a, b, c, d ∈ N0 with b > c, we have the following relation in TLk(v),v:

a+c+d

a+b

b+d

b a

c
d = [a+b−c]v![b]v!

[a+b]v![b−c]v! ·
a+c+d

a+b−c

b+d

b−c ac+d .

Proof. By (2-2) it suffices to prove the result for d = 0. The cases with c = 0 or a = 0 are trivial,
and for c > 0 we apply the JW recursion and (2-3) to get

a+c

a+b

b

b a

c =
a+c

a+b−1

b

b a−1
c−1 + [a+b−1]v

[a+b]v ·

a+c

a+b−1

a+b−1

b

b a−1
c−1 = [a+b−1]v

[a+b]v ·

a+c

a+b−1

a+b−1

b

b a−1
c−1

top
bottom

.

If c = 1, then the top part is what we want, while the bottom can be simplified using induction.
For c > 1, we expand both ẽa+b−1 once more. In doing so, we obtain a diagram of the same type
(up to partial trace, which we can remove up to a scalar using (2-4)), but with smaller projectors.
This process is repeated until we obtain our desired result. �

Lemma 4.30 The scalar d̃ ap(k),bp(t)

v,S as in (4-18) can be written as

d̃ ap(k),bp(t)

v,S = −λv,S d̃ ap(k),bp(t)

v,∅ + λ2
v,S

[m+ n− 2c]v![m]v!
[m+ n− c]v![m− c]v! d̃

ap(k),bp(t)

v−2c,∅ .

Proof. After recalling that λv,S = (−1)c [m+n−2c+1]v
[m+n−c+1]v , this follows by using algebra autopilot. �

Proof of Theorem 4.27. We work in the generic setting of TLk(v),v and specialize to TLk,q at
the end. Note that we can expand the semisimple p`JW projector ev−1 via Lemma 3.15 as follows

ev−1 = v−1 = v−1 + λv,S ·
v−c−1

v−c−1 c

c

= v−1 + λv,S ·
v−c−1

v−c−1 c

c

,

where we point out that genv−c = 0 and thus, ev−c−1 = ẽv−c−1. The two summands of ev−1 are
orthogonal idempotents. Hence, expanding the projectors at the top and bottom we get

ap(k)−1 bp(t)−1

v−1

v−1
x

x

= ap(k)−1 bp(t)−1

v−1

v−1
x

x

+ λ2
v,S · ap(k)−1 bp(t)−1

v−c−1

v−c−1

v−c−1

v−c−1

x

x

c

c

.(4-20)

The first summand is covered by classical recoupling theory and, using [KL94, Section 9.10], it
evaluates to

d̃ ap(k),bp(t)

v,∅ · v−1 = d̃ ap(k),bp(t)

v,∅ ·

(
v−1 − λv,S ·

v−c−1

v−c−1 c

c
)
.

Here we have rewritten the scalar in [KL94, Section 9.10] by collecting terms into quantum
binomials, giving us the expression in (4-17), and then we applied the definition of ev−1 backwards.
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The second summand in (4-20) can be evaluated using Lemma 4.29 twice to give( [m+n−2c]v![m]v!
[m+n−c]v![m−c]v!

)2
d̃ ap(k),bp(t)

v−2c,∅ ·
v−c−1

v−c−1 c

c

.

Collecting terms and using Lemma 4.30, proves the claimed formula. Finally, note that the
left-hand side of (4-19) has non-negative p`-adic valuation, and the morphisms ev−1 and L̃vS
descend to the basis elements Ev−1 and LSv−1 of the endomorphism algebra of Ev−1 . Hence, the
scalars in (4-17) and (4-18) can also be specialized to (k,q). �

Example 4.31 For characteristic p = 5 we get

4 4

8

8

0

0

= 8 , 4 4

6

6

1

1

= 2 · 6 + 3 ·
4

4 2

2

, 4 4

4

4

2

2

= 4 ,

where Proposition 4.11 gives T(4)⊗ T(4) ∼= T(8)⊕ T(6)⊕ T(4).

Theorem 4.32 Retain notation as in Lemma 4.22 and let T(v − 1) be a direct summand of
T(ap(k)− 1)⊗ T(bp(t)− 1) with genv = 0 or genv = 1 (in the latter case v has a unique non-trivial
down-admissible set, denoted S). Then the idempotent Ev−1

ap(k)−1,bp(t)−1 in TLk,q realizing the
projection onto T(v − 1) is given by the ansatz (4-15), i.e. for genv = 1 we have

Ev−1
ap(k)−1,bp(t)−1 = x

(v,∅)
ap(k),bp(t) ·Xv−1

ap(k)−1,bp(t)−1 + x
(v,S)
ap(k),bp(t)X

v[S]−1
ap(k)−1,bp(t)−1,(4-21)

with scalars

x
(v,∅)
ap(k),bp(t) = (d ap(k),bp(t)

v,∅ )−1, x
(v,S)
ap(k),bp(t) =

(d ap(k),bp(t)

v,∅ )−2d ap(k),bp(t)

v,S

( [m+n−2c]q![m]q!
[m+n−c]q![m−c]q!

)2
1− 2(d ap(k),bp(t)

v,∅ )−1λv,S
( [m+n−2c]q![m]q!

[m+n−c]q![m−c]q!
)2
d ap(k),bp(t)

v[S],∅

.

For genv = 0, the second term in (4-21) is dropped.

Proof. For ease of notation, let

A = Xv−1
ap(k)−1,bp(t)−1 and B = Xv[S]−1

ap(k)−1,bp(t)−1.

We now proceed to calculate the compositions A2, AB and B2. Theorem 4.27 and Proposition 4.26
imply

B2 = d ap(k),bp(t)

v[S],∅ · B = 0

since T(v[S]− 1) is not a summand of T(ap(k) − 1)⊗ T(bp(t) − 1) (∆(v[S]− 1) is already a Weyl
factor of T(v − 1) and T(ap(k) − 1)⊗ T(bp(t) − 1) is Weyl-multiplicity-free).

To compute the other compositions, we work in the generic setting of TLk(v),v. Applying
Lemma 4.29 to each of the sandwiched projectors, we obtain

ap(k)−1 bp(k)−1

ap(k)−1 bp(k)−1

v−c−1

v−c−1

x

x

m

c

m

c
=
( [m+n−2c]v![m]v!

[m+n−c]v![m−c]v!
)2 · B,
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and thus applying Theorem 4.27, gives us

A2 = d̃ ap(k),bp(t)

v,∅ ·A + d̃ ap(k),bp(t)

v,S

( [m+n−2c]v![m]v!
[m+n−c]v![m−c]v!

)2 · B.
By expansion of the projectors Ev−1 and Ev[S]−1 in the following diagram

BA =

ap(k)−1 bp(k)−1

ap(k)−1 bp(k)−1

v[S]−1
y

y

ap(k)−1 bp(k)−1

v−1

x

x

=

ap(k)−1 bp(k)−1

ap(k)−1 bp(k)−1

v[S]−1
y

y

ap(k)−1 bp(k)−1

v−1

x

x

+ λv,S ·

ap(k)−1 bp(k)−1

ap(k)−1 bp(k)−1

v[S]−1
y

y

ap(k)−1 bp(k)−1

v−c−1

v−c−1

x

x

m

c

m

c

= λv,S ·

ap(k)−1 bp(k)−1

ap(k)−1 bp(k)−1

v[S]−1
y

y

ap(k)−1 bp(k)−1

v−c−1

v−c−1

x

x

m

c

m

c

,

where all other summands in the expansion are annihilated since there are no common Weyl
factors. Further, by applying Lemmas 4.29 and 4.25,

AB = λv,S
( [m+n−2c]v![m]v!

[m+n−c]v![m−c]v!
)2
d̃ ap(k),bp(t)

v[S],∅ · B,

which is symmetric, i.e. AB = BA.
It is now straightforward to verify that x(v,∅)

ap(k),bp(t) ·A + x
(v,S)
ap(k),bp(t) · B is an idempotent. �

Example 4.33 For characteristic p = 5 we have T(4)⊗T(4) = T(8)⊕T(6)⊕T(4). We computed
the digon scalars in Example 4.31. Now let us determine the idempotents for the three summands
of T(4)⊗ T(4). Note that gen8 = gen4 = 0 and gen6 = 1.

(a) It follows from Example 4.31 that the idempotent endomorphisms of the summands T(8)
and T(4), respectively, in the endomorphism space of T(4)⊗ T(4) are

E8
4,4 =

4 4

4 4

8

0

0
and E4

4,4 =

4 4

4 4

4

2

2
.

(b) It follows from Example 4.31 and Theorem 4.32 that the idempotent endomorphism of
the summand T(6) in T(4)⊗ T(4) is

E6
4,4 = 3 ·

4 4

4 4

6

1

1
+ 2 ·

4 4

4 4

2

3

3
.

5. Applications

We now derive some consequences for the monoidal structure of Tiltk,q. These results are
generalizations to mixed characteristic of well-known results.

5A. Tensor ideals, cells and Verlinde quotients. A (two-sided) ⊗-ideal I in a monoidal
category is a collection of morphisms that is closed under composition and tensoring with
arbitrary morphisms. Recall also that a thick ⊗-ideal J in a monoidal category is a ⊗-ideal
that is generated by the identity morphisms on a set of objects. In general, not every ⊗-ideal is
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thick, so it is remarkable that these notations coincide for Tiltk,q, as we shall now see. Note that
in part (d) we use again that ev−1 are secretly defined over Q(v) to take the p`-adic valuation.

In the following theorem, we will use {−}⊕ as a notation for the additive closure of a given
set of objects, meaning the full subcategory additively (via taking direct sums) generated by the
specified objects.

Theorem 5.1 Let Jv−1 be the thick ⊗-ideal in Tiltk,q that is monoidally generated by T(v− 1),
i.e. the thick ideal corresponding to set of objects containing the direct summands of T(v − 1)⊗
T(w − 1) for any w ∈ N.

(a) For any k ∈ N0, we have Jp(k)−1 = {T(v − 1) | v > p(k)}⊕.
(b) For any ⊗-ideal I 6= 0 (not necessarily thick), there exists k ∈ N0 such that I = Jp(k)−1.
(c) If p 6= 2 and ` 6= 2, then

Jp(k)−1
p 6=2,` 6=2=

{
T(v − 1) | νp,`

(
dimTiltk(v),v

(
T(v − 1)

))
6 k

}⊕
,

where T(v − 1) is the image of ev−1 in Tiltk(v),v.

In particular, by Theorem 5.1 the ⊗-ideals are the strongly connected components of the fusion
graph of T(1), cf. Figure 3.

Proof. For part (a), we will use the fact that T(1) monoidally generates Tiltk,q, see e.g.
Proposition 4.11. We argue inductively that the summands of T(p(k) − 1) ⊗ T(1)⊗d belong
to {T(w − 1) | w > p(k)}⊕. Indeed, for d = 0 there is nothing to show, and the case with d > 0
then follows inductively from Proposition 4.7. It is also clear from Proposition 4.7 that every
element of {T(w − 1) | w > v}⊕ will appear for some d big enough.

Next we prove part (b). Given some ⊗-ideal I 6= 0, take any non-zero g ∈ I∩HomTiltk,q

(
T(w−

1), T(x− 1)
)
, which exists for suitable w, x ∈ N. By tensor-hom adjunction, there is an associated

“bent” morphism gb ∈ I∩HomTiltk,q

(
1, T(x−1)⊗T(w−1)

)
, which is again non-zero. Considering

the direct summands of T(w − 1) ⊗ T(x − 1), we deduce that there exists a non-zero f ∈
I ∩HomTiltk,q

(
1, T(v − 1)

)
and we assume that v ∈ N has been chosen to be minimal with this

property. Thus, T(v − 1) has 1 = ∆(0) as a Weyl factor, which implies v = 2p(k) − 1 for some k
by Proposition 3.3. Composing f with the inclusion T(2p(k) − 2) ↪→ T(p(k) − 1)⊗ T(p(k) − 1), we
obtain a non-zero morphism in I∩HomTiltk,q

(
1, T(p(k)− 1)⊗ T(p(k)− 1)

)
. Reversing the bending

trick produces a non-zero endomorphism of T(p(k) − 1) that is in I. As T(p(k) − 1) is simple, we
conclude idT(p(k)−1) ∈ I, so I contains at least Jp(k)−1. By minimality of k, we get I = Jp(k)−1.

The final statement is a consequence of Proposition 3.23, using Proposition 2.8. �

A cell in Tiltk,q is defined as an equivalence class of indecomposable objects with respect to
the preorder

T(v − 1) 6J T(w − 1) :⇔ ∃x ∈ N : T(w − 1) is a direct summand of T(v − 1)⊗ T(x− 1).

Corollary 5.2 The cells of Tiltk,q are of the form

Jk = {T(v − 1) | p(k) 6 v < p(k+1)} for k ∈ N0.

Thus, Tiltk,q has infinitely many finite cells if and only if p <∞ and ` <∞. �

The quotients Tiltk,qp(k) = Tiltk,q/Jp(k+1)−1 are k-linear, additive, idempotent closed, Krull–
Schmidt, pivotal categories with finitely many indecomposable objects, namely T(v − 1) for
v ∈ {1, ..., p(k+1) − 1}, and finite-dimensional hom-spaces (these properties are sometimes called
fiat).
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To state the following lemma we say that an object X ∈ C in a category C with the properties
listed above is called split if, for any morphism f, the morphisms idX ⊗ f and f ⊗ idX are halves-
of-idempotents, i.e. that there exists g such that g(idX ⊗ f) and (idX ⊗ f)g are idempotents, and
similarly for f ⊗ idX (with a potentially different g). We say C if separated, if it has enough
splitting objects. (The precise definitions of splitting and separated can be found in [BEO20,
Section 2].)

In the following, we work over K and use the existence of the category fdModK,q and the
simple modules L(v − 1), for which we do not have a diagrammatic interpretation.

Lemma 5.3 TiltK,qp(k) is separated and the cell Jk coincides with its ideal of splitting objects.

Proof. Using Theorem 5.1 as well as Proposition 3.4, the arguments are mutatis mutandis as
in [BEO20, Section 3.4]. In a bit more detail, using the same arguments as in [BEO20, Lemma
3.3] Proposition 3.4 implies that T(p(k−1) − 1)⊗ L(w − 1) for w < p(k) − 1. This in turn implies,
similarly as in [BEO20, Proposition 3.2], that T(p(k−1) − 1) is a splitting object in TiltK,qp(k) . Then
the proof is completed following the classification of ⊗-ideals in Theorem 5.1. �

We can thus define abelianizations of TiltK,qp(k) in the sense of [BEO20, Section 2], which we
denote by VerK,qp(k) and which could be called mixed Verlinde categories.

Proposition 5.4 Let k ∈ N0.

(a) The category Tiltk,qp(k) has cells given by the images of Jj for j ∈ {0, ..., k}, with Jk being
the cell of projective objects. Thus, Tiltk,qp(k) has p(k) − p(k−1) indecomposable projectives,
namely the images of Tv − 1 for p(k) 6 v < p(k+1).

(b) The Cartan matrix of VerK,qp(k) is a p(k) − p(k−1)-square matrix with entries given by the
common Weyl factors of T(v − 1) and T(w − 1) with p(k) 6 v, w < p(k+1) (which are in
turn given by Proposition 3.3).

Proof. Part (a) is clear by the above as the projective objects always form the maximal cell,
whilst part (b) follows mutatis mutandis as in [BEO20, Section 4]. �

The Cartan matrix of VerK,qp(k) thus has a fractal pattern, see Figure 5. Being careful with the
distinction of p and ` on the zeroth digit, we leave it to the reader to generalize other results
from [BEO20, Section 4] to the mixed Verlinde categories.

Remark 5.5 For the quantum group case mchar(k,q) = (∞, `), Ostrik [Ost97] showed that
the right cells in the affine Weyl group are in bijection with cells in Tiltk,q, which in turn are in
bijection with the thick ⊗-ideals in Tiltk,q. The Riche–Williamson conjecture [RW18] implies
the same in characteristic p for right p-cells. The above discussion can be seen as a mixed
characteristic version of these. We also like to mention a statement analogous to Theorem 5.1.(c)
proven in [Ost01] for mchar(k,q) = (∞, `).

5B. Modified traces diagrammatically. Recall from e.g. [GKPM11] and [GKPM13] that a
(right) modified trace (short: mtrace) TrI

− on a ⊗-ideal I in a k-linear, pivotal category C is a
collection of k-linear functions {TrI

T : EndC(T)→ k} satisfying cyclicity on I, i.e.

TrI
T(gf) = TrI

T′(fg) for f : T→ T′, g : T′ → T

and the mtrace property on I. For f ∈ EndC(T⊗X), we let TrrX(f) ∈ EndC(T) denote the partial
right trace X, determined by the pivotal structure on C. The mtrace property then requires that
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1 200 400 600 882

1

200

400

600

882

1 200 400 600 882

1

200

400

600

882

1 100 200 300 400 486

1

100

200

300

400

486

1 100 200 300 400 486

1

100

200

300

400

486

Figure 5. From left to right: The Cartan matrix of VerK,qp(4) in mixed charac-
teristic mchar(k,q) = (7, 3); the Cartan matrix of VerK,qp(6) in characteristic p = 3.
The colors indicate higher multiplicities.

for every object T ∈ I and every object X ∈ C and any f ∈ EndC(T⊗ X), we have

TrI
T⊗X(f) = TrI

T
(
TrrX(f)

)
.

Below we will omit the subscripts if no confusion can arise.
Following ideas from e.g. [HW19], we define a (right) mtrace Tr(k) for the ⊗-ideals Jp(k)−1

from Theorem 5.1 as follows. We write a colored box for Ev−1fEv−1, which is a morphism in
EndTLk,q(T(v−1)). On the indecomposable objects T(v−1) in Jp(k)−1 and f ∈ EndTLk,q

(
T(v−1)

)
,

we define Tr(k)(f) using absorption, by

p(k)−1

f

p(k)−1

= Tr(k)(f) · p(k)−1 .(5-1)

(Note that EndTLk,q

(
T(p(k) − 1)

) ∼= k.) We call this tracing down to the eve and extend this
assignment additively to the whole of Jp(k)−1.

Lemma 5.6 The family of k-linear functions Tr(k) is a non-trivial mtrace on Jp(k)−1.

Proof. Comparing the equalities (5-1) and

Tr(k)
T⊗X(f) =

T X

f

T X

= Tr(k)
T


T X

f

T X

 = Tr(k)
T (TrrX(f)),

we see that the mtrace property follows by construction (and absorption). Note also that we
have Tr(k)(Ep(k)−1) = 1, so Tr(k) is non-trivial. Let T̃r be the usual trace in Tiltk(v),v. Then, by
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absorption we have

T̃r(k)(f) · p(k)−1 =
p(k)−1

f

p(k)−1

= f = T̃r(f).(5-2)

Since T̃r(Ep(k)−1) = (−1)p(k)−1[p(k)]v, we have T̃r(k)(f) = (−1)p(k)−1T̃r(f)/[p(k)]v in k(v). This
implies cyclicity since T̃r is cyclic. �

For T(v − 1) ∈ Jp(k)−1 we call dim(k)
Tiltk,q

(
T(v − 1)

)
= Tr(k)(Ev−1) its modified dimension.

Theorem 5.7 Each ⊗-ideal in TLk,q admits a non-trivial mtrace Tr(k) which satisfies

dim(k)
Tiltk,q

(
T(v − 1)

)
= (−1)v−1(−1)p(k)−1 [m∞v ]q

[p(k)]v

∏
ai 6=0

[2]
qaip(i) ,

where T(v − 1) ∈ Jp(k)−1 \ Jp(k+1)−1 and the product runs over all non-zero and non-leading digits
of v. Every such mtrace descends to the corresponding categories Tiltk,qp(k) and Verk,qp(k).

Proof. By Theorem 5.1, we know that all ⊗-ideals are of the form Jp(k)−1, while Lemma 5.6
defines an mtrace on these. Moreover, (5-2) and Proposition 3.23 imply the claimed formula.
The property that these descend to Tiltk,qp(k) and Verk,qp(k) is clear. �

5C. The Müger center is often trivial. We assume in this section that our parameter q has
a square root. Recall that we have a braiding on TLk,q, using the Kauffman formula (2-1).

Under these assumptions, recall that Tiltk,q is additive, idempotent closed, Krull–Schmidt,
K-linear, braided and pivotal. Let C be a category having these properties, and let 1 and β

denote the monoidal unit and the braiding of C.
Following [Müg03], we define the Müger center MZ(C) of C to be the full subcategory of

C consisting of all objects X such that βX,YβY,X = idX,Y for any Y ∈ C.
Clearly 1⊕m ∈MZ(C) for all m ∈ N, and we call MZ(C) trivial if 1⊕m are the only objects

in MZ(C). In other words, MZ(C) ' Vectk, the latter being the category of finite-dimensional
k-vector spaces.

Theorem 5.8 The Müger center MZ(Tiltk,q) is non-trivial if and only if q = ±1.

Remark 5.9 In the case C is a ribbon, finite tensor category, having a trivial Müger center is
equivalent to C being modular in the sense of Kerler–Lyubashenko – see [Shi19, Theorem 1.1].
In particular, Theorem 5.8 is a good indication that tilting modules in mixed characteristic may
give rise to non-trivial link and 3-manifold invariants.

In order to prove Theorem 5.8, we need two auxiliary lemmas. To this end, recall that the
endomorphism spaces in braided tensor categories have central elements given by “encircled
identity morphisms”, illustrated below. On simple objects these act as scalars, but T(v − 1) is
usually not simple and so we obtain the following.

Lemma 5.10 For v = [aj , ..., a0]p,`, we have in Tiltk(v1/2),v that

v−1
=

v−1

=


−[2]vv · v−1 + Rest if a0 = 0,

−[2]vv · v−1 + sv(v) ·
v−a0−1

v−a0−1

a0

a0

+ Rest if a0 6= 0,
(5-3)
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where Rest are potentially non-zero lower order terms, i.e. linear combinations of loops L̃Sv−1 for
S 6= {0}. The scalar is

sv(v) = (−1)a0(vv−2a0 − v−v+2a0)(va0 − v−a0).(5-4)

Moreover, if v ∈ Eve, then there are no lower order terms in (5-3).

In contrast, the scalar resulting from an unlinked circle is −[2]v times the projector.

Proof. For v ∈ Eve, in which case ev−1 = ẽv−1, it is well-known that (5-3) holds without lower
order terms, see e.g. [KL94, Section 9.8]. We will use this throughout the proof. For the other
cases, we calculate that

v−1
=

∑
S∈∇supp(v)

λv,S ·
v[S]−1

S

S =
∑

S∈∇supp(v)

λv,S ·
v[S]−1

S

S

= −
∑

S∈∇supp(v)

λv,S [2]vv[S] · v[S]−1
S

S

.(5-5)

The right-hand side in (5-5) is a linear combination of loops L̃Sv−1. However, these are not
well-defined over k, so we need to rewrite (5-5) in terms of L̃Sv−1 (the loops that specialize to
LSv−1). We do not know the full change-of-basis matrix (see [TW19, Lemma 4.8] for generation
2), but we know that this matrix is unitriangular by an analog of [TW19, Lemma 3.17], which is
proven verbatim as therein. In particular, the case a0 = 0 in (5-3) follows, and also the coefficient
of ev−1 is as claimed. To prove the case a0 6= 0 in (5-3), we expand

v−1 = v−1 − (−1)a0 [v−2a0]v
[v−a0]v ·

v−a0−1

v−a0−1

a0

a0

+ Rest,
v−a0−1

v−a0−1

a0

a0

=
v−a0−1

v−a0−1

a0

a0

+ Rest.

By unitriangularity of the basis change, these two terms are the only ones among the L̃Sv−1 that
contribute to the coefficients of ev−1 = L̃∅v−1 and L̃{0}v−1 in (5-3).

Collecting terms, we compute that the coefficient of L̃{0}v−1 is the one displayed in (5-4):

sv(v) = −(−1)a0 [v−2a0]v
[v−a0]v

(
− [2]vv + [2]vv−2a0

)
= (−1)a0(vv−2a0 − v−v+2a0)(va0 − v−a0).

This completes the proof. �

Remark 5.11 In the previous proof, one may be tempted to argue that [2]qv[S] = [2]qv holds
in k, and so one should be able to factor it out from the sum in (5-5). This is not allowed, since
the individual summands are not well-defined in TLk,q. Indeed, this argument would predict
that no lower order terms appear, not even L̃{0}v−1 in (5-3), which is certainly wrong.

Lemma 5.12 For a0 6= 0 and q 6= ±1, the scalar sv(v) from (5-4) specializes to a non-zero
scalar sv(q) ∈ k.

Proof. First, qa0 − q−a0 = [a0]q(q− q−1) is non-zero since a0 < `. Further note that (qv−2a0 −
q−v+2a0) = ±(qa0 − q−a0), so the second factor is non-zero by the same observation. �

Proof of Theorem 5.8. For q = ±1, the Kauffman formula (2-1) shows that MZ(Tiltk,q) =
Tiltk,q, so let us focus on the case where q 6= ±1 and show that MZ(Tiltk,q) is trivial.

To this end, it suffices to check that no indecomposable T(v−1) besides T(0) = 1 is Müger central.
(Note that the braiding for direct sums is defined componentwise, so objects of MZ(Tiltk,q) are
direct sums of indecomposable objects in MZ(Tiltk,q).)
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Suppose, conversely, that for v ∈ N>1 we have T(v − 1) ∈MZ(Tiltk,q). Then T(v − 1) braids
trivially with T(1) and we get:

v−1
=

v−1
= −[2]q ·

v−1
.(5-6)

However, (5-3) contradicts (5-6): for a0 6= 0 because the scalar sv(q) is non-zero by Lemma 5.12,
and for a0 = 0 because −[2]qv = ±2 when q 6= ±1. (To see the latter, note that x2 ∓ 2x+ 1 = 0
has only the solutions x = ±1.) �
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