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A deep-learning approach to optimize the selection of Slater determinants in configuration interac-
tion calculations for condensed-matter quantum many-body systems is developed. We exemplify our
algorithm on the discrete version of the single-impurity Anderson model with up to 299 bath sites.
Employing a neural network classifier and active learning, our algorithm enhances computational
efficiency by iteratively identifying the most relevant Slater determinants for the ground-state wave-
function. We benchmark our results against established methods and investigate the efficiency of our
approach as compared to other basis truncation schemes. Our algorithm demonstrates a substantial
improvement in the efficiency of determinant selection, yielding a more compact and computation-
ally manageable basis without compromising accuracy. Given the straightforward application of our
neural network-supported selection scheme to other model Hamiltonians of quantum many-body
clusters, our algorithm can significantly advance selective configuration interaction calculations in
the context of correlated condensed matter.

I. INTRODUCTION

Strongly correlated quantum many-body systems pose
great computational challenges throughout a plethora of
research fields, including quantum chemistry, condensed
matter, atomic, and nuclear physics. The difficulty arises
from the exponential scaling of the Hilbert space with
the total number of single-particle degrees of freedom,
e.g., spin, orbital, lattice site, depending on the specific
system. Numerical accurate solutions can be obtained
by configuration interaction (CI) methods, which express
the fully interacting wave function of fermionic systems
as a linear combination of Slater determinant basis states
and compute the coefficients of this expansion by solv-
ing the Hamiltonian eigenvalue problem [1]. Unfortu-
nately, CI becomes computationally impractical already
for small molecules. For instance, a full CI ground-state
energy benchmark of the N2 molecule involved already
approx. 1010 Slater determinants [2]. This figure demon-
strates the ”exponential wall” which makes full CI for
larger molecules and solids impractical.

One possible strategy to tackle larger systems are so-
called embedding techniques. In a multi-tier scheme the
full problem is subdivided into a smaller strongly cor-
related part, the quantum many-body cluster, which is
coupled to a non-interacting bath. Examples in quan-
tum chemistry are Multi-Configurational Self-Consistent
Field methods (MCSCF) and a plethora of variants
[3–5]. In condensed-matter physics, the merger of
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density-functional theory with dynamical mean-field the-
ory (DFT+DMFT) and its extensions [6–10] belong to
the most successful approximation schemes for predic-
tions of strongly correlated materials. For all embed-
ding methods, the size of the quantum cluster might still
be prohibitive for accurately capturing essential quan-
tum mechanical correlations. To this end, based on the
observation that only a small subset of the configura-
tions contributes significantly to the description of the
eigenfunctions [11], a large variety of selected CI methods
have been developed, in particular in quantum chemistry,
see for example Refs. [12, 13] or [14, 15] and references
therein. Selected CI approaches iteratively construct a
compact wave function that captures the physics of the
full CI wave function on the desired level of accuracy.

At the same time, the past years have witnessed an
impressive growth of machine learning (ML) applications
to quantum chemistry and computational materials sci-
ence. Starting from quantum chemistry, ML has been
successfully applied to explore the configuration space in
CI and to construct the wave function keeping just the
most important Slater determinants [16–20]. In the origi-
nal approach by Coe [16, 21], a regression neural network
(NN) was explicitly computing the coefficient of each
atomic configuration, allowing to iteratively construct
the wave function. Later approaches perform classifica-
tion directly, as the NN decides whether configurations
are important or unimportant, without actually predict-
ing their coefficients [17]. Related approaches have been
developed recently also for the structure and dynamics
of light nuclei [22] and for accurate atomic structure cal-
culations [23].

In this work, we develop a related strategy using the
active learning approach to iteratively select the most rel-
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evant Slater determinants and construct an approximate
wave function for a class of effective second quantization
model Hamiltonians. Our aim is to boost the perfor-
mance of selected CI methods for quantum many-body
systems and quantum clusters in the realm of solid-state
physics. We apply our method to one of the prototypi-
cal models for strongly correlated electron systems, the
single-impurity Anderson model (SIAM) [24] and demon-
strate its feasibility by performing ground-state calcula-
tions. While certain computation parameters presented
here are specific for SIAM, our algorithm is designed in a
more general manner and in principle applicable to any
quantum many-body Hamiltonian of a finite size cluster.

More specifically, we apply our NN algorithm to the
SIAMmodel in the star geometry [25] for several bath site
numbers up to Nbath = 299. The NN receives the input
information on Slater Determinants (SDets) encoded as
binary populations of impurity and bath sites separately
for spin-up and spin-down states. Training is performed
in several stages on smaller random selections, using the
results of exact diagonalization provided by the software
package Quanty [26]. The ground state wave function
is constructed iteratively and convergence is monitored
by the variance of the ground state energy. By evaluat-
ing several physical observables such as electron density,
double occupancy, and the static magnetic susceptibility
at zero temperature, we successfully benchmark our re-
sults against available SIAM data presented in Ref. [25].
The performance of our NN-supported selective CI algo-
rithm is analysed quantitatively. We compare the accu-
racy of our calculations as a function of Hilbert space
to results obtained by other non NN-based truncation
schemes [26, 27]. Our results demonstrate the superior
efficiency (accuracy vs. determinant basis size) of the
NN-selected basis and its potential for both increasing
the best accuracy or allowing for larger bath site num-
bers.

We note that, as in quantum chemistry, ML has been
an active player in tackling the many-body problem in
condensed-matter systems in various approaches [28, 29].
Carleo and Troyer showed how a many-body wave func-
tion can be approximated by encoding it into a NN [30].
This approach was used to calculate the ground state
in the one-dimensional transverse-field Ising model, the
antiferromagnetic Heisenberg model [30], and other ef-
fective models of solid state physics [31, 32] and quan-
tum chemistry [33]. With DFT alone ML has been em-
ployed in different approaches, e.g., to optimize effec-
tive density functionals [34–36], to construct approxi-
mations to the local density map [37, 38], and to con-
struct optimized pseudo-potentials in plane-wave based
DFT codes [39–41]. In the context of the matrix prod-
uct state ansatz, ML-based optimization has been tested
for the Heisenberg Hamiltonian for one-dimensional lat-
tices with nearest neighbor interactions [42]. ML was
also used in the context of DMFT for the SIAM model
[43–47]. Our newly conceptualized selective CI approach
for quantum clusters presents a complementary strategy

in this vibrant field and might, in combination with the
other methods, help to improve computationally afford-
able calculations for correlated electron systems beyond
the single-particle approximation.
The paper is structured as follows. Section II presents

our algorithm, the computational protocol, and the de-
scription of the NN architecture concluding with remarks
on possible optimization. The application to the SIAM
model follows in Section III. Here we present numerical
results, benchmarks, and discuss the performance of our
NN-assisted selective CI. The paper closes with summary
and conclusions in Section IV.

II. ALGORITHM

ML approaches are typically distinguished into super-
vised learning, unsupervised learning and reinforcement
learning paradigms [48]. Starting from the deep-learning
algorithm developed for atomic structure calculations
in Ref. [23], we use the so-called active learning (AL)
approach, which does not strictly fall into one of these
three standard categories. Specifically, we design a NN
classifier that is trained in a supervised way, whereas
the data are not given a priori (as in the standard
supervised learning), but are produced actively during
interaction with the “environment”. Decisions in this
interaction process are in turn based on the results of
the previous training iterations. These are common
features of AL and reinforcement learning. However,
in AL there is no explicit reward to be maximized.
Instead, when applied to solution of the CI problem,
the observable of interest (in the following this will
be the ground state energy, but it could be any other
observable) is monitored as a convergence criterion. In
the following we define the relevant quantities for our
procedure, describe the computational protocol, provide
details of the NN architecture, and finally list potential
adjustments to adapt our approach to different cluster
models.

a. Definitions. The exact ground state of a quan-
tum many body Hamiltonian

Ĥ |Ψgs⟩ = Egs |Ψgs⟩ (1)

can be expanded in SDets ϕ which provide an orthonor-
mal basis of the full Hilbert space H with ⟨ϕi|ϕj⟩ = δi,j
and Hfull = span ({ϕ}). The expansion reads

|Ψgs⟩ =
N∑
α

cα |ϕα⟩ , (2)

with N ≡ dim
(
Hfull

)
. We aim to approximate the ex-

act ground state |Ψgs⟩ by searching for the most relevant
subspace of Hs ⊂ Hfull with dim (Hs) = Ns ≪ N for the
calculation of our “target quantity”, the ground state en-
ergy Egs. The approximate wave function can be written
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FIG. 1. (a): Sketch of the six stages A to F in our iterative algorithm after k initialization steps. We indicate the definition
of the different sets (set at iteration m, pool, random sample, proposed, and selected) of Slater determinants (see text for
definitions and further explanation). (b): Distribution functions of the corresponding sets {ϕx} over their energy matrix
elements in the first ML iteration of our application to the SIAM model discussed in Section III for Nbath = 89, U = 4 eV and
εimp = 0 eV. Note that overlapping energy distributions do not imply overlapping sets.

as

|Ψgs⟩ ≈
Ns≪N∑

α

cα |ϕα⟩ . (3)

For the basis state selection procedure we employ a NN
as described in the following.

b. Computation protocol. For a given Hamilton op-
erator Ĥ our computation starts with an initial basis
{ϕinit} spanning a Hilbert space Hinit = span

(
{ϕinit}

)
with a dimension which might be as small as one.

Next, we define an extension operator Ô and a fixed
number of initialization extension steps k. Acting with Ô
on the elements of {ϕinit} projects out of Hinit and onto
new basis SDets. After m ≤ k applications we write

{ϕm} = Ôm · {ϕinit} . (4)

On a given basis {ϕm}, the Hamilton operator can be
written in form of a matrix

Hm
ij = ⟨ϕm

i |Ĥ|ϕm
j ⟩ (5)

for which we find the lowest eigenvalue
Em

gs = ⟨Ψm
gs|Ĥ|Ψm

gs⟩ with the corresponding ground
state

|Ψm
gs⟩ =

dim(Hm)∑
α

cα |ϕm
α ⟩ . (6)

In order to quantify the accuracy of |Ψm
gs⟩ as an approxi-

mation to the exact ground state we evaluate the variance

(σm
gs)

2 ≡ ⟨Ψm
gs|

(
Ĥ − Em

gs

)2

|Ψm
gs⟩ (7)

as a control parameter that vanishes upon convergence to
the exact ground state. Such converge is, however, only
possible if Ôm ·{ϕinit} has a finite projection on the exact

solution. Neither {ϕinit} nor Ô should, hence, be chosen
too restrictively. (A reasonable choice could be to take

the mean-field solution of Ĥ as {ϕinit} and Ô = Ĥ.) As
dim (Hm) grows rapidly, the bases {ϕm} quickly become
too large to handle.
Therefore, we interrupt the extension procedure after k

steps and begin with the NN-supported selection process
which we sketch visually in Fig. 1. The basis which is cre-
ated in the initial process becomes the so-called primary
set: {ϕprim} ≡ {ϕm=k}, see (A) in Fig. 1. The primary
set is always included in the wave function and never ex-
posed to the NN. It is fixed and remains unchanged for
the rest of the computation.
Next, for all iterations with m ≥ k we act with the

extension operator on the basis set {ϕm} to obtain the
pool - see (B) in Fig. 1:

{ϕpool} ≡ Ô · {ϕm} . (8)

Instead of proceeding with the entire pool we define a
fraction ν < 1 of basis SDets which should be selected by
the NN. To train our NN, we take a randomly sampled
set of size R from the pool

{ϕrand} ⊂
(
{ϕpool} \ {ϕm}

)
(9)

and compute the ground state Ψrand
gs on the union {ϕm}∪

{ϕrand} (see stage C in Fig. 1). The importance of the
basis determinants in the randomly sampled set is quanti-
tatively determined by their coefficients in the calculated
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ground state

crandα ≡ ⟨Ψrand
gs |ϕrand

α ⟩ . (10)

The SDets in the sampled set whose absolute values of
the coefficient |crandα | are larger than a positive valued
cutoff parameter crandmin are labelled as “important” and
form the set {ϕν}; the remaining ones are “unimpor-
tant”. Here, crandmin is chosen such that the dimension of
the set {ϕν} is approximately the fraction ν of the set
{ϕrand}. We assume that the same crandmin splits also the
whole pool {ϕpool} into “important” and “unimportant”
parts in approximately the same proportion as {ϕrand}.
This condition is well satisfied if the chosen primary set
is large enough to guarantee that the basis expansion co-
efficients cα for the same SDets do not depend strongly
on presence of other SDets from the pool in the wave
function. Also, this condition does not pose considerable
restrictions on our computations, since we are interested
not directly in the values of cα but their value with re-
spect to the chosen cutoff crandmin .
The NN training set for an arbitrary NN-supported

iteration m ≥ k is formed as

{ϕtrain} = {ϕrand} ∪
(
{ϕm} \ {ϕprim}

)
. (11)

Note that in the very first NN-supported iteration, i.e.
for m = k, we have {ϕtrain} = {ϕrand}. The trained NN
proceeds to classify in the next step each SDet in {ϕpool}\
{ϕtrain} as “important” or “unimportant”. At the end
of this procedure, the NN proposes a set of important
SDets which unified with {ϕν} form the set {ϕprop}. If
crandmin was chosen appropriately, the number of proposed
important SDets should be approximately the fraction ν
of the number of determinants in the pool (stage D in
Fig. 1). We stress that the parameters ν and R involved
in this step are chosen by the user.

In the second to last step we then diagonalize the
Hamiltonian once more on the union {ϕm} ∪ {ϕprop}.
Finally, we select those proposed SDets for which we find
the coefficients

cpropα ≡ ⟨Ψprop
gs |ϕprop

α ⟩ (12)

with larger absolute values than the cutoff crandmin , so that
(stage E in Fig. 1)

{ϕselect} = {ϕprop
α ∈ {ϕprop} | crandmin ≤ |cpropα |} . (13)

The resulting basis of SDets at the end of the iteration
is then

{ϕm+1} = {ϕm} ∪ {ϕselect} . (14)

c. NN architecture. In Fig. 2, the NN architecture
implemented in this study is illustrated. The NN pro-
cesses the input, which is a candidate SDet |ϕα⟩, repre-
sented in a (spin-orbital) occupation number format as a
string of 0s and 1s (A). This input is split into two chan-
nels for spin-up and spin-down orbitals. The data then

0 0 0 0 00
0 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1 1

FIG. 2. Architecture of the convolutional NN used in this
work. A candidate SDet is given as input (A) and eventually
classified as important or unimportant (F). See text for fur-
ther explanations.

pass through a convolutional filter kernel of size 2 (B),
generating 64 feature maps (C). These maps are subse-
quently processed by a purely local kernel, resulting in
4 output channels (D). These channels are flattened and
forwarded to a dense block (E) which ends with an out-
put layer consisting of two neurons (F). These neurons
classify the input SDet as “important” or “unimportant”
using a softmax activation function, which ensures the
outputs are normalized to lie between 0 and 1 and sum
up to 1.
Throughout the network, the rectified linear unit

(ReLU) is employed as the activation function for hid-
den layers, and the network’s performance is evaluated
using categorical cross-entropy. The Adam algorithm
is used for training, which terminates after no im-
provement is observed over three consecutive epochs,
a method known as “early stopping with patience”.
This architecture, which is of the convolutional type
[49], has been demonstrated to be effective for solving
the configuration interaction (CI) problem in atomic
structure computations [23]. The implementation was
carried out using the Python library TensorFlow
[50].

d. Remarks and possibilities for optimization. We
note that in the current procedure the NN is retained
for the subsequent cycles keeping the memory of previ-
ous training instances. Next, it is important to stress
that discarded determinants are never “lost”. In later
cycles, after additional extension steps, they might be re-
selected. Furthermore, a quantitative metric for the con-
vergence has to be defined for the specific problem/model
that is treated. For our SIAM feasibility study we chose
the ground state energy (and its variance).
There are a number of possibilities to modify our algo-

rithm to optimize the procedure for other cluster mod-
els including finite size chunks of Hubbard or Heisenberg
lattices, full multiplet ligand field theory clusters [51], or
even ab initio derived (i.e. with DFT or Hartree-Fock)
Hamiltonians for modeling molecules, for instance:

• NN architecture: The user can modify the convo-
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FIG. 3. Sketch of the SIAM model in star geometry. The
impurity is connected to Nbath non-interacting bath sites
with energies εb and hybridization amplitudes Vb, with b =
1, . . . , Nbath. The impurity is characterized by energy εimp

and the particle-hole symmetric onsite interaction U .

lutional block [the kernel size (B), the number of
the feature maps (C)], the dense block (E) and the
coupling between them (D). In principle, the convo-
lutional NN can be replaced by any other architec-
ture complying with the input and output struc-
ture. Also other classifiers can be explored, e.g.
support vector machines as in Ref. [18].

• Training parameters: We trained our model us-
ing the Adam algorithm which is often the default
choice for training of neural networks. Depending
on the specific computation, other optimizers can
be employed. The approach of early stopping with
patience used here can be also adjusted or replaced.
For more information on neural networks see. e.g.
Ref. [49]. See also e.g. Ref. [52] for other ML
approaches.

• Extension steps: In our current scheme we expand
using the full Hamiltonian as extension operator.
In larger models with more complex interactions
this could be changed and modified extension steps
(truncated interactions, etc.) are possible.

• Size of the training set: The size of the training
set (in our case determined by a heuristic function
dependent on the pool size) needs to be chosen care-
fully as it should be small enough to not create a
bottleneck for the procedure but remain represen-
tative of the pool. In order to systematically de-
termine the optimal fraction, a careful analysis of
the NN performance (fraction of false positive- and
false negative selections) can be a valid strategy.

• Size of selected fraction: The number of selected
determinants changes the slope of the energy con-
vergence and can be tuned accordingly, i.e. the
fraction size can be decreased in order to maximize
efficiency.

Depending on the specific target model, other strate-
gies to optimize convergence might be successful, for in-
stance, pre-convergence in restricted subspaces of the full
Hilbert space.

0 2 4
U/t

0

1

2

im
p

/t

2
gs/t2

10 7

10 6

10 5

FIG. 4. Energy variance of the ground state energy in the
(εimp, U)-plane on logarithmic color scale.

III. APPLICATION TO SIAM MODEL

We now apply the NN algorithm to find the ground
state of SIAM in the star geometry [25] which we sketch
in Fig. 3. The SIAM Hamilton operator reads

ĤSIAM = εimp n̂imp
tot + U

(
n̂imp
↑ − 1

2

)(
n̂imp
↓ − 1

2

)
+

∑
σ∈{↑,↓}

Nbath∑
b=1

(
εbn̂

b
σ + Vb(c

†
imp,σcb,σ + h.c.)

)
,

(15)

where c†α,σ and cα,σ are fermionic creation and annihila-

tion operators, n̂imp
σ ≡ c†imp,σcimp,σ (n̂b

σ ≡ c†b,σcb,σ) are

the occupation operators of the impurity (bath) sites

and n̂imp
tot = n̂imp

↑ + n̂imp
↓ the total impurity occupation.

The parameters of the model are the number of non-
interacting bath sites Nbath, the onsite energies of the
impurity εimp and the bath sites εb, the hybridization
amplitudes Vb, and U as the particle-hole symmetric on-
site interaction on the impurity site. Indeed the parame-
ters can be chosen in a way that the star geometry maps
directly to a 1D chain i.e., an impurity site coupled to the
first site of a 1D bath chain with hybridization V with
constant nearest neighbor hopping t [25]. Accordingly,
we set

εb = −2t cos

(
bπ

Nbath + 1

)
,

Vb = V

√
2

Nbath + 1

√
1−

(εb
2t

)2

,

(16)

with bath site index b running from 1 to Nbath, and fixed
values of V = 0.1 eV and t = 1.0 eV as in [25]. In the
following, we give all energies in units of t = 1.0 eV.
Moreover, we restrict our calculations to an odd number
of bath sites (such that there is always a bath site at
εb = 0) and half-filling, i.e. Ne = Nbath + 1.
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FIG. 5. Left panel: εimp vs. U phase diagram for the im-
purity density ⟨nimp

tot ⟩. Right panel: Percentage contributions
of empty, singly-, and doubly occupied configurations in the
ground state at four selected points marked in the phase dia-
gram.

For the calculations of physical observables presented
in the next section we have fixed the number of bath
sites in Eq. (15) to Nbath = 89. In this way we were able
to perform a large number of CI calculations to span a
phase diagram for various values of impurity energy εimp

and interaction U . All calculations were started from the
same spin degenerate zero-hybridization ground state

{ϕinit
S=0} = {c†imp,σc

†
b,σ̄

εb<0∏
b

c†b,↑c
†
b,↓|0⟩} (17)

(with total spin quantum number S = 0 and σ̄ ≡ −σ).
The procedure was then restricted to two initialization
(extension) steps followed by eight NN-supported itera-
tions. Due to the fixed number of steps, the accuracy
[given by (7)] of the obtained ground state varies in the
phase diagram as can be seen in Fig. 4. While there
is a difference of over three orders of magnitude in the
reached variance, the plot shows clearly that we are below
the threshold of σ2

gs < 10−4 for all parameters. We note

in passing, that the specific εimp, U dependence of σ2
gs is

mostly caused by the “distance” of our starting basis to
the exact result, i.e., the number of neccessary extension
steps. This is most visible for εimp = U = 0 eV where
{ϕinit

S=0} given by (17) presents a very poor approximation
to the actual ground state.

A. Results I: Observables

In this section we present numerical results for physical
observables including the impurity density, the double oc-
cupancy, and the static magnetic susceptibility. The zero
temperature observables O were computed by evaluating

0 2 4
U/t

0

1

2

im
p

/t

nimpnimp

10 4

10 3

10 2

10 1

FIG. 6. εimp vs. U phase diagram for the impurity double
occupancy plotted on a logarithmic color scale.

the expectation value

O = ⟨Ψgs|Ô|Ψgs⟩ (18)

with the ground state wavefunction Ψgs obtained with
our NN CI algorithm. The results were then compared
to benchmark data for the SIAM problem presented in
Nuss et al. [25].

We start with the total impurity density ⟨n̂imp
tot ⟩ as a

function of the interaction U and εimp which we plot
in the left panel of Fig. 5. Particle-hole symmetry of
bath and the hybridization function as well as impurity
interaction leads to the relation

⟨n̂imp
σ ⟩(εimp) = 1− ⟨n̂imp

σ ⟩(−εimp) (19)

so that all information is contained in the plot for εimp >
0 eV. The data agrees well with Fig. 12 in Ref. [25]. At
εimp = 0 eV the impurity is exactly half filled for all val-
ues of U , while in the limit of large εimp it is empty.
As we have access to the full many-body wave function
of the ground state we can resolve the result further in
terms of contributing configurations. The pie charts in
the right panels of Fig. 5 show the composition of the
ground state at four selected points in the phase dia-
gram. At U = 0 eV and impurity half-filling (point 1),
we find the expected equal distributions over the four
possible impurity configurations (up, down, empty, full).
In the large U limit (point 2) one can clearly see how the
distribution ”sharpens” to the singly occupied impurity
determinants for larger values of U as double occupations
of electrons and holes become energetically increasingly
expensive. This trend is also true for finite εimp which,
however, breaks the particle-hole symmetry of the dis-
tribution. Indeed the configuration composition visual-
ized in the pie charts is also directly reflected by the
two-particle observable measuring the double occupancy
⟨n̂imp

↑ n̂imp
↓ ⟩. As for the total impurity density, we can

exploit the following symmetry relation with respect to
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FIG. 7. Static magnetic susceptibility χm as a function of
impurity interaction U at εimp = 0 eV. The NN CI results
(dashed lines) are compared to VCA [25], FRG[53], and (nu-
merically exact) NRG[53] benchmarks.

εimp:

⟨n̂imp
↑ n̂imp

↓ ⟩(−εimp) =⟨n̂imp
↑ n̂imp

↓ ⟩(εimp)

+1−⟨n̂imp
↑ + n̂imp

↓ ⟩(εimp) (20)

and show the plot of the double occupancy only for pos-
itive εimp in Fig. 6.

The suppression of empty/doubly occupied configura-
tions upon increasing U corresponds to a reduction of
the double occupancy as discussed above. The limits
for very large εimp are trivial since as ⟨n̂imp

tot ⟩ → 0 also

⟨n̂imp
↑ n̂imp

↓ ⟩ → 0. While being useful for the analysis of
the many-body wave function, the double occupancy is
not directly accessible in an experiment. Therefore, we
also consider the (closely related) static magnetic suscep-
tibility χm. In order to compute χm we consider external
fields which are much smaller than any other energy scale
in the system, such that we are in a linear response regime
and the relation

χm ≈ ⟨Ŝz⟩
Bz

(21)

holds. Here the expectation value of the z-component
of the total spin operator ⟨Ŝz⟩ on the right hand side
is converged with our procedure in the presence of an
external magnetic field Bz.

In Fig. 7 we compare the NN CI susceptibility ob-
tained for Nbath ∈ {49, 89, 109} (at εimp = 0) with the
variational cluster approximation (VCAΩ) for a system
size L = 6 (see [25] for details), functional renormaliza-
tion group (FRG) [53], and the numerically exact zero
temperature result of numerical renormalization group
(NRG) [53]. Clear discrepancies can be observed between
the numerically exact NRG benchmark (blue line) and

0 2 4
U/t

0

1

2

im
p

/t

m( imp, U)
m(0, 0)

10 2

10 1

100

101

FIG. 8. εimp vs. U phase diagram for the static magnetic sus-
ceptibility χm for the SIAM with Nbath = 89 on a logarithmic
color scale.

the NN CI results. While at small U we indeed observe
the expected exponential increase of χm(U), at larger
U the NN CI data deviates quantitatively and qualita-
tively (loss of exponential behaviour) from the exact re-
sult. Moreover, this seems to be at odds with the smaller
variance σ2

gs at large U (see Fig. 4) which suggests a better
accuracy of our ground state in this parameter regime.
The seeming contradiction is, however, quickly resolved
when we compare the NN CI data for different bath-site
numbers Nbath (filled circles in Fig. 7). The trend to-
wards the exact result with increasing Nbath indicates
clearly that the problem lies in the bath discretization
and not in the convergence of the CI procedure. At the
considered cluster sizes we reproduce the exact exponen-
tial behaviour at smaller interaction values and system-
atically improve with the control parameter Nbath. Fur-
thermore, our results perform well in comparison to VCA
with system size L = 6 [25] and the weak-coupling FRG
results [53].
In Fig. 8 we plot χm also for nonzero values of εimp

(for Nbath = 89). Due to the particle-hole symmetry of

Ŝz we show only the region εimp ≥ 0. The increase of
χm at εimp = 0 for increased values of U reflects the
correlation driven formation of larger local magnetic mo-
ments. This could have been anticipated from the drop
of the impurity double occupancy on the εimp = 0 line
(see Fig. 6). However, in the low/high impurity density
limits, i.e. εimp ̸= 0 , the effect of U becomes negligible so
that χm(εimp ≫ 0, U) ≈ χm(εimp ≫ 0, U = 0). Closing
the discussion on the magnetic susceptibility we emp-
hazise once more, that the phase diagram of χm(εimp, U)
in Fig. 8 each NN CI curve in Fig. 7 should be understood
as the converged result for the discrete SIAM Hamilto-
nian for the given Nbath.
We conclude that overall, all observables agree well

with the benchmarks and prove the feasibility of our
procedure over all considered parameter regimes in the
SIAM model. Our results could be also improved for a
given number of bath sites by switching from even to
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2 init + 2 ML
2 init + 4 ML
2 init + 6 ML
2 init + 8 ML

FIG. 9. Upper panel: distribution of selected determinants
(cumulative) up to eight NN-supported iterations. Bottom
panel: (cumulative) distribution of selected determinants nor-
malized to the pool size of the corresponding iteration.

logarithmic spacing of bath energies in the model. This
model-specific optimization will be the subject of a fu-
ture study. The efficiency of the selected basis in the
calculations can be used either to improve accuracy at
given cluster sizes or to push the limits of treatable sys-
tem sizes at a given accuracy. In the next section we will
analyse the performance of our procedure in more detail.

B. Results II: Performance of selective CI

We begin with a more thorough analysis of the ba-
sis sets constructed for the case with Nbath = 89 which
was discussed in the previous section. Starting with the
spin symmetrized zero hybridization solution (17), two
initialisation extensions result in our first primary set of
dimension dim(Hprimary) = 11972.
In the upper panel of Fig. 1 (b) we show the distri-

bution of SDets in the first primary set in gray color
as a function of their respective energy matrix element
of the full Hamiltonian for an interaction strength of
U = 4t. In the same plot we further show the pool (dark
blue), the sampled training set (light blue), the NN pro-
posed (orange), and finally the selected (red) determi-
nants. While the identical shape of pool and training set
reflects the random sampling strategy, the distribution

103 105 107

dim({ gs})

10 3

10 5

10 7

10 9

2 gs
/t2

Nbath = 49
Nbath = 89
Nbath = 149
NN CI
full extension

FIG. 10. Convergence of the variance of the ground state
energy as a function of the basis dimension comparing NN
selected bases (triangles) to bases by untruncated extensions
(cicles) for three different system sizes.

of NN-proposed as well as finally selected determinants
show a clear bias towards smaller energy around an en-
ergy of 4t. As this energy approximately corresponds
to the cost of an impurity double occupancy, the corre-
sponding hole in the bath was created in a bath site with
energy close to zero. In any case, even for the first NN se-
lection the distribution is not at all well approximated by
a naive energy cutoff due to an emerging fine-structure in
the distribution which survives also after removing irrel-
evant determinants in the last step of our algorithm. The
same conclusion can be drawn from plotting the fraction
of proposed/selected determinants with respect to the
pool, which is shown in the lower panel of Fig. 1 (b).
We continue our analysis by plotting the evolution of

the energy distribution of the accumulated selected de-
terminants over up to eight ML iterations (after k = 2
initialization extensions) in Fig. 9. The overall distri-
bution and the selected pool fraction reveal that more
subtle features start to emerge in the distribution. The
larger peak for m = 2+ 2 around an energy of ≈ 4t ≈ U
can be understood as before by many configurations with
a doubly occupied impurity sites and holes in ”shallow”
(i.e. εb ≈ 0) bath sites. For a larger number of exten-
sion steps the structure in the accumulated SDets and
the respective selected fraction becomes more subtle.
Next, in Fig. 10 we plot the variance of the ground

state energy as a function of the dimension of the corre-
sponding Hilbert space (i.e. the number of contributing
basis determinants). We compare the convergence of NN
assisted iterations (triangles) with the behaviour of non-
truncated extension steps. Starting from a small many-
particle Hilbert space {ϕinit}, we expand the Hilbert
space adding all determinants that couple to the origi-
nal basis via the Hamiltonian. The comparison is done
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for three different model sizes with Nbath ∈ {49, 89, 149}.
We find clear evidence that while the NN assisted scheme
requires overall more iterations to reach a given accu-
racy, it significantly reduces the growth of the Hilbert
space while systematically improving the accuracy of the
ground state reaching variances of the order of 10−6 with
a basis that is at least one order of magnitude smaller
than the one after bare extensions.

Thus far we have quantified the effect of the NN selec-
tion step on the basis efficiency when compared to brute-
force full extension steps. Next we can compare the NN
CI deficiency to a selective CI scheme which relies on non-
ML supported truncation steps after extensions such as
implemented in Quanty [26] which we will refer to as
tCI in the following. The tCI approach also starts from
a small many-body Hilbert space and extends the basis
by acting with the Hamilton operator. Different from
the NN CI approach, however, diagonalization in tCI is
performed on the complete extended Hilbert space and
SDets are selected/removed based on the norm square of
their expansion coefficient and a cutoff parameter. De-
tails of the iterative tCI scheme which was developed and
implemented in Quanty can be found in [26] and refer-
ences therein.

In Fig. 11, we show the comparison of basis sizes
reached with the two approaches (NN CI in red circles,
tCI in blue circles) at equal variance (grey solid line). For
this comparison, the NN CI calculation was fixed to two
initialization steps (k = 2) and two subsequent machine
learning iterations - the tCI calculation was afterwards
converged to the same variance. This restriction allowed
us to reach system sizes up to 299 bath sites. The re-
sults shown in Fig. 11 demonstrate again an improved
efficiency of the NN selected basis which i) for larger sys-
tem sizes produces results on bases which are one order
of magnitude smaller than the non ML scheme at equal
accuracy, and ii) shows a significantly slower increase in
the necessary basis sizes as a function of the system size.
We note that for the considered case the tCI procedure
removes just a small fraction of candidate SDets com-
pared to a full extension step.

The results shown in Figs. 10 and 11 underline that
we can exploit the NN selected bases both for increasing
maximally feasibile accuracy or size of the model. Their
consistency (each of the red circles presents an indepen-
dent calculation) demonstrate that our algorithm yields
reproducible results for variable model parameters. We
close this section by mentioning once more (see end of
section III), that our scheme allows for various adjust-
ments. The presented feasibility study thus opens the
path towards application of our algorithm to a variety
of quantum-cluster models in the context of solid state
research and beyond.

100 150 200 250
Nbath

105

106

107

dim
({

gs}
)

NN CI
tCI

10 5

10 4

10 3

2 gs/t
2

2gs/t2

FIG. 11. Comparison of our NN CI results to a non ML
truncation scheme as implemented in [26]. Shown are the
number of determinants (blue/red circles - left axis) required
for a fixed variance (gray line - right axis). Red circles: simple
truncation scheme (tCI); Blue circles: NN selection

IV. SUMMARY AND CONCLUSIONS

In summary, we propose a new algorithm for per-
forming CI calculations, which aims to optimize the
efficiency of the basis in high dimensional many-body
Hilbert spaces. Our approach leverages a NN as classifier
for basis SDets within an iterative scheme. In the current
work we have targeted computation of the ground state
and its corresponding energy on a maximally efficient ba-
sis. By utilizing the NN in an active learning framework,
the iterative algorithm actively selects and refines the
subspace of determinants that significantly contribute to
the ground state, thus reducing the computational bur-
den while maintaining high accuracy.

The results from our study on the paradigmatic single
impurity Anderson model confirm that the proposed NN-
supported CI algorithm not only functions effectively, but
also systematically and significantly outperforms other
truncation schemes. The stability of our algorithm is
evidenced by the reproducibility of results across inde-
pendent calculations with different model and calculation
parameters. The successful application of this method
opens new avenues for tackling the “exponential wall”
in full CI calculations, presenting practical implications
for both solid-state physics models and exact calculations
in quantum chemistry, e.g. for computing binding ener-
gies for small molecules complementary to existing ML
supported approaches. In subsequent studies, we plan
to explore the impact of different NN architectures and
optimized convergence schemes on the performance of
our algorithm, as well as the effects of various choices
in the initial basis set, to further enhance the method’s
efficiency and applicability.
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[26] Y. Lu, M. Höppner, O. Gunnarsson, and M. W.

Haverkort, Phys. Rev. B 90, 085102 (2014).
[27] X. Cao, Y. Lu, P. Hansmann, and M. W. Haverkort,

Phys. Rev. B 104, 115119 (2021).
[28] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld,

N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Rev.
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