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Abstract 

Temporal prediction assists language comprehension. In a series of recent behavioral 

studies, we have shown that listeners specifically employ rhythmic modulations of prosody 

to estimate the duration of upcoming sentences, thereby speeding up comprehension. In 

the current human magnetoencephalography (MEG) study on participants of either sex, 

we show that the human brain achieves this function through a mechanism termed 

entrainment. Through entrainment, electrophysiological brain activity maintains and 

continues contextual rhythms beyond their offset. Our experiment combined exposure to 

repetitive prosodic contours with the subsequent presentation of visual sentences that 

either matched or mismatched the duration of the preceding contour. During exposure to 

prosodic contours, we observed MEG coherence with the contours, which was source-

localized to right-hemispheric auditory areas. During the processing of the visual targets, 

activity at the frequency of the preceding contour was still detectable in the MEG; yet 

sources shifted to the (left) frontal cortex, in line with a functional inheritance of the 

rhythmic acoustic context for prediction. Strikingly, when the target sentence was shorter 

than expected from the preceding contour, an omission response appeared in the evoked 

potential record. We conclude that prosodic entrainment is a functional mechanism of 

temporal prediction in language comprehension. In general, acoustic rhythms appear to 
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endow language for employing the brain’s electrophysiological mechanisms of temporal 

prediction. 

 

 

 

 

Significance statement 

Language comprehension benefits from our ability to predict upcoming stimuli. Here, we 

report on a key neural substrate. We show that electrophysiological brain activity inherits 

prosodic modulations—the melody of speech—from prior context, allowing listeners to 

estimate the duration of upcoming language stimuli: By using magnetoencephalography, 

we find that the brain not only responds to prosody when speech is present, but its activity 

continues at the prosodic frequency seconds into the future, benefiting behavioral 

responses. During continuation, activity shifts from auditory to frontal cortex, the epicenter 

of the brain’s predictive abilities. The human brain seems to initiate the top-down 

prediction of language stimuli by copying sensory rhythms and projecting them into the 

future. 

 

Introduction 

Predicting upcoming linguistic information allows us to process language fast and 

efficiently (Li & Zhang, 2023; Sohoglu et al., 2012). Predictions are generated across 

different levels of linguistic content, including phonology (DeLong et al., 2005), syntax (Lau 

et al., 2016; Van Berkum et al., 2005), and (lexical) semantics (Boston et al., 2011; 

Demberg & Keller, 2008; Smith & Levy, 2013).  
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In addition to content, listeners predict the timing of upcoming linguistic units. On 

slow time scales, listeners employ speech prosody to infer the duration of upcoming 

sentence segments (Grosjean, 1983). Cues such as pauses, pitch modulations, and 

duration changes trigger the bottom-up segmentation of sentences into syntactic phrases 

(Frazier et al., 2006).  Crucially, interpretation of prosodic cues depends on a wider 

prosodic context. For instance, intonational phrase boundaries (IPBs) are not processed 

in terms of their absolute acoustic magnitude, but relative to the magnitude of preceding 

IPBs (Clifton et al., 2002; Snedeker & Casserly, 2010). Moreover, even distant prosodic 

cues can influence the prediction of upcoming material, such that prosody at sentence 

onset affects subsequent segmentation and word recognition (Brown et al., 2011; Dilley & 

McAuley, 2008). Furthermore, during reading, where acoustic cues are unavailable, 

listeners actively construct implicit prosody that facilitates speech processing (Breen, 

2014; Breen, Kaswer, et al., 2016; Fodor, 2002). Consequently, context effects have also 

been reported across perceptual modalities. In previous studies, it was observed that 

prosodic contours can trigger downstream effects that persist beyond stimulation, affecting 

the comprehension of upcoming visual sentences devoid of prosody (e.g., Steinhauer & 

Friederici, 2001).  

Recent behavioral findings suggest that temporal prediction, including the effects 

of prosody, may be triggered by rhythmic or repetitive contexts. For instance, rhythmic 

amplitude-modulated sounds at a given frequency induce perceptual detectability of 

subsequent targets that arrive at the same frequency (Hickok, Farahbod, & Saberi 2015). 

Furthermore, the prosodic syllable rate of a lead-in sentence can affect detection of 

subsequent target syllables: After a fast-rate sentence, subjects overhear short target 

syllables that they do perceive when the lead-in sentence is presented at a slow rate 

(Bosker, 2017; Dilley & Pitt, 2010). Corpus evidence further suggests that language 
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prosody exhibits sufficient rhythmicity for temporal predictions to emerge (Inbar et al., 

2020; Stehwien & Meyer, 2021).  

In a recent set of behavioral studies, we found supporting evidence that the 

facilitatory effect of prosodic context on temporal prediction hinges specifically on the 

rhythm of prosody (Lamekina & Meyer, 2022). We had participants listen to repetitive 

prosodic contours, followed by visual target sentences that either matched or not in 

duration. We showed that a duration match accelerated the processing of the target 

sentence, indicating that listeners predict sentence duration.  

In the current study, utilizing the same paradigm in a magnetoencephalography 

(MEG) experiment, we report that the behavioral prediction benefit of rhythmic prosodic 

contexts is driven by brain activity that resonates with such rhythm. Prior work has reported 

narrow-band electrophysiological activity to tune to rhythmic stimuli and thereby optimize 

the processing of upcoming input (Henry & Obleser, 2012; Lakatos et al., 2008; Schroeder 

& Lakatos, 2009). Specifically, activity in the delta range (< 4 Hz) triggers auditory temporal 

duration predictions through an electrophysiological mechanism termed entrainment, by 

which the brain inherits a stimulation frequency to persist after stimulus offset (Breska & 

Deouell, 2017; Herbst et al., 2022; Stefanics et al., 2010). This mechanism could also 

potentially affect the processing of upcoming language stimuli. In the domain of speech 

and language, delta-band activity is known to synchronize with prosody (Bourguignon et 

al., 2013; Luo & Poeppel, 2007), but predictive functions have not been reported. 

To investigate whether delta-band prosodic entrainment subserves sustained 

temporal predictions during subsequent sentence processing, we designed an MEG study 

that combined an initial repetitive prosodic rhythm (entrainment phase) with a subsequent 

visual sentence presentation (target phase; Figure 1A). The visual modality for the target 
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phase was chosen in order to avoid confounding prosodic characteristics in auditory target 

stimuli. Similar cross-modal paradigms have been successfully implemented in previous 

studies (e.g., Steinhauer & Friederici, 2001), which showed that a stable effect is also 

obtained across modalities. Our experiment employed prosodic contours that either 

matched or mismatched the duration of a subsequent visual target sentence. Our 

behavioral results (Lamekina & Meyer, 2022) showed that a duration match indeed 

associates with a behavioral benefit. On the neural level, we expected this effect to emerge 

due to rhythmic prosodic entrainment. That is, we first hypothesized that delta-band 

activity would synchronize with the modulation frequency of the contours. Second, we 

expected that brain activity at the modulation frequency would still be detectable during 

the processing of the visual target sentence. Third, we expected an omission ERF 

response when the duration of the target sentence mismatched the duration of the 

entraining contours (Ragazzoni et al., 2019; Scharinger et al., 2017).  

 

Methods 

Participants 

We conducted the experiment on 40 participants (German native speakers, right-handed, 

19 females, age range = 18-35 years, mean age = 28 years, SD = 4 years). The MEG 

data was recorded with different participants and in a separate session from the preceding 

behavioral study with a similar paradigm (Lamekina & Meyer, 2022). Five participants 

were further excluded from the analysis due to noise in the MEG; the resulting sample 

was 35 subjects. Participants had normal or corrected-to-normal vision and no reported 

history of neurological or hearing disorders. Participation was reimbursed with € 12 per 

hour. All subjects were naïve to the purpose of the study. Written informed consent was 
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obtained prior to the experiment. The study conformed to the guidelines of the Declaration 

of Helsinki and was approved by the local ethics committee of the University of Leipzig, 

DE (approval N 060/17-ek). 

 

Experimental design and statistical analysis 

Stimuli and Paradigm 

In order to investigate the potential influence of prosodic entrainment on subsequent 

sentence comprehension, the trials of our experiment combined an initial prosodic rhythm 

with a subsequent visual target sentence. This prosodic contour always belonged to one 

of the conditions—SLOW or FAST—characterised by different length. Importantly, 

although the main manipulation for the contours was the duration change, the contours 

were repeated three times, which resulted in three cycles with a period different for every 

condition; this additional manipulation was introduced in order to induce stimuli rhythmicity 

and an electrophysiological brain response at the same frequency. Contour repetitions 

had pauses of 160 ms in between. This duration of the pause has previously been shown 

to be sufficient in eliciting entrainment to prosodic stimuli (Ghitza, 2017). Together with the 

pause, one cycle of SLOW contour lasted for 1.73 s, corresponding to a frequency of 

approximately 0.6 Hz. One cycle of the FAST contour together with the pause lasted for 

1.1 s, corresponding to 0.9 Hz. An additional pause matching the difference in duration 

between the FAST and SLOW contours was added before the FAST contour to equalize 

duration across conditions. 

 Prosodic contour exposure was followed by visual word-by-word presentation of a 

target sentence. Critically, the presentation of the visual words was adjusted to contour 

duration, whereby word presentation rate was calculated from the same auditory 
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sentences from which the contour was extracted. Target visual sentences were either 

LONG or SHORT. The LONG sentences had an exact duration of 1.884 s (314 ms x 6 

words) and the SHORT sentences had an exact length of 1.57 s (314 ms x 5 words). The 

presentation of sentences, therefore, corresponded in timing either to the SLOW contour 

without pause (5 words) or to the FAST contour without pause (6 = 3+3 words). (cf. Figure 

1). 

 

Figure 1 here 

 

After sentence presentation and a delay, some trials were followed by 

comprehension questions (see Procedure). Stimuli and procedure were adapted from 

Experiment 1 in our previous behavioral study on prosodic entrainment (Lamekina & 

Meyer, 2022). Therefore, in the following paragraphs we reiterate the description of the 

stimulus material used in the previous study. 

 For examples of target sentences, see below: 

 

(1) LONG:  Max sieht Tom und Karl lacht. 

    “Max sees Tom and Karl laughs.” 

(2) SHORT:        Max sieht Tom und Karl. 

                                    “Max sees Tom and Karl.”          
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For sentence construction, we used 32 monosyllabic first names of 3–6 characters 

to balance word-by-word presentation (New et al., 2006). Noun frequencies were normally 

distributed (Heister et al., 2011). Since male and female first names differ in length, we 

used male first names only. We also selected 75 transitive and 75 intransitive German 

verbs in 3rd person singular present tense. Length was matched (1–2 syllables, 5–8 

characters). Verb frequencies were also normally distributed. Pairs of transitive and 

intransitive verbs were made based on semantic fit (e.g., expect–come, wake up–sleep). 

Combination of verb pairs and names yielded 6,000 sentences. A different name triplet 

was used for each of these. Name triplets were selected to not contain similar-sounding 

names (e.g., Frank and Franz). 

Prosodic contours of two different rates were presented before the target sentences. 

Contours were made by averaging the pitch tracks of the visual sentences, which were 

stripped off synthetic recordings (Oord et al., 2016) in Praat (Boersma & van Heuven, 

2001). We used a female voice (minimum pitch = 116 Hz, maximum pitch = 267 Hz, 

average pitch = 191.5 Hz) for its broad pitch range and high variability. The two 

entrainment rates were SLOW (based on the 3,000 5-word SHORT sentences; e.g., Max 

sieht Tom und Karl) and FAST, based on 3,000 additional partial 3-word sentences (e.g., 

Max sieht Tom).  

For averaging, contour durations were adjusted to the average duration of the 

respective sentence recordings (SLOW: 1,570 ms; FAST: 942 ms). The contours within 

each condition had an identical duration in order to increase signal-to-noise ratio. For the 

purpose of our experiment, the contours needed to be delexicalized, i.e. stripped of any 

lexical content/acoustic fine structure, so that only prosodic characteristics remain. To 

achieve this aim, PURR (Prosody Unveiling through Restricted Representation) method 

was used (Sonntag & Portele, 1998). This pipeline was recommended in previous studies 
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for constructing a delexicalised prosodic contour (Steinhauer & Friederici, 2001). The 

method involves extracting the pitch values from the original contours and constructing a 

sound by adding a sine wave at pitch, its second harmonic of ¼  of the amplitude, and its 

third harmonic of 1/16 of the amplitude (suggested by Klasmeyer, 1997). Therefore, out 

of the original spectral characteristics of the speech signal, only the pitch modulations are 

retained, which permits to disentangle prosodic modulations from other speech 

components. Prosodic pitch has proved to provide a substantial contribution to 

entrainment, separately from other acoustic and phonetic features (Teoh et al., 2019). 

PURR has been tested extensively and compared to other methods, proving over a variety 

of experiments to have the best functionality and acceptability (listeners recognizing the 

signal as coming from natural human speech) for speech delexicalisation (Kotz et al., 

2003; M. Meyer et al., 2002; Pannekamp et al., 2005). Contours were further normalised 

to 65 dB and lowered in pitch by 55 Hz to ensure a comfortable hearing level. Average 

word duration for timed visual presentation calculated from the synthesised contours 

length was 314 ms.  

The 6,000 sentences and contours were combined into 20 experimental lists of 300 

trials each. Within list, every verb pair was used 4 times, once within each condition (i.e., 

SHORT–FAST, SHORT–SLOW, LONG–FAST, and LONG–SLOW). Pairs and conditions 

did not repeat across subsequent trials. We disallowed adjacent name triplets with 

identical or similar names. Identical triplets did not repeat within list.  

 

Procedure 

Each trial started with a visual fixation cross and auditory presentation of one of the two 

prosodic contours, repeated three times (Figure 1B). After a contour, a target sentence 
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(either SHORT or LONG) was presented word by word. The words were shown in a rapid 

serial visual presentation (RSVP; Young, 1984). Word presentation rate was identical 

across conditions (314 ms/word); critically, it was adjusted to contour duration to allow for 

assessing prosodic entrainment. In contrast to our behavioral study (Lamekina & Meyer, 

2022), we adapted the procedure to better suit the purposes of the current experiment: 

finals words of the sentence were no longer self-paced, that is, RSVP was used for all 

words of the sentence. This was done to avoid muscle artifacts associated with the button 

presses. It would also be worthwhile to note that single words could induce their own 

neural responses in the target phase at a frequency of around 3 Hz; however, this doesn’t 

match our frequencies of interest (0.6 and 0.9 Hz) and, in our view, presents no obstacles 

or interest for further analysis. 

After visual sentence presentation and a jittered delay of 500 + 0-250 ms, 

comprehension questions were presented in 75% of the trials. To avoid strategy build-up, 

questions requiring a “yes” and a “no” answer were both included for each condition (see 

(Lamekina & Meyer, 2022) for details). Both entrainment conditions were matched on the 

types of questions and the amount of correct “yes” and “no” answers. The “yes/no” button 

assignment was matched across the participants. There was a response timeout of 2,000 

ms. In case of timeout, a screen stating “Please answer faster” appeared, and the 

experiment advanced to the next trial. Participants were instructed to listen to the audio 

contour, read the sentences presented word-by-word and then answer a comprehension 

question after some trials. The 300 trials of the experiment ran in five blocks, with self-

regulated pauses in between (every block took approximately 10 minutes). The whole 

experiment lasted approximately 60-70 minutes, depending on the duration of the pauses. 
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Data recording and preprocessing 

MEG recording 

The experiment was conducted in an electromagnetically shielded room in a single 

session. Stimuli were presented using the Presentation software (Neurobehavioral 

Systems, Inc.). Participants heard the prosodic contours through air-conduction earplugs 

(ER3-14A/B, Etymotic Research Inc., Elk Grove Village IL, U.S.A.) connected via a 50-cm 

plastic tube to piezo-phones (TIP-300, Nicolet, Biomedical Madison, WI, U.S.A.). Visual 

stimuli were back-projected on a semi-transparent screen from a projector located outside 

of the magnetic shielding room (Panasonic PT-D7700E, Matsushita Electric Industrial Co., 

Japan). The screen was located ~90 cm from each participant. MEG signals were 

measured at a sampling rate of 1,000 Hz within a passband of 0-330 Hz from 306 sensors, 

including 102 magnetometers and 204 gradiometers (Vectorview, Elekta-Neuromag, 

Helsinki, Finland). Head position inside the helmet was continuously monitored using five 

head-tracking coils. 

 

MEG preprocessing 

Each block of the data was separately corrected for head movements and external noise 

with the Signal Space Separation (SSS) method (Taulu et al., 2005) via the MaxFilterTM 

software (MaxfilterVersion 2.2.15, Elekta Oy, FI) utilizing spherical functions up to eleventh 

order for the head field model and up to the second order for the environmental field model. 

Movements were compensated using a 500 ms window while forwarding with steps of 250 

ms. The temporal correction was computed using a 10 s time window; correlations higher 

than 0.98 between inside and outside field components were projected out. Line frequency 

was set to 50 Hz. Further analyses were conducted in MATLAB (The MathWorks, Inc.) via 
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the FieldTrip toolbox (Oostenveld et al., 2011). Since previous research has shown that 

results obtained from different types of MEG sensors after SSS are highly correlated 

(Garcés et al., 2017) we restricted analysis to magnetometers only. The data were first 

low-pass filtered at 90 Hz (1-pass, zero-phase-shift finite impulse response (FIR) filter with 

windowed sinc, Kaiser window), detrended and demeaned. Line noise (50 Hz) and its 

harmonics were removed from the signal using ZapLine (de Cheveigné, 2020). Noisy 

channels were identified semi-automatically: Candidates in every block were chosen when 

the maximum absolute value in the channel exceeded a threshold of 6 pT; those 

candidates were further confirmed by visual inspection. We excluded 5 participants who 

had more than 10% of noisy channels; all further analyses were conducted on 35 subjects. 

In this final sample, mean number of removed channels per subject was 2 out of 102 

channels (SD = 2). After this procedure, the data were down-sampled to 250 Hz and 

segmented into epochs, each comprising one contour and the following visual sentence 

(ranging from 6,480 to 8,530 ms depending on the 4 combinations of prosodic and 

sentence conditions). For coherence, power, and ERF analyses, smaller segments were 

cut out separately at later analyses stages (see below). Epoched data were further 

subjected to artifact rejection. First, trials containing SQUID jump artifacts were detected 

using z-transformation of the data at each time point. These z-values were calculated from 

the 9th-order median-filtered data. The z-value threshold of the jump detection was set to 

75; trials with z-values exceeding this threshold were excluded. A similar method was used 

for automatic detection of trials with muscle artifacts (fronto-temporal channels, prior band-

pass filtering from 110 to 124 Hz, z-value threshold = 20). For this step, trials were zero-

padded prior to filtering to avoid edge artifacts. Finally, trials that contained time points 

with values exceeding ± 6 pT were excluded. The whole artifact detection procedure led 

to removal of a mean of 4 trials per block (SD = 4). The preprocessed data were further 
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subjected to independent component analysis (ICA) to remove ocular and cardiac 

artifacts. Artifact components were identified based on visual inspection of component 

waveform and topography. The MEG data were then reconstructed in the original sensor 

space, excluding the artifactual components. Excluded channels were then interpolated 

within block using spline interpolation and a template neighborhood structure for Elekta-

Neuromag magnetometers. Finally, the preprocessed data from the five blocks per subject 

were concatenated. Further analyses in sensor space were conducted on the subject 

level. In the source space, we ran the analysis on the block level due to differences in 

MEG sensor positions and therefore, different lead fields for every recording block. 

 

MRI preprocessing 

In order to identify neural sources underlying the prosodic entrainment mechanism, 

anatomically constrained source localization was used. First, individual T1-weighted MRI 

images obtained with a 3T MRI scanner (Magnetom Trio, Siemens AG, Germany) were 

segmented using the Freesurfer software (http://surfer.nmr.mgh.harvard.edu/). For every 

participant, MEG data were co-registered with the individual MRI scan via realignment of 

the fiducial (nasion, left and right pre-auricular) and digitized head surface points (acquired 

with Polhemus FASTRAK 3D digitizer). To this end, we used a semi-automated iterative 

procedure (Besl & McKay, 1992) implemented in the MNE software (MGH, Boston, US, 

http://www.nmr.mgh.harvard.edu/martinos/userInfo/data/). Next, using MNE, volume 

conductors were constructed as boundary element models (BEMs), resulting in individual 

inner-skull surfaces comprising 2,562 vertices each. Based on the volume conductors, 

individual head models were created in Fieldtrip using the single-shell model (Nolte, 2003). 

In parallel, source spaces consisting of 10,242 vertices per hemisphere were constructed 
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in MNE. To arrive at results that are comparable between subjects in terms of 

neuroanatomical function and structure, every subject’s source space was parcellated into 

the regions of the HCPMMP1 atlas (Glasser et al., 2016); all source-space analyses were 

carried out on atlas-defined regions (Fischl et al., 1999). Based on the individual head 

models, source spaces, and MEG sensor positions in the current recording block, 

separate lead fields for every subject and block were calculated in Fieldtrip. Lead fields 

were normalized in order to remove depth bias (Van Veen et al., 1997). 

 

Sensor space analysis 

Frequency data extraction 

Sensor-space analyses were performed on separate epochs for the entrainment and 

target phases to avoid spectral leakage affecting the results. First, in order to assess 

neural tracking of speech prosody at delta-band frequency in the entrainment phase, we 

calculated pitch–MEG coherence at 0.6 Hz (rate of the SLOW contour) and 0.9 Hz (rate 

of the FAST contour). For this analysis, we cut out epochs starting from contour onset and 

corresponding to the duration of entrainment (5.19 s for SLOW and 3.32 s for FAST). All 

epochs had a high signal-to-noise ratio (SNR > 2). The F0 envelope was calculated using 

Praat (Boersma & van Heuven, 2001). Since F0 is undefined for pauses, those were 

interpolated using spline interpolation. Both the speech envelope and the MEG data 

underwent a fast Fourier transform (FFT) with a Hann window.  

Since pitch–MEG coherence values were no longer accessible in the target phase 

(due to the acoustic stimulus not being present), we followed our hypothesis of sustained 

entrainment by quantifying power at the two frequencies of interest for both conditions in 

this phase. To this end, we segmented the data into epochs starting from visual sentence 
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onset and corresponding in duration to a single prosodic contour (1.73 s for SLOW and 

1.10 s for FAST). These time windows were chosen in accordance with the hypothesis 

that cortical entrainment is sustained for the duration of at least one period at the 

respective frequency. Data from these epochs was also subjected to a fast Fourier 

transform with a Hann window. For both phases, FFT was restricted to a frequency range 

of 0-3 Hz. Because frequency comparison between 0.6 Hz and 0.9 Hz required a 

resolution of 0.1 Hz, we zero-padded each trial from every phase up to a duration of 10 

seconds. Coherence (entrainment phase) and power (target phase) were then calculated 

for 31 bins with a step size of 0.1 Hz (Rosenberg et al., 1989). Visual inspection suggested 

that both the coherence and power spectra for the SLOW contour exhibited a peak at 

0.6 Hz (the coherence spectrum also showed a peak at 1.2 Hz, which is the harmonics of 

0.6 Hz), while the spectra for the FAST contour peaked at 0.9 Hz (Figure 2). The power 

spectrum in sensor space, however, could have been obscured by the presence of a 3 Hz 

rhythm induced by visual words (see Procedure); yet the peaks around the target 

frequencies are still clearly visible. The peaks become more clearly defined in the 

spectrum on the source level (see Source analysis). 

 

Statistical frequency analysis 

Statistical analysis for coherence and power was conducted on the two frequencies of 

interest (0.6 and 0.9 Hz) using nonparametric cluster-based permutation tests (Maris & 

Oostenveld, 2007), with 5,000 permutations (alpha = 0.05, ≥ 3 channels minimum cluster 

size). We used a template neighborhood structure for Elekta-Neuromag magnetometers. 

Because implementation of a two-way test is not straightforward in the cluster-permutation 

framework, we instead conducted multiple 2-tailed whole-brain paired-samples t-tests: 0.6 
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Hz vs. 0.9 Hz in SLOW, 0.6 Hz vs. 0.9 Hz in FAST, and a comparison of the difference 

0.6 Hz vs. 0.9 Hz in SLOW to the difference 0.6 Hz vs. 0.9 Hz in FAST. 

 

ERF data extraction 

In order to investigate our hypothesis on the omission ERF in SHORT sentences after 

SLOW contours, we analyzed only the SHORT sentences at the onset of the missing verb 

(which was never presented) as a function of the two conditions of prior prosodic contour 

— SLOW or FAST; that is, the physical stimulus that was present during the measured 

ERPs was identical (i.e., no stimulus / omission), only the prior prosodic context differed. 

Therefore, the ERF omission effect could not be attributed to differences in the visual 

sentences themselves (as we used the identical sentences), but rather to the differences 

in prior prosodic condition. To this aim, we epoched the data from SHORT sentences in 

both prosodic conditions around the theoretical onset of the verb (-250 ms pre-onset, 1 s 

post-onset). Baseline correction was applied, demeaning the waveforms with the 250 ms 

interval preceding the onset of the verb. All epochs had a high signal-to-noise ratio (SNR 

> 2). ERFs were calculated within subject and within the FAST and SLOW conditions and 

subjected to statistical analysis.  

 

Statistical ERF analysis 

For statistical analysis, we employed a cluster-based permutation test on the time interval 

from 300 to 600 ms after the onset of the missing verb (5,000 permutations, alpha = 0.05, ≥ 

3 channels minimum cluster size). The time window was chosen based on the previous 

literature regarding the timing of omission response (Penney, 2004; Ragazzoni et al., 
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2019; Scharinger et al., 2017), as well as on a general consideration that omission 

response can bear characteristics of both P300 and P600 components (Nakano et al., 

2014; cf. Sassenhagen & Fiebach, 2019). 

 

Source-space analysis 

Frequency data extraction 

Source space analyses of coherence during the entrainment phase and power during the 

target phase were performed within block; reconstructions were averaged across blocks. 

To estimate source-level tracking of prosody in the entrainment phase, cross-spectral 

density (CSD) matrices were computed for all combinations of MEG channels and the 

pitch track using Fast Fourier Transforms (FFT) with Hann tapering; data were zero-

padded to 20 s to achieve sufficient frequency resolution. To source-localize individual 

conditions while avoiding single-condition bias (Gross et al., 2001; van Vliet et al., 2018), 

we employed common spatial filters. First, CSD matrices were calculated separately for 

each frequency of interest (0.6 / 0.9 Hz), but common to the SLOW and FAST conditions. 

Based on the two CSD matrices, two spatial filters were then constructed using Dynamic 

Imaging of Coherent Sources (Gross et al., 2001) within the subject’s volume conductor 

and source space. To source-localize the individual conditions, we then calculated 

individual CSD matrices for each of the four frequency × condition combinations in the 

entrainment phase. Next, we applied each of the two spatial filters (0.6 / 0.9 Hz) to the 

SLOW and FAST CSD matrices within that filter’s frequency. To additionally localize the 

sustained entrainment effect from the sensor-space power analysis, source analysis of 

power in the target phase was conducted using an analogous pipeline.  
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Subsequently, single-node coherence values (entrainment phase) and power values 

(target phase) obtained from the beamformer analyses for every frequency and condition 

were averaged across each area provided by the individual atlas parcellation (360 areas, 

180 per hemisphere). Finally, values were averaged across blocks for every participant 

and subjected to statistical analysis on the a-priori-defined regions of interest (ROI).  

The ROI pattern comprised four regions, based on previous literature.  Firstly, we 

looked at superior temporal gyrus (STG), known for its involvement in prosodic 

(Bourguignon et al., 2013; M. Meyer et al., 2002, 2004; Sammler et al., 2015) as well as 

general linguistic (Friederici, 2011; Friederici et al., 2003; Vigneau et al., 2006) processing. 

Secondly, we focused on early auditory cortex (EAC; Heschl’s gyrus), which is responsible 

for general acoustic processing and is known to synchronize to speech prosody (M. Meyer 

et al., 2002, 2004). Thirdly, we investigated inferior frontal gyrus (IFG), closely related to 

general linguistic (Friederici et al., 2006; Goucha & Friederici, 2015; Van der Burght et al., 

2021; Zaccarella & Friederici, 2015 etc.), prosodic (Frühholz & Grandjean, 2013; Sammler 

et al., 2015), as well as predictive (Avenanti et al., 2018; Jakuszeit et al., 2013; W. G. 

Matchin et al., 2017) processing. Finally, we looked at frontal operculum (FOC), also 

known to be involved in prosodic (Kotz et al., 2003; M. Meyer et al., 2002, 2004) and 

predictive (Bubic et al., 2009) processing. For the complete list of the atlas sub-areas that 

were combined into each respective ROI, please refer to Table 3-1. 

For visual inspection of the coherence and power spectra in order to confirm the 

corresponding peaks at the frequencies of interest, we additionally reiterated the same 

source analysis procedure for each frequency in a limited spectrum of 0-3 Hz with a step 

of 0.1 Hz. 

 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 

 

Statistical frequency analysis 

To investigate statistical differences amongst frequencies and conditions within the ROIs, 

we used a series of linear mixed-effects regression models, implemented in R (R Core 

Team, 2019) in the lme4 package (Bates et al., 2015). The source reconstruction data 

was averaged across the above-mentioned ROIs and split by hemispheres. Two 

experimental phases were analyzed separately. First, to investigate the entrainment effect 

in every phase, we ran separate models on every ROI with CONDITION (SLOW vs. FAST) 

and FREQUENCY (0.6 vs. 0.9) and their interaction as predictors. The dependent 

variables were coherence (entrainment phase) and power (target phase). Since the 

entrainment effect proved to be significant in all ROIs (see Results), we further proceeded 

to estimate in which area/hemisphere the effect was statistically higher. To this end, we 

required a measure which permits to quantify the overall strength of entrainment in a 

particular region. For this purpose, we adapted an index termed “rate-specific response” 

from previous literature (RSR; (van Bree et al., 2021)). This index is calculated as follows: 

 

RSR = (R 0.6, SLOW – R 0.6, FAST) + (R 0.9, FAST – R 0.9, SLOW) 

 

where R is the response measure (coherence or power) and 0.6/0.9 Hz and SLOW/FAST 

are respectively the frequencies of interest and conditions, for which this response 

measure is calculated. An RSR is larger than 0 when electrophysiological brain activity 

follows the initial speech rate for both conditions (stronger 0.6 Hz coherence/power for the 

SLOW condition and stronger 0.9 Hz coherence/power for the FAST condition). That is, 

higher RSR indicates a brain response that is specific, or entrained, to the stimulus rate. 

We subjected the resulting RSR indices for every area and participant to new linear mixed-
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effects regression models (a separate model for every phase), where the predictors were 

now AREA, HEMISPHERE and their interaction. The depending variables were now 

corresponding RSR indices, reflecting the entrainment strength. 

For all models, predictors were coded using mean-centered effects coding. Random 

intercepts were included for subjects. The models were further subjected to an ANOVA 

analysis in order to determine the significance of the predictors.  

 

ERF data extraction 

To source-localize the omission ERF effect, we used the Linear Constrained Minimum 

Variance beamformer (LCMV; Van Veen et al., 1997). As the omission can only be studied 

for SHORT sentences, we first constructed a covariance matrix for the SHORT sentences 

from both entrainment conditions in the ERF time window (-250 to 1000 ms around the 

potential onset of the critical word; baseline corrected). This matrix, together with individual 

volume conductors and lead fields, was used to compute the common spatial filter for 

every block of data. Next, source reconstruction was performed separately for every 

condition using the precomputed common filter and the individual covariance matrix 

corresponding to the condition. The resulting single-voxel time-courses were averaged 

across every atlas area and further averaged across blocks for every subject. From these 

subject-level time-courses, we then selected and averaged data across the time window 

of interest (300-600 ms).  

 

Statistical ERF analysis 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 

 

Since we did not have a strict pre-defined hypothesis for the source localization of the 

omission ERF, we did not pre-select any ROIs. Instead, for every atlas area we performed 

a two-tailed paired-samples t-test in order to determine the differences between SLOW 

and FAST entrainment conditions (alpha = 0.05). For illustration, we report the ten regions 

across hemispheres, where the difference between conditions was maximally significant 

(p-values uncorrected). 

 

Results 

Delta-band activity synchronizes with speech prosody 

Sensor space – frequency analysis 

During the entrainment phase, analysis for the 0.6 vs. 0.9 Hz contrast in SLOW revealed 

a significant positive cluster (cluster-sum t(34) = 258, cluster-level p < 0.001, 

corrected; peak at sensor MEG2441, peak-level t(34) = 10, peak-level p < 0.001; for MEG 

sensors layout, see Figure 2-1). This cluster comprised all but six sensors. In turn, the 0.6 

vs. 0.9 Hz contrast in FAST revealed a significant negative cluster (cluster-sum t(34) = -

291, cluster-level p < 0.001, corrected; peak at sensor MEG1421, peak-level t(34) = -

11.91, peak-level p < 0.001). This cluster also included all but nine sensors. Finally, the 

comparison of difference maps (i.e., SLOW vs. FAST) yielded a significant positive cluster 

including all but one sensors (cluster-sum t(34) = 396, cluster-level p < 0.001, 

corrected; peak at sensor MEG2221, peak-level t(34) = 12.33, peak-level p < 0.001). Peak 

sensors for SLOW and difference clusters were located in the right parietal region, while 

the peak sensor for the FAST cluster was located in the right fronto-temporal region. 

Overall, these results suggest that brain activity synchronizes to the rate of the external 

prosodic contour (Figure 3A). 
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Figure 3 here 

 

Source space – frequency analysis 

Source space analysis revealed a significant CONDITION × FREQUENCY interaction, as 

well as a main effect of CONDITION in every ROI. Post-hoc tests within every condition 

(0.6 vs. 0.9 contrast) showed higher coherence at 0.6 Hz in SLOW condition and at 0.9 

Hz in FAST condition (Table 1; Figure 4A). These results show that brain synchronization 

to the pitch contour was significant in all ROIs. To further quantify differences in the 

entrainment effect between areas and hemispheres, we computed the rate-specific 

response (RSR) index, which reflects overall entrainment strength for every area (van 

Bree et al., 2021). Using this index as an outcome, we ran a new linear mixed-effects 

model with AREA, HEMISPHERE and the AREA × HEMISPHERE interaction as 

predictors. Our model showed a significant AREA × HEMISPHERE interaction (F = 10.5, 

df = 3,245, p < 0.001), as well as main effects for both AREA (F = 31.18, df = 3,245, p < 

0.001) and HEMISPHERE (F = 72.68, df = 1,245, p < 0.001). Post-hoc testing revealed 

that entrainment was stronger in the right EAC (T = 5.25, df = 245, p < 0.001), and STG 

(T = 2.83, df = 245, p < 0.001). These results are consistent with previous findings on 

prosodic tracking in right temporal regions (Bourguignon et al., 2013). 

 

Figure 4 here 

 

Table 1 here 
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Visual inspection of the coherence spectrum in the corresponding ROIs (Figure 5) confirm 

the coherence peaks at 0.6 Hz and 1.2 Hz (harmonics of 0.6) for the SLOW condition, and 

at 0.9 Hz for the FAST condition. The coherence values are higher in right STG and EAC, 

which corresponds to our statistical analysis results. 

 

Figure 5 here 

 

 

Delta-band activity carriers the contextual rhythm into the future 

Sensor space – frequency analysis 

During the target phase, sensor-space statistics for the 0.6 vs. 0.9 Hz contrast in SLOW 

revealed a significant positive cluster with a fronto-central-occipital topography, shifted to 

the right (cluster-sum t(34) = 66, cluster-level p < 0.001, corrected; peak at sensor 

MEG2641, peak-level t(34) = 5.18, peak-level p < 0.001; Figure 3B; for MEG sensors 

layout, see Figure 2-1). In turn, the 0.6 vs. 0.9 Hz contrast in FAST exposed a negative 

cluster (cluster-sum t(34) = -942, cluster-level p < 0.001, corrected; peak at sensor 

MEG2621, peak-level t(34) = -18.58, peak-level p < 0.001). Finally, the comparison of 

difference maps (i.e., SLOW vs. FAST) revealed a positive cluster (cluster-sum t(34) = 

706, cluster-level p < 0.001, corrected; peak at sensor MEG1731, peak-level t(34) = 13.3, 

peak-level p < 0.001). The latter two clusters comprised all sensors. Peak sensors for 

SLOW and FAST clusters were located in the right temporal region, while the peak sensor 

for the difference cluster was located in the left parieto-occipital region. Taken together, 
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sensor-space results in the target phase strongly suggest that entrainment to prosody 

persists beyond stimulus offset.  

 

Source space – frequency analysis 

Source-level analyses showed a CONDITION × FREQUENCY interaction, as well as a 

main effect of CONDITION for every ROI. Post-hoc t-tests for frequencies within every 

condition (0.6 vs. 0.9 contrast) revealed that power was significantly higher at 0.6 Hz in 

SLOW and at 0.9 Hz in FAST (Table 2; Figure 4B). Linear mixed-effects model for the 

differences between areas and hemispheres revealed a main effect of AREA (F = 38.82, 

df = 3,245, p < 0.001) and an AREA × HEMISPHERE interaction (F = 13.76, df = 3,245, p 

< 0.001). Post-hoc testing showed that entrainment power was higher in left EAC (T = 

2.82, df = 245, p = 0.005) and left FOP (T = 4.52, df = 245, p < 0.001). This arrangement 

of source-space activity is compatible with our hypothesis, as frontal regions are known to 

be associated with predictions and cognitive control (Alexander & Brown, 2018; 

Dürschmid et al., 2019). Our study further confirms evidence from the literature concerning 

a trend for the left lateralization of those functions (Avenanti et al., 2018; Jakuszeit et al., 

2013; W. Matchin et al., 2017). 

 

Table 2 here 

 

Visual inspection of the power spectrum in the corresponding ROIs (Figure 6) confirm the 

power peaks at 0.6 Hz for the SLOW condition and at 0.9 Hz for the FAST condition. The 
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power values are higher in left FOP and EAC, which corresponds to our statistical analysis 

results. 

 

Figure 6 here 

 

Falsified predictions associate with an omission effect 

Sensor space – ERF analysis 

The ERF analysis showed a significant positive right central-parietal cluster (cluster-sum 

t(34) = 23, cluster-level p < 0.001, corrected; peak at sensor MEG2231, peak-level t(34) 

= 5.29, peak-level p < 0.001, corrected), as well as a significant neighboring negative 

cluster (cluster-sum t(34) = -7.9, cluster-level p = 0.019, corrected; peak at sensor 

MEG0221, peak-level t(34) = -3.57, peak-level p = 0.001, corrected) (Figure 7B left; for 

MEG sensors layout, see Figure 2-1). Note that the polarity of the cluster in ERF analysis 

is not informative about the direction of the effect: In both clusters, SLOW condition 

induced higher-amplitude ERF waveforms than FAST (Figure 7B right). Therefore, we can 

infer that participants did indeed predict longer sentences under the SLOW entrainment 

and the incongruent condition caused an omission ERF effect.  

 

Source space – ERF analysis 

Source space analysis revealed multiple areas where the activation for the SLOW 

condition was significantly different (uncorrected) from the FAST condition; we here report 

10 regions with maximum differences (Table 3). The areas where the activation for SLOW 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 

 

condition was significantly higher than for the FAST condition (positive T-values) include 

temporo-parietal-occipital junction and a number of frontal and premotor regions (Figure 

7B middle). Overall, the pattern of source level activity suggests that entrainment is 

originating in right temporal cortices and maintained in left frontal cortex, which generates 

temporal predictions; in case those predictions are incongruent, an M300 ERF is emerging 

from a variety of cortical generators. 

 

Figure 7 here 

 

Table 3 here 
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Additional analyses 

 

Source space – frequency analysis 

In addition to temporal prediction processing being associated with IFG and FOP, previous 

literature has also demonstrated the potential involvement of motor cortex in temporal 

predictions. In particular, evidence suggests that temporal predictions in the motor cortex, 

subserved by beta-band oscillations, can upregulate auditory-motor interaction via top-

down phase reset of the oscillations in the auditory cortex (Assaneo et al., 2021; Keitel et 

al., 2018; Morillon & Baillet, 2017). These oscillations are thought to function as an 

endogenous temporal constraint, facilitating bottom-up processing (Rimmele et al., 2018). 

Furthermore, in the current paradigm, predictive processing as a stage of decision-making 

in order to answer the comprehension question could potentially involve motor 

preparation. In order to investigate these hypotheses, we conducted a control analysis of 

the entrainment effect in pre-motor (Brodmann area 6) and motor (Brodmann area 4) 

areas (for the list of the atlas sub-areas, please refer to Table 3-1). The results 

demonstrated significant  entrainment in both areas and hemispheres (Figure 8). 

 

Figure 8 here 

 

Statistical analyses showed a CONDITION × FREQUENCY interaction, as well as a main 

effect of CONDITION for every ROI (Table 5). Post-hoc t-tests for frequencies within every 

condition (0.6 vs. 0.9 contrast) also confirmed that power was significantly higher at 0.6 

Hz in SLOW and at 0.9 Hz in FAST, explaining the interaction effect. 
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ERF analysis 

In addition to later effects, prosodic processing has also been demonstrated at very early 

stages (Tomasello et al., 2022). In order to investigate whether those effects persist in the 

target phase of prosodic entrainment, we conducted an additional ERF analysis in the time 

window of 0-120 ms after the critical word onset on the same data as used for the M300 

analysis. The results revealed significant differences in a central positive cluster, with 

higher activation for the SLOW condition (Figure 7A left). This effect can be interpreted as 

early omission response, akin to prosody expectation violation (Kakouros et al., 2018; 

Paulmann et al., 2012) induced by prosodic entrainment. 

We further attempted a source reconstruction on the early ERF response (Figure 7A 

middle). We report 10 regions where the ERF difference between the SLOW and FAST 

conditions was maximal (uncorrected) (Table 4). The pattern appears quite similar to the 

source pattern obtained for the 300-600 ms omission ERF (Figure 7B middle), with higher 

activation for  the SLOW condition in frontal areas on the left and temporo-parietal-occipital 

junction on the right. The TPOJ activation could be potentially be related to visual omission 

effects (the omitted word was expected to be presented in a visual mode). However, we 

here need to note that source reconstruction of ERF with beamforming can potentially be 

problematic, since this approach underestimates highly covariant sources, and does not 

consider the degree to which estimated source signals explain observed sensor signals 

(Kuznetsova et al., 2021; O’Reilly et al., 2023). The current results, therefore, should be 

treated with caution.  
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Discussion  

Our results suggest that speech prosody subserves temporal predictions in language via 

electrophysiological inheritance of contextual temporal patterns. This converges on recent 

evidence for similar mechanisms supporting temporal predictions in the domain of auditory 

perception more generally (Breska & Deouell, 2017; Herbst et al., 2022; Stefanics et al., 

2010). The facilitatory effect of delta-band entrainment on non-linguistic auditory 

perception (e.g. tone sequences) has been shown earlier (Henry & Obleser, 2012; Hickok 

et al., 2015). While in the preceding studies the effect was demonstrated for auditory 

tones, we here report delta-band entrainment in the context of language processing. To 

our knowledge, earlier reports of behaviorally relevant sustained linguistic entrainment 

have been published only for higher frequencies only (Kösem et al., 2018; van Bree et al., 

2021). The setup of the current study allows us to adopt a strong interpretation in terms of 

entrainment proper (L. Meyer et al., 2020b, 2020a; Obleser & Kayser, 2019; Rimmele et 

al., 2018) — that is, electrophysiological neural activity does not just mimic stimulation 

frequencies at the time of stimulation, maintains these for a subsequent period (Kösem et 

al., 2018; Stefanics et al., 2010; van Bree et al., 2021). 

The present findings stress the necessity of incorporating mechanisms of temporal 

prediction into current neurobiological, psycholinguistic and computational models of 

human speech and language (Alexander & Brown, 2018; Friederici & Alter, 2004; Hickok 

& Poeppel, 2007; Ten Oever & Martin, 2021). Our source-space results are consistent 

with the notion that such temporal predictions operationalize auditory-motor interaction 

(Assaneo et al., 2021; Keitel et al., 2018; Kern et al., 2021; Lubinus et al., 2023). Recent 
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studies have proposed models where temporal predictions operate through top-down 

phase resetting of electrophysiological activity mediated by the motor system or higher-

order language– or attention-related systems (for a review, see Rimmele et al., 2018). 

This mechanism facilitates bottom-up perceptual processing, while intrinsic temporal 

characteristics of neural activity might serve as intrinsic temporal constraint. Furthermore, 

motor cortices have also been related to predictive processing on a broader scale (Grisoni 

et al., 2017, 2021). Interestingly, it has been shown that their engagement is dependent 

on the specific nature of the predictions being made—for instance, frontocentral-

sensorimotor activation for tool-related words (Grisoni et al., 2021),  dorsolateral hand 

motor activation for hand-related words (e.g., “write”), ventral motor activation for face-

related words (“talk”) (Grisoni et al., 2017). Our additional analysis confirmed a sustained 

entrainment effect in the motor cortices. 

Moreover, studies on lateralization of predictive processes indicate that bottom-up 

auditory processing is primarily associated with auditory cortices in the right hemisphere, 

while top-down control tends to be left-lateralized (Assaneo et al., 2019; Keitel et al., 

2018). This is in line with our results: In the entrainment phase, right STG and EAC showed 

significantly higher coherence with the pitch contour. These findings are also consistent 

with the assumed neural substrate of prosody (Bourguignon et al., 2013; M. Meyer et al., 

2004; Sammler et al., 2015). In the target phase, however, activity at the conditioning 

frequency  moved to left frontal cortices, involved in temporal prediction in language 

(Jakuszeit et al., 2013; W. Matchin et al., 2017). Left FOP activity is also generally known 

to correspond to syntactic processing or prediction (Bubic et al., 2009; Friederici et al., 

2003, 2006), which in our paradigm is engaged by prior entrainment. Sustained 

entrainment in frontal areas could also potentially reflect the broader engagement of the 

frontal cortex in decision-making regarding the experimental task. Temporal prediction 
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could be the first and integral stage of decision-making processing, facilitating the 

upcoming sentence analysis and, therefore, forming preliminary answers to the 

comprehension question.  

Our interpretation of the omission response in terms of a temporal prediction error 

is in line with previous reports from auditory perception (Herbst et al., 2022; Stefanics et 

al., 2010), where temporal predictions carried by delta-band activity modulated the 

amplitude of the P300 component on target tones. The current ERF effect  is likely an 

omitted stimulus potential (OSP), bearing characteristics of both P300 and P600 

components (or M300/M600, as their MEG counterparts; Bullock et al., 1994; Karamürsel 

& Bullock, 2009; Nakano et al., 2014; Penney, 2004; Ragazzoni et al., 2019). This 

interpretation conforms to the idea that the P600 component in the language domain is a 

member of the greater P300 family (Sassenhagen & Fiebach, 2019). The widely 

distributed array of underlying cortical sources observed here is in line with prior 

reconstructions of the P300, which include diverse distributed generators (Bocquillon et 

al., 2011; Brázdil et al., 2005; Linden, 2005; Ragazzoni et al., 2019). The temporal-

parietal-occipital junction as a generator of P300 was previously reported in multiple 

deviating stimuli studies, together with dorsolateral prefrontal areas (Daffner et al., 2003; 

Strobel et al., 2008; Volpe et al., 2007).  Moreover, a study on semantic predictions has 

also previously reported temporo-parieto-occipital activation (Grisoni et al., 2021). A visual 

oddball study (Bledowski et al., 2004) also reports activation in the frontal eye field, similar 

to our results. These findings are in line with our with our conclusions, since, in our 

paradigm, the stimulation in the target phase was in the visual modality.  Moreover, 

multiple omitted-target studies also find activation in the inferior frontal cortex (Bledowski 

et al., 2004; Ragazzoni et al., 2019; Volpe et al., 2007), which is corroborated by our 
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results. This evidence further strengthens our claim of the left frontal cortex involvement 

in predictive processing (Jakuszeit et al., 2013; W. Matchin et al., 2017). 

Our complementary analysis also revealed a significant earlier omission response 

in the time window of 0-120 ms. This could be potentially related to prosodic entrainment 

inducing early omission effects, similar to prosody expectation violations (Kakouros et al., 

2018; Paulmann et al., 2012; Tomasello et al., 2022). The source localization pattern of 

this earlier ERF resembles that of the M300/M600 omission effect; however, it is important 

to note that source localization procedures for ERFs should be regarded with caution 

(Kuznetsova et al., 2021; O’Reilly et al., 2023). 

The current study bears important implications for the general conceptualization of 

the neurobiological underpinnings of interpersonal communication. Prosodic entrainment 

could potentially be used as a facilitatory mechanism in dialogue, enhancing mutual 

comprehension (Breen, Weidman, et al., 2016; Edlund, 2011; Lehnert-LeHouillier et al., 

2020). In line with the implicit prosody account (Breen, 2014; Fodor, 2002; Perrone-

Bertolotti et al., 2014), in the current experiment, based on prior prosodic entrainment 

listeners would silently generate the same prosodic structures during the reading of 

subsequent sentence, which would influence their temporal prediction regarding the 

length of the sentence. This mechanism can be applied to communication in a dialogue: 

the listener could potentially entrain to the speaker’s prosody, generating silent prosodic 

structures and forming temporal predictions as to what the speaker is going to say next. 

These findings could be incorporated into broader models of alignment in dialogue 

(Pickering & Garrod, 2004, 2021). This account postulates that interlocutors in a dialogue 

utilize linguistic representations which automatically align on many levels, facilitating 

production and comprehension processes. In principle, this general mechanism could 

operate over various acoustic features, including rate, intensity, voice quality, and pitch 
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(Brennan, 1996; Teoh et al., 2019). These features need to exhibit sufficient rhythmicity 

to facilitate conversational entrainment. Although ubiquitous rhythmicity is not 

characteristic of  human speech, previous research has demonstrated that speech is 

rhythmic enough on the prosodic level to trigger entrainment in dialogue (Inbar et al., 2020; 

Stehwien & Meyer, 2021); furthermore, rhythmic intonational units in speech evoke a 

neural response (Inbar et al., 2023). Further research quantifying the rhythmicity of 

naturalistic speech and investigating the differences in prosodic entrainment for rhythmic 

and non-rhythmic parts could provide additional evidence for this claim. 

Work on interpersonal communication also supports the notion that prosody is 

involved in conversational entrainment (Levitan et al., 2012; Levitan & Hirschberg, 2011; 

Reichel et al., 2018). It has previously been demonstrated that prosody conveys 

communicative intentions in speech irrespective of emotion (Hellbernd & Sammler, 2016). 

Neurobiologically these effects have been localized to auditory ventral stream and 

articulatory-motor regions (Hellbernd & Sammler, 2018; Tomasello et al., 2022). On a 

more general level, it has been proposed that human brains synchronize communicative 

activities through an oscillatory signal (Hasson et al., 2012; Wilson & Wilson, 2005). 

Furthermore, it has not only been found that listener’s brain activity is spatially and 

temporally coupled with the speaker’s, but that listener’s frontal areas also exhibit 

predictive anticipatory responses during dialogue (Stephens et al., 2010). Our present 

results, showing prosodic entrainment as a mechanism of temporal predictions in listening 

comprehension, could therefore extend to scenarios in dialogue. Altogether, prosodic 

entrainment appears to play an important role in enhancing communication processes via 

temporal prediction. 

The focus of current study has been the investigation of purely prosodic entrainment. 

However, it is pertinent to note that potentially similar effects could be evoked by 
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presenting non-prosodic stimuli of fixed rhythmic duration (e.g., acoustic stimuli with a flat 

pitch or visual stimulation). While the timing of the experiment and the necessity of a 

substantial number of trials did not permit us to include a control non-prosodic condition 

in the current paradigm, future work would be beneficial to distinguish between prosodic 

vs. merely acoustic/visual entrainment effects. 
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Figure captions 

Figure 1. Paradigm and procedure. (A) Paradigm. Prosodic contour repeated 3 times to 

induce entrainment, followed by time-matched rapid serial visual presentation of the target 

sentence. FAST entrainment facilitates comprehension of SHORT sentences, SLOW 

entrainment facilitates comprehension of LONG sentences (Lamekina & Meyer, 2022). 

(B) Procedure. Participants first listened to the audio contour. Then the sentence was 

presented word-by-word. In 75% of the trials, a comprehension question followed. 
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Figure 2. Sensor-level spectra. (A) Coherence spectrum in the entrainment phase. 

Distinct peaks are visible:  0.9 Hz for FAST condition, and 0.6 and 1.2 (harmonics of 0.6) 

for the SLOW condition. These peaks correspond to the respective occurrence 

frequencies of the contours. X-axis limited to 1.5 Hz for display purposes. (B) Power 

spectrum in the target phase. Peaks visible around frequencies of interest: 0.6 Hz for 

SLOW and 0.9 Hz for FAST conditions. X-axis adjusted to 3 Hz for display purposes. 
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Figure 3. Sensor space results. (A) Entrainment phase. Left: coherence values, averaged 

over participants and sensors (mean ± standard error). Coherence at 0.6 Hz is higher in 

SLOW condition, while at 0.9 Hz it is higher in FAST condition. Right: Topographic 

distribution of coherence t-values of the cluster permutation tests. (B) Target phase. Left: 

power values, averaged over participants and sensors (mean ± standard error). Power at 

0.6 Hz is higher in SLOW condition, while at 0.9 Hz it is higher in FAST condition. Right: 

Topographic distribution of power t-values of the cluster permutation tests (scales adjusted 

for demonstrative purposes). For MEG sensors layout, see Figure 2-1. 
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Figure 4. Source space results. (A). Entrainment phase. Bar plots indicate coherence 

values for ROIs (mean ± standard error) in left and right hemisphere. Entrainment effect 

(CONDITION × FREQUENCY interaction) was significant in all ROIs, but higher in right 

STG and EAC. (B). Target phase. Bar plots indicate power values for ROIs (mean ± 

standard error) in left and right hemisphere. Entrainment effect (CONDITION × 

FREQUENCY interaction) was significant in all ROIs, but higher in left EAC and FOP. For 

the complete list of the sub-areas in each ROI, please refer to Table 3-1. 
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Figure 5. Coherence spectrum in the source space in the entrainment phase for different 

ROIs. Distinct peaks are visible:  0.9 Hz for FAST condition, and 0.6 and 1.2 (harmonics 

of 0.6) for the SLOW condition. These peaks correspond to the respective occurrence 

frequencies of the contours. The coherence values are higher in right STG and EAC, in 

line with statistical analysis results. X-axis limited to 1.5 Hz for display purposes.  
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Figure 6. Power spectrum in the source space in the target phase for different ROIs. 

Distinct peaks are visible: 0.9 Hz for FAST condition, and 0.6 for the SLOW condition. 

These peaks correspond to the respective occurrence frequencies of the contours. The 

power values are higher in left FOP and EAC, in line with statistical analysis results.  
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Figure 7. ERF analysis.  (A) Earlier window (0-120 ms). Left: Topographical distribution 

of the ERF effect; cluster with significant differences highlighted. Right: Grand average 

ERF wave across the cluster. SLOW condition associates with increased ERF amplitude 

at onset of missing verb in SHORT sentences relative to FAST condition. Time window of 

interest (0-120 ms) marked in grey. Middle: source space. Stronger red color indicates 

areas where SLOW condition induced higher activation than FAST (see also Table 4), 

while the reverse is indicated by stronger blue color. (B) Later window (300-600 ms). Left: 

Topographical distribution of omission ERF effect; clusters with significant differences 

highlighted (positive cluster – black, negative cluster – white).  Right: Grand average ERF 

waves across the clusters of sensors (left – positive cluster, right – negative cluster). For 

both clusters, SLOW condition associates with increased ERF amplitude at onset of 

missing verb in SHORT sentences relative to FAST condition. Time window of interest 

(300-600 ms) marked in grey. Middle: source space. Stronger red color indicates areas 

where SLOW condition induced higher activation than FAST (see also Table 3), while the 

reverse is indicated by stronger blue color. 

 

 

 

 

 

Figure 8. Source space results – entrainment in motor cortex in the target phase. Bar 

plots indicate power values (mean ± standard error) in left and right hemisphere. 

Entrainment effect (CONDITION × FREQUENCY interaction) was significant in both motor 

and pre-motor regions (Brodmann areas 4 and 6).  
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Table 1. Source space statistics for coherence in entrainment phase. 

 

 

 

 

1 Degrees of freedom for all reported LME models were equal to 1 (numerator) and 105 (denominator). 

 Frequency1  Condition1  Frequency × 

Condition1 

 Post-hoc t-tests within condition 

 Slow  Fast 

 
F p  F p  F p  T p  T p 

Left               

EAC 0.008 0.92  6.18 < 0.05  68 <0.001  6 <0.001  -5.86 <0.001 

STG 0.05 0.82  5.44 < 0.05  69 <0.001  5.7 <0.001  -5.79 <0.001 

IFG 2.41 0.12  5.54 < 0.05  34 <0.001     3.57 0.001  -4.32 <0.001 

FOP 1.75 0.18  10 < 0.05  47 <0.001  4.6 <0.001  -5.17 <0.001 

Right               

EAC 0.21 0.65  6.75 < 0.05  163 <0.001  7.89 <0.001  -8.84 <0.001 

STG 0.04 0.85  9.5 < 0.05  203 <0.001  8.98 <0.001         -11 <0.001 

IFG 2.16 0.15  10 < 0.05       68 <0.001  5.42 <0.001  -5.85 <0.001 

FOP <0.001 0.98  9.4 < 0.05  110 <0.001  7.93 <0.001  -6.48 <0.001 
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Table 2. Source space statistics for power in target phase. 

 

  

 

2 Degrees of freedom for all reported LME models were equal to 1 (numerator) and 105 (denominator). 

 Frequency2  Condition2  Frequency × 

Condition2 

 Post-hoc t-tests within condition 

 Slow  Fast 

 
F p  F p  F p  T p  T p 

Left               

EAC 0.94 0.34  482  < 0.001  43 < 0.001  11 < 0.001  -12 < 0.001 

STG 0.84 0.36  535 < 0.001  39 < 0.001  15 < 0.001  -12 < 0.001 

IFG 1.93 0.17  552 < 0.001  44 < 0.001  13 < 0.001  -11 < 0.001 

FOP 1.14 0.34  501 < 0.001  38 < 0.001  14 < 0.001  -11 < 0.001 

Right               

EAC 0.04 0.84  518 < 0.001  35 < 0.001  8.87 < 0.001  -10 < 0.001 

STG 2.3 0.13  724 < 0.001  51 < 0.001  18 < 0.001  -14 < 0.001 

IFG 1.99 0.16  449 < 0.001  31 < 0.001  12 < 0.001  -14 < 0.001 

FOP 1 0.32  333 < 0.001  24 < 0.001  10 < 0.001  -13 < 0.001 
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Table 3. Regions with significant differences in the ERF 300-600 ms contrast (source 

space). 

 

 

  

 
T df p 

Left    

Area i6-8 (dorsolateral prefrontal cortex) 2.87 34 < 0.05 

Area 9m (medial prefrontal cortex) 2.67 34 < 0.05 

Area IFSa (inferior frontal cortex) 2.37 34 < 0.05 

Area p24 (medial prefrontal cortex) 2.32 34 < 0.05 

Area 47l (inferior frontal cortex) 2.29 34 < 0.05 

Area 8C (dorsolateral prefrontal cortex) 2.3 34 < 0.05 

Area PGs (inferior parietal cortex) -2.22 34 < 0.05 

Right    

Temporal-parietal-occipital junction (area 2) 3.07 34 < 0.05 

Frontal eye field 2.98 34 < 0.05 

Area i6-8 (dorsolateral prefrontal cortex) 2.48 34 < 0.05 

JN
eurosci

 Acce
pted M

an
uscr

ipt



 

 

 

Table 4. Regions with significant differences in the ERF 0-120 ms contrast (source 

space). 

 

 

 

 

 

 
T df p 

Left    

Area 9p (dorsolateral prefrontal cortex) 2.73 34 < 0.05 

Area PeEc (medial temporal cortex) -2.38 34 < 0.05 

Area 8BL (dorsolateral prefrontal cortex ) 2.2 34 < 0.05 

Area 8BM (medial prefrontal cortex) 2.13 34 < 0.05 

Right    

Middle temporal cortex 2.88 34 < 0.05 

Area AAIC (anterior insular cortex) -2.71 34 < 0.05 

Area Pir (anterior insular cortex) -2.61 34 < 0.05 

Area V7 (visual cortex) -2.22 34 < 0.05 

Temporal-parietal-occipital junction (area 2) 2.11 34 < 0.05 

Posterior orbitofrontal complex -1.98 34 < 0.05 JN
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Table 5. Source space statistics for power in target phase (motor and pre-motor areas). 

 

 

3 Degrees of freedom for all reported LME models were equal to 1 (numerator) and 105 (denominator). 

 Frequency3  Condition3  Frequency × 

Condition3 

 Post-hoc t-tests within condition 

 Slow  Fast 

 
F p  F p  F p  T p  T p 

Left               

BA4 4.48 < 0.05  732 < 0.001  62 < 0.001  16.8 < 0.001  -11.57 < 0.001 

BA6 5.77 < 0.05  751 < 0.001  64 < 0.001  14.19 < 0.001  -12.07 < 0.001 

Right               

BA4 4.26 < 0.05  467 < 0.001  41 < 0.001  13.05 < 0.001  -13.65 < 0.001 

BA6 3.03 0.085  453 < 0.001  37 < 0.001  12.86 < 0.001  -13.5 < 0.001 
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