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Temporal prediction assists language comprehension. In a series of recent behavioral studies, we have shown that listeners specifically
employ rhythmic modulations of prosody to estimate the duration of upcoming sentences, thereby speeding up comprehension. In the
current humanmagnetoencephalography (MEG) study on participants of either sex, we show that the human brain achieves this function
through amechanism termed entrainment. Through entrainment, electrophysiological brain activity maintains and continues contextual
rhythms beyond their offset. Our experiment combined exposure to repetitive prosodic contours with the subsequent presentation of
visual sentences that either matched or mismatched the duration of the preceding contour. During exposure to prosodic contours,
we observed MEG coherence with the contours, which was source-localized to right-hemispheric auditory areas. During the processing
of the visual targets, activity at the frequency of the preceding contour was still detectable in the MEG; yet sources shifted to the (left)
frontal cortex, in line with a functional inheritance of the rhythmic acoustic context for prediction. Strikingly, when the target sentence
was shorter than expected from the preceding contour, an omission response appeared in the evoked potential record. We conclude that
prosodic entrainment is a functional mechanism of temporal prediction in language comprehension. In general, acoustic rhythms appear
to endow language for employing the brain’s electrophysiological mechanisms of temporal prediction.
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Significance Statement

Language comprehension benefits from our ability to predict upcoming stimuli. Here, we report on a key neural substrate. We
show that electrophysiological brain activity inherits prosodic modulations—the melody of speech—from prior context,
allowing listeners to estimate the duration of upcoming language stimuli. By using magnetoencephalography, we find that
the brain not only responds to prosody when speech is present, but its activity continues at the prosodic frequency seconds
into the future, benefiting behavioral responses. During continuation, activity shifts from the auditory to the frontal cortex,
the epicenter of the brain’s predictive abilities. The human brain seems to initiate the top-down prediction of language stimuli
by copying sensory rhythms and projecting them into the future.

Introduction
Predicting upcoming linguistic information allows us to process
language quickly and efficiently (Sohoglu et al., 2012; Li and

Zhang, 2023). Predictions are generated across different levels
of linguistic content, including phonology (DeLong et al.,
2005), syntax (Van Berkum et al., 2005; Lau et al., 2016), and
(lexical) semantics (Demberg and Keller, 2008; Boston et al.,
2011; Smith and Levy, 2013).

In addition to content, listeners predict the timing of upcom-
ing linguistic units. On slow time scales, listeners employ speech
prosody to infer the duration of upcoming sentence segments
(Grosjean, 1983). Cues such as pauses, pitch modulations, and
duration changes trigger the bottom-up segmentation of sen-
tences into syntactic phrases (Frazier et al., 2006). Crucially,
the interpretation of prosodic cues depends on a wider prosodic
context. For instance, intonational phrase boundaries (IPBs) are
not processed in terms of their absolute acoustic magnitude but
relative to the magnitude of preceding IPBs (Clifton et al., 2002;
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Snedeker and Casserly, 2010). Moreover, even distant prosodic
cues can influence the prediction of upcoming material, such
that prosody at sentence onset affects subsequent segmentation
and word recognition (Dilley and McAuley, 2008; Brown et al.,
2011). Furthermore, during reading, where acoustic cues are
unavailable, listeners actively construct implicit prosody that
facilitates speech processing (Fodor, 2002; Breen, 2014; Breen
et al., 2016a). Consequently, context effects have also been
reported across perceptual modalities. In previous studies, it
was observed that prosodic contours can trigger downstream
effects that persist beyond stimulation, affecting the comprehen-
sion of upcoming visual sentences devoid of prosody (Steinhauer
and Friederici, 2001).

Recent behavioral findings suggest that temporal prediction,
including the effects of prosody, may be triggered by rhythmic
or repetitive contexts. For instance, rhythmic amplitude-
modulated sounds at a given frequency induce perceptual detect-
ability of subsequent targets that arrive at the same frequency
(Hickok et al., 2015). Furthermore, the prosodic syllable rate of
a lead-in sentence can affect the detection of subsequent target
syllables. After a fast-rate sentence, subjects overhear short target
syllables that they do perceive when the lead-in sentence is pre-
sented at a slow rate ( Dilley and Pitt, 2010; Bosker, 2017). Corpus
evidence further suggests that language prosody exhibits
sufficient rhythmicity for temporal predictions to emerge
(Inbar et al., 2020; Stehwien and Meyer, 2021).

In a recent set of behavioral studies, we found supporting evi-
dence that the facilitatory effect of prosodic context on temporal
prediction hinges specifically on the rhythm of prosody
(Lamekina andMeyer, 2022).We had participants listen to repet-
itive prosodic contours, followed by visual target sentences that
either matched or not in duration. We showed that a duration
match accelerated the processing of the target sentence, indicat-
ing that listeners predict sentence duration.

In the current study, utilizing the same paradigm in a mag-
netoencephalography (MEG) experiment, we report that the
behavioral prediction benefit of rhythmic prosodic contexts
is driven by brain activity that resonates with such rhythm.
Prior work has reported narrow-band electrophysiological
activity to tune to rhythmic stimuli and thereby optimize the
processing of upcoming input (Lakatos et al., 2008;
Schroeder and Lakatos, 2009; Henry and Obleser, 2012).
Specifically, activity in the delta range (<4 Hz) triggers auditory
temporal duration predictions through an electrophysiological
mechanism termed entrainment, by which the brain inherits a
stimulation frequency to persist after stimulus offset (Stefanics
et al., 2010; Breska and Deouell, 2017; Herbst et al., 2022). This
mechanism could also potentially affect the processing of upcom-
ing language stimuli. In the domain of speech and language, delta-
band activity is known to synchronize with prosody (Luo and
Poeppel, 2007; Bourguignon et al., 2013), but predictive functions
have not been reported.

To investigate whether delta-band prosodic entrainment sub-
serves sustained temporal predictions during subsequent sen-
tence processing, we designed an MEG study that combined an
initial repetitive prosodic rhythm (entrainment phase) with a
subsequent visual sentence presentation (target phase; Fig. 1A).
The visual modality for the target phase was chosen in order to
avoid confounding prosodic characteristics in auditory target sti-
muli. Similar cross-modal paradigms have been successfully
implemented in previous studies (Steinhauer and Friederici,
2001), which showed that a stable effect is also obtained across
modalities. Our experiment employed prosodic contours that
either matched or mismatched the duration of a subsequent
visual target sentence. Our behavioral results (Lamekina and
Meyer, 2022) showed that a duration match is indeed associated
with a behavioral benefit. On the neural level, we expected this
effect to emerge due to rhythmic prosodic entrainment. That
is, we first hypothesized that delta-band activity would synchro-
nize with the modulation frequency of the contours. Second, we
expected that brain activity at the modulation frequency would
still be detectable during the processing of the visual target sen-
tence. Third, we expected an omission event-related field (ERF)
response when the duration of the target sentence mismatched
the duration of the entraining contours (Scharinger et al., 2017;
Ragazzoni et al., 2019).

Materials and Methods
Participants
We conducted the experiment on 40 participants (German native speak-
ers; right-handed; 19 females; age range, 18–35 years; mean age = 28
years; SD = 4 years). The MEG data was recorded from different partic-
ipants and in a separate session from the preceding behavioral study with
a similar paradigm (Lamekina and Meyer, 2022). Five participants were
further excluded from the analysis due to noise in the MEG; the resulting
sample was 35 subjects. The participants had normal or corrected-
to-normal vision and no reported history of neurological or hearing dis-
orders. Participation was reimbursed with € 12 per hour. All subjects
were naive to the purpose of the study. Written informed consent was
obtained prior to the experiment. The study conformed to the guidelines
of the Declaration of Helsinki and was approved by the local ethics com-
mittee of the University of Leipzig, Germany (approval no. 060/17-ek).

Experimental design and statistical analysis
Stimuli and paradigm
In order to investigate the potential influence of prosodic entrainment on
subsequent sentence comprehension, the trials of our experiment com-
bined an initial prosodic rhythm with a subsequent visual target sen-
tence. This prosodic contour always belonged to one of the conditions
—SLOW or FAST—characterized by different lengths. Importantly,
although the main manipulation for the contours was the duration
change, the contours were repeated three times, resulting in three cycles
with a period different for every condition. This additional manipulation
was introduced in order to induce stimuli rhythmicity and an electro-
physiological brain response at the same frequency. Contour repetitions
had pauses of 160 ms in between. This duration of the pause has

Figure 1. Paradigm and procedure. A, Paradigm. Prosodic contour repeated three times to induce entrainment, followed by time-matched rapid serial visual presentation of the target
sentence. FAST entrainment facilitates comprehension of SHORT sentences, and SLOW entrainment facilitates comprehension of LONG sentences (Lamekina and Meyer, 2022).
B, Procedure. The participants first listened to the audio contour. Then the sentence was presented word by word. In 75% of the trials, a comprehension question followed.
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previously been shown to be sufficient in eliciting entrainment to pro-
sodic stimuli (Ghitza, 2017). Together with the pause, one cycle of
SLOW contour lasted for 1.73 s, corresponding to a frequency of approx-
imately 0.6 Hz. One cycle of the FAST contour together with the pause
lasted for 1.1 s, corresponding to 0.9 Hz. An additional pause matching
the difference in duration between the FAST and SLOW contours was
added before the FAST contour to equalize duration across conditions.

Prosodic contour exposure was followed by a visual word-by-word
presentation of a target sentence. Critically, the presentation of the visual
words was adjusted to contour duration, whereby the word presentation
rate was calculated from the same auditory sentences from which the
contour was extracted. Target visual sentences were either LONG or
SHORT. The LONG sentences had an exact duration of 1.884 s
(314 ms × 6 words), and the SHORT sentences had an exact length of
1.57 s (314 ms × 5 words). The presentation of sentences, therefore, cor-
responded in timing either to the SLOW contour without pause (five
words) or to the FAST contour without pause (6 = 3 + 3 words; compare
Fig. 1).

After a sentence presentation and a delay, some trials were followed
by comprehension questions (see below, Procedure). Stimuli and proce-
dure were adapted from Experiment 1 in our previous behavioral study
on prosodic entrainment (Lamekina and Meyer, 2022). Therefore, in the
following paragraphs, we reiterate the description of the stimulus mate-
rial used in the previous study.

For examples of target sentences, see below:

(1). LONG: Max sieht Tom und Karl lacht.
“Max sees Tom and Karl laughs.”

(2). SHORT: Max sieht Tom und Karl.
“Max sees Tom and Karl.”

For sentence construction, we used 32 monosyllabic first names of
3–6 characters to balance the word-by-word presentation (New et al.,
2006). Noun frequencies were normally distributed (Heister et al.,
2011). Since male and female first names differ in length, we used male
first names only. We also selected 75 transitive and 75 intransitive
German verbs in the third-person singular present tense. The length
was matched (1–2 syllables, 5–8 characters). Verb frequencies were
also normally distributed. Pairs of transitive and intransitive verbs
were made based on semantic fit (e.g., expect–come, wake up–sleep).
A combination of verb pairs and names yielded 6,000 sentences. A differ-
ent name triplet was used for each of these. Name triplets were selected to
not contain similar-sounding names (e.g., Frank and Franz).

Prosodic contours of two different rates were presented before the
target sentences. Contours were made by averaging the pitch tracks of
the visual sentences, which were stripped off from synthetic recordings
(Oord et al., 2016) in Praat (Boersma and van Heuven, 2001). We
used a female voice (minimum pitch, 116 Hz; maximum pitch,
267 Hz; average pitch, 191.5 Hz) for its broad pitch range and high var-
iability. The two entrainment rates were SLOW (based on the 3,000
five-word SHORT sentences; e.g., Max sieht Tom und Karl) and FAST,
based on 3,000 additional partial three-word sentences (e.g., Max sieht
Tom).

For averaging, contour durations were adjusted to the average dura-
tion of the respective sentence recordings (SLOW, 1,570 ms; FAST,
942 ms). The contours within each condition had an identical duration
in order to increase the signal-to-noise ratio (SNR). For the purpose of
our experiment, the contours needed to be delexicalized, i.e., stripped
off any lexical content/acoustic fine structure, so that only prosodic char-
acteristics remain. To achieve this aim, the Prosody Unveiling through
Restricted Representation (PURR) method was used (Sonntag and
Portele, 1998). This pipeline was recommended in previous studies for
constructing a delexicalized prosodic contour (Steinhauer and
Friederici, 2001). The method involves extracting the pitch values from
the original contours and constructing a sound by adding a sine wave
at a pitch, its second harmonic of ¼ of the amplitude, and its third har-
monic of 1/16 of the amplitude (suggested by Klasmeyer, 1997).

Therefore, out of the original spectral characteristics of the speech signal,
only the pitch modulations are retained, which permits to disentangling
of prosodic modulations from other speech components. The prosodic
pitch has proved to provide a substantial contribution to entrainment,
separately from other acoustic and phonetic features (Teoh et al.,
2019). PURR has been tested extensively and compared with other meth-
ods, proving over a variety of experiments to have the best functionality
and acceptability (listeners recognizing the signal as coming from natural
human speech) for speech delexicalisation (M. Meyer et al., 2002; Kotz
et al., 2003; Pannekamp et al., 2005). Contours were further normalized
to 65 dB and lowered in pitch by 55 Hz to ensure a comfortable hearing
level. The average word duration for timed visual presentation calculated
from the synthesized contour length was 314 ms.

The 6,000 sentences and contours were combined into 20 experimen-
tal lists of 300 trials each. Within the list, every verb pair was used four
times, once within each condition (i.e., SHORT–FAST, SHORT–
SLOW, LONG–FAST, and LONG–SLOW). Pairs and conditions did
not repeat across subsequent trials. We disallowed adjacent name triplets
with identical or similar names. Identical triplets did not repeat within
the list.

Procedure
Each trial started with a visual fixation cross and auditory presentation of
one of the two prosodic contours, repeated three times (Fig. 1B). After a
contour, a target sentence (either SHORT or LONG) was presented word
by word. The words were shown in a rapid serial visual presentation
(RSVP; Young, 1984). Word presentation rate was identical across con-
ditions (314 ms/word); critically, it was adjusted to contour duration to
allow for assessing prosodic entrainment. In contrast to our behavioral
study (Lamekina and Meyer, 2022), we adapted the procedure to better
suit the purposes of the current experiment: the final words of the sen-
tence were no longer self-paced, that is, RSVP was used for all words
of the sentence. This was done to avoid muscle artifacts associated
with the button presses. It would also be worthwhile to note that single
words could induce their own neural responses in the target phase at a
frequency of ∼3 Hz; however, this doesn’t match our frequencies of
interest (0.6 and 0.9 Hz) and, in our view, presents no obstacles or inter-
est for further analysis.

After visual sentence presentation and a jittered delay of 500+
0–250 ms, comprehension questions were presented in 75% of the trials.
To avoid strategy buildup, questions requiring a “yes” and a “no” answer
were both included for each condition (see Lamekina and Meyer, 2022
for details). Both entrainment conditions were matched on the types of
questions and the amount of correct “yes” and “no” answers. The
“yes/no” button assignment was matched across the participants.
There was a response timeout of 2,000 ms. In case of timeout, a screen
stating “Please answer faster” appeared, and the experiment advanced
to the next trial. The participants were instructed to listen to the audio
contour, read the sentences presented word by word, and then answer
a comprehension question after some trials. The 300 trials of the
experiment ran in five blocks, with self-regulated pauses in between
(every block took approximately 10 min). The whole experiment lasted
approximately 60–70 min, depending on the duration of the pauses.

Data recording and preprocessing
MEG recording. The experiment was conducted in an electromag-

netically shielded room in a single session. Stimuli were presented using
the Presentation software (Neurobehavioral Systems). The participants
heard the prosodic contours through air-conduction earplugs
(ER3-14A/B, Etymotic Research) connected via a 50 cm plastic tube to
piezo phones (TIP-300, Nicolet Biomedical). Visual stimuli were back-
projected on a semitransparent screen from a projector located outside
of the magnetic shielding room (Panasonic PT-D7700E, Matsushita
Electric Industrial). The screen was located ∼90 cm from each partici-
pant. MEG signals were measured at a sampling rate of 1,000 Hz within
a passband of 0–330 Hz from 306 sensors, including 102 magnetometers
and 204 gradiometers (Vectorview, Elekta Neuromag Oy). The head
position inside the helmet was continuously monitored using five head-
tracking coils.
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MEG preprocessing. Each block of the data was separately corrected
for head movements and external noise with the signal space separation
(SSS) method (Taulu et al., 2005) via the MaxFilter software (MaxFilter
Version 2.2.15, Elekta Oy) utilizing spherical functions up to eleventh
order for the head field model and up to the second order for the envi-
ronmental field model. Movements were compensated using a 500 ms
window while forwarding with steps of 250 ms. The temporal correction
was computed using a 10 s time window; correlations higher than 0.98
between inside and outside field components were projected out. Line
frequency was set to 50 Hz. Further analyses were conducted in
MATLAB (The MathWorks) via the FieldTrip toolbox (Oostenveld
et al., 2011). Since previous research has shown that results obtained
from different types of MEG sensors after SSS are highly correlated
(Garcés et al., 2017), we restricted the analysis to magnetometers only.
The data were first low-pass filtered at 90 Hz [one-pass, zero-phase–shift
finite impulse response filter with windowed sinc, Kaiser window],
detrended, and demeaned. Line noise (50 Hz) and its harmonics were
removed from the signal using ZapLine (de Cheveigné, 2020). Noisy
channels were identified semiautomatically: Candidates in every block
were chosen when the maximum absolute value in the channel exceeded
a threshold of 6 pT; those candidates were further confirmed by visual
inspection. We excluded five participants who had >10% of noisy chan-
nels; all further analyses were conducted on 35 subjects. In this final sam-
ple, the mean number of removed channels per subject was 2 out of 102
channels (SD= 2). After this procedure, the data were downsampled to
250 Hz and segmented into epochs, each comprising one contour and
the following visual sentence (ranging from 6,480 to 8,530 ms depending
on the four combinations of prosodic and sentence conditions). For
coherence, power, and ERF analyses, smaller segments were cut out sepa-
rately at later analysis stages (see below). Epoched data were further sub-
jected to artifact rejection. First, trials containing SQUID jump artifacts
were detected using z-transformation of the data at each time point.
These z-values were calculated from the ninth-order median-filtered
data. The z-value threshold of the jump detection was set to 75; trials
with z-values exceeding this threshold were excluded. A similar method
was used for the automatic detection of trials with muscle artifacts (fron-
totemporal channels; prior bandpass filtering from 110 to 124 Hz;
z-value threshold - 20). For this step, trials were zero-padded prior to
filtering to avoid edge artifacts. Finally, trials that contained time points
with values exceeding ±6 pT were excluded. The whole artifact detection
procedure led to the removal of a mean of four trials per block (SD= 4).
The preprocessed data were further subjected to independent compo-
nent analysis to remove ocular and cardiac artifacts. Artifact components
were identified based on visual inspection of component waveform and
topography. The MEG data were then reconstructed in the original sen-
sor space, excluding the artifactual components. Excluded channels were
then interpolated within the block using spline interpolation and a tem-
plate neighborhood structure for Elekta Neuromag Oy magnetometers.
Finally, the preprocessed data from the five blocks per subject were con-
catenated. Further analyses in sensor space were conducted on the sub-
ject level. In the source space, we ran the analysis on the block level due to
differences in MEG sensor positions and, therefore, different lead fields
for every recording block.

MRI preprocessing. In order to identify neural sources underlying the
prosodic entrainment mechanism, anatomically constrained source
localization was used. First, individual T1-weighted MRI images
obtained with a 3T MRI scanner (Magnetom Trio, Siemens AG) were
segmented using the FreeSurfer software (http://surfer.nmr.mgh.
harvard.edu/). For every participant, MEG data were coregistered with
the individual MRI scan via realignment of the fiducial (nasion, left,
and right preauricular) and digitized head surface points (acquired
with Polhemus FASTRAK 3D digitizer). To this end, we used a semiau-
tomated iterative procedure (Besl and McKay, 1992) implemented in the
MNE software (Massachusetts General Hospital; http://www.nmr.mgh.
harvard.edu/martinos/userInfo/data/). Next, using MNE, volume con-
ductors were constructed as boundary element models, resulting in indi-
vidual inner-skull surfaces comprising 2,562 vertices each. Based on the
volume conductors, individual head models were created in FieldTrip

using the single-shell model (Nolte, 2003). In parallel, source spaces con-
sisting of 10,242 vertices per hemisphere were constructed in MNE. To
arrive at results that are comparable between subjects in terms of neuro-
anatomical function and structure, every subject’s source space was par-
cellated into the regions of the HCPMMP1 atlas (Glasser et al., 2016); all
source space analyses were carried out on atlas-defined regions (Fischl
et al., 1999). Based on the individual head models, source spaces, and
MEG sensor positions in the current recording block, separate lead
fields for every subject and block were calculated in FieldTrip. Lead
fields were normalized in order to remove depth bias (Van Veen et al.,
1997).

Sensor space analysis
Frequency data extraction. Sensor space analyses were performed on

separate epochs for the entrainment and target phases to avoid spectral
leakage affecting the results. First, in order to assess neural tracking of
speech prosody at delta-band frequency in the entrainment phase, we
calculated pitch–MEG coherence at 0.6 Hz (rate of the SLOW contour)
and 0.9 Hz (rate of the FAST contour). For this analysis, we cut out
epochs starting from contour onset and corresponding to the duration
of entrainment (5.19 s for SLOW and 3.32 s for FAST). All epochs had
a high signal-to-noise ratio (SNR> 2). The F0 envelope was calculated
using Praat (Boersma and van Heuven, 2001). Since F0 is undefined
for pauses, those were interpolated using spline interpolation. Both the
speech envelope and the MEG data underwent a fast Fourier transform
(FFT) with a Hann window.

Since pitch–MEG coherence values were no longer accessible in the
target phase (due to the acoustic stimulus not being present), we followed
our hypothesis of sustained entrainment by quantifying power at the two
frequencies of interest for both conditions in this phase. To this end, we
segmented the data into epochs starting from visual sentence onset and
corresponding in duration to a single prosodic contour (1.73 s for SLOW
and 1.10 s for FAST). These time windows were chosen in accordance
with the hypothesis that cortical entrainment is sustained for the dura-
tion of at least one period at the respective frequency. Data from these
epochs were also subjected to a fast Fourier transform with a Hann win-
dow. For both phases, FFT was restricted to a frequency range of 0–3 Hz.
Because frequency comparison between 0.6 and 0.9 Hz required a reso-
lution of 0.1 Hz, we zero-padded each trial from every phase up to a
duration of 10 s. Coherence (entrainment phase) and power (target
phase) were then calculated for 31 bins with a step size of 0.1 Hz
(Rosenberg et al., 1989). Visual inspection suggested that both the coher-
ence and power spectra for the SLOW contour exhibited a peak at 0.6 Hz
(the coherence spectrum also showed a peak at 1.2 Hz, which is the har-
monics of 0.6 Hz), while the spectra for the FAST contour peaked at
0.9 Hz (Fig. 2). The power spectrum in sensor space, however, could
have been obscured by the presence of a 3 Hz rhythm induced by visual
words (see above, Procedure); yet the peaks around the target frequencies
are still clearly visible. The peaks become more clearly defined in the
spectrum on the source level (see below, Source space analysis).

Figure 2. Sensor-level spectra. A, Coherence spectrum in the entrainment phase. Distinct
peaks are visible: 0.9 Hz for the FAST condition and 0.6 and 1.2 (harmonics of 0.6) for the
SLOW condition. These peaks correspond to the respective occurrence frequencies of the con-
tours. The x-axis is limited to 1.5 Hz for display purposes. B, Power spectrum in the target
phase. Peaks visible around frequencies of interest: 0.6 and 0.9 Hz for the SLOW and FAST
conditions, respectively. The x-axis is adjusted to 3 Hz for display purposes.
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Statistical frequency analysis. Statistical analysis for coherence and
power was conducted on the two frequencies of interest (0.6 and
0.9 Hz) using nonparametric cluster-based permutation tests (Maris
and Oostenveld, 2007), with 5,000 permutations (α= 0.05, ≥3 channels
minimum cluster size). We used a template neighborhood structure
for Elekta Neuromag Oy magnetometers. Because implementation of a
two-way test is not straightforward in the cluster permutation frame-
work, we instead conducted multiple two-tailed whole-brain paired-
samples t tests: 0.6 versus 0.9 Hz in SLOW, 0.6 versus 0.9 Hz in FAST,
and a comparison of the difference 0.6 versus 0.9 Hz in SLOW to the
difference 0.6 versus 0.9 Hz in FAST.

ERF data extraction. In order to investigate our hypothesis on the
omission ERF in SHORT sentences after SLOW contours, we analyzed
only the SHORT sentences at the onset of the missing verb (which was
never presented) as a function of the two conditions of prior prosodic
contour—SLOW or FAST; that is, the physical stimulus that was present
during the measured ERFs was identical (i.e., no stimulus/omission),
only the prior prosodic context differed. Therefore, the ERF omission
effect could not be attributed to differences in the visual sentences them-
selves (as we used identical sentences) but rather to the differences in
prior prosodic conditions. To this aim, we epoched the data from
SHORT sentences in both prosodic conditions around the theoretical
onset of the verb (−250 ms preonset, 1 s postonset). Baseline correction
was applied, demeaning the waveforms with the 250 ms interval preced-
ing the onset of the verb. All epochs had a high signal-to-noise ratio
(SNR > 2). ERFs were calculated within the subject and within the
FAST and SLOW conditions and subjected to statistical analysis.

Statistical ERF analysis. For statistical analysis, we employed a
cluster-based permutation test on the time interval from 300 to 600 ms
after the onset of the missing verb (5,000 permutations, α= 0.05, ≥3
channels minimum cluster size). The time window was chosen based
on the previous literature regarding the timing of omission response
(Penney, 2004; Scharinger et al., 2017; Ragazzoni et al., 2019), as well
as on a general consideration that omission response can bear character-
istics of both P300 and P600 components (Nakano et al., 2014; cf.
Sassenhagen and Fiebach, 2019).

Source space analysis
Frequency data extraction. Source space analyses of coherence dur-

ing the entrainment phase and power during the target phase were per-
formed within block; reconstructions were averaged across blocks. To
estimate source-level tracking of prosody in the entrainment phase,
cross-spectral density (CSD) matrices were computed for all combina-
tions of MEG channels and the pitch track using fast Fourier transforms
(FFT) with Hann tapering; data were zero-padded to 20 s to achieve
sufficient frequency resolution. To source-localize individual conditions
while avoiding single-condition bias (Gross et al., 2001; van Vliet et al.,
2018), we employed common spatial filters. First, CSDmatrices were cal-
culated separately for each frequency of interest (0.6/0.9 Hz) but com-
mon to the SLOW and FAST conditions. Based on the two CSD
matrices, two spatial filters were then constructed using dynamic imag-
ing of coherent sources (Gross et al., 2001) within the subject’s volume
conductor and source space. To source-localize the individual condi-
tions, we then calculated individual CSDmatrices for each of the four fre-
quency–condition combinations in the entrainment phase. Next, we
applied each of the two spatial filters (0.6/0.9 Hz) to the SLOW and
FAST CSD matrices within that filter’s frequency. To additionally local-
ize the sustained entrainment effect from the sensor space power analy-
sis, source analysis of power in the target phase was conducted using an
analogous pipeline.

Subsequently, single-node coherence values (entrainment phase) and
power values (target phase) obtained from the beamformer analyses for
every frequency and condition were averaged across each area provided
by the individual atlas parcellation (360 areas, 180 per hemisphere).
Finally, the values were averaged across blocks for every participant
and subjected to statistical analysis on the a priori-defined regions of
interest (ROI).

The ROI pattern comprised four regions, based on previous litera-
ture. Firstly, we looked at the superior temporal gyrus (STG), known
for its involvement in prosodic (Bourguignon et al., 2013; M. Meyer
et al., 2002, 2004; Sammler et al., 2015) as well as general linguistic
(Friederici et al., 2003; Vigneau et al., 2006; Friederici, 2011) processing.
Secondly, we focused on the early auditory cortex (EAC or Heschl’s
gyrus), which is responsible for general acoustic processing and is known
to synchronize with speech prosody (M. Meyer et al., 2002, 2004).
Thirdly, we investigated the inferior frontal gyrus (IFG), closely related
to general linguistic (Friederici et al., 2006; Goucha and Friederici,
2015; Zaccarella and Friederici, 2015; Van der Burght et al., 2021 etc.),
prosodic (Frühholz and Grandjean, 2013; Sammler et al., 2015), and pre-
dictive (Jakuszeit et al., 2013; Matchin et al., 2017; Avenanti et al., 2018)
processing. Finally, we looked at frontal operculum (FOP), also known to
be involved in prosodic (Kotz et al., 2003; M. Meyer et al., 2002, 2004)
and predictive (Bubic et al., 2009) processing. For the complete list of
the atlas subareas that were combined into each respective ROI, please
refer to Extended Data Table 3-1.

For visual inspection of the coherence and power spectra in order to
confirm the corresponding peaks at the frequencies of interest, we addi-
tionally reiterated the same source analysis procedure for each frequency
in a limited spectrum of 0–3 Hz with a step of 0.1 Hz.

Statistical frequency analysis. To investigate statistical differences
among frequencies and conditions within the ROIs, we used a series of
linear mixed-effects (LME) regression models, implemented in R
(R Core Team, 2021) in the lme4 package (Bates et al., 2015). The source
reconstruction data was averaged across the abovementioned ROIs and
split by hemispheres. Two experimental phases were analyzed separately.
First, to investigate the entrainment effect in every phase, we ran separate
models on every ROI with CONDITION (SLOW vs FAST) and
FREQUENCY (0.6 vs 0.9) and their interaction as predictors. The depen-
dent variables were coherence (entrainment phase) and power (target
phase). Since the entrainment effect proved to be significant in all
ROIs (see below in Results), we further proceeded to estimate in which
area/hemisphere the effect was statistically higher. To this end, we
required a measure that permits to quantify the overall strength of
entrainment in a particular region. For this purpose, we adapted an index
termed “rate-specific response” (RSR) from previous literature (RSR; van
Bree et al., 2021). This index is calculated as follows:

RSR = (R0.6, SLOW − R0.6, FAST)+ (R0.9, FAST − R0.9, SLOW),

where R is the response measure (coherence or power) and 0.6/0.9 Hz
and SLOW/FAST are, respectively, the frequencies of interest and condi-
tions, for which this response measure is calculated. An RSR is larger
than 0 when electrophysiological brain activity follows the initial speech
rate for both conditions (stronger 0.6 Hz coherence/power for the SLOW
condition and stronger 0.9 Hz coherence/power for the FAST condi-
tion). That is, higher RSR indicates a brain response that is specific, or
entrained, to the stimulus rate. We subjected the resulting RSR indices
for every area and participant to new linear mixed-effects regression
models (a separate model for every phase), where the predictors were
now AREA, HEMISPHERE, and their interaction. The dependent vari-
ables were now corresponding RSR indices, reflecting the entrainment
strength.

For all models, predictors were coded using mean-centered effects
coding. Random intercepts were included for subjects. The models
were further subjected to an ANOVA analysis in order to determine
the significance of the predictors.

ERF data extraction. To source-localize the omission ERF effect, we
used the linear constrained minimum variance beamformer (Van Veen
et al., 1997). As the omission can only be studied for SHORT sentences,
we first constructed a covariance matrix for the SHORT sentences from
both entrainment conditions in the ERF time window (−250 to 1,000 ms
around the potential onset of the critical word; baseline corrected). This
matrix, together with individual volume conductors and lead fields, was
used to compute the common spatial filter for every block of data. Next,
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source reconstruction was performed separately for every condition
using the precomputed common filter and the individual covariance
matrix corresponding to the condition. The resulting single-voxel time
courses were averaged across every atlas area and further averaged
across blocks for every subject. From these subject-level time courses,
we then selected and averaged data across the time window of interest
(300–600 ms).

Statistical ERF analysis. Since we did not have a strict predefined
hypothesis for the source localization of the omission ERF, we did not
preselect any ROIs. Instead, for every atlas area, we performed a two-
tailed paired-sample t test in order to determine the differences between
SLOW and FAST entrainment conditions (α= 0.05). For illustration, we
report the ten regions across hemispheres where the difference between
conditions was maximally significant (p-values uncorrected).

Results
Delta-band activity synchronizes with speech prosody
Sensor space – frequency analysis
During the entrainment phase, analysis for the 0.6 versus 0.9 Hz
contrast in SLOW revealed a significant positive cluster (cluster-
sum t(34) = 258, cluster-level p < 0.001, corrected; peak at sensor
MEG2441, peak-level t(34) = 10, peak-level p < 0.001; for MEG
sensors layout, see Extended Data Fig. 2-1). This cluster com-
prised all but six sensors. In turn, the 0.6 versus 0.9 Hz contrast
in FAST revealed a significant negative cluster (cluster-sum
t(34) = −291, cluster-level p < 0.001, corrected; peak at sensor
MEG1421, peak-level t(34) =−11.91, peak-level p < 0.001). This
cluster also included all but nine sensors. Finally, the comparison
of difference maps (i.e., SLOW vs FAST) yielded a significant
positive cluster including all but one sensors (cluster-sum
t(34) = 396, cluster-level p < 0.001, corrected; peak at sensor

MEG2221, peak-level t(34) = 12.33, peak-level p < 0.001). Peak
sensors for SLOW and difference clusters were located in the
right parietal region, while the peak sensor for the FAST cluster
was located in the right frontotemporal region. Overall, these
results suggest that brain activity synchronizes with the rate of
the external prosodic contour (Fig. 3A).

Source space – frequency analysis
Source space analysis revealed a significant CONDITION–
FREQUENCY interaction and a main effect of CONDITION
in every ROI. Post hoc tests within every condition (0.6 vs 0.9
contrast) showed higher coherence at 0.6 Hz in the SLOW con-
dition and at 0.9 Hz in the FAST condition (Table 1; Fig. 4A).
These results show that brain synchronization to the pitch con-
tour was significant in all ROIs. To further quantify differences
in the entrainment effect between areas and hemispheres, we
computed the rate-specific response (RSR) index, which reflects
overall entrainment strength for every area (van Bree et al.,
2021). Using this index as an outcome, we ran a new linear
mixed-effects model with AREA, HEMISPHERE, and the
AREA–HEMISPHERE interaction as predictors. Our model
showed a significant AREA–HEMISPHERE interaction (F= 10.5,
df = 3,245, p< 0.001) and the main effects for both AREA
(F = 31.18, df = 3,245, p< 0.001) and HEMISPHERE (F=72.68,
df = 1,245, p< 0.001). Post hoc testing revealed that entrainment
was stronger in the right EAC (T= 5.25, df = 245, p< 0.001) and
STG (T=2.83, df = 245, p< 0.001). These results are consistent
with previous findings on prosodic tracking in right temporal
regions (Bourguignon et al., 2013).

Visual inspection of the coherence spectrum in the corre-
sponding ROIs (Fig. 5) confirms the coherence peaks at 0.6
and 1.2 Hz (harmonics of 0.6) for the SLOW condition and at

Figure 3. Sensor space results. A, Entrainment phase. Left: Coherence values, averaged over participants and sensors (mean ± standard error). Coherence at 0.6 Hz is higher in the SLOW
condition, while at 0.9 Hz, it is higher in the FAST condition. Right: Topographic distribution of coherence T-values of the cluster permutation tests. B, Target phase. Left: Power values, averaged
over participants and sensors (mean ± standard error). Power at 0.6 Hz is higher in the SLOW condition, while at 0.9 Hz, it is higher in the FAST condition. Right: Topographic distribution of
power T-values of the cluster permutation tests (scales adjusted for demonstrative purposes). For the MEG sensors layout, see Extended Data Figure 2-1.

Table 1. Source space statistics for coherence in the entrainment phase

FREQUENCYa CONDITIONa
FREQUENCY –
CONDITIONa

Post hoc t tests within a condition

SLOW FAST

F p F p F p T p T p

Left
EAC 0.008 0.92 6.18 <0.05 68 <0.001 6 <0.001 −5.86 <0.001
STG 0.05 0.82 5.44 <0.05 69 <0.001 5.7 <0.001 −5.79 <0.001
IFG 2.41 0.12 5.54 <0.05 34 <0.001 3.57 0.001 −4.32 <0.001
FOP 1.75 0.18 10 <0.05 47 <0.001 4.6 <0.001 −5.17 <0.001

Right
EAC 0.21 0.65 6.75 <0.05 163 <0.001 7.89 <0.001 −8.84 <0.001
STG 0.04 0.85 9.5 <0.05 203 <0.001 8.98 <0.001 −11 <0.001
IFG 2.16 0.15 10 <0.05 68 <0.001 5.42 <0.001 −5.85 <0.001
FOP <0.001 0.98 9.4 <0.05 110 <0.001 7.93 <0.001 −6.48 <0.001

aDegrees of freedom for all reported LME models were equal to 1 (numerator) and 105 (denominator).
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0.9 Hz for the FAST condition. The coherence values are higher
in the right STG and EAC, which corresponds to our statistical
analysis results.

Delta-band activity carriers the contextual rhythm into the
future
Sensor space – frequency analysis
During the target phase, sensor space statistics for the 0.6 versus
0.9 Hz contrast in SLOW revealed a significant positive cluster
with a fronto-centro-occipital topography, shifted to the right
(cluster-sum t(34) = 66, cluster-level p < 0.001, corrected; peak at
sensor MEG2641, peak-level t(34) = 5.18, peak-level p < 0.001;
Fig. 3B; for MEG sensors layout, see Extended Data Fig. 2-1).

In turn, the 0.6 versus 0.9 Hz contrast in FAST exposed a nega-
tive cluster (cluster-sum t(34) =−942, cluster-level p < 0.001, cor-
rected; peak at sensor MEG2621, peak-level t(34) =−18.58,
peak-level p < 0.001). Finally, the comparison of difference
maps (i.e., SLOW vs FAST) revealed a positive cluster (cluster-
sum t(34) = 706, cluster-level p < 0.001, corrected; peak at sensor
MEG1731, peak-level t(34) = 13.3, peak-level p < 0.001). The latter
two clusters comprised all sensors. Peak sensors for SLOW and
FAST clusters were located in the right temporal region, while
the peak sensor for the difference cluster was located in the left
parieto-occipital region. Taken together, sensor space results in
the target phase strongly suggest that entrainment to prosody
persists beyond stimulus offset.

Figure 4. Source space results. A, Entrainment phase. Bar plots indicate coherence values for ROIs (mean ± standard error) in the left and right hemispheres. The entrainment effect
(CONDITION–FREQUENCY interaction) was significant in all ROIs but higher in the right STG and EAC. B, Target phase. Bar plots indicate power values for ROIs (mean ± standard error) in
the left and right hemispheres. The entrainment effect (CONDITION–FREQUENCY interaction) was significant in all ROIs but higher in left EAC and FOP. For the complete list of the subareas
in each ROI, please refer to Extended Data Table 3-1.

Figure 5. Coherence spectrum in the source space in the entrainment phase for different ROIs. Distinct peaks are visible: 0.9 Hz for the FAST condition and 0.6 and 1.2 (harmonics of 0.6) for the
SLOW condition. These peaks correspond to the respective occurrence frequencies of the contours. The coherence values are higher in the right STG and EAC, in line with statistical analysis results.
The x-axis is limited to 1.5 Hz for display purposes.
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Source space – frequency analysis
Source-level analyses showed a CONDITION–FREQUENCY
interaction and a main effect of CONDITION for every ROI.
Post hoc t tests for frequencies within every condition (0.6 vs
0.9 contrast) revealed that power was significantly higher at
0.6 Hz in SLOW and at 0.9 Hz in FAST (Table 2; Fig. 4B).
Linear mixed-effects model for the differences between areas
and hemispheres revealed a main effect of AREA (F= 38.82,
df = 3,245, p < 0.001) and an AREA–HEMISPHERE interaction
(F= 13.76, df = 3,245, p < 0.001). Post hoc testing showed that
entrainment power was higher in the left EAC (T= 2.82,
df = 245, p= 0.005) and left FOP (T= 4.52, df = 245, p < 0.001).
This arrangement of source space activity is compatible with
our hypothesis, as frontal regions are known to be associated
with predictions and cognitive control (Alexander and Brown,

2018; Dürschmid et al., 2019). Our study further confirms
evidence from the literature concerning a trend for the left later-
alization of those functions (Jakuszeit et al., 2013; Matchin et al.,
2017; Avenanti et al., 2018).

Visual inspection of the power spectrum in the corresponding
ROIs (Fig. 6) confirms the power peaks at 0.6 Hz for the SLOW
condition and at 0.9 Hz for the FAST condition. The power val-
ues are higher in left FOP and EAC, which corresponds to our
statistical analysis results.

Falsified predictions are associated with an omission effect
Sensor space–ERF analysis
The ERF analysis showed a significant positive right centroparie-
tal cluster (cluster-sum t(34) = 23, cluster-level p< 0.001, corrected;
peak at sensor MEG2231, peak-level t(34) = 5.29, peak-level

Table 2. Source space statistics for power in the target phase

FREQUENCYa CONDITIONa
FREQUENCY–
CONDITIONa

Post hoc t tests within a condition

SLOW FAST

F p F p F p T p T p

Left
EAC 0.94 0.34 482 <0.001 43 <0.001 11 <0.001 −12 <0.001
STG 0.84 0.36 535 <0.001 39 <0.001 15 <0.001 −12 <0.001
IFG 1.93 0.17 552 <0.001 44 <0.001 13 <0.001 −11 <0.001
FOP 1.14 0.34 501 <0.001 38 <0.001 14 <0.001 −11 <0.001

Right
EAC 0.04 0.84 518 <0.001 35 <0.001 8.87 <0.001 −10 <0.001
STG 2.3 0.13 724 <0.001 51 <0.001 18 <0.001 −14 <0.001
IFG 1.99 0.16 449 <0.001 31 <0.001 12 <0.001 −14 <0.001
FOP 1 0.32 333 <0.001 24 <0.001 10 <0.001 −13 <0.001

aDegrees of freedom for all reported LME models were equal to 1 (numerator) and 105 (denominator).

Figure 6. Power spectrum in the source space in the target phase for different ROIs. Distinct peaks are visible: 0.9 Hz for the FAST condition and 0.6 for the SLOW condition. These peaks
correspond to the respective occurrence frequencies of the contours. The power values are higher in left FOP and EAC, in line with statistical analysis results.
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p < 0.001, corrected) and a significant neighboring negative clus-
ter (cluster-sum t(34) =−7.9, cluster-level p= 0.019, corrected;
peak at sensor MEG0221, peak-level t(34) =−3.57, peak-level
p = 0.001, corrected; Fig. 7B, left; for MEG sensors layout, see
Extended Data Fig. 2-1). Note that the polarity of the cluster in
ERF analysis is not informative about the direction of the effect.
In both clusters, the SLOW condition induced higher-amplitude
ERF waveforms than the FAST condition (Fig. 7B, right).
Therefore, we can infer that participants did indeed predict longer
sentences under the SLOW entrainment and the incongruent
condition caused an omission ERF effect.

Source space–ERF analysis
Source space analysis revealed multiple areas where the activa-
tion for the SLOW condition was significantly different (uncor-
rected) from the FAST condition; we here report 10 regions
with maximum differences in the later time window (Table 3).
The areas where the activation for the SLOW condition was sign-
ificantly higher than for the FAST condition (positive T-values)
include the temporo-parieto-occipital junction and a number
of frontal and premotor regions (Fig. 7B, middle). Overall, the
pattern of source-level activity suggests that entrainment origi-
nates in the right temporal cortices and is maintained in the
left frontal cortex, which generates temporal predictions; in
case those predictions are incongruent, an M300 ERF emerges
from a variety of cortical generators.

Additional analyses
Source space – frequency analysis
In addition to temporal prediction processing being associated
with IFG and FOP, previous literature has also demonstrated
the potential involvement of the motor cortex in temporal pre-
dictions. In particular, evidence suggests that temporal predic-
tions in the motor cortex, subserved by beta-band oscillations,
can upregulate auditory–motor interaction via a top-down phase
reset of the oscillations in the auditory cortex (Morillon and
Baillet, 2017; Keitel et al., 2018; Assaneo et al., 2021). These oscil-
lations are thought to function as an endogenous temporal con-
straint, facilitating bottom-up processing (Rimmele et al., 2018).
Furthermore, in the current paradigm, predictive processing as a
stage of decision-making in order to answer the comprehension
question could potentially involve motor preparation. In order to
investigate these hypotheses, we conducted a control analysis of
the entrainment effect in premotor (Brodmann area 6) and
motor (Brodmann area 4) areas (for the list of the atlas subareas,
please refer to Extended Data Table 3-1). The results demon-
strated significant entrainment in both areas and hemispheres
(Fig. 8).

Statistical analyses showed a CONDITION–FREQUENCY
interaction and a main effect of CONDITION for every ROI
(Table 4). Post hoc t tests for frequencies within every condition
(0.6 vs 0.9 contrast) also confirmed that power was significantly
higher at 0.6 Hz in SLOW and at 0.9 Hz in FAST, explaining the
interaction effect.

ERF analysis
In addition to later effects, prosodic processing has also been
demonstrated at very early stages (Tomasello et al., 2022).
In order to investigate whether those effects persist in the
target phase of prosodic entrainment, we conducted an addi-
tional ERF analysis in the time window of 0–120 ms after
the critical word onset on the same data as used for the M300
analysis. The results revealed significant differences in a
central positive cluster, with higher activation for the SLOW

Figure 7. ERF analysis. A, Earlier window (0–120 ms). Left: Topographical distribution of the ERF effect; cluster with significant differences highlighted. Right: Grand average ERF wave across
the cluster. SLOW condition is associated with increased ERF amplitude at the onset of missing verbs in SHORT sentences relative to the FAST condition. Time window of interest (0–120 ms)
marked in gray. Middle: Source space. The stronger red color indicates areas where the SLOW condition induced higher activation than FAST (Table 5), while the reverse is indicated by the
stronger blue color. B, Later window (300–600 ms). Left: Topographical distribution of omission ERF effect; clusters with significant differences highlighted (positive cluster, black; negative
cluster, white). Right: Grand average ERF waves across the clusters of sensors (left, positive cluster; right, negative cluster). For both clusters, the SLOW condition is associated with increased ERF
amplitude at the onset of missing verbs in SHORT sentences relative to the FAST condition. Time window of interest (300–600 ms) marked in gray. Middle, Source space. The stronger red color
indicates areas where the SLOW condition induced higher activation than FAST (Table 3), while the reverse is indicated by the stronger blue color.

Table 3. Regions with significant differences in the ERF 300–600 ms contrast
(source space)

T df p

Left
Area i6–8 (dorsolateral prefrontal cortex) 2.87 34 <0.05
Area 9m (medial prefrontal cortex) 2.67 34 <0.05
Area IFSa (inferior frontal cortex) 2.37 34 <0.05
Area p24 (medial prefrontal cortex) 2.32 34 <0.05
Area 47l (inferior frontal cortex) 2.29 34 <0.05
Area 8C (dorsolateral prefrontal cortex) 2.3 34 <0.05
Area PGs (inferior parietal cortex) −2.22 34 <0.05

Right
Temporo-parieto-occipital junction (Area 2) 3.07 34 <0.05
Frontal eye field 2.98 34 <0.05
Area i6–8 (dorsolateral prefrontal cortex) 2.48 34 <0.05

Figure 8. Source space results—entrainment in the motor cortex in the target phase. Bar
plots indicate power values (mean ± standard error) in the left and right hemispheres. The
entrainment effect (CONDITION–FREQUENCY interaction) was significant in both motor and
premotor regions (Brodmann areas 4 and 6).
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condition (Fig. 7A left). This effect can be interpreted as an
early omission response, akin to prosody expectation violation
(Paulmann et al., 2012; Kakouros et al., 2018) induced by
prosodic entrainment.

We further attempted a source reconstruction on the early
ERF response (Fig. 7A, middle). We report 10 regions where
the ERF difference between the SLOW and FAST conditions
was maximal (uncorrected; Table 5). The pattern appears quite
similar to the source pattern obtained for the 300–600 ms
omission ERF (Fig. 7B, middle), with higher activation for the
SLOW condition in frontal areas on the left and temporo-
parieto-occipital junction (TPOJ) on the right. The TPOJ activa-
tion could potentially be related to visual omission effects (the
omitted word was expected to be presented in a visual mode).
However, we here need to note that source reconstruction of
ERF with beamforming can potentially be problematic, since
this approach underestimates highly covariant sources, and
does not consider the degree to which estimated source signals
explain observed sensor signals (Kuznetsova et al., 2021;
O’Reilly et al., 2023). The current results, therefore, should be
treated with caution.

Discussion
Our results suggest that speech prosody subserves temporal pre-
dictions in language via electrophysiological inheritance of con-
textual temporal patterns. This converges with recent evidence
for similar mechanisms supporting temporal predictions in the
domain of auditory perception more generally (Stefanics et al.,
2010; Breska and Deouell, 2017; Herbst et al., 2022). The facilita-
tory effect of delta-band entrainment on nonlinguistic auditory
perception (e.g., tone sequences) has been shown earlier
(Henry and Obleser, 2012; Hickok et al., 2015). While in the

preceding studies, the effect was demonstrated for auditory tones,
we here report delta-band entrainment in the context of language
processing. To our knowledge, earlier reports of behaviorally rel-
evant sustained linguistic entrainment have been published only
for higher frequencies (Kösem et al., 2018; van Bree et al., 2021).
The setup of the current study allows us to adopt a strong inter-
pretation in terms of entrainment proper (Rimmele et al., 2018;
Obleser and Kayser, 2019; L. Meyer et al., 2020a,b)—that is, elec-
trophysiological neural activity does not just mimic stimulation
frequencies at the time of stimulation, but maintains these for
a subsequent period (Stefanics et al., 2010; Kösem et al., 2018;
van Bree et al., 2021).

The present findings stress the necessity of incorporating
mechanisms of temporal prediction into current neurobiological,
psycholinguistic, and computational models of human speech
and language (Friederici and Alter, 2004; Hickok and Poeppel,
2007; Alexander and Brown, 2018; Ten Oever and Martin,
2021). Our source space results are consistent with the notion
that such temporal predictions operationalize auditory–motor
interaction (Keitel et al., 2018; Assaneo et al., 2021; Kern et al.,
2021; Lubinus et al., 2023). Recent studies have proposed models
where temporal predictions operate through top-down phase
resetting of electrophysiological activity mediated by the motor
system or higher-order language—or attention-related systems
(for a review, see Rimmele et al., 2018). This mechanism facili-
tates bottom-up perceptual processing, while intrinsic temporal
characteristics of neural activity might serve as intrinsic temporal
constraints. Furthermore, motor cortices have also been related
to predictive processing on a broader scale (Grisoni et al., 2017,
2021). Interestingly, it has been shown that their engagement is
dependent on the specific nature of the predictions being made
—for instance, frontocentral-sensorimotor activation for tool-
related words (Grisoni et al., 2021), dorsolateral hand motor acti-
vation for hand-related words (e.g., “write”), and ventral motor
activation for face-related words (“talk”; Grisoni et al., 2017).
Our additional analysis confirmed a sustained entrainment
effect in the motor cortices.

Moreover, studies on lateralization of predictive processes
indicate that bottom-up auditory processing is primarily associ-
ated with auditory cortices in the right hemisphere, while top-
down control tends to be left-lateralized (Keitel et al., 2018;
Assaneo et al., 2019). This is in line with our results. In the
entrainment phase, right STG and EAC showed significantly
higher coherence with the pitch contour. These findings are
also consistent with the assumed neural substrate of prosody
(M. Meyer et al., 2004; Bourguignon et al., 2013; Sammler
et al., 2015). In the target phase, however, activity at the condi-
tioning frequency moved to the left frontal cortices, involved in
temporal prediction in language (Jakuszeit et al., 2013; Matchin

Table 4. Source space statistics for power in the target phase (motor and premotor areas)

FREQUENCYa CONDITIONa
FREQUENCY–
CONDITIONa

Post hoc t tests within a condition

SLOW FAST

F p F p F p T p T p

Left
BA4 4.48 <0.05 732 <0.001 62 <0.001 16.8 <0.001 −11.57 <0.001
BA6 5.77 <0.05 751 <0.001 64 <0.001 14.19 <0.001 −12.07 <0.001

Right
BA4 4.26 <0.05 467 <0.001 41 <0.001 13.05 <0.001 −13.65 <0.001
BA6 3.03 0.085 453 <0.001 37 <0.001 12.86 <0.001 −13.5 <0.001

aDegrees of freedom for all reported LME models were equal to 1 (numerator) and 105 (denominator).

Table 5. Regions with significant differences in the ERF 0–120 ms contrast (source
space)

T df p

Left
Area 9p (dorsolateral prefrontal cortex) 2.73 34 <0.05
Area PeEc (medial temporal cortex) −2.38 34 <0.05
Area 8BL (dorsolateral prefrontal cortex) 2.2 34 <0.05
Area 8BM (medial prefrontal cortex) 2.13 34 <0.05

Right
Middle temporal cortex 2.88 34 <0.05
Area AAIC (anterior insular cortex) −2.71 34 <0.05
Area Pir (anterior insular cortex) −2.61 34 <0.05
Area V7 (visual cortex) −2.22 34 <0.05
Temporo-parieto-occipital junction (Area 2) 2.11 34 <0.05
Posterior orbitofrontal complex −1.98 34 <0.05
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et al., 2017). Left FOP activity is also generally known to corre-
spond to syntactic processing or prediction (Friederici et al.,
2003, 2006; Bubic et al., 2009), which in our paradigm is engaged
by prior entrainment. Sustained entrainment in frontal areas
could also potentially reflect the broader engagement of the fron-
tal cortex in decision-making regarding the experimental task.
Temporal prediction could be the first and integral stage of
decision-making processing, facilitating the upcoming sentence
analysis and, therefore, forming preliminary answers to the com-
prehension question.

Our interpretation of the omission response in terms of a tem-
poral prediction error is in line with previous reports from audi-
tory perception (Stefanics et al., 2010; Herbst et al., 2022), where
temporal predictions carried by delta-band activity modulated
the amplitude of the P300 component on target tones. The cur-
rent ERF effect is likely an omitted stimulus potential, bearing
characteristics of both P300 and P600 components (or M300/
M600, as their MEG counterparts; Bullock et al., 1994;
Karamürsel and Bullock, 2000; Penney, 2004; Nakano et al.,
2014; Ragazzoni et al., 2019). This interpretation conforms to
the idea that the P600 component in the language domain is a
member of the greater P300 family (Sassenhagen and Fiebach,
2019). The widely distributed array of underlying cortical sources
observed here is in line with prior reconstructions of the P300,
which include diverse distributed generators (Brázdil et al.,
2005; Linden, 2005; Bocquillon et al., 2011; Ragazzoni et al.,
2019). The temporo-parieto-occipital junction as a generator of
P300 was previously reported in multiple deviating stimuli stud-
ies, together with dorsolateral prefrontal areas (Daffner et al.,
2003; Volpe et al., 2007; Strobel et al., 2008). Moreover, a study
on semantic predictions has also previously reported
temporo-parieto-occipital activation (Grisoni et al., 2021). A
visual oddball study (Bledowski et al., 2004) also reports activa-
tion in the frontal eye field, similar to our results. These findings
are in line with our conclusions, since, in our paradigm, the stim-
ulation in the target phase was in the visual modality. Moreover,
multiple omitted-target studies also find activation in the inferior
frontal cortex (Bledowski et al., 2004; Volpe et al., 2007;
Ragazzoni et al., 2019), which is corroborated by our results.
This evidence further strengthens our claim of the left frontal
cortex involvement in predictive processing (Jakuszeit et al.,
2013; Matchin et al., 2017).

Our complementary analysis also revealed a significant earlier
omission response in the time window of 0–120 ms. This could
be potentially related to prosodic entrainment inducing early
omission effects, similar to prosody expectation violations
(Paulmann et al., 2012; Kakouros et al., 2018; Tomasello et al.,
2022). The source localization pattern of this earlier ERF resem-
bles that of theM300/M600 omission effect; however, it is impor-
tant to note that source localization procedures for ERFs should
be regarded with caution (Kuznetsova et al., 2021; O’Reilly et al.,
2023).

The current study bears important implications for the gene-
ral conceptualization of the neurobiological underpinnings of
interpersonal communication. Prosodic entrainment could
potentially be used as a facilitatory mechanism in dialog, enhanc-
ing mutual comprehension (Edlund, 2011; Breen et al., 2016b;
Lehnert-LeHouillier et al., 2020). In line with the implicit pros-
ody account (Fodor, 2002; Breen, 2014; Perrone-Bertolotti
et al., 2014), in the current experiment, based on prior prosodic
entrainment listeners would silently generate the same prosodic
structures during the reading of subsequent sentences, which
would influence their temporal prediction regarding the length

of the sentence. This mechanism can be applied to communica-
tion in a dialog: the listener could potentially entrain to the
speaker’s prosody, generating silent prosodic structures and
forming temporal predictions as to what the speaker is going
to say next.

These findings could be incorporated into broader models
of alignment in dialog (Pickering and Garrod, 2004, 2021).
This account postulates that interlocutors in a dialog utilize lin-
guistic representations that automatically align on many levels,
facilitating production and comprehension processes. In prin-
ciple, this general mechanism could operate over various
acoustic features, including rate, intensity, voice quality, and
pitch (Brennan, 1996; Teoh et al., 2019). These features need
to exhibit sufficient rhythmicity to facilitate conversational
entrainment. Although ubiquitous rhythmicity is not charac-
teristic of human speech, previous research has demonstrated
that speech is rhythmic enough on the prosodic level to trigger
entrainment in dialog (Inbar et al., 2020; Stehwien and Meyer,
2021); furthermore, rhythmic intonational units in speech
evoke a neural response (Inbar et al., 2023). Further research
quantifying the rhythmicity of naturalistic speech and investi-
gating the differences in prosodic entrainment for rhythmic
and nonrhythmic parts could provide additional evidence for
this claim.

Work on interpersonal communication also supports the
notion that prosody is involved in conversational entrainment
(Levitan and Hirschberg, 2011; Levitan et al., 2012; Reichel
et al., 2018). It has previously been demonstrated that prosody
conveys communicative intentions in speech irrespective of emo-
tion (Hellbernd and Sammler, 2016). Neurobiologically these
effects have been localized to the auditory ventral stream and
articulatory–motor regions (Hellbernd and Sammler, 2018;
Tomasello et al., 2022). On a more general level, it has been pro-
posed that human brains synchronize communicative activities
through an oscillatory signal (Wilson and Wilson, 2005; Hasson
et al., 2012). Furthermore, it has not only been found that the lis-
tener’s brain activity is spatially and temporally coupled with the
speaker’s but that the listener’s frontal areas also exhibit predictive
anticipatory responses during dialog (Stephens et al., 2010). Our
present results, showing prosodic entrainment as a mechanism of
temporal predictions in listening comprehension, could therefore
extend to scenarios in dialog. Altogether, prosodic entrainment
appears to play an important role in enhancing communication
processes via temporal prediction.

The focus of the current study has been the investigation of
purely prosodic entrainment. However, it is pertinent to note
that potentially similar effects could be evoked by presenting
nonprosodic stimuli of fixed rhythmic duration (e.g., acoustic sti-
muli with a flat pitch or visual stimulation). While the timing of
the experiment and the necessity of a substantial number of trials
did not permit us to include a control nonprosodic condition in
the current paradigm, future work would be beneficial to distin-
guish between prosodic versus merely acoustic/visual entrain-
ment effects.
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