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Abstract 

A fundamental analysis task for single-cell transcriptomics data is clustering with subsequent visualization of cell clusters. The genes responsible 
for the clustering are only inferred in a subsequent step. Clustering cells and genes together would be the remit of biclustering algorithms, which 
are often bogged down by the size of single-cell data. Here we present ‘Correspondence Analysis based Biclustering on Networks’ (CAbiNet) 
for joint clustering and visualization of single-cell RNA-sequencing data. CAbiNet performs efficient co-clustering of cells and their respective 
marker genes and jointly visualizes the biclusters in a non-linear embedding for easy and interactive visual exploration of the data. 
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isualization and clustering of cells are key tasks in the anal-
sis of single-cell transcriptomics data. The genes common to
he cells in a cluster and thus contributing as possible marker
enes to the definition of a cell type are determined in subse-
uent differential expression analysis. The expectation is that
iven an overall similarity among cells in a cluster, these cells
ill share the relevant marker genes without a clustering pro-

ram paying particular attention to this goal. Here, we want
o remedy this problem by, from the beginning of the anal-
sis, clustering and visualizing cells and genes jointly. Such a
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joint visualization of cells and genes together with their group-
ing into joint clusters aids in determination of marker genes,
in interpretation of clusters and in assessment of clustering
quality. 

Principal component analysis (PCA) or the lesser known
correspondence analysis (CA) represents given data in a high-
dimensional space ( 1 ). A projection into, e.g. a plane may
then help the visualization, but for complex data sacrifices too
much information. Instead, it has become a common prac-
tice in single-cell RNA sequencing (scRNA-seq) to apply non-
linear embedding methods like t-SNE ( 2 ) or UMAP ( 3 ) for
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visualization purposes. Using CA as a starting point rather
than PCA has the advantage that CA creates a ‘biplot’, which
is a joint, possibly high-dimensional, representation of both
cells and genes. In this representation, proximity in space be-
tween a cell cluster and a gene reflects an association of the
gene to this cell cluster. This feature makes this space partic-
ularly suited for joint clustering of cells and genes, combined
with visualization by non-linear embedding of cells and genes.

Joint clustering of cells and genes is reminiscent of the task
of biclustering for which algorithms have been proposed ( 4–
13 ). Most of them, however, are not scalable and struggle with
the increasing size of scRNA-seq data sets that are being gener-
ated today ( 11 ,12 ). Furthermore, biclustering toolkits do not
include a visualization other than heatmaps which, on the
order of magnitude of single cell data, are difficult to inter-
pret. With respect to the visualization aspect, Chen et al. put
forward SIMBA ( 14 ), which is a graph embedding tool that
simultaneously embeds cells and features, although without
clustering. The method we put forward is designed to remedy
these issues. 

We here present ‘Correspondence Analysis based Biclus-
tering on Networks’ (CAbiNet) to produce a joint visualiza-
tion and co-clustering of cells and genes in a planar embed-
ding. CAbiNet employs CA to build a graph in which the
nodes are comprised of both cells and genes. Then a clus-
tering algorithm determines the cell–gene clusters from the
graph. Finally, the cells, genes and the clustering results are
visualized in a 2D-embedding. We call such an embedding a
biMAP. Due to the geometry of correspondence analysis and
cell–gene graph construction, the biMAP displays a cell clus-
ter’s marker genes within or near the cell cluster, allowing
for easy interpretation. Cells and genes from the same clus-
ter are colored identically in the biMAP. CAbiNet is imple-
mented as an R package and freely available to download
from GitHub ( https:// github.com/ VingronLab/ CAbiNet ). It is
compatible with popular scRNA-seq analysis pipelines such
as those from Bioconductor. 

We will give an outline of the CAbiNet algorithm with
the full details presented in the Materials and Methods. Its
utility for faithfully embedding cells and genes into 2D will
be demonstrated on three different scRNA-seq and spatial
transcriptomic data sets in the Results. We will show how
the CAbiNet-generated biMAP can be used to accelerate cell
type annotation and discover cell-types. We comprehensively
benchmarked CAbiNet on simulated as well as on expert an-
notated experimental data. 

Materials and methods 

Data pre-processing 

Before applying CAbiNet to single-cell RNA-seq data, we
recommend to pre-process the data. Removing unexpressed
genes or cells with too many dropouts not only speeds up
the computation but can also improve the clustering results.
If not mentioned otherwise, we processed real and simulated
scRNA-seq data as follows: first, outlier cells were filtered
with the functions perCellQCMetrics and perCellQC-
Filters from the Bioconductor tool scuttle ( 15 ) based
on the number of detected genes, total read counts and the
percentage of reads from mitochondrial genes. They were then
normalized by running quickCluster , computeSumFac-
tors and finally logNormCounts from the Bioconductor
package scran ( 16 ) with default parameters. Additionally,
all genes that are expressed in less than 1% of all cells were 
discarded. 

Correspondence analysis 

The pre-processed m × n count matrix X with n cells and 

m genes is firstly transformed into a contingency table P by 
dividing each entry by n ++ , the overall sum of matrix entries. 

P = 

1 

n ++ 

X. (1) 

Each entry p ij of P represents the observed probability a gene i 
is expressed in cell j . The row-sums � r = { r i } and column-sums 
� c = { c j } of P each add up to 1, where 

r i = 

n ∑ 

j=1 

p i j , c j = 

m ∑ 

i =1 

p i j . (2) 

Thus one can define the expectation of an entry e ij as the prod- 
uct of the i-th row-sum r i and j-th column-sum c j in P , that is 
e ij = r i c j . Finally, one can calculate the matrix S of Pearson 

residuals as 

s i j = 

p i j − e i j √ 

e i j 
, (3) 

which describes the difference between observed and expected 

probabilities. 
Applying singular value decomposition (SVD), the matrix S 

gets decomposed as 

S = UD αV 

T , (4) 

where D α is a diagonal matrix with singular values αk as the 
elements. The eigenvalue λk = α2 

k is called inertia in CA. Let ˜ c 
be the vector containing entries 1 √ 

c i 
and 

˜ r the vector made up 

of 1 √ 

r i 
. The standard coordinates of a single cell i are defined 

as γi = 

˜ c v i , where v i is the i th row in the (dimension reduced) 
singular vector matrix V . Similarly, the standard coordinates 
of a gene j are defined as φ j = 

˜ r u j , where u j is the j th row of
U . Calling the matrix with rows γi � and the matrix of rows 
φj �, this can be written in matrix notation: 

� = 

˜ c V , 

� = 

˜ r U . 
(5) 

Scaling the standard coordinates by multiplying with the 
respective singular values αi gives the principal coordinates.
Thus, the principal coordinates of cell i and gene j are defined 

as g i = αi γi and f j = αj φj . Again summarizing into matrices 
G and F one obtains 

G = �D α, 

F = �D α. 
(6) 

According to the theory of correspondence analysis ( 1 ), Eu- 
clidean distances in the new space of principal coordinates 
equal χ2 -distances among the untransformed data. This prop- 
erty inspires us to use the principal coordinates to calculate 
gene distances and cell distances. 

It is the hallmark of correspondence analysis that one 
can overlay these two spaces and merge the gene and cell 
data points. The technical prerequisite is that the gene points 
should be plotted in principal coordinates while the cells are 
plotted in standard coordinates. This ensures the geometric 

https://github.com/VingronLab/CAbiNet
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nterpretation that when a gene-point and a cell-point lie far
rom the origin in the same direction, then they are highly
ssociated. Intuitively, the association between samples and
enes can be quantified by the association ratio, which is de-
ned as the observed frequency divided by the expected fre-
uency of an entry in a contingency table minus 1: 

a i j = 

p i j 

e i j 
− 1 . (7)

he association ratio a ij quantifies the deviation of the ob-
erved frequency at which a gene is expressed in a cell ( p ij )
rom the expected frequency ( e ij ). A high association ratio of
 gene indicates that this gene is highly specific to the observed
ell. According to correspondence analysis theory, the associ-
tion ratio can be reformulated as follows: 

a i j = 

p i j 

e i j 
− 1 = 

p i j − e i j 

e i j 
= < f i , γ j > . (8)

ote that for this relationship to hold, genes and cells need
o be scaled such that one is in principal coordinates and one
n standard coordinates. This formula means that the associ-
tion ratio between a gene and a cell can be written as the
nner product between the principal coordinates of gene i and
tandard coordinates of cell j . This relationship geometrically
onnects cells with their marker genes. The larger the inner
roduct (or association ratio) between a gene and a cell is, the
ore likely the gene is a marker gene for the cell. The associ-

tion ratio will be used to build up the cell–gene graph and to
luster genes and cells simultaneously. 

imension reduction 

n order to remove noisy, uninformative dimensions, we re-
uce the data into K dimensions which preserve the most prin-
ipal inertia. This is done through the function cacomp from
he R Bioconductor package APL ( 17 ). 

Due to the reduced dimensions, the association ratio be-
ween genes and cells would also change slightly. Using the
tandard and principal coordinates, the inner product of the
ow-points and column-points in the K dimensional reduced
pace can approximate the association ratio such that 

a i j = 

K ∑ 

k =1 

f ik γk j + δi j ≈ < γi , f j >, (9)

here δij is an error term. Similarly, the Euclidean distance be-
ween principal coordinates in the dimensional reduced space
pproximates the χ2 distance between items in the original
ata. 

ene ranking 

n order to rank genes for each cluster, we borrow the concept
f S α-scores from Association Plots as described by Gralinska
t al. ( 17 ). We computed the Association Plot coordinates ( x ,
 ) for genes in each cluster and then determined the angle α by
andomly permuting the data to determine above which angle
9% of genes lie due to chance in the Association Plot. The
 α-score is then computed as: 

S α = x − y 
tan α

. 

o-clustered genes were then ranked by their S α-score. 
Cell–gene graph 

The cell–gene graph is constructed from four sub-graphs: a
cell–cell graph, a gene–gene graph, a cell–gene graph and fi-
nally a gene–cell graph. Firstly, cell nodes are connected to the
k c -nearest cell nodes determined by the Euclidean distance be-
tween the principal coordinates of cells in the dimension re-
duced space, denoted as the rows of matrix G in Equation 6 .
This distance approximates the χ2 distance between cells in
the original data. Then each cell node is connected to the
k cg gene nodes with the highest association ratio in dimen-
sion reduced space, which is calculated as the inner product
between principal coordinates of genes and standard coordi-
nates of cells in the dimensional reduced space, as indicated by
Equation 8 . 

In practice, genes that are not connected to any cell are re-
moved as they are unlikely to be marker genes. If a high k cg is
chosen, there could also be genes erroneously connected with
cells. CAbiNet provides users with an optional gene-pruning
step to remove these genes: for each edge from a gene to a cell
node, CAbiNet calculates how many of the cell’s direct neigh-
bors also have an edge to this gene. If more than a user defined
percentage of neighboring cells have an edge to the gene it is
kept and removed otherwise. 

The remaining genes are then connected to the k gg -closest
gene nodes based on the Euclidean distance between princi-
pal coordinates of genes. Finally, the gene–cell graph is ob-
tained by either simply transposing the adjacency matrix of
the cell–gene graph or by connecting the genes with the cells
with the highest association ratios. By doing so, the adjacency
matrix of the cell–gene graph would be either symmetrical or
asymmetrical. 

The four sub-graphs are combined by joining their adja-
cency matrices to form a cell–gene graph. We further trans-
form this nearest neighbor graph into an undirected, weighted
shared nearest neighbor (SNN) graph. Shared nearest neigh-
bors have been demonstrated to be a robust measure of simi-
larity in high dimensions and to improve over the underlying
primary measure such as the Euclidean distance ( 18 ). Edges
in the SNN-graph are weighted by the Jaccard index ( 19 ) be-
tween the neighborhoods of two nodes. With the Jaccard in-
dex bounded between 0 (no overlap) and 1 (complete over-
lap), we remove an edge between two nodes if its weight is
below a set cutoff. For our method we decided on a default
pruning cutoff of 1 

15 . 

biMAP visualization 

The SNN-graph also directly allows for the simultaneous vi-
sualization of cells and genes. CAbiNet converts the Jaccard
similarities of the SNN-graph to a distance matrix and uses
it as input to UMAP, which then produces what we call the
biMAP. The biMAP embeds cells and genes in the plane as
points of different size or shape to allow for quick distinction.
For particularly crowded plots, cells can alternatively be sum-
marized as hexagons, whose color will be mixed proportion-
ally to the cluster representation. Similarly to a conventional
UMAP, a biMAP can also be used to display the expression
of a gene in the cells, but has the advantage to also show the
location of the gene of interest in relation to all cells. 

Biclustering 

Many clustering algorithms can be applied to the SNN-graph
and will automatically yield clusters containing both cells and
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Table 1. Simulated data sets 

DE 

prob. 
DE factor 

mean 
DE factor 

var. Name 

0 .02 0 .75 0 .75 (pbmc3k / zeisel)_0.02_0.75_0.75 
0 .06 0 .75 0 .75 (pbmc3k / zeisel)_0.06_0.75_0.75 
0 .1 0 .75 0 .75 (pbmc3k / zeisel)_0.1_0.75_0.75 
0 .02 1 .5 1 .5 (pbmc3k / zeisel)_0.02_1.5_1.5 
0 .06 1 .5 1 .5 (pbmc3k / zeisel)_0.06_1.5_1.5 
0 .1 1 .5 1 .5 (pbmc3k / zeisel)_0.1_1.5_1.5 

The six parameter combinations used to simulate scRNA-seq data based on 
either the zeisel or pbmc3k data sets. DE prob.: probability to be differen- 
tially expressed, DE factor mean: mean of log-normal distribution, DE factor 
var.: variance of log-normal distribution. Name: name of the 12 simulated 
data sets used in benchmarking. 
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genes. CAbiNet applies the Leiden algorithm ( 20 ) (as imple-
mented either from the igraph or leiden packages) as the
default clustering algorithm, and spectral clustering ( 21 ) as an
alternative option. 

PBMC10x data 

The PBMC10x data set was pre-processed according to sec-
tion Data Pre-processing and the top 2000 most variable genes
were retained. This data matrix was subjected to SVD and 80
dimensions were kept using the Bioconductor package APL .
The cell–gene graph was built up with CAbiNet with k = 20
for cell–cell subgraph, k = 20 for gene–gene subgraph, k =
10 for cell–gene subgraph and k = 50 for gene–cell subgraph.
Then, Leiden clustering was applied to the graph to find bi-
clusters. Getting the biclustering results from the function ca-
clust in our package, we removed those clusters which con-
tain fewer than 10 genes. The biMAP coordinates were calcu-
lated with the function biMAP with k = 10 and plotted with
the function plot_biMAP . The feature biMAPs in Figure 2 C
were drawn using plot_feature_biMAP . 

Human cerebral organoids data 

Data obtained from Rosebrock et. al ( 22 ) was subsetted to
organoids generated with the Triple-i protocol while keeping
cells from all four cell lines. Unannotated cells as well as cells
marked as doublets were excluded from the data. We kept
all cells with a mitochondrial gene count of up to 40%, as
was done also in the original publication. Besides this filter-
ing, counts were normalized and pre-processed as described
in section Data Pre-processing. 

Correspondence analysis was performed with the package
APL on the 4000 most variable genes and the first 130 di-
mensions were retained. The package CAbiNet was then used
for biclustering and joint visualization of cells and genes. The
kNN sub-graphs were computed with the function caclust
and the following parameters: k = 50 for the cell–cell, cell–
gene and gene–cell sub-graphs and k = 25 for the gene–gene
sub-graph. The gene–cell graph was calculated as the trans-
pose of the cell–gene graph and the genes were filtered by set-
ting overlap = 0.2. Known marker genes are kept throughout
the graph pruning. Clustering was performed with the Lei-
den algorithm and biclusters that solely consisted of genes or
cells were removed. Cell cycle scores were computed with the
scran function cyclone . 

Spatial Drosophila melanogaster embryo data 

The E14-16h Drosophila melanogaster embryo scRNA-seq
data by Wang et al. ( 23 ) was pre-processed as described in
section Data Pre-processing and batch effects between spa-
tial slices were removed with the ComBat ( 24 ) function from
the sva package ( https:// doi.org/ 10.18129/ B9.bioc.sva ). The
data was then reduced to 150 dimensions by CA, and the cell–
gene kNN graph was built up by using k = 60 for the cell–cell
subgraph and k = 10 for gene–gene / cell–gene subgraphs. The
gene–cell graph was set to the transpose of the cell–gene graph
and genes were trimmed by graph pruning with overlap = 0.1.
The resolution of Leiden was 1.2. For a clearer visualization
of results, we trimmed out clusters with only genes or cells
when plotting Figure 4 B–E. 
Splatter simulated data 

Single-cell RNA-seq data was simulated with the Bioconduc- 
tor package splatter ( 25 ), which allows the estimation 

of simulation parameters from real data. Parameters such as 
mean gene expression levels, library size, number of outliers 
or dropouts and the Biological Coefficient of Variation (BCV) 
are estimated from the supplied real data set and applied to 

the simulated data. For benchmarking we used two scRNA- 
seq data sets to estimate parameters: Zeisel Brain Data ( 10 ) 
(zeisel) and the PBMC3k data from 10x Genomics (pbmc3k).

The zeisel data was downloaded through the R 

package scRNAseq ( https:// doi.org/ 10.18129/ B9.bioc. 
scRNAseq ) and the pbmc3k data through the R pack- 
age TENxPBMCData ( https:// doi.org/ 10.18129/ B9.bioc. 
TENxPBMCData ). For each simulation we simulated 1000 

cells, 10 000 genes and six clusters containing 25%, 10%,
10%, 20%, 30% and 5% of the cells respectively. For each set 
of estimated parameters six versions were made for which we 
varied the probability for a gene in a cluster to be differentially 
expressed as well as the shape of the log-normal distribution 

governing the magnitude of differential expression. The six 

combinations that were generated for each set of parameters 
as derived from the zeisel and pbmc3k data for a total of 12 

data sets can be seen in Table 1 and Supplementary Figure S8 .

Experimental scRNA-seq data with ground truth 

cell types 

Table 2 lists the scRNA-seq data sets with expert annotated 

or flow cytometry cell sorted cell types. For a thorough com- 
parison between CAbiNet and other algorithms, we included 

diverse data sets with different characteristics: The number of 
sequenced cells ranges from 466 to 35 192 and the data sets 
are produced through different scRNA sequencing methods 
such as 10x Genomics, Smart-seq2, Fluidigm C1, CEL-seq and 

Stereo-seq. Furthermore, they encompass data from different 
tissues such as brain, pancreas or blood as well as different 
organisms (mouse, human and Drosophila melanogaster ). All 
these data sets were pre-processed as described in section Data 
Pre-processing. 

Benchmarking 

Simulated data sets were created as explained in section Splat- 
ter simulated data. Both simulated and experimental data 
were pre-processed and normalized as described in sec- 
tion Data Pre-processing. 

https://doi.org/10.18129/B9.bioc.sva
https://doi.org/10.18129/B9.bioc.scRNAseq
https://doi.org/10.18129/B9.bioc.TENxPBMCData
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
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Table 2. Experimental scRNA-seq data sets discussed in the results and used for benchmarking 

Short Name Dataset description # Cells # Genes Protocol Ref. 

Darmanis Human adult cortical samples 466 22 085 SMART-Seq2 ( 30 ) 
FreytagGold Three human lung adenocarcinoma cell 925 58 302 10x ( 31 ) 

lines, HCC827, H1975 and H2228 
tabula muris Tabula Muris Limb Muscle 1960 23 433 SMART-Seq2 ( 32 ) 
zeisel Mouse somatosensory cortex and 2874 14 508 Fluidigm C1 ( 10 ) (*) 

hippocampal CA1 region (ZeiselBrain) 
pbmc3k Human peripheral blood 2700 32 738 10x (**) 

mononuclear cells 
Tirosh Human melanoma tumor 2887 23 686 SMART-Seq2 ( 33 ) 

nonmaglignant cells 
PBMC10x Human peripheral blood 3362 33 694 10x ( 34 ) 

mononuclear cells (FACS sorted) 
BaronPancreas Human Pancreas 8569 20 125 CEL-seq ( 35 ) 
DmelSpatial Drosophila melanogaster late stage 15 295 13 668 Stereo-seq ( 23 ) 

embryo (14–16 h after egg laying) 
TabulaSapiens Human endothelial cells 32 701 58 559 10x ( 36 ) 
BrainOrganoids Human cerebral organoids 35 291 33 538 10x ( 22 ) 

(*) zeisel data was downloaded with the R package scRNAseq ( https:// doi.org/ 10.18129/ B9.bioc.scRNAseq ), (**) pbmc3k data was downloaded with the R 

package TENxPBMCData ( https:// doi.org/ 10.18129/ B9.bioc.TENxPBMCData ). 
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To allow for a fair comparison between (bi-)clustering al-
orithms we tested 108 parameter combinations for each al-
orithm and tried to spread them evenly over the reasonable
arameter space. As some algorithms have more parameters
han others, in practice this can mean, e.g. 18 variations of
wo parameters for one algorithm and only two variations
f many parameters for another. Where possible we included
he default parameter choices in the benchmarking. The ex-
ct parameters used for all the algorithms can be found in
he scripts on GitHub and figshare (see section Code Avail-
bility). In order to evaluate how the algorithms perform on
arying number of genes, the 108 parameter choices include
hree choices for the number of highly variable genes used as
nput to the algorithms. We picked the top 2000, 4000 or 6000
ost variable genes with the functions modelGeneVar and
etTopHVGs from the Bioconductor package scran . 
If an algorithm failed, we reran it up to two times with up

o 500 Gb of memory and up to 1 day of running time. If
hey did not return a valid biclustering result after the second
un, the run was not repeated. Runs that failed due to a tool’s
mplementation or inherent limitations were not rerun with
ther parameter choices. 

valuation criteria 

n simulated biclustering problems, the similarity between de-
ected and ground truth biclusters is evaluated by the Cluster-
ng Error (CE) as defined by Horta and Campbello ( 26 ,27 ).
he CE measures the proportion of matrix entries that are
lustered differently after optimally matching the biclusters
etween the reference ˆ B and the biclustering results B : 

CE (B, ˆ B ) = 1 − | U| − d max 

| U| = 

d max 

| U| . 

ere, | U| = | U B ∪ U ˆ B | where U B and U ˆ B are the union sets
f the detected biclusters and ground-truth biclusters respec-
ively. d max represents the maximal sum of overlapping biclus-
er elements between B and 

ˆ B . The CE ranges from 0 to 1, with
 indicating a perfect match to the reference and 0 no match at
ll. For our benchmarking we slightly modified the CE imple-
entation from the python package biclustlib ( 28 ) (see

ode in https:// github.com/ VingronLab/ CAbiNet _ paper ). 
The similarity between detected and annotated ground
truth cell clusters was calculated by the adjusted Rand in-
dex (ARI) ( 29 ), which is no larger than 1. The larger the
ARI the better detected clusters match with the ground truth.
Negative values indicate a clustering worse than what would
be expected from a random assignment of cluster labels.
Some biclustering algorithms allow for overlapping biclus-
ters, which hinders the assignment of an ARI score (see
Supplementary Table S1 ). In the case of overlapping clus-
ters, a cell can get assigned to several clusters. To still al-
low for comparison between algorithms, we break this tie
by randomly selecting one of these clusters for the cell to
be a member of. Summary statistics such as the mean and
maximal ARI / CE are calculated using only successful runs.
Runs that crashed or returned N / A (Not Applicable) are
excluded. 

Results 

Visualization and biclustering of scRNA-seq data 

CAbiNet takes a gene expression matrix as input, in which
genes are presented in rows and cells in columns. The algo-
rithm builds on the transformation of the data into a matrix
of Pearson residuals as done in correspondence analysis (CA).
CA decomposes this matrix into a singular vector matrix of
cells (matrix U in Figure 1 , see also in section Correspondence
analysis), a diagonal matrix with singular values and a singu-
lar vector matrix of genes (matrix V in Figure 1 ). Singular vec-
tors are sorted by importance—‘inertia’ in CA—which allows
for projecting the data into a lower dimensional space with
the highest inertias. Notably, CA provides a scaling of U and
V so as to overlay them in the same space. This gives rise to in-
terpretable cell–cell and gene–gene distances and makes cell–
gene associations possible (see section Correspondence analy-
sis). Thus, we can create a k -nearest neighbor graph connect-
ing both genes and cells (see Figure 1 ). This graph, in turn, is
used to calculate the overlap among neighborhoods of nodes
to generate a SNN graph. 

The SNN graph serves as input to an embedding algo-
rithm like UMAP to produce the biMAP. Since the SNN
graph comprises both cells and genes, the embedding of the

https://doi.org/10.18129/B9.bioc.scRNAseq
https://doi.org/10.18129/B9.bioc.TENxPBMCData
https://github.com/VingronLab/CAbiNet_paper
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
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Figure 1. Ov ervie w of the CAbiNet algorithm. Step 1: Follo wing correspondence analy sis practice, the gene e xpression matrix X gets normaliz ed and 
con v erted into a matrix of Pearson residuals, which is then decomposed by singular value decomposition into the left ( U ) and right ( V ) singular vector 
matrices. Step 2: kNN-graphs are built from a dimension reduced space based on either the Euclidean distance, or, for the cell–gene / gene–cell graph, 
based on the association ratio (see Materials and Methods Correspondence analysis). The subgraphs are subsequently merged to form a single graph 
containing both cells and genes. If necessary, this graph is then pruned in order to remo v e spurious edges and con v erted to a shared nearest neighbor 
graph (SNN-graph). The SNN-graph is the basis of both the biclustering and the biMAP. Step 3: Detect cell–gene biclusters from the graph. Step 4: biMAP 
visualization which displa y s the biclustering results with both cells and genes. Note that the biMAP can be plotted before biclustering to give users an 
intuition of how many biclusters are in the data. CAbiNet allows for an interactive exploration of the data. Hovering the mouse cursor over a point 
displa y s rele v ant inf ormation such as the cell / gene name and the bicluster. T he biMAP intuitiv ely sho ws the detected mark er genes of each bicluster 
and enables a quick annotation of biclusters. For example CD19 in bicluster 3 indicates that this bicluster consists of B cells and their marker genes. 
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raph yields the joint visualization of cells and genes. The
hared nearest neighborhood has been shown to be a good
epresentation of similarity in high dimensional space for gene
xpression data ( 18 ). Genes that are specifically highly ex-
ressed in a group of cells will therefore gravitate towards
his cluster, while genes with constant expression profiles will
e located close to the center of the embedding. By highlight-
ng cell type marker genes, the biMAP can be used to quickly
nd easily annotate cell clusters or to identify marker genes
hrough interactive exploration of the data. 

The cell–gene graph also immediately suggests an intuitive
trategy for biclustering: established clustering algorithms for
arge networks such as Leiden ( 20 ) or Spectral clustering
 21 , 37 , 38 ) can co-cluster cells and genes in the SNN graph.
 cluster can then contain both cells and genes, where, due to

he design of the graph, genes that co-cluster with a set of cells
end to be more highly expressed in the cells they cluster with
ompared to other cells. We call those genes ‘associated to’ or
specific for’ the cells in the same cluster. The co-clusters can
asily be understood as cell clusters with their corresponding
arker genes. Conveniently, we can further adopt the concept
f S α-scores from Association Plots ( 17 ) to rank genes by how
pecific they are for a cluster. 

CAbiNet is implemented as an R package and can
e installed from GitHub ( https:// github.com/ VingronLab/ 
AbiNet ). CAbiNet functions can replace corresponding pro-
edures in routine scRNA-seq analysis piplines and are com-
atible with Bioconductor’s SingleCellExperiment object. The
ackage will produce a biMAP with cells and genes col-
red according to the biclustering result. CAbiNet also al-
ows for highlighting genes of interest in either a static or
nteractive biMAP. This promotes an intuitive exploration of
enes and cells and facilitates cell type annotation. The On-
ine Supplementary Material of this paper contains interactive
tml-files of biMAPs for the data sets discussed below. Users
an mouse over the points in the biMAP to see the informa-
ion of items including types (cell / gene), names and assigned
iclusters of the points. 

nalysing scRNA-seq data with CAbiNet: PBMC10x 

ata 

e demonstrate the basic functionality of CAbiNet with a
ingle-cell Peripheral Blood Mononuclear Cell (PBMC10x)
NA-seq data set ( 34 ). This data set comprises 3176 cells an-
otated into nine cell types with 11 881 expressed genes de-
ected. For our purpose, the advantage of this data set is that
he authors have provided expert annotation of cells based on
ACS. Among others, the nine annotated cell types include B
ells, CD14 

+ monocytes, and natural killer cells. 
As described above, CAbiNet performs dimensionality re-

uction, clustering and visualization. After standard pre-
rocessing (Materials and Methods: Data Pre-processing),
AbiNet computes CA, projects the PBMC10x data into a

ower dimensional space and builds the SNN graph. CAbi-
et then detects the biclusters and visualizes the results in a
iMAP (Figure 2 A) by applying UMAP on the SNN graph. 
The clustering quality is commonly measured by the ad-

usted Rand index (ARI, see Materials and Methods: Evalua-
ion criteria). CAbiNet achieves an ARI of 0.79 on this data
et, indicating a good agreement between the CAbiNet clus-
ering and the expert annotation. Figure 2 B shows a Sankey
lot illustrating the correspondence between annotation and
computed clusters. The large agreement allows us to compare
our results with the expert annotations. 

The biMAP in Figure 2 A shows clusters of cells and genes,
the latter represented by black circles filled in with the color of
the associated cell cluster. The clusters located in the center of
the biMAP (clusters 11 and 12) are composed exclusively of
genes, which are not specific to any cell cluster. Supplementary 
Figure S3 shows that these genes are ubiquitously expressed
among cell types. As such they do not contribute information
towards cluster annotation. 

The biMAP places cell-type specific genes close to the cor-
responding cell groups. We manually labeled known marker
genes for cell types to allow for easier interpretation and vali-
dation. For example, S100A9 and CD14 are located towards
cluster 4 (Figure 2 A) and are known marker genes for CD14 

+

Monocytes, immediately suggesting that cluster 4 corresponds
to this cell type. The feature plots in Figure 2 C confirm that
indeed these two marker genes are highly expressed in this
cluster. The Sankey plot in Figure 2 B also confirms the iden-
tity of cluster 4 as CD14 

+ monocytes. Likewise, the natural
killer cell marker genes FGFBP2 and GNLY are close to clus-
ter 6, suggesting the identity for this cell cluster, which is also
supported by their expression pattern in the feature plots (Fig-
ure 2 C) and by the mapping to the expert annotation in the
Sankey plot (Figure 2 B). 

Interestingly, the biMAP suggests a separation among the
expert annotated B cells into two groups represented by the
two clusters numbered 3 and 5 in Figure 2 A and B. Each
of the two subgroups has its own set of marker genes. Note
that the color code for the genes coincides with that of the
cells from the same cluster. Cluster 3 in cyan-blue appears
to be naive B cells based on the proximity to naive B cell
marker genes FCER2 and TCL1A (Figure 2 A) ( 39 ). Likewise,
genes AIM2 and TNFRSF13B belong to cluster 5 (light-yellow
color) and their association with memory B cells ( 39 ,40 ) sug-
gests this identity for cluster 5 (Figure 2 A). The gene expres-
sion levels shown in the feature plot in Figure 2 C support this
interpretation. 

We also illustrate the capability of CAbiNet in dis-
tinguishing sub-cell types with tabula muris limb muscle
data set, when gene pruning is applied to remove redun-
dant house-keeping genes (see Supplementary Material and
Supplementary Figures S1 and S2 ). 

CAbiNet correctly clusters developmental 
trajectories in cerebral organoids 

In order to test the performance of CAbiNet on a highly com-
plex data set, we analyzed a scRNA-seq data set comprising
35 291 cells derived from human cerebral organoids (abbrv.:
brain organoids) ( 22 ). The data is of particular interest as it
consists of fully differentiated neurons, undifferentiated neu-
ral stem cells, as well as cells in transitory states which can
have a considerable overlap in their expression profiles. This
data set thereby helps to highlight the capabilities and limita-
tions of CAbiNet. For a detailed description of the data and
the processing see Materials and Methods Human cerebral
organoids data. 

CAbiNet groups the organoids into 13 clusters (Figure 3 A).
The Sankey plot in Figure 3 D shows that the biclusters over-
lap well with the 17 annotated cell types from the origi-
nal publication ( 22 ) (ARI: 0.57). As can be observed in Fig-
ure 3 A, the biMAP embedding divides the data into two ma-

https://github.com/VingronLab/CAbiNet
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
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Figure 2. Application of CAbiNet on PBMC10x data. (A) Joint biMAP visualization of the cell–gene biclustering results by CAbiNet, with genes and cells 
from the same bicluster colored identically. Genes are black circles filled in with the color of the associated cell cluster and cells are smaller dots. Some 
kno wn mark er genes ha v e been labeled manually. An interactiv e v ersion of this figure can be f ound in the Supplement ary Dat a . (B) The agreement 
between the expert annotation and CAbiNet biclustering results is shown in the Sankey plot. (C) The expression levels and position of selected marker 
genes are shown on the biMAP. The grey points are genes and cells are colored by the log 2 -expression levels of genes highlighted in red. CD14 + 

monocytes marker genes S100A9 and CD14 in bicluster 4 are highly expressed in cells that co-clustered with them. The natural killer cells marker genes 
FGFBP2 and GNLY are highly expressed in the co-clustered cells in bicluster 6. FCER2 and TCL1A are highly expressed in bicluster 3, while AIM2 and 
TNFRSF13B are highly expressed in bicluster 5, indicating that cells in these two clusters are different B cell subtypes. 
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jor parts: The stem cells in the lower half, and more special-
ized cell types in the upper part. Additionally, cortical cell
types are located on the left side while cell types towards
the upper right belong to non-neural lineages. Furthermore, a
clear developmental trajectory can be observed from the cor-
tical neural stem cells (NSCs) expressing SOX9 , towards cor-
tical neurons via intermediate progenitors (IPs) (Figure 3 A,
B). Clusters 1, 6 and 7 consist of NSCs in different stages 
of the cell cycle ( Supplementary Figure S5 ), with cells from 

cluster 7 comprised of dividing cells. Marker genes associ- 
ated with differentiating neurons ( NEUROG2 ) are situated 

in close proximity to cluster 4 (IPs), while markers for post- 
mitotic cortical neurons ( NEUR OD2 , NEUR OD6 ) are em- 
bedded adjacent to the terminally differentiated cells (clus- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
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er 2) (Figure 3 A, B, Supplementary Figure S4 A). Clusters
, 3 and 4 have a large overlap in their expression profiles,
ut cells from cluster 3 co-cluster with genes more associated
ith regions of the midbrain / thalamus such as FOXP2 and
CF7L2 ( Supplementary Figure S4 B-C). Cluster 3 can be fur-

her subdivided by their co-clustered genes into two subpop-
lations: GABAergic inhibitory neurons ( LHX1 , GAD1 ) and
xcitatory glutamatergic neurons ( ADCYAP1 , SLC17A6 , see
upplementary Figure S4 D–G). The myelination factors MPZ
nd EGR2 are embedded together with cluster 10, indicat-
ng that the cluster consists of Schwann cells ( Supplementary 
igure S4 H, I). This is further confirmed by the co-embedding
f SOX10 , which has been shown to be required to maintain
he Schwann cell identity ( 41 ) ( Supplementary Figure S4 J).
ells from cluster 13 are characterized by strong expres-

ion of NEUROD1 , PPP1R17 , ISL1 , POU4F1 and SIX1 , all
f which are embedded within the cluster ( Supplementary 
igure S4 K–O). NEUROD1 , ISL1 , POU4F1 (the gene pro-
ucing BRN3A) and SIX1 have been shown to play vital roles
in sensory neuron development ( 42–45 ) whereas PPP1R17
is a typical Purkinje cell marker ( 46 ). This makes it difficult
to assign a specific cell type to the cluster. Accordingly, the
cells were labelled as ‘posterior CNS / PNS’ cells in the original
publication. 

As shown in the heatmap in Figure 3 C, the top 10 co-
clustered genes show distinct expression patterns and are con-
sistently more highly expressed in their respective cluster. This
shows that the biclustering indeed recovers relevant marker
genes. 

CAbiNet constructs clusters consistent with spatial 
dimensions in Drosophila melanogaster spatial 
transcriptomics embryo data 

Spatial transcriptomic data constitutes a particular challenge
to the data analysis due to the large number of drop-outs
( 23 ,47 ). To further study the performance of CAbiNet on such
sparse data, we applied it to spatial transcriptomic data of

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
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Drosophila melanogaster late-stage embryos (14–16 h after
egg laying (E14-16h)) ( 23 ). The gene expression profile was
resolved by Stereo-seq ( 47 ) yielding 14 808 pseudo-cells (bins
of pixels on a chip which are recognized as equivalent to cells
by the original publication) with 7178 genes. In the original
publication 10 cell types were annotated based on unsuper-
vised clustering. The standard UMAP projection shown in Fig-
ure 4 A illustrates that the boundaries between cell types are
ill defined (e.g. epidermis versus foregut and epidermis versus
trachea). This highlights the difficulty of distinguishing cell
types and identifying corresponding marker genes in spatial
scRNA-seq data. 

CAbiNet recognizes 13 biclusters from the data with bi-
ologically meaningful co-clustered marker genes. For exam-
ple, 12 out of 15 genes ( fax , Bacc , Cam , Gbeta13F , 14-3-
3 ε, fabp , His4r , HmgZ , CG41128 , ps , smt3 , arm ) in clus-
ter 5 are known marker genes of the central nervous system
(CNS), and 7 out of 12 genes ( TwdlC , CG12164 , Cpr50Cb ,
Cpr56F , Cpr65Av , Cpr66D , CG13043 ) in cluster 11 are
known foregut marker genes. The expression levels of fax and
TwdlC shown in Figure 4 C suggest that they are specifically
highly expressed marker genes for the co-clustered cells. 

CAbiNet also captures fine-grained cluster structure and of-
fers an intuitive embedding of biclusters which can be used for
cell type annotation. For example, we found that most cells
annotated as midgut in the original publication using Scanpy
correlate to two clusters by CAbiNet, cluster 6 and 10, which
are recognizable as distinct groups in the biMAP (Figure 4 B,
D). This indicates that cells originally annotated as midgut
could be further divided into two cell types. Checking the de-
tected marker genes in cluster 10, we found some of them, e.g.
Pebp1 and Acbp4 , are known marker genes of gastric caecum.
These genes have overall higher expression levels in cluster 10
compared to other clusters (Figure 4 C), indicating that cells
in cluster 10 represent gastric caecum, a sub-structure of the
midgut that was not previously identified in the original analy-
sis. Similarly, we also found that cluster 3 represents head epi-
dermis which is a subtype of epidermis. The expression level of
head epidermis marker gene CG6347 is shown in Figure 4 C. 

Based on the biclustering results from CAbiNet, we gener-
ated new annotations of the cell clusters. The annotated cell
types are shown in Figure 4 D. Figure 4 E shows the cells in the
embryo, color-coded by these improved annotations. Reminis-
cent of the actual embryonic anatomy, the spatial positions of
annotated head epidermis, foregut, gastric caecum and midgut
cells (right panel of Figure 4 E) are ordered from head to tail. 

Thus, CAbiNet provides a more informative joint embed-
ding of genes and cells compared to Figure 4 A. CAbiNet also
generates fine-grained biclustering results and supports cell
type annotation for spatial transcriptomic data. 

Evaluation on simulated data 

In order to determine how well the biclustering performs on
scRNA-seq data, we ran CAbiNet as well as nine other bi-
clustering algorithms on simulated data generated using Splat-
ter based on two real scRNA-seq data sets ( 25 ) (see Ma-
terials and Methods Splatter simulated data). Splatter can
learn and preserve the distribution patterns from real data
and generate simulated scRNA-seq data with well separated
cell clusters and corresponding differentially expressed genes.
Twelve simulated data sets were generated with different pa-
rameters based on two real scRNA-seq data sets to cover
different clustering difficulties (see Table 1 ). Since the clus- 
ters and their differentially expressed genes are known, one 
has a gold-standard biclustering to compare computational 
results to. The heatmaps of the the simulated data sets in 

Supplementary Figure S8 show the bicluster structure of 
the data and give a visual indication of how difficult the 
(bi-)clustering task on a data set is. 

We tested the CAbiNet implementation with both Leiden 

and Spectral clustering and compared to QUBIC ( 5 ), s4vd 

( 9 ), Plaid ( 48 ), Unibic ( 6 ), BiMax ( 7 ), CCA ( 4 ), Xmotifs ( 8 ),
IRIS-FGM (QUBIC2) ( 12 ,49 ), BackSPIN ( 10 ) and DivBiclust 
( 13 ). Some of the algorithms identify hard cell–gene biclusters,
while others recognize overlapping clusters. Although DivBi- 
clust is a biclustering-based framework, it only outputs cell 
clusters. We therefore only evaluated its cell clustering perfor- 
mance. A brief summary of the characteristics of algorithms 
can be found in Supplementary Table S1 . In order to better 
compare CAbiNet to popular scRNA-seq analysis workflows,
we clustered cells and identified differentially expressed genes 
with two R packages, Monocle3 ( 50 ) and Seurat ( 51 ). We 
treated genes that are differentially expressed as if they were 
co-clustered with the cells from the respective cluster (see Ma- 
terials and Methods section Benchmarking). 

To be fair to all the methods, we tested numerous parame- 
ter choices throughout an algorithm’s range. For the summary 
statistics we ran every algorithm with 108 different parame- 
ter combinations that were chosen individually for each al- 
gorithm and are intended to represent the capabilities of the 
algorithm well. 

To compare the time consumption of the algorithms, the 
running time of each run is recorded. CAbiNet is shown to 

run similarly fast as 7 out of 12 (bi-)clustering algorithms that 
have been compared with (Figure 5 D). CAbiNet is slower than 

CCA, QUBIC and DivBiclust, but is faster than IRISFGM and 

BackSPIN which are the only biclustering algorithms devel- 
oped for scRNA-seq data analysis. Compared with IRISFGM 

and BackSPIN, CAbiNet is more capable to deal with large- 
scale scRNA-seq and spatial transcriptomic data sets. 

The scalability of CAbiNet was evaluated using simulated 

data sets consisting of 2000 genes and varying cell counts 
ranging from 1000 to 80 000 cells. The Supplementary 
Material provides detailed information on these tests. The 
results are depicted in Supplementary Figure S9 . With 16 

threads, CAbiNet takes about 50 min to cluster the large 
dataset containing 80 000 cells. However, memory require- 
ments for large data sets are substantial. For more than 100 

000 cells and 2000 genes it is recommended to have more than 

1TB of RAM available. 
Performance of algorithms in terms of clustering quality 

was evaluated by the adjusted Rand index (ARI) and clus- 
tering error (CE) metrics ( 27 ,28 ) (see Materials and Methods 
section Evaluation criteria). The ARI provides a quantitative 
comparison between detected cell clusters and the ground- 
truth clusters. The CE measures the similarity between de- 
tected and annotated biclusters. For both measurements a 
higher score indicates a better (bi-)clustering. To account for 
the uncertainty in parameter choice, biclustering quality of 
algorithmic results is benchmarked firstly by the maximal 
achievable values of CE and ARI (Figure 5 A, B) and sec- 
ondly by the average values (see Supplementary Figure S7 in 

Supplementary Materials ) over all runs on each data set. 
CAbiNet achieves the highest maximal and mean CE scores 

on nearly all data sets when being compared with other bi- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
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clustering algorithms (Figure 5 A). Only BackSPIN performs
marginally better than CAbiNet on a single simulated dataset
when comparing the mean CE ( Supplementary Figure S7 B).
CAbiNet is the only biclustering algorithm in the compari-
son that produces meaningful biclusters for the hardest sim-
ulations, while only CAbiNet together with Plaid, s4vd and
BackSPIN generate meaningful biclusters for easier data sets.
Although they are not biclustering algorithms in the strict
sense, both Seurat and Monocle3 perform well on the sim-
ulated data. While Seurat obtains comparable or slightly bet-
ter mean CE scores ( Supplementary Figure S7 B), its achieved
maximal CE results are overall lower than that of CAbiNet
(Figure 5 A). Monocle3 obtains mean and maximal CE scores
that are consistently lower than those achieved by CAbiNet
and Seurat (Figure 5 A and Supplementary Figure S7 B). These
methods, however, do not provide a joint visualization of cells 
and genes. 

In terms of cell clustering quality as measured by the maxi- 
mal ARI, CAbiNet achieves nearly perfect clustering for all but 
one data set. While BackSPIN and DivBiclust are also able to 

achieve an ARI of 1 for a smaller number of data sets, their 
overall obtained maximal ARI scores are lower than CAbi- 
Net. Similarly to CAbiNet, Seurat and Monocle3 achieve per- 
fect cell clustering on all but the most difficult simulated data 
set (see Figure 5 B). Monocle3 generally achieves a compara- 
ble cell clustering quality as CAbiNet on the majority of simu- 
lated and experimental data sets, but its performance seems to 

deteriorate with larger data sets (Figure 5 B, C). Furthermore,
Moncocle3 fails to return any meaningful (bi-)clusters for a 
considerable fraction of runs ( Supplementary Figure S7 C, D).

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
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Since some biclustering algorithms (e.g. CCA, QUBIC or
nibic) were not initially developed for scRNA-seq data anal-
sis (see Supplementary Table S1 ), they didn’t take the spar-
ity and high dropouts of scRNA-seq data into account. It is
herefore expected that they are struggling to analyze scRNA-
eq data. Comparing with IRISFGM and BackSPIN, which are
cRNA-seq conscious biclustering algorithms, CAbiNet out-
erforms them on most simulated data sets. A longer discus-
ion of the performance of the tested algorithms can be found
n the Supplementary Material and Supplementary Figure S11 .

We furthermore compared the robustness of CAbiNet over
he choice of dimensions to two other SVD based algorithms,
eurat and Monocle3, on simulated data. As can be seen in
upplementary Figure S10 , both Seurat and CAbiNet per-
orm poorly when too few dimensions are retained. Both algo-
ithms achieve good cell clustering results over a wide range
f dimensions when the kept dimensions are more than the
umber of clusters in the data. In general, Seurat needs a
igher number of dimensions than CAbiNet to obtain a good
ell clustering on simulated data sets with six cell clusters
 Supplementary Figure S10 A), while a similar number of di-
ensions is required for both algorithms on simulated data

ets with 20 clusters ( Supplementary Figure S10 B). Mono-
le3’s performance decreases when too many dimensions are
icked ( Supplementary Figure S10 A). For data sets with 20
mbedded clusters Monocle3 crashed on the majority of runs
nd was therefore omitted from the systematic comparison
hown in Supplementary Figure S10 B. For a more in depth
escription see also the Supplementary Materials . 

valuation on expert annotated data 

o assess the performance of CAbiNet on experimental data
e tested it on nine expert annotated scRNA-seq data sets.
gain, we compared CAbiNet to the same nine biclustering
lgorithms as above and to the cell clustering tools Seurat,
onocle3 and DivBiclust. Since the expert annotated data

nly provides silver-standard ground-truth of cell types and
o ground-truth is available to evaluate the biclusters, the ARI
f cell clusters, but not the CE of biclusters, is used as a quality
easure. 
The data sets range in size from 461 up to 35 291 cells and

ave been generated with different sequencing technologies
see section Experimental scRNA-seq data with ground truth
ell types and Table 2 ). Similarly to the benchmarking on sim-
lated data, we again used 108 parameter combinations for
ach algorithm to ensure an even playing field. 

Compared to the other biclustering methods, i.e. not con-
idering Seurat, Monocle3 and DivBiclust, CAbiNet with ei-
her Leiden or spectral clustering yields the highest maxi-
al ARI for all data sets with the exception of the zeisel
ata set (highest ARI by BackSPIN, Figure 5 C). CAbiNet also
chieves the highest average ARI on the cell clustering for
ll data sets except for one (Tirosh), where Plaid achieved
he highest average ARI ( Supplementary Figure S7 A). CAb-
Net with spectral clustering performs on average slightly
orse than CAbiNet with Leiden for almost all data sets

 Supplementary Figure S7 A). However, it still outperforms
ther biclustering algorithms, with the exception of Plaid on
he ‘Tirosh’ data set, as measured by both the maximal and av-
rage ARIs of cell clusters. Some biclustering algorithms such
s BackSPIN, Xmotifs and s4vd completely failed in detecting
any cell clusters for some data sets (marked as ‘ N / A ’ in grey
blocks in Figure 5 C and Supplementary Figure S7 A, B), either
because of issues in the algorithms’ implementation, the abil-
ity of algorithms in dealing with large data sets, or because no
biclusters were returned by the algorithm. 

Comparing with the scRNA-seq cell clustering algorithms
Monocle3, Seurat and DivBiclust, CAbiNet overall performs
better on the majority of experimental data sets. Only on the
zeisel, Tirosh and PBMC10x data sets Monocle3 and Seurat
perform slightly better than CAbiNet as evaluated by the max-
imal ARI (Figure 5 C). CAbiNet on average outperforms Mon-
ocle3 on larger data sets, while Monocle3 seems to perform
slightly better on medium sized data sets ( Supplementary 
Figure S7 A). On 8 / 9 data sets, CAbiNet on average produces
a better cell clustering than Seurat, which only outperforms
CAbiNet on the Darmanis data. Similarly, CAbiNet yields a
more accurate cell clustering than DivBiclust on all tested data
sets ( Supplementary Figure S7 A). Notably, Monocle3 fails to
recognize cell clusters in the DmelSpatial data set and DivBi-
clust fails to identify cell clusters for the largest three data sets
(DmelSpatial, TabulaSapiens and BrainOrganoids), whereas
CAbiNet still obtains reasonable clustering accuracy on these
data sets. 

Ranking the biclustering algorithms by their running time
on real data sets yields similar results as for the simulated data
(see Supplementary Figure S6 ). CAbiNet is slower than Bimax
and QUBIC, but runs faster than IRISFGM, Unibic, BackSPIN
and s4vd on all the tested data sets. In terms of scalability and
accuracy CAbiNet is comparable with Seurat and Monocle3.
CAbiNet runs faster than IRISFGM and BackSPIN, two bi-
clustering algorithms developed for scRNA-seq data, and pro-
duces more accurate biclusters. On small and medium sized
data sets, CAbiNet runs faster than Plaid, while being compa-
rable with Plaid on large data sets. 

Discussion 

We introduced CAbiNet and the biMAP as a novel bicluster-
ing and visualization method to simultaneously cluster and
plot cells and genes, allowing for interactive data exploration.
The biMAP is a planar embedding placing cell clusters with
the genes that are expressed in the co-clustered cells. It thus al-
lows researchers to better understand cell–gene relationships
and to annotate cell types easily. Although we mainly discuss
CAbiNet in the context of scRNA-seq data, the method could
be equally applied to bulk RNA-seq data or other data for-
mats such as A T AC-seq. 

We showed the applicability of CAbiNet to a wide variety of
data sets and highlighted multiple ways in which CAbiNet can
be used to generate novel insights. We demonstrated the gen-
eral usage of CAbiNet to identify cell types on the PBMC10x
data set. Even in highly complex data sets, such as the brain
organoids or spatial Drosophila melanogaster data that in-
clude developmental trajectories, CAbiNet is able to facilitate
the differentiation of sub-types based on the 2D layout of cells
and co-clustered marker genes. Moreover, CAbiNet is capa-
ble of refining the cell types in the spatial data and recognizes
sub-types of epidermis and differentiates gastric caecum from
midgut. 

CAbiNet implements a novel biclustering approach. Bench-
marking on simulated data showed that CAbiNet is the best
performing biclustering algorithm in comparison to a suite of

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae480#supplementary-data
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established algorithms. CAbiNet is overall the best tested bi-
clustering algorithm on the experimental scRNA-seq data sets,
where it outperforms all the other biclustering algorithms on
all but one data set. Comparing with the cell clustering algo-
rithms Seurat, Monocle3 and DivBiclust, CAbiNet performs
slightly better than Seurat on real data, while both achieve an
ARI of 1 on all but one simulated data set. CAbiNet and Mon-
ocle3 have comparable performance on both simulated and
small-sized real data sets, while Monocle3 performed worse
on large-sized real data. In a real application without knowl-
edge of the true clustering, the visual representation of genes
and cell clusters in the biMAP provides additional informa-
tion as to the reliability of a clustering and its marker genes. 

An inherent limitation of CAbiNet is that it can only detect
upregulated genes. The method is insensitive to genes which
are characteristically downregulated in a certain cell cluster.
However, as cell types are generally defined through the ex-
pression and not the absence of specific genes, this is hardly an
obstacle to cell type annotation. Compared to the other tested
scRNA-seq biclustering algorithms IRISFGM and BackSPIN,
CAbiNet yields higher accuracy biclusters at a lower running
time. However, due to the fact CAbiNet includes both cells
and genes in the graph the computational load increases sig-
nificantly when a large number of genes is included. Although
we have ameliorated the problem by including a feature se-
lection procedure, there is probably still room to improve the
implementation of CAbiNet. 

CAbiNet assigns each gene to one particular cluster in
which it is specifically expressed. This hard clustering of genes
is beneficial for cell type annotation and the differentiation
of sub-cell types, but in some cases marker genes that are in
fact shared between two clusters could be assigned to a single
cluster. 

Therefore, a potential improvement for future development
would be to allow for a soft assignment of genes to clusters.
This would provide a more realistic representation of genes
that are involved in several cell types. 

Conclusion 

CAbiNet presents clustered cells together with their marker
genes, thus providing key insight into a single-cell transcip-
tomic data set. Based on experimental data sets from diverse
biological contexts and with distinct properties, we showed
how CAbiNet improves over other clustering algorithms, aids
in annotating cell types and visualizes the results. Our bench-
marking results demonstrate that CAbiNet outperforms other
biclustering algorithms on simulated and real scRNA-seq
data, making it an important addition to the tool set avail-
able to researchers. Visualizing cells and genes simultaneously
in a biMAP enables researchers to succinctly communicate
their results and to uncover previously hidden cell–gene rela-
tionships in the data. CAbiNet can be easily integrated into
common workflows where it can be used in tandem with
other tools or replace repetitive analysis steps during cell type
annotation. 

Data availability 

The simulated data sets we generated and the experi-
mental data sets we used can be downloaded from
Zenodo ( https:// zenodo.org/ records/ 10260709 and
https:// zenodo.org/ records/ 10932001 ). Raw experimental 
data sets were sourced from the references listed in Table 2 . 

Code availability 

The CAbiNet package can be installed from GitHub ( https: 
// github.com/ VingronLab/ CAbiNet ). The source code can also 

be found on figshare https:// figshare.com/ articles/ software/ 
CAbiNet _ Joint _ clustering _ and _ visualization _ of _ cells _ and _ 
genes _ for _ single-cell _ transcriptomics/23276402 and GitHub 

( https:// github.com/ VingronLab/ CAbiNet _ paper ). 

Supplementary data 

Supplementary Data are available at NAR Online. 
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