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1. Abstract

Recent advances in cognitive neuroscience emphasise the importance of healthy white

matter (WM) in optimal behavioural functioning. It is now widely accepted that brain

connectivity via WM contributes to the emergence of behaviour. However, the association

between the microstructure of WM fibres and behaviour is poorly understood. This is in part due

to indirect and overlapping methods of assessing microstructure, and the use of overly simplistic

approaches in assessing behaviour. Here, we used the Mahalanobis Distance (D2) to integrate 10

metrics of WM derived from multimodal neuroimaging that have strong ties to microstructure.

The D2 metric was chosen because it accounts for metrics’ covariance as it measures the

voxelwise distance between every subject and the average; thus providing a robust

multiparametric assessment of microstructure. To examine WM-behaviour associations, we used

multivariate correlation to examine the voxelwise correlates of 2 cognitive and 2 motor tasks,

which allowed us to compare within and across domains in WM. We observed that behaviour is

organised in cognitive, motor, and integrative variables that are widespread in their associations

with WM, from frontal to parietal regions. Our results highlight the complex nature of

microstructure and behaviour, and show the need for multivariate modelling when examining

brain-behaviour associations.
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2. Introduction

Recent advances in neuroimaging techniques have allowed researchers to non-invasively

assess brain structure and function in health and disease (Calhoun, 2018; Tardif et al., 2016).

These techniques have become crucial in understanding the neural underpinnings of cognitive

and motor behaviour. Though most research has focused on brain function, it is now increasingly

clear that function is supported by the connectivity and microstructure of white matter (WM)

(Thiebaut de Schotten et al., 2020; Thiebaut de Schotten & Forkel, 2022). WM can be assessed

with diffusion weighted magnetic resonance imaging (dMRI), providing both an estimation of

grey matter connectivity patterns and a quantification of different components of WM

microstructure (Duval et al., 2017; Soares et al., 2013). Importantly, there are many quantitative

dMRI-derived metrics that are differentially sensitive to different aspects of microstructure (e.g.

organisation, myelination, and density), thereby serving as a rich multivariate source of

individual microstructural differences that can be directly related to behaviour. Investigating how

WM microstructure is related to normative behaviour is crucial for enhancing our basic

understanding of brain function and a first step in investigating how pathological change affects

structure and behaviour and may be ameliorated by targeted treatment (Thiebaut de Schotten &

Forkel, 2022).

WM is composed of axons that vary in their myelination, density, and overall

composition (Mezer et al., 2013; Stikov et al., 2015). Changes in healthy WM are largely due to

refinements in the signal conduction environment (Hagmann et al., 2010) to support optimal

function (Pajevic et al., 2014), resulting in observable behavioural effects such as

enhanced/reduced performance. Myelination is known to shape this environment by fine tuning

signal conduction (Knowles et al., 2022), with animal models providing key evidence for myelin

remodulation during motor learning and cognition (e.g. in memory; McKenzie et al., 2014; Pan

et al., 2020). While there is a huge body of work in human imaging focused on cortical function

and structure, there has been much less work to explore how the microstructure of the underlying

WM connections support behaviour. Expanding from initial cross-sectional human work (e.g.,

Bengtsson et al., 2005; Johansen-Berg et al., 2007), neuroplastic changes in non-invasive

dMRI-derived measures of WM have been shown to be associated with a wide range of

behaviours, including motor skills (Scholz et al., 2009; Steele et al., 2013; Taubert et al., 2010;

Tremblay et al., 2021) memory (de Lange et al., 2017), and normative motor development
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(Muetzel et al., 2008). Thus, individual differences in WM microstructure that arise as a function

of individual experience can be assessed with non-invasive MRI and used to probe the

relationship with behaviour in both healthy and disease states. Previous research has largely

relied on assessing individual contrasts with univariate approaches (most commonly assessing

fractional anisotropy [FA] and mean diffusivity [MD]), which problematically assumes

independence when MRI metrics have overlapping characteristics that cannot be directly tied to

a single microstructural or physiological source (Raghavan et al., 2021; Tardif et al., 2016). In

contrast, each metric can be considered within a multivariate framework as indirect measures

that provide overlapping complementary information for a more comprehensive characterization

of WM microstructure (Tremblay et al., 2024).

dMRI-derived metrics provide measurements of WM microstructure such as myelination

and fibre characteristics (Raffelt et al., 2017; Raghavan et al., 2021; Tardif et al., 2016). Simple

and complex diffusion models can be computed from dMRI multi-shell high angular resolution

protocols, such as the diffusion tensor (DTI; Soares et al., 2013), fibre orientation distribution

function (ODF; Tournier et al., 2019), and neurite orientation dispersion and density imaging

(NODDI; Zhang et al., 2012). It is therefore possible to extract measures assessing

microstructural tissue properties via these models including myelin integrity, fibre thickness, and

intracellular volumes. While the metrics derived from DTI, FOD, and NODDI have been

unquestionably useful in human neuroscience and often interpreted as specific physiological

parameters, there is no clear one-to-one metric-parameter mapping. Further, we and others have

shown that there is a high degree of correlation between metrics within and across models

(Carter et al., 2022; Figley et al., 2022; Tremblay et al., 2024; Uddin et al., 2019). This suggests

that strong conclusions based on theoretical interpretation of a single metric are often difficult to

justify.

Human behaviour is typically measured with specific tasks, such as item recall, that are

individually interpreted as an assessment of a specific domain (e.g., working memory). However,

reducing complex behaviours to a singular interpretation ignores how the connected brain

supports the many interacting systems that lead to behaviour (Varoquaux & Poldrack, 2019).

Tasks can be considered as imperfect assessments of the multiple brain systems that support

them, with differential and partially overlapping weighting depending on the specific task (e.g.,

reading and motor tasks both recruit the visual system to different extents). Standard univariate
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approaches to understanding the brain-behaviour relationship implicitly ignore both the overlap

between tasks and with brain systems (Poldrack, 2010; Varoquaux et al., 2018). Multivariate

approaches have shown promise in identifying latent behavioural factors (Schöttner et al., 2023)

that may be more directly tied to brain structure and function (Price & Friston, 2005; Varoquaux

et al., 2018), with recent work illustrating the power of the approach in identifying multiple

functional and/or structural regions supporting memory and visually guided motor function (Pur

et al., 2022), and cognition (Voigt et al., 2023; Ziegler et al., 2013).

While most human neuroimaging studies have tended to focus on GM, studies examining

WM have been increasing in number. However, most of these studies assess microstructure via

univariate analyses of metrics with overlapping contributions of tissue properties (Tardif et al.,

2016). The non-specific nature of the metrics makes it difficult to disentangle the contribution of

tissue properties to the imaging modalities, and give rise to shared and overlapping changes in

the MR signal. To help overcome this problem, we recently developed an integrative quantitative

assessment of WM microstructure using multimodal neuroimaging (Tremblay et al., 2024). We

proposed that combining neuroimaging metrics that are highly correlated and represent

overlapping physiological tissue properties tie intimately to the underlying microstructure. This

is achieved by integrating multiple metrics, while accounting for the covariance between them,

in a single multivariate score. We developed mvComp, a toolbox to compute voxelwise

Mahalanobis Distance (D2). D2 is a generalisation of the euclidean distance that measures the

distance between a point and a distribution in a multi-dimensional space (Mahalanobis, 1936). It

also explicitly incorporates the covariance between features so as to not bias the distance with

collinearity. D2 has already been used in a number of human MRI studies to assess

microstructural deviation as a severity marker in traumatic brain injury (Taylor et al., 2020),

relate epilepsy duration to alterations in WM tract FA (Owen et al., 2021), and quantify

individual microstructural variation to drive clustering in the corpus callosum (Tremblay et al.,

2024).

In the present study, we aimed to identify the unique and overlapping spatial patterns of

the relationship between white matter microstructure and cognitive and motor behaviour. We

used the D2 to integrate MRI metrics while accounting for their shared covariance and

performed a partial least squares (PLS) multivariate statistical analysis to relate multivariate

behaviour on four cognitive and motor tasks to voxel-wise white matter D2. We hypothesised
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that integrating multiple measures of microstructure and behaviour together yields more

biologically interpretable and meaningful brain-behaviour associations, and that there will be

differential patterns in D2’s relationship to behaviour across WM.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2024. ; https://doi.org/10.1101/2024.06.05.597645doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.05.597645
http://creativecommons.org/licenses/by-nc-nd/4.0/


3. Method

a. Participants

For this investigation, we used data from the WU-Minn Human connectome project

(HCP S1200 release). The HCP is a large cohort of healthy young adults with MRI, DWI, and

behavioural measures spanning cognition and motor functioning. The full procedure is

described in depth elsewhere (Van Essen et al., 2013). Briefly, our sample consisted of 1065

healthy young adults (age: M: 28.76 years, SD: 3.68, 556 females), with no history of

psychiatric, neurological, or neuropsychological disorders, and no history of substance abuse.

We excluded participants with incomplete imaging data and/or invalid acquisitions.

b. Multimodal Neuroimaging Protocols

All imaging was conducted by the HCP on a custom 3T Connectome Skyra MRI scanner

with a 32-channel head coil. Anatomical scans were acquired in the first session, and included

T1-weighted as well as T2-weighted protocols (Van Essen et al., 2013). The T1w scans were

acquired using a 3D-MPRAGE sequence while a 3D T2-SPACE sequence was used for T2w.

Anatomical scans were acquired with a 0.7mm isotropic resolution (FOV=224x224). T1w had

a TI=1000, TE=2.14, and TR=2400, while T2w TE was 565 and TR of 3200. The DWI

acquisition was conducted during the fourth session. DWI data (TE/TR=89.5/5520 ms,

FOV=210×180 mm) were multi-shell with b-values of 1000, 2000 and 3000 s/mm2 and a 1.25

mm isotropic resolution, 90 uniformly distributed directions, and 6 b=0 volumes. More details

on the acquisitions can be found at:

https://www.humanconnectome.org/hcp-protocols-ya-3t-imaging. The imaging data of 1065

young healthy adults, those who had undergone T1w, T2w and diffusion-weighted imaging,

were preprocessed. The data of 64 participants were excluded in the current study due to poor

cerebellar coverage.

c. Microstructural features from multimodal neuroimaging

Neuroimaging preprocessing

All MRI scans were preprocessed following the minimal preprocessing procedure by the

HCP (Glasser et al., 2013). The HCP preprocessing procedure included intensity normalisation

of b=0 scans along with corrections for eddy current and susceptibility-induced distortions using

the different phase encoding directions. It also included co-registration of DWI to native T1w
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with a rigid body transformation on the mean b=0 scans, which was also applied to realign all

diffusion directions (Bvecs) as well. Finally, motion and gradient nonlinearity correction were

applied. All subsequent data preprocessing steps as well as neuroimaging metric extraction are

described in detail in Tremblay and colleagues (2024) and described briefly below.

First, the preprocessed multishell diffusion data was bias-field corrected using the ANTs’

N4 algorithm via dwibiascorrect from MRtrix3 (Tustison et al., 2010). Using MRtrix3’s

dwi2tensor (Tournier et al., 2019), we calculated the diffusion tensor and extracted its metrics

with tensor2metric, which yielded voxelwise fractional anisotropy (FA), mean diffusivity (MD),

axial diffusivity (AD), and radial diffusivity (RD). DTI metrics maps were transformed into the

group template space as described below. We then used the multi-tissue Constrained Spherical

Deconvolution (CSD) to estimate a WM fibre response function, and later WM fibre

composition. We first segmented all tissue types (WM, GM, CSF) by applying FSL’s 5ttgen (via

the MRtrix3 wrapper, Smith et al., 2012; Tournier et al., 2019) on T1w scans. We computed the

response function of each tissue type for all participants from the minimally preprocessed DWI

data (without bias field correction) and the five-tissue-type (5tt) image using the msmt_5tt

algorithm of the dwi2response function (Dhollander et al., 2016, 2018; Jeurissen et al., 2014; D.

A. Raffelt et al., 2017). The response function represents the diffusion profile of a specific fibre

population and is used to estimate the Orientation Distribution Functions (ODFs) with CSD. The

WM, GM and CSF response functions were then averaged across all participants, resulting in a

single response function for each of the three tissue types. Multi-shell multi-tissue CSD was then

performed in each individual with the average response functions to obtain an estimation of

orientation distribution functions (ODFs) for each tissue type (Jeurissen et al., 2014). This step is

performed using the dwi2fod msmt_csd function of MRtrix3 within a brain mask. Bias field

correction and global intensity normalisation, which normalises signal amplitudes to make

subjects comparable, were then performed on the ODFs, using the mtnormalise function in

MRtrix3 (Dhollander et al., 2016, 2018; Jeurissen et al., 2014; D. A. Raffelt et al., 2017).

Group space coregistration

While most registration approaches are focused on optimising GM alignment, between

different subjects and across modalities, we opted to perform a WM-focused registration. For

this, we used a multi-contrast registration that was primarily driven by WM FODs but also
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included information about grey matter and CSF. We created population templates for WM, GM,

and CSF FODs based on a subset of 200 participants using MRtrix3's population_template

function, with the following parameters: nl_update_smooth= 1.0, nl_disp_smooth= 0.75 to apply

a gaussian smoothing on the gradient and displacement field, respectively. We subsequently

computed the warps between all subjects and our population template using MRtrix3's mrregister

function with identical regularisation parameters. These warps were subsequently applied to the

brain masks extracted by using Brain Extraction Tool (BET) on T1w, WM FODs, DTI metrics

(FA, MD, AD, and RD), T1-weighted (T1w), and T2-weighted (T2w) images through

mrtransform (Raffelt et al., 2012). During this step, the WM FODs were transformed without

reorientation, aligning the image voxels but not the "fibre bundle elements" (fixels; Raffelt et al.,

2015). To create a template mask encompassing only the voxels with data from all subjects, we

computed the intersection of all warped brain masks using the mrmath min function.

Additionally, we warped the WM probability images from the five-tissue-type (5tt) segmentation

to the group template space in order to generate a WM mask, and computed the group average

probability of WM at each voxel. Lastly, we generated an FOD template average and retained the

T1w and T2w images in their native resolution (0.7mm) and calculated the T1w/T2w ratio to

generate a proxy myelin map, which was then warped to the FOD template (Glasser & Van

Essen, 2011).

The FOD template was then segmented to extract the WM fixel mask. This fixel mask

determines the fibre bundle elements (fixels) within each voxel. Fixel segmentation is then

performed on the WM FODs of each subject. The fixels are aligned with the template using

subject-to-template warps (fixelreorient function) and mapped to the corresponding fixels in the

fixel mask (fixelcorrespondence function). This ensures a consistent set of fixel directions for all

subjects. We computed 2 fixel metrics in addition to the computation of the apparent fibre

density (FD) of each fixel. First, the fibre bundle cross-section (FC) metric was computed to

measure the expansion or contraction required for the fibre bundle to fit the fixel template, and

the fibre density and cross-section (FDC) metric was calculated by multiplying the FD and FC

metrics, representing the overall capacity of a fibre bundle to carry information.

To incorporate all metrics into a unified multi-modal model, the fixel metric maps were

summarised into voxelwise maps. Instead of deriving the measure of total fibre density (FDtotal)

per voxel from fibre-specific FD, we used the sum of FOD lobe integrals. This summation
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yielded more reproducible estimates, as demonstrated in previous studies (Calamante et al.,

2015). For the fibre cross-section voxel aggregate measure, we computed the weighted mean of

FC using the fixel2voxel function's mean option. This measure represents the average expansion

or contraction required to align fibre bundles within a voxel to the fixels in the template. The

weighting factor was based on FD (fibre density), ensuring that bundles with higher density

exerted a greater influence on the voxelwise FC value compared to those with lower density.

Finally, to assess the overall information-carrying capacity at each voxel, we computed the

voxelwise sum of FDC (fibre density and cross-section) using the fixel2voxel function's sum

option. This measure represents the cumulative capacity to carry information within a voxel

(Raffelt et al., 2017).

The bias field-corrected DWI data was also fit with the neurite orientation dispersion and

density imaging (NODDI) model using the python implementation of Accelerated

Microstructure Imaging via Convex Optimization (AMICO) (Daducci et al., 2015; Zhang et al.,

2012). Initially, small variations in b values were addressed by assigning the nearest target b

value (0, 1000, 2000, or 3000) to each value in the b-values file. This step aimed to prevent the

fitting algorithm from considering slightly different b values as distinct diffusion shells, given

that the b-values from the HCP exhibit slight variations. Subsequently, a diffusion gradient

scheme file was created based on the b-vectors and the modified b-values file. The response

functions were computed for all compartments, and the fitting procedure was performed on the

unbiased DWI volumes, specifically within the brain mask excluding non-brain voxels. The

resulting parameters obtained from the fitting process were the intracellular volume fraction

(ICVF) assessing neurite density (i.e. interpreted as axonal density in WM) and orientation

dispersion index (OD) assessing the extent of dispersion around the mean orientation (Zhang et

al., 2012).

In total, 10 voxelwise microstructural measures were computed for each of the 1001

subjects to use as features in our analyses. These features were 4 DTI measures (FA, MD, RD,

AD), 3 ODF measures (FC, FD, FDC), and 2 NODDI measures (ICVF & OD) and T1w/T2w.

We then computed voxelwise averages for each of these features and the covariance between

each pair of features across all of WM voxels.
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d. Multivariate distance model

We computed the Mahalanobis Distance (D2), a voxelwise multivariate distance, to

incorporate all 10 microstructural features while accounting for the covariance between them.

Due to the high covariance between imaging features that capture shared and overlapping

biological and physiological mechanisms (Raghavan et al., 2021; Tardif et al., 2016), accounting

for it in an explicit statistical model is a more precise way to intimately tie derived metrics to

microstructure (Tremblay et al., 2024). The voxelwise approach permits group-level analysis

since it results in individual subject D2 maps that are direct assessments of the multivariate

differences from the average microstructure. To avoid biassing the average with each subject’s

data when distances between the subject and the average is computed, a leave-one-subject-out

approach was implemented. Here, each subject was removed from the calculated metric averages

when that subject’s voxelwise D2 map was computed.

The distance between each subject’s microstructural features (i.e., the 10 features) and the

average of those features at a given voxel is calculated, resulting in a subject distance vector of

the shape 10x1. Then, the distance vector is divided by the covariance between features (in our

mvComp approach, this is achieved by multiplication with the pseudoinverse of the covariance

matrix; see Tremblay et al., 2024). The same procedure is conducted for each voxel in every

subject, resulting in voxelwise D2 maps for each of them.

e. Detecting outliers

We computed D2 for all 1001 subjects in our sample. Due to the large number of voxels

and features used per subject, outliers were observed in these individualised D2 maps.

Therefore, we removed every participant with extensive voxelwise outliers, based on a

threshold of 5 standard deviations from their average D2 value. That is, if a participant’s D2

map contained 55 or more voxels with D2 values larger than 5 SD (i.e. > 0.07% voxels) of their

own voxelwise average, that participant was dropped from the analysis. This value was chosen

as the optimal tradeoff between outlier removal and retaining a large sample - further increasing

the cutoff results in an ~50% drop in sample size. As D2 is computed relative to the average,

we reran the D2 computations on the resulting final smaller sample of 735 subjects. We then

applied a power transformation at each voxel (across all subjects) to normalise the D2

distribution and z-scored for standardisation. Lastly, standardised D2 z-scores with probabilities
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that exceeded 99.7% in each tail of the distribution were transformed to the closest value on a

per-voxel basis since they were not deemed as outliers but rather large values (i.e. values larger

than ~3SD were transformed to 3SD).

f. Behavioural tasks

We used 4 tasks to assess cognition and motor functioning from the NIH toolbox, which

were included with the HCP (Reuben et al., 2013; Weintraub et al., 2013). To assess motor

functioning, we used the Grip Strength task (GST) and the 9-Hole Pegboard task (9-HPT),

examining strength and dexterity respectively. In the GST, subjects were asked to squeeze a

hand dynamometer as hard as they can, while in the 9-HPT, they are timed as they place 9 pegs

in holes on a board and then remove them as quickly as possible. The tasks chosen to assess

cognition were the card sorting task (CST) and the list sorting task (LST), both well validated

and standardised tasks widely used in examining cognitive flexibility and working memory

respectively. All behavioural measures were also power-transformed and z-scored. The

voxelwise correlations between these tasks and D2 are shown in supplementary figure 1.

g. Age and sex correction

To account for the potentially confounding effects of age and sex on neuroimaging

metrics (Weber et al., 2022), each of the behavioural data as well as the voxelwise D2 values

were fitted with a robust linear regression (task ~ age + sex, D2 ~ age + sex) and the residuals

retained for subsequent analysis to statistically remove their effects. As with the imaging data,

age and sex measures were power-transformed and z-scored prior to inclusion in the analyses.

h. Statistical analyses

A multivariate partial least squares-singular value decomposition (PLS-SVD) analysis

was used to examine the association between D2 and the 4 behavioural measures (GST, 9-HPT,

CST, and LST). This approach applies a singular value decomposition (SVD) to the

brain-behaviour covariance matrix to extract latent variables (LV) (McIntosh & Mišić, 2013).

Given a matrix M of voxel and task associations, SVD decomposes M into USVT, such that U

has the shape (voxel x LV), whereas VT is an (LV x task) matrix. Decomposing the covariance

matrix allows for the extraction of latent variables that have the largest amount of explained

brain-behaviour covariance, along with the weight (importance) of each task and voxel on each

latent variable. The weight of each voxel is represented by the columns of U, while the weight
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of each task is represented by the row of VT. Statistical significance of the LVs was assessed

with a 1000 permutation of the PLS-SVD decomposition. In other words, we conducted 1000

PLS-SVD iterations, shuffling the behavioural input each time and extracting the explained

covariance from each iteration. After extracting all the explained covariance values from each

iteration, those that were larger in the original decomposition than the shuffled iterations were

deemed statistically significant. We conducted 1000 bootstrap iterations for each voxel and task

of every latent variable to assess statistical significance of that voxel or task (by bootstrapping

the U and VT matrices). For each bootstrapping iteration, behavioural as well as D2 data were

resampled with replacement, and for each resampled set the PLS-SVD decomposition was

rerun. This allows the calculation of confidence intervals around each task/voxel weight. For

permutation and bootstrap testing, the significance level was set to a family-wise error

corrected p < 0.05. The outcomes from this analysis were the brain-behaviour explained

covariance, behavioural and microstructural (i.e. D2) PLS scores for each subject, and task and

voxel weights for each LV.

Significant findings were further assessed to identify their WM structural connectivity

profiles using a normative model of whole-brain connectivity. For each significant LV, we

chose a maximum of 3 regions of spatially connected voxels with large weights in order to

individually identify the set of streamlines passing through them. This approach is identical to

that used in identifying the network effects of brain lesions (Karnath et al., 2018; Talozzi et al.,

2023; Thiebaut de Schotten et al., 2020; Zayed et al., 2020). Here, we used a previously

constructed streamline connectivity model that consisted of 10 million representative

streamlines between all GM regions in our template space. After extracting the streamlines

passing through the clusters, the GM connectivity profile of the WM passing through these

clusters was summarised using the Automated anatomical labelling atlas 3 (AAL; Rolls et al.,

2015) and using the tck2connectome function of MRTrix3 (Tournier et al., 2019).

mvComp was used to compute voxelwise D2 scores for each subject, and in-house

pipelines to perform all data correction on D2 and behavioural data. We used MATLAB to run

the PLS-SVD analysis as well the permutation and bootstrapping iterations.
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4. Results

We used D2 and PLS-SVD to examine the multivariate relationship between

microstructure and cognitive and motor behaviour. We found that the first 3 latent variables

extracted via PLS-SVD were statistically significant, and explained 39.01%, 25.23%, and

19.04% of brain-behaviour covariance, respectively (fig. 1). The PLS scores of D2 and

behaviour were positively correlated in all LVs (r=0.39, r=0.69, r=0.70 for LV1, LV2 and LV3,

respectively; panel a in fig 2,3,4). LV1 was characterised by positive behavioural weights on

both cognitive tasks (cognitive flexibility and working memory) and one motor task (manual

dexterity) (fig. 2b). Significant voxels, distributed in WM underlying frontal and parietal regions,

as well as cerebellar WM, had mostly negative weights, indicating negative brain-behaviour

associations (fig. 2c). In the second LV, grip strength showed a strong positive association and

cognitive flexibility weighed less heavily, while WM voxels associated with this pattern had

positive and negative values in parietal and cerebellar WM (fig. 3b,c). Lastly, LV3 showed

negative weights of working memory while manual dexterity weighed positively (fig. 4b). There

were strong negative and positive weights in adjacent regions underlying frontal WM as well as

in the corpus callosum (fig. 4c). Results for each LV are discussed in the next sections.
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a. Latent Variable 1

The first LV revealed a moderate association between transformed D2 and behavioural

scores (r = 0.39, p < 0.001; fig. 2a). We found that cognitive flexibility, working memory, and

manual dexterity were statistically significant in their positive weights on LV1 (fig. 2b). WM

voxels adjacent to frontal, temporal, and cerebellar regions had negative weights, while parietal

regions were either negatively weighted (e.g. corticospinal tract) or positively weighted (only in

WM underlying the pericentral sulcal regions), as shown in fig. 2c. Put differently, these

distributed negative voxels across the WM along with the positively weighted tasks are

negatively correlated given their opposite signs, while the positively weighted voxels are

positively correlated with behaviour.

To examine the connectivity profile of largest voxel weights that are spatially connected,

we extracted 3 clusters situated in WM underlying the left pericentral sulcus and left prefrontal

WM, and in the right corticospinal tract. The connectivity profile of each is shown in fig. 2e. We

observed that for the first cluster in fig. 2d, the largest proportion of connections passed through

the left supplementary motor area (left SMA), followed by the right SMA. The prefrontal WM

cluster was found to connect the left putamen, for which the largest proportion of connections

led to, followed by the left frontal inferior orbital cortex. Lastly, streamlines passing through the

corticospinal tract cluster connected the right thalamus (largest proportion of connections),

followed by the right parietal cortices, then the right precuneus are maximally connected through

it.
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b. Latent Variable 2

The second LV revealed a stronger association between PLS scores (D2 and tasks; r =

0.69, p<0.05; fig. 3a). Two tasks were positively weighted on this LV; cognitive flexibility and

grip strength, while. However, manual dexterity had a negative weight. This LV was

predominantly weighted by grip strength, while working memory weight was not statistically

significant after 1000 bootstraps (fig. 3b). Unlike LV1, there were positively- and negatively-

weighted voxels distributed in WM (fig. 3c). The positively weighted voxels were in the left

parietal, right prefrontal, right temporal, and right superior cerebellar WM, whereas negatively

weighted voxels were scattered in left frontal, callosal, and inferior cerebellar WM. The positive

voxels in parietal and frontal regions are maximally positively correlated with cognitive

flexibility and grip strength, but they are negatively correlated to manual dexterity. On the other

hand, the negative voxels in frontal and colossal WM are negatively associated with cognitive

flexibility and grip strength, but positively associated with manual dexterity.

Again, to examine the connectivity profile of some of the statistically significant regions,

we extracted 3 clusters situated in WM of the left corticospinal tract, genu of the corpus

callosum, and WM underlying th in an k toe right primary mo. tor area (fig. 3d). Similarly to

what was observed in LV1, the connectivity profile of the first cluster was dominated by left

thalamic and parietal regions. The genu of the corpus callosum was the main hub of

interhemispheric connectivity, mainly the frontal cortices (e.g. superior medial cortex) and left

and right caudate nuclei. As expected, the streamlines passing through the cluster underlying

WM of M1 largely affected the connectivity of M1, followed by the right thalamus and the

putamen.
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c. Latent Variable 3

The third latent variable (LV) showed a similar correlation of transformed

brain-behaviour scores to LV2, with a correlation coefficient of 0.70 (p<0.05; fig. 4a). Working

memory and manual dexterity weighed heavily on this LV, albeit in opposite directions. Memory

task was negatively weighted whereas dexterity weighed positively (fig. 4b). There were

negatively and positively weighted voxels distributed in WM. Significant positive voxels were in

prefrontal WM, adjacent to negative voxels. There were also positively weighted voxels in the

right CST and in the splenium of the corpus callosum (fig. 4c). Manual dexterity was positively

associated with the positive clusters in the left frontal, CST, and colossal WM while working

memory was negatively associated with these regions, and vice versa. On the other hand,

We identified 3 clusters of statistically significant weights (fig. 4d), 2 of which were in

prefrontal WM and one in the CST. The negative prefrontal cluster encompassed streamlines

connecting the left frontal inferior orbital cortex. The adjacent positive cluster contained

streamlines of the left frontal superior medial cortex. Lastly, the positive cluster in the CST was

the passage of streamlines connecting the right precuneus, thalamus, and parietal cortices.
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Figure 4: Decomposition results of the third latent variable. (a) PLS score correlation, (b)

weights of statistically significant tasks, (c) weights of statistically significant voxels, (d)

identified clusters of interest, (e) connectivity profile of clusters in d) based on AAL.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2024. ; https://doi.org/10.1101/2024.06.05.597645doi: bioRxiv preprint 

https://doi.org/10.1101/2024.06.05.597645
http://creativecommons.org/licenses/by-nc-nd/4.0/


5. Discussion

The goal of the current study was to examine the association between white matter

microstructure and behaviour using a multivariate analysis, incorporating 10 neuroimaging

metrics and 4 behavioural tasks. By integrating these metrics, we were able to tie non-invasive

neuroimaging to WM microstructure, and quantitatively compare across healthy cognitive and

motor function. We used the mvComp toolbox to compute voxelwise D2 scores from

neuroimaging metrics while accounting for their covariance. We then extracted latent variables

of the spatial pattern of association between D2 and 4 tasks spanning motor and cognitive

function. We sought to expand recent directives in neuroscience that emphasised the need for

holistic mappings of behaviour on the brain (Varoquaux et al., 2018) to WM analysis. In order to

do so, we used multivariate statistical integration of brain and behaviour which have shown

enhanced validity and reliability compared to traditionally used techniques (Yoo et al., 2019). We

extracted multidomain behavioural variables and found their WM microstructural correlates in a

large sample of healthy young adults. We observed 3 statistically significant latent variables that

explain a total of 83% of the brain-behaviour associations (fig. 1), and decompose behavioural

functioning into higher order cognitive and premotor functioning (LV1; fig. 2), motor

functioning (LV2; fig. 3), and integrative cognitive-motor functioning (LV3; fig. 4).

We used D2 to integrate dMRI-derived metrics which have been shown to be linked

strongly to WM microstructure as described in Tremblay and colleagues (2024). There have been

recent implementations which suggest that D2 is a more sensitive biomarker in epilepsy,

traumatic brain injury, and in detecting individual variability in WM connectivity

(Guerrero-Gonzalez et al., 2022; Owen et al., 2021; Taylor et al., 2020). However, our approach

differs from these studies in a number of ways. First, rather than integrating multiple correlated

neuroimaging metrics, these studies integrated the same measure across multiple WM tracts.

This approach results in a single D2 score per participant, which could be used as a severity,

classification, or prediction score at the expense of spatial information. That is, it is not possible

to determine the location of differences within WM for each subject. On the contrary, our results

show a whole WM differential pattern by using multiple microstructural metrics at the voxel

level, which is both specific to the subject and the location within WM. Given the specificity of

our approach, we also performed multivariate statistical analysis to investigate the association

between voxelwise D2 scores and 4 behavioural tasks. We used partial least squares techniques,
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which is increasing in popularity in neuroimaging research due to its robustness and sensitivity

(McIntosh & Lobaugh, 2004; McIntosh & Mišić, 2013). This technique allowed us to provide a

WM-behaviour mapping and explore the holistic nature of the relationship between

microstructure and cognitive and motor functions that would not have been possible with

univariate approaches.

First, the association between transformed scores of microstructure and behaviour were

statistically significant for three of the four latent variables (panel a in fig. 2,3,4). The latent

variables we identified provide a more comprehensive and holistic characterization of the

relationships with behaviour than a univariate approach with each of the tasks separately

(supplementary fig. 1). That is, combining multiple cognitive and motor tasks allowed us to

extract the microstructural correlates of behaviour that are stronger and more holistic than

univariate techniques. In all cases, we observed that better performance on cognitive (fig. 2a),

motor (fig. 3a), and integrative (fig. 4a) behaviours, were correlated with greater distances (D2)

in WMwhite matter microstructure. This is in agreement with the current frameworks in

cognitive neuroscience that focus on the complex modelling of behaviour, starting with Price and

Friston (2005), and more recently expanded on in Varoquaux and colleagues (2018) and

Varoquaux and Poldrack (2019). These authors suggested that past and current neuroscientific

evidence is overly reductionist, which limits its interpretability and generalizability across

behavioural domains. Our method avoids oversimplifying behaviour, and rather extracts latent

variables that ground behaviour in microstructure. Hence, it provides a path for the development

of ontologies beyond the cortex and into WM. Overall, the effects we observed could be due to

plastic changes in WM that lead to enhanced performance, or practice-induced changes in WM.

Although it is not possible to assess which one precedes the other (Price & Friston, 2005), our

technique shows that combining multiple measures of behaviour with multiple measures of

microstructure is a stronger approach than independent univariate approaches.

Based on the behavioural weights of each latent variable, we showed that the first LV

represented higher order cognitive and premotor skills, the second LV represented the motor

behaviour, and the third LV represented integrative functioning (panel b, fig. 2,3,4). These

findings emphasise the connectedness and interplay of different components of behaviour during

a task (Schöttner et al., 2023). For instance, while cognitive tasks (i.e. cognitive flexibility and

working memory) loaded strongly on LV1, the dexterity task weighed similarly on it. This is
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likely due to the premotor execution functions required in the task, which are the planning of the

reaching and grasping motions (fig. 2b). Dexterity has been previously grouped with cognition

tasks via experimental manipulation, and when behavioural latent spaces were explored via

machine learning (Rodríguez-Aranda et al., 2016; Schöttner et al., 2023). Previous studies

examining the neural correlates of fine motor skills suggest that many cortical regions are

involved in this complex task, including visuospatial and somatosensory areas (Sobinov &

Bensmaia, 2021). This is contrasted with the second LV, where dexterity and grip strength weigh

strongly, in addition to the cognitive flexibility task (fig. 3b). Of note here is that the working

memory task is the only task that does not require the participants to use their arms to perform it

(Weintraub et al., 2013). This was backed up by the lack of statistically significant weight of this

task, and the positive weight of the cognitive flexibility of the card sorting task. Indeed,

meta-analytical evidence from functional imaging during cognitive flexibility tasks shows

activation in cognitive and motor areas of the cortex (Buchsbaum et al., 2005). Furthermore, we

observed that tasks that require macro-level movement (i.e., gross movement) are dissociable

from the fine motoric ones. This is supported by the positive weights of cognitive flexibility and

grip strength, and the negative weight of dexterity (fig. 3b). Lastly, the third LV shows strong

positive and negative weights of cognitive and motor tasks, reflecting the integrative nature of

this variable. This integrative nature could only be extracted using multivariate techniques, and

the use of multiple tasks spanning multiple behavioural domains. However, it does not match the

clustering of Schöttner and colleagues (2023), which focuses on similarity between the loadings

of behavioural tasks. One potential reason for this mismatch between our work and theirs is that

our decomposition aims to extract latent brain-behavioural associations rather than behavioural

associations alone. Thus the incorporation of WM microstructure in behavioural analysis

provides a grounding for behaviour in neuroanatomy. There is evidence for disrupted

cognitive-motor integration in TBI in relationship to cortical functioning (Sergio et al., 2020) and

post-concussion temporal WM (Hurtubise et al., 2020). However, to our knowledge this is the

first exploration of healthy integrative functioning in WM with such a multivariate approach.

Therefore, in light of our findings, further research is required to assess the effects of

incorporating WM microstructural with behavioural findings.

When examining the voxel weights, we observed widespread shared and overlapping

patterns across WM in all LVs (panel c, fig. 2,3,4). These findings expand our understanding of
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the complexity of brain-behaviour associations, emphasising the active role of WM

microstructure in supporting higher-order cognitive processes, motor skills, and the integration of

cognitive and motor functions. This is evident in the voxels’ weights that span regions

traditionally labelled regions as cognitive, motor, and higher-order integration. For instance,

frontal and parietal regions for cognitive functions, parietal, cerebellar, and frontal for motor

skills, and prefrontal WM for integrative functioning. An interesting pattern of voxel weights

emerges between LVs. First, the cognitive LV (LV1) is mostly negatively distributed indicating

that better performance on cognitive tasks is associated with smaller deviations of WM

microstructure (i.e. larger D2). This pattern is observed for anterior and posterior frontal in

addition to parietal WM. Our results are concordant with stroke disconnectome research, which

shows cognitive and dexterous impairment with stroke-related disconnection in these regions

(Talozzi et al., 2023). Moreover, cortical regions involved in premotor functions, visuospatial

imagery, and executive skills are connected through these WM regions (Krüger et al., 2020;

Sobinov & Bensmaia, 2021; Suchan et al., 2002). Namely, the left and right SMA, the left and

right precuneus, and lastly the left putamen and frontal cortices, respectively. Therefore, it is

possible that an interplay between microstructure and connectivity within WM gives rise to these

behaviours. However, since our results come from a large sample of healthy individuals, we

demonstrated that it is possible to localise cognitive functioning in WM prior to injury with only

an individual differences approach. This could aid in symptom prediction and personalised

treatment following tissue damage. Second, the motor LV is positively and negatively weighted

differentially across all of WM. Unsurprisingly, the second LV’s positive voxels are highly

associated with motor function, and are distributed in WM underlying left motor regions. This

effect is largely due to the recruitment of these regions in signal conduction, and the modulation

of the microstructure for optimal motor performance (Sampaio-Baptista et al., 2013). The

corticospinal tract was positively associated with gross motor performance, and negatively with

fine motor skills. Here, all these tasks required motor execution, and a simple motor task such as

grip strength had the largest weight. This is also supported by the cortices most connected

through these clusters. For instance, we observed maximal connectivity of the left thalamus, left

and right peri-central and frontal superior cortices in these clusters. For the third latent variable,

integration of motor functioning with cognitive abilities have been shown to involve prefrontal

and parietal WM as well as the splenium of the corpus callosum. These are consistent findings
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linking motor, executive and working memory functioning to prefrontal areas (Thiebaut de

Schotten & Forkel, 2022). Microstructural differences in these regions may be part of a larger

network of cortical regions connected through WM, since the extracted cortical regions indicate

that prefrontal GM is involved in integrative functioning (Seidler et al., 2012). Therefore, our

observations in the prefrontal WM indicate a modulation of microstructure to support cortical

functioning.

This study is not without limitations. We used 4 tasks spanning cognition and motor

behaviours to provide a holistic brain-behaviour mapping. However, in order to provide a

complete behavioural atlas grounded in WM microstructure, more tasks should be incorporated.

Schöttner and colleagues (2023) show that using dimensionality reduction on a large battery of

tasks, and extracting factors provided a good tradeoff between variance, reliability, and validity

in behavioural assessments. Also, there are other functions, such as sensory and emotional

functions, that are not for each of the measures we used that are not accounted for with these

only 4 tasks, such as sensory and emotional behaviour (see Varoquaux & Poldrack, 2019).

Therefore, future examinations should use similar dimensionality reduction techniques to

Schöttner et al., (2023) while also incorporating emotion, language, and sensory measures. This

will provide a more complete atlas of human behaviour, and disentangle the contribution of

microstructural differences across WM to healthy functioning. Moreover, the Mahalanobis

distance suffers from two main issues. First, it is a squared metric that does not distinguish the

directionality of deviation from the average. Therefore, it is not possible using our method to

assess whether there has been an increase or a decrease from the average in WM microstructure.

The directionality could be an important factor in assessing longitudinal change, where the

average is substituted as the baseline. Second, given that it is a distance to the average, voxelwise

D2 values are arbitrary units of how different the microstructure is for a given subject.

Guerrero-Gonzalez and colleagues (2022) applied the Wilk’s criterion in order to define a

statistical significance threshold for D2 scores (Penny, 1996), which would help in identifying

the largest distance in a sample. However, given that D2 requires normality (Mahalanobis, 1936),

computing a threshold of significance for this metric may be biassed in non-normal large

samples. In future studies, permutation and reshuffling approaches may prove more beneficial in

identifying robust and significant D2 values, while also identifying small deviations in order to
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remove them. Future studies should also use longitudinal designs to explore within subject

microstructural changes and their relationships to behaviour.

Conclusion

In conclusion, we provide a holistic mapping between cognitive and motor behaviours

and white matter microstructure. We achieve this goal by using the Mahalanobis distance (D2)

computed from 10 microstructural metrics, and decomposing the association between D2 and 4

behavioural measures assessing cognitive flexibility, working memory, dexterity and strength.

We show that using multivariate statistical analysis provides stronger brain-behaviour

associations and is able to extract latent variables of cognitive, motor and integrative function.

We also provide spatial mappings between these 3 domains of behaviour and WM microstructure

displayed as the strongest associations across WM. We extend our analysis to the cortical GM,

and show that there exists an interplay between connectivity and microstructure in order to give

rise to and sustain healthy human behavioural functioning.
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7. Appendix A

Supplementary figure 1: the association between each task and D2 scores at each voxel.
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