Supplementary information

Microbial competition for phosphorus limits the CO₂ response of a mature forest

In the format provided by the authors and unedited

Supplementary Information

Microbial competition for phosphorus limits CO₂ response of a mature forest

Authors: Mingkai Jiang^{1,2}[†], Kristine Y. Crous²[†]*, Yolima Carrillo², Catriona A. Macdonald², Ian C. Anderson², Matthias M. Boer², Mark Farrell³, Andrew N. Gherlenda², Laura Castañeda-Gómez^{2,4}, Shun Hasegawa^{2,5}, Klaus Jarosch^{6,7}, Paul J. Milham², Rául Ochoa-Hueso^{8,9}, Varsha Pathare^{2,10}, Johanna Pihlblad^{2,11,12}, Juan Piñeiro^{2,13}, Jeff R. Powell², Sally A. Power², Peter B. Reich^{2,14,15}, Markus Riegler², Sönke Zaehle¹⁶, Benjamin Smith², Belinda E. Medlyn², David S. Ellsworth²

Affiliations

1. College of Life Sciences, Zhejiang University, Hangzhou, China, 310030

2. Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, Australia

3. CSIRO Agriculture and Food, Kaurna Country, Locked Bag 2, Glen Osmond, SA, 5064, Australia

4. SouthPole Environmental Services, Zurich, Switzerland

5. Department of Forestry and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway

6. Institute of Geography, University of Bern, Bern, Switzerland

7. Agroecology and Environment, Agroscope, Zurich-Reckenholz, Switzerland

8. Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (CeiA3), Campus del Rio San Pedro, 11510 Puerto Real, Cádiz, Spain

9. Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, the Netherlands

10. Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA

11. Birmingham Institute for Forest Research, University of Birmingham, Edgbaston B15 2TT, United Kingdom

12. School of Geography, University of Birmingham, Edgbaston B15 2TT, United Kingdom

13. ETSI Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain

14. Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, USA.

15. Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA

16. Max Planck Institute for Biogeochemistry, Hans-Knöll-Str. 10, 07745 Jena, Germany

*Corresponding author. Kristine Y. Crous Email: <u>k.crous@westernsydney.edu.au</u>

[†]These authors contributed equally to this work.

Table of contents

1. Additional data to place EucFACE in a global contextP1
2. Uncertainties associated with temporal fluctuations in dataP2
2.1. Linear mixed-effect model to quantify CO ₂ by time interactionP2
2.2. Bootstrapping approach to systematically quantify the uncertainties
3. The CO ₂ effect on the relative abundance of saprotrophic and mycorrhizal fungi in soils at EucFACE
4. References citedP13

Supplementary Table List

Supplementary Table 1. Phosphorus (P)-resorption coefficient calculated for canopy leaf, understorey shoot, and sapwood, under ambient and elevated CO ₂ P	1
Supplementary Table 2. Statistical summary of the linear mixed-effects model on major phosphorus (P) concentration variablesP	י2
Supplementary Table 3. Statistical summary of the linear mixed-effects model on major phosphorus (P) pool variablesP4	4
Supplementary Table 4. Statistical summary of the linear mixed-effects model on major phosphorus (P) flux variablesP	5
Supplementary Table 5. Relative abundances of ectomycorrhizal and saprotrophic fungi in so at EucFACE during the months prior to CO ₂ fertilization (sampling dates in 2012) and the first five years of CO ₂ fertilization	ils st 11

Supplementary Table List

Supplementary Figure 1. Temporal fluctuations in the canopy P pool under ambient and ele	evated
CO ₂ treatment	P8
Supplementary Figure 2. Temporal fluctuations in fineroot P concentration under ambient	and
elevated CO ₂ treatment	.P9

1. Additional data to place EucFACE in a global context

The size of phosphorus (P) pool in stored in plants at EucFACE is relatively low, but it is broadly comparable to those estimated for broadleaf forests in the temperate and tropical or subtropical regions, in that it is above the 25th percentile of a regional dataset ¹ (n=1969; Extended Data Figure 1d). Similarly, the amount of P stored in plant relative to soil at EucFACE (i.e., plant over soil P pool ratio) is broadly comparable to those estimated for tropical or subtropical broadleaf forest (Extended Data Figure 1e). This result suggests that the size of P pools estimated for EucFACE is representative of a large variety of forests.

In terms of the amount of P stored in soil microbes relative to the size of soil organic P pool, it is observed that EucFACE is on the relatively high end of the global estimate ² (n=144; Extended Data Figure 1f). Soil microbes at EucFACE stored about 6.0 ± 1.43 g P m⁻² over the top 60 cm of the soil, which accounts for 24% of the soil organic P pool. The global dataset indicates a mean fraction of 11.6% and a median fraction of 7.2%, significantly lower than the fraction estimated for EucFACE. This result suggests that microbes at EucFACE may have contained a disproportionally large amount of P in their biomass.

Plant P resorption played an important role to meet the annual plant nutrient demand. At EucFACE, canopy leaves on average retranslocated 55% of P from its tissue before leaf senescence (Supplementary Table 1). This canopy P resorption fraction is above the global average of 48% reported for evergreen broadleaf forests ³. In comparison, understorey leaves are less efficient in resorbing P (43%) than the overstorey tree leaves. Sapwood is the most efficient plant organ in resorbing P, in that about 71% of P is retranslocated each year.

Supplementary Table 1. Phosphorus (P)-resorption coefficient calculated for canopy leaf, understorey shoot, and sapwood, under ambient and elevated CO_2 . Canopy and understorey P resorption was calculated based on the difference between P concentrations in mature green leaves and leaf litter. Sapwood P resorption was calculated as the difference between sapwood P concentration and heartwood P concentration. Values are time-averaged means \pm standard deviations (n=3).

Treatment	Canopy	Understorey shoot	Sapwood
aCO ₂	0.546 ± 0.058	0.423 ± 0.110	0.710 ± 0.061
eCO ₂	0.552 ± 0.060	0.417 ± 0.188	0.673 ± 0.055

Uncertainties associated with temporal fluctuations in data Linear mixed effect model to quantify CO₂ by time interaction

In this study, we used data collected over a 6-year period (i.e., 2013-2018) to understand how atmospheric CO₂ enrichment (eCO₂) affects ecosystem P-cycle processes at EucFACE. There are three treatment plots for each CO₂ treatment (n=3), and data were collected in sub-replicates within each treatment plot at each sampling date. We calculated the means for each treatment plot to ensure the true replicate number is three for each CO₂ treatment at each sampling time point. In the overall budget reported in the main text, we reported the time-averaged values for each CO₂ treatment. To understand how temporal fluctuation may have affected the main CO₂ effect, we built a linear mixed-effects model, with CO₂ treatment and Date considered as fixed factors, and Plot considered as a random factor. We used R package "lme4" ⁴ to perform this analysis. The statistical results are summarized in Supplementary Tables 2, 3 and 4, for major P concentration, pool and flux variables, respectively.

As the statistics show, the Date factor is typically a strong predictor of the response variables (i.e., P < 0.05), but there is a general lack of main CO₂ effect, and Date typically does not interact with the Treatment factor (i.e., P > 0.05). This result indicates that the main CO₂ effect is consistent regardless of the temporal fluctuation of the data. The two exceptions are canopy P pool and fine root P concentration variables, both showing a statistically significant (p < 0.05) Treatment by Date interaction (Supplementary Table 2 and 3). More specifically, canopy P pool is higher (but statistically non-significant) in the eCO₂ treatment in all years except the later half of 2016 (Supplementary Figure 1a). In comparison, fine root P concentration is consistently higher (non-significant) in the eCO₂ treatment across all sampling dates except June and December in 2014 (Supplementary Figure 2a). However, when averaging these two pools at the annual timestep (Supplementary Figures 1b and 2b), none of the CO₂ comparisons show a significant treatment effect. Taken together, our statistical analysis suggests that the reported main CO₂ effect is generally consistent at different temporal scales.

Supplementary Table 2. Statistical summary of the linear mixed-effects model on major phosphorus (P) concentration variables. Year indicates the main effect of year, Treatment indicates the main effect of CO_2 treatment, whereas the Year: Treatment indicates the CO_2 by year interaction. Df and Df.res indicate the numerator and denominator degree of freedom, respectively.

Canopy P concentration	F	Df	Df.res	P-value
Year	11.09	5	67.55	< 0.0001
Treatment	0.20	1	3.66	0.683
Year: Treatment	0.75	5	67.53	0.587
Fine root P concentration	F	Df	Df.res	P-value
Year	9.50	6	24	< 0.0001
Treatment	4.15	1	4	0.111
Year: Treatment	3.20	6	24	0.019
Leaf litter P concentration	F	Df	Df.res	P-value
Year	4.20	5	20	0.009
Treatment	1.14	1	4	0.345
Year: Treatment	1.44	5	20	0.252
Understorey P concentration	F	Df	Df.res	P-value
Year	3.06	6	5.2	0.117
Treatment	0.28	1	3.3	0.632
Year: Treatment	0.02	2	4.7	0.985
Frass P concentration	F	Df	Df.res	P-value
Year	19.39	23	92	< 0.0001
Treatment	0.17	1	4	0.700
Year: Treatment	0.96	23	92	0.771
Microbial P concentration	F	Df	Df.res	P-value
Year	71.45	6	24	< 0.0001
Treatment	0.42	1	4	0.553
Year: Treatment	1.74	6	24	0.154
Soil P concentration	F	Df	Df.res	P-value
Year	2.76	5	20	0.047
Treatment	0.06	1	4	0.815
Year: Treatment	0.67	5	20	0.651
Soil labile P concentration	F	Df	Df.res	P-value
Year	46.58	15	60	< 0.0001

Treatment	0.10	1	4	0.765
Year: Treatment	1.20	15	60	0.298

Supplementary Table 3. Statistical summary of the linear mixed-effects model on major phosphorus (P) pool variables. Year indicates the main effect of year, Treatment indicates the main effect of CO₂ treatment, whereas the Year: Treatment indicates the CO₂ by year interaction.

Canopy P pool	F	Df	Df.res	P-value
Year	22.90	399	1596	< 0.0001
Treatment	0.08	1	4	0.786
Year: Treatment	1.54	399	1596	< 0.0001
Wood P pool	F	Df	Df.res	P-value
Year	19.15	4	16	< 0.0001
Treatment	0.04	1	4	0.858
Year: Treatment	0.28	4	16	0.888
Fine root P pool	F	Df	Df.res	P-value
Year	6.14	6	24	0.0005
Treatment	0.15	1	4	0.715
Year: Treatment	0.89	6	24	0.519
Leaf litter P pool	F	Df	Df.res	P-value
Year	4.43	45	180	< 0.0001
Treatment	6.30	1	4	0.066
Year: Treatment	0.74	45	180	0.879
Understorey P pool	F	Df	Df.res	P-value
Year	8.54	17	68	< 0.0001
Treatment	1.95	1	4	0.235
Year: Treatment	0.85	17	68	0.635
Coarse root P pool	F	Df	Df.res	P-value
Year	19.88	4	16	< 0.0001
Treatment	0.0002	1	4	0.990

Year: Treatment	0.29	4	16	0.882
Microbial P pool	F	Df	Df.res	P-value
Year	77.77	6	24	< 0.0001
Treatment	1.17	1	4	0.341
Year: Treatment	2.21	6	24	0.078
Soil P pool	F	Df	Df.res	P-value
Year	2.78	5	20	0.046
Treatment	0.001	1	4	0.974
Year: Treatment	0.63	5	20	0.681
Soil labile P pool	F	Df	Df.res	P-value
Year	46.28	15	60	< 0.0001
Treatment	0.006	1	4	0.944
Year: Treatment	1.45	15	60	0.154

Supplementary Table 4. Statistical summary of the linear mixed-effects model on major phosphorus (P) flux variables. Year indicates the main effect of year, Treatment indicates the main effect of CO_2 treatment, whereas the Year: Treatment indicates the CO_2 by year interaction.

Canopy P flux	F	Df	Df.res	P-value
Year	18.82	48	192	< 0.0001
Treatment	0.04	1	4	0.858
Year: Treatment	1.22	48	192	0.173
Wood P flux	F	Df	Df.res	P-value
Year	3.40	3	12	0.054
Treatment	0.41	1	4	0.558
Year: Treatment	0.71	3	12	0.562
Fine root P flux	F	Df	Df.res	P-value
Year	20.72	2	8	0.001
Treatment	0.26	1	4	0.637
Year: Treatment	0.46	2	8	0.646

Leaf litter P flux	F	Df	Df.res	P-value
Year	17.83	48	192	< 0.0001
Treatment	0.03	1	4	0.871
Year: Treatment	1.10	48	192	0.322
Understorey P flux	F	Df	Df.res	P-value
Year	9.81	3	12	0.001
Treatment	4.36	1	4	0.105
Year: Treatment	1.19	3	12	0.355
Coarse root P flux	F	Df	Df.res	P-value
Year	3.30	3	12	0.058
Treatment	0.18	1	4	0.692
Year: Treatment	0.75	3	12	0.544
Fine root litter P flux	F	Df	Df.res	P-value
Year	20.72	2	8	0.001
Treatment	0.26	1	4	0.637
Year: Treatment	0.46	2	8	0.646
Frass P flux	F	Df	Df.res	P-value
Year	16.91	21	78	< 0.0001
Treatment	0.08	1	4	0.796
Year: Treatment	0.59	21	78	0.911
Understorey litter P flux	F	Df	Df.res	P-value
Year	9.58	3	12	0.002
Treatment	1.63	1	4	0.271
Year: Treatment	1.22	3	12	0.344
Canopy resorption P flux	F	Df	Df.res	P-value
Year	19.71	48	192	< 0.0001
Treatment	1.27	1	4	0.323
Year: Treatment	1.27	48	192	0.135
Sapwood resorption P flux	F	Df	Df.res	P-value
Year	3.30	3	12	0.058

Treatment	0.53	1	4	0.507
Year: Treatment	0.65	3	12	0.596
Fine root resorption P flux	F	Df	Df.res	P-value
Year	20.72	2	8	0.001
Treatment	0.26	1	4	0.637
Year: Treatment	0.46	2	8	0.646
Coarse root resorption P flux	F	Df	Df.res	P-value
Year	3.19	3	12	0.063
Treatment	0.27	1	4	0.631
Year: Treatment	0.69	3	12	0.575
Understorey resorption P flux	F	Df	Df.res	P-value
Year	7.26	3	12	0.005
Treatment	0.30	1	4	0.615
Year: Treatment	0.94	3	12	0.451
Net P mineralization flux	F	Df	Df.res	P-value
Year	8.55	13	52	< 0.0001
Treatment	0.02	1	4	0.893
Year: Treatment	0.82	13	52	0.635
Soil P leaching flux	F	Df	Df.res	P-value
Year	14.69	11	34.4	< 0.0001
Treatment	0.74	1	3.78	0.441
Year: Treatment	01.48	11	34.4	0.184

Supplementary Figure 1. Temporal fluctuations in the canopy P pool under ambient and elevated CO₂ treatment. Panel (a) shows the temporal fluctuations at each date, whereas panel (b) shows the annual-averaged P pools. The points and shaded areas in panel (a) indicates the mean \pm standard deviation range, with dots indicating the treatment mean (n=3). Error Bars in panel (b) indicates the mean \pm standard deviation range (n=3), and open squared and triangle dots denote plot-level data under ambient and elevated CO₂ treatment, respectively. Linear mixed-effects model indicates a lack of main CO₂ effect (P < 0.05) at the annual timestep.

Supplementary Figure 2. Temporal fluctuations in fineroot P concentration under ambient and elevated CO₂ treatment. Panel (a) shows the temporal fluctuations at each date, whereas panel (b) shows the annual-averaged P pools. The points and shaded areas in panel (a) indicates the mean \pm standard deviation range, with dots indicating the treatment mean (n=3). Error Bars in panel (b) indicates the mean \pm standard deviation range (n=3), and open squared and triangle dots denote plot-level data under ambient and elevated CO₂ treatment, respectively. Linear mixedeffects model indicates a lack of main CO₂ effect (P < 0.05) at the annual timestep.

2.2. Bootstrapping approach to systematically quantify the uncertainties

We further developed a bootstrapping approach to quantify the uncertainty associated with the temporal fluctuation in data. For each variable that has a temporal data coverage, we calculated the plot-level mean at each sampling date, and then randomly selected three data points per treatment from the pool of sampling dates to calculate the treatment mean. We repeated this process by 1000 times to obtain the bootstrapped mean and the associated confidence intervals. Essentially, this bootstrapping approach allows us to use different combinations of values to estimate the overall CO_2 effect and the uncertainties associated with the mean effect size. We used the R package "boot" ^{5,6} to perform this analysis. We then compared the estimated CO_2 effect size and the confidence intervals against those obtained from the original approach as reported in the main text.

Our results show that the CO₂ effect sizes and the associated confidence intervals reported in the main text are similar to those estimated based on the bootstrapping method (Extended Data Figures 6 - 8). For P concentration variables, the two approaches result in similar CO₂ effect sizes and similar confidence intervals (Extended Data Figure 6). For P pool variables, the bootstrapping method result in comparable confidence intervals relative to the original approached reported in the main text (Extended Data Figure 7). Similarly, for P flux variables, the bootstrapping method result in generally similar confidence intervals as compared to the original approached reported in the main text (Extended Data Figure 8). Notably, the sign of the CO₂ responses and the magnitude of the estimated effect sizes are comparable by the two approaches (Extended Data Figures 6 - 8). Therefore, we report the results based on the simple approach in the main text.

3. The CO₂ effect on the relative abundance of saprotrophic and mycorrhizal fungi in soils at EucFACE

Supplementary Table 5. Relative abundances of ectomycorrhizal and saprotrophic fungi in soils at EucFACE during the months prior to CO₂ fertilization (sampling dates in 2012) and the first five years of CO₂ fertilization. Estimated means represent log10-transformed response ratios (ectomycorrhizal: saprotrophic) of DNA sequence read counts following Illumina sequencing of the fungal ITS2 region; see Ref 7 for details of DNA extraction, sequencing and data processing methods. The soil samples were collected on each of the 17 dates indicated and, within 24 hours, passed through a 2mm sieve and stored at -80 °C until DNA extraction. Contrasts between ambient and elevated CO₂ conditions were estimated for each sampling date after fitting a linear mixed effects model that included nested random effects ('ring' [three per CO₂ treatment] and 'plot' [four per ring]; N=23-24 per sampling date, one sample from the first sampling date was removed due to a sequencing failure) and using Kenward-Roger degrees of freedom. The model indicated a non-significant effect of CO₂ treatment overall (F = 0.78; df = 1,4; P = 0.43), the only significant contrast was observed during the pre-treatment phase, and this contrast was only marginally significant (P = 0.045; consistent with the finding of a non-significant CO₂ treatment by date interaction: F = 0.84; df = 1,351.03; P = 0.64).

Data	Tuesta		Contrast		
Date	1 reatment	emmean	Estimate	SE	P-value
2012-05-21	ambient	2.67	0.07	0.56	0.00
2012-05-21	elevated	2.60	0.07	0.30	0.90
2012-09-03	ambient	2.47	1 15	0.55	0.04
2012-09-03	elevated	1.32	1.15	0.55	0.04
2012-12-11	ambient	1.75	0.72	0.55	0.10
2012-12-11	elevated	1.02	0.73	0.55	0.19
2013-03-11	ambient	2.17	0.70	0.55	0.21
2013-03-11	elevated	1.47	0.70	0.55	0.21
2013-06-11	ambient	2.36	0.59 0.55	0.20	
2013-06-11	elevated	1.77		0.55	0.29
2013-09-03	ambient	2.63	0.62	0.55	0.26
2013-09-03	elevated	2.00	0.03	0.55	0.20
2013-12-10	ambient	2.25	0.45	0.55	0.42
2013-12-10	elevated	1.79	0.43	0.55	0.42
2014-03-10	ambient	1.92	0.12	0.55	0.82
2014-03-10	elevated	2.04	-0.12	0.55	0.85
2014-06-17	ambient	0.77	0.09	0.55	0.87
2014-06-17	elevated	0.68		0.55	0.87
2014-09-09	ambient	2.46	0.44	0.55	0.42
2014-09-09	elevated	2.02	0.44	0.55	0.43

2014-11-17	ambient	2.65	0.08	0.55	0.80
2014-11-17	elevated	2.57	0.08	0.55	0.89
2015-03-10	ambient	2.57	-0.51	0.55	0.36
2015-03-10	elevated	3.08			
2015-06-09	ambient	2.86	0.57	0.55	0.31
2015-06-09	elevated	2.29			
2015-09-07	ambient	2.78	0.18	0.55	0.74
2015-09-07	elevated	2.60			
2015-11-30	ambient	2.49	-0.24	0.55	0.66
2015-11-30	elevated	2.74			
2016-03-10	ambient	3.76	0.04	0.55	0.95
2016-03-10	elevated	3.72			
2017-08-21	ambient	2.95	-0.00	0.55	1.00
2017-08-21	elevated	2.95			

4. References cited

- Z. Yu, G. Zhou, L. Liu, S. Manzoni, P. Ciais, D. Goll, J. Peñuelas, J. Sardans, W. Wang, J. Zhu, L. Li, J. Yan, J. Liu, X. Tang, Natural forests promote phosphorus retention in soil. *Global Change Biology.* 28, 1678–1689 (2022).
- X. Xu, P.E. Thornton, W.M. Post, A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. *Global Ecology and Biogeography*. 22, 737-749 (2013).
- D. Tian, J. Kattge, Y. Chen, W. Han, Y. Luo, J. He, H. Hu, Z. Tang, S. Ma, Z. Yan, Q. Lin,
 B. Schmid, J. Fang, A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants. *Ecology*. 100 (2019), doi:10.1002/ecy.2812.
- D. Bates, M. Mächler, B. Bolker, S. Walker, Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*. 69, 1:48 (2015).
- A. Canty, B.D. Ripley, boot: Bootstrap R (S-Plus) Functions. R package version 1.3-28.1 (2022).
- 6. A.C. Davison, D.V. Hinkley, Bootstrap methods and their applications. Cambridge University Press, Cambridge, ISBN 0-521-57391-2 (1997).
- L. Castañeda-Gómez, J.R. Powell, D.S. Ellsworth, E. Pendall, Y. Carrillo. The influence of roots on mycorrhizal fungi, saprotrophic microbes and carbon dynamics in a lowphosphorus Eucalyptus forest under elevated CO₂. *Functional Ecology*, **35**, 2056-2071 (2021).