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Equation of motion for the density matrix coupled to a Redfield

photon bath

The Hamiltonian for a multi-electronic system interacting with a photon bath can be expressed as:

Ĥ = Ĥe +
∑
k

~ωk

(
N̂k +

1

2

)
−
∑
k

Êk · µ̂, (1)

where Ĥe is the multi-electronic Hamiltonian, N̂k is the occupation operator of the photon with wave

vector k = (kx, ky, kz) and with its corresponding frequency ωk = ck. µ̂ is the electronic dipole moment

operator and Êk is the photon electric field operator, which can be expanded as a function of the photon

creator and annihilator operators (â†, â),

Êk = −i
2∑
λ

εk,λ

(
~ωk

2ε0V

)1/2

(â†k − âk) (2)
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where we have considered the dipole approximation, eik·r ≈ 1. The unit vectors εk,λ = (εxk,λ, ε
y
k,λ, ε

z
k,λ)

were chosen to satisfy the following conditions:

εk,1 =
e1 × k

|e1 × k|

εk,2 = εk,1 ×
k

|k|

(3)

where e1 is the unit vector in the x direction. These conditions help us simplify the expression of the

interaction term if we consider that µ̂ = µ̂xe1,

Êk · µ̂ = Êx
kµ̂x = −i εxk,2

(
~ωk

2ε0V

)1/2

(â†k − âk)µ̂x

= −i
(k2z + k2y)

1/2

|k|

(
~ωk

2ε0V

)1/2

(â†k − âk)µ̂x.

(4)

First, we will obtain the expression for the evolution of the multi-electronic density operator. To this

purpose, we use the Liouville equation and trace over the photons (Trph{...}),

i~
dρ̂e(t)

dt
= [Ĥe, ρ̂e(t)]−

∑
k

[µ̂x, Φ̂k(t)] (5)

where Φ̂k(t) = Trph{Êx
kρ(t)}. Henceforth, we replace Êx

k and µ̂x by Êk and −ex̂ respectively. In order

to get an expression for Φ̂k(t) we write the exact solution for the density:

ρ̂(t) = e−
i
~ Ĥ0tρ̂(0)e

i
~ Ĥ0t +

1

i~
∑
k

∫ t

0

e
i
~ Ĥ0(τ−t)[eÊkx̂, ρ̂(τ)]e−

i
~ Ĥ0(τ−t)dτ, (6)

where Ĥ0 is the unperturbed Hamiltonian. Now we can write:

Φ̂k(t) =
e

i~
Trph

{∑
k′

∫ t

0

x̂τ−tÊkÊ
τ−t
k′ ρ̂τ−t(τ)dτ −

∫ t

0

ρ̂τ−t(τ)Êτ−t
k′ Êkx̂

τ−tdτ

}
, (7)
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where we used the notation Q̂t = e
i
~ Ĥ0tQ̂e−

i
~ Ĥ0t.

Applying the decomposition ÂB̂ = (1/2)[Â, B̂] + (1/2){Â, B̂}, we get:

Φ̂k(t) =
e

2i~
Trph

∑
k′

∫ t

0

[x̂τ−t, ρ̂τ−t(τ)]{Êk, Ê
τ−t
k′ }dτ

+
e

2i~
Trph

∑
k′

∫ t

0

{x̂τ−t, ρ̂τ−t(τ)}[Êk, Ê
τ−t
k′ ]dτ.

(8)

Since

Êτ−t
k = −i

(k2z + k2y)
1/2

|k|

(
~ωk

2ε0V

)1/2

(â†ke
iωk(τ−t) − âke−iωk(τ−t)), (9)

we can use ∑
k′

[Êk, Ê
τ−t
k′ ] = i

k2z + k2y
|k|2

~ωk

ε0V
sin(ωk(τ − t)), (10)

plus the assumption that the coupling is weak enough to consider the harmonic behaviour of the photons,

Trph
∑
k′

(
{Êk, Ê

τ−t
k′ }ρ̂τ−tph (τ)

)
≈
k2z + k2y
|k|2

~ωk

ε0V
(2Nk(τ) + 1) cos(ωk(τ − t)), (11)

to finally get

Φ̂k(t) =
eωk

2iε0V

k2z + k2y
|k|2

∫ t

0

[x̂τ−t, ρ̂τ−te (τ)](2Nk(τ) + 1)cos(ωk(τ − t))dτ

+
eωk

2ε0V

k2z + k2y
|k|2

∫ t

0

{x̂τ−t, ρ̂τ−te (τ)}sin(ωk(τ − t))dτ.
(12)

Now we will assume that the distribution of photon modes is dense enough to replace the summation

in Equation 12 by an integral and introduce the matrix χA and χB, which matrix elements are defined

as

χAij =

∫ ∞
0

eω3
k

6iπ2ε0c3
(2Nk + 1)

∫ t

0

xτ−tij cos(ωk(τ − t))dτ dωk, (13)

χBij =

∫ ∞
0

eω3
k

6π2ε0c3

∫ t

0

xτ−tij sin(ωk(τ − t))dτ dωk. (14)
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Let’s consider the first integral:

χAij =

∫ ∞
0

eω3
k

6iπ2ε0c3
(2Nk + 1)

∫ t

0

xije
iωij(τ−t) e

iωk(τ−t) + e−iωk(τ−t)

2
dτ dωk, (15)

where the integration as a function of τ can be solved replacing s = τ − t with the following limits:

lim
ε→0+

lim
s→−∞

xij
2

∫ 0

s

ei(ωij+ωk−iε)s + ei(ωij−ωk−iε)sds

= lim
ε→0+

xij
2i

(
1

ωij + ωk − iε
+

1

ωij − ωk − iε

)
= lim

ε→0+

xij
2i

(
ωij + ωk + iε

(ωij + ωk)2 + ε2
+

ωij − ωk + iε

(ωij − ωk)2 + ε2

)
=
xij
2i

(
1

ωij + ωk

+
1

ωij − ωk

+ πiδ(ωij + ωk) + πiδ(ωij − ωk)

)
.

(16)

In this way we can write

χAij = −
∫ ∞
0

e xijω
3
k

12π2ε0c3
(2Nk + 1)

(
1

ωij + ωk

+
1

ωij − ωk

+ πiδ(ωij + ωk) + πiδ(ωij − ωk)

)
dωk. (17)

Following the same steps, we can get for the second matrix the expression:

χBij = −
∫ ∞
0

e xijω
3
k

12π2ε0c3

(
1

ωij + ωk

− 1

ωij − ωk

+ πiδ(ωij + ωk)− πiδ(ωij − ωk)

)
dωk. (18)

From here, we conserve just the Dirac deltas and discard the Lamb shift terms,

χAij ≈ −
∫ ∞
0

e xijω
3
k

12π2ε0c3
(2Nk + 1) (πiδ(ωij + ωk) + πiδ(ωij − ωk)) dωk

= − i exij|ωij|3

12πε0c3
(2N(|ωij|) + 1),

(19)

χBij ≈ −
∫ ∞
0

e xijω
3
k

12π2ε0c3
(πiδ(ωij + ωk)− πiδ(ωij − ωk)) dωk

=
i exijω

3
ij

12πε0c3
.

(20)
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In this way, we can rewrite Equation 5 as:

i ~
dρ̂e
dt

= [Ĥe, ρ̂e] + e[x̂, ([χ̂A, ρ̂e] + {χ̂B, ρ̂e})]. (21)

In order to get the equation of motion for the one-electron density operator we need to trace over

NeTre,2,..,Ne , where Ne is the total number of electrons. Since we consider Ĥe, χ̂
A and χ̂B as single

electron operators, tracing over the related commutators would lead to the same expression. For the

case of the anti-commutator,

Tre,2,..,Ne({χ̂B, ρ̂e}) = {χ̂B(1)(1), ρ̂(1)e (1)}+ 2Tre,2(χ̂
B(2)(2)ρ̂(2)e (1, 2)), (22)

where the superscripts (1) and (2) denote, respectively, one- and two-electron operators, with the number

between brackets beside each operator indicating the electrons on which the operator acts. Assuming

a basis of independent electrons, we can write:

2Tre,2(χ̂
B(2)(2)ρ̂(2)e (1, 2)) = −2ρ̂(1)e (1)χ̂B(1)(1)ρ̂(1)e (1) + 4ρ̂(1)e (1)Tr(χ̂B(1)(1)ρ̂(1)e (1)). (23)

In this way, we arrive to the equation of motion for our one-electron density operator:

i ~
dρ̂e
dt

= [Ĥe, ρ̂e] + e[x̂, [χ̂A, ρ̂e]] + e[x̂, ({χ̂B, ρ̂e}+ 4ρ̂eTr(χ̂Bρ̂e)− 2ρ̂eχ̂
Bρ̂e)]. (24)

Effect of band bending

Figure S1 presents the current (left panel) and the emitted power (right panel) in the steady state, for

a semiconducting chain of gap 2 eV and an applied bias of 3 V. The behavior depends qualitatively on

the self-consistency: in its absence, the response of the system is essentially metallic, as expected when

the bias exceeds the band gap. It can be seen that the current, of around 50 µA, is not too different

from the one obtained for the metallic wire at 1 V (blue curve in Figure 2 of main text), since at a
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FIG. S1. Steady-state current (left) and power (right) for a semiconducting chain of band gap = 1 eV and
applied bias 3 V. Results for different values of the U parameters are shown.

bias of 3 V, the accessible range for conduction in the semiconductor, not blocked by the 2 V gap, is

precisely 1 V.

In the presence of self-consistency, conduction turns to a tunneling mechanism ascribable to the

band-bending (Figure 7 of main text). It is manifest that the value of the U parameter has a minor

impact on the current and the electroluminescence, at least above 1 eV, where the self-consistent effect

has reached saturation.

Figure S2 illustrates the incidence of applied bias on band bending, through the magnitude of the

onsite energies on the boundaries of the polymer. The plotted energy values include a factor of 2, to

reflect the chemical potential difference. It is seen that the onsite energy is not a continuous function of

the bias, but exhibits a stepped dependence, suggesting that, at least within that interval, the electronic

structure can adopt a finite number of solutions.

Through the band-bending, the self-consistent or mean-field electron-electron interaction of this

model is responsible for capturing some important physics. Aside from producing tunneling transport
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FIG. S2. Onsite energy (×2) of the terminal atom of the chain, as a function of the applied bias, for two
different semiconducting polymers.

for a bias above the band gap, as discussed above, it can recreate under certain conditions negative

differential resistance, as shown in section III.B of main text. Moreover, it gives rise to molecular

rectification, an effect that is not observed in our simulations if the self-consistent contribution is

removed. This is illustrated in Figure S3, which shows the IV curve for a polymer with asymmetric

junctions having two different strengths assigned to the right and left electrode-molecule coupling terms,

of -0.5 eV and -2.5 eV respectively. Without self-consistency, for U=0, the polarity does not affect

the current. Instead, when the self-consistent electron interaction is switched on in the Hamiltonian

with U=3 eV, the distinct intensification of the band-bending on the negative and positive electrodes

introduces a dependence of the current on the sense of the electron flow. The left panel depicts the IV

plots for a polymer of 10 atoms with and without self-consistency in the Hamiltonian. On the right

panel, we show in black and red circles the difference between the negative and positive branches for U=0

(symmetric response) and U=3 eV, respectively. For the latter, a difference of nearly 10% between the

backward and forward currents at 3 V attests the rectification arising from the self-consistent treatment.
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The green curve represents the deviation of the positive branch for U=3 eV from the non-self-consistent

case.

FIG. S3. Steady-state current as a function of bias, for the semiconducting polymer of 10 atoms with and
without self-consistent interactions. The right panel shows the difference between the positive and negative
branches in the presence (red) and in the absence (black) of self-consistency, and also the deviation of the

positive branch obtained with U=3 eV from the branch with U=0.

Figure S4 shows for the semiconducting polymer the emitted power in the steady state as a function

of length, reproducing the values obtained through the simulations that are depicted in Figure 10 of

the main text, for applied biases of 1 and 3 V. In this case, we also plot the data resulting from the

analytical model of equation 16. The parameters a and k were obtained from a fitting to the onsite

energies as a function of length (Figure 8 of main text), whereas the value of the m factor was estimated

from the power obtained for the metallic wires (Figure 4).

The better agreement at 3 V is expectable since the model becomes nearly independent from the a

and k fitting. At 1 V, instead, the bending effect plays a major role, inducing a negative differencial

resistance that falls outside the model’s scope, which fails to predict the inversion of the curvature in

that region. The positive curvature at low bias could be however reproduced by the model if the set of

parameters were estimated using a different criterion. Importantly, there is not a single way to estimate

the m parameter and for this reason the model can not be used in a quantitative sense in its present

form. Yet, it is timely to acknowledge its usefulness to understand the trends revealed through the

simulations.

8



FIG. S4. Logarithm of the steady-state emitted power as a function of polymer length, for the semiconducting
chain at two different applied biases. Also shown are the results from the model formulated in equation 16.
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