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Locally equivalent Floer complexes and unoriented link cobordisms

ALBERTO CAVALLO

We show that the local equivalence class of the collapsed link Floer complex cCFL1.L/, together with
many ‡–type invariants extracted from this group, is a concordance invariant of links. In particular, we
define a version of the invariants ‡L.t/ and �C.L/ when L is a link and we prove that they give a lower
bound for the slice genus g4.L/.

Furthermore, in the last section of the paper we study the homology group HFL0.L/ and its behavior
under unoriented cobordisms. We obtain that a normalized version of the �–set, introduced by Ozsváth,
Stipsicz and Szabó, produces a lower bound for the 4–dimensional smooth crosscap number 4.L/.

57K10, 57K18

1 Introduction

Hom [2017] introduced an equivalence relation on the knot Floer complex CFK1.K/ called stable
equivalence. Namely, we say that two knots are stably equivalent if and only if their chain complexes
become filtered chain homotopy equivalent after adding some acyclic complexes. A very important result
of [Hom 2017] is that if K1 is concordant to K2 then the complex CFK1.K1/ is stably equivalent to
CFK1.K2/, which made it possible to prove that many knot invariants coming from CFK1.K/ are
indeed concordance invariants; see [Alfieri 2019; Allen 2020; Hom and Wu 2016; Kim and Livingston
2018] for some examples.

Another relation on knot Floer chain complexes was given by Zemke [2019a]: two knots K1 and K2 are
called locally equivalent if there exist two maps

f W CFK1.K1/! CFK1.K2/ and g W CFK1.K2/! CFK1.K1/

which preserve the filtrations (both the Alexander and algebraic filtration) and induce filtered isomorphisms
in homology. Even though those two relations appear to be very different from their definition, we can
actually show that they coincide. We recall that this theorem was proved in the involutive setting by
Hendricks and Hom [2019].

Theorem 1.1 LetK1 andK2 be two knots in S3. Then CFK1.K1/ is locally equivalent to CFK1.K2/
if and only if they are stably equivalent.

For the purpose of this paper, the local equivalence relation has the advantage that it can be used in
the same way for links. Let us consider the chain complex cCFL1.L/, defined from CFL�.L/ by
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3236 Alberto Cavallo

collapsing the variables U1; : : : ; Un to U and taking the tensor product with F ŒU; U�1�, where here F

always denotes the field with two elements; see [Ozsváth and Szabó 2008; Ozsváth et al. 2015]. We
equip cCFL1.L/ with a filtration F, obtained from the algebraic filtration and the (collapsed) Alexander
filtration; such an F descends to homology, so we can define the filtered group FcHFL1.L/. Based on
an intuition of Alfieri [2019], we consider F as indexed by some particular subsets S of the plane, which
he calls southwest regions, satisfying the property that if . Nx; Ny/ 2 S then each .x; y/ such that x 6 Nx and
y 6 Ny is in S ; a more precise definition is given later in Section 2.2.

We recall that two n–component links are concordant if there is a cobordism between them consisting
of n disjoint annuli. Then the local equivalence class of cCFL1.L/ and the filtered homology group
cHFL1.L/ are a concordance invariant in the following sense.

Theorem 1.2 Suppose that L1 is concordant to L2. Then there are chain maps

cCFL1.L1/� cCFL1.L2/

which preserve F and induce an F–filtered isomorphism in homology. In particular , the restrictions of
such isomorphisms give identifications

FScHFL1d .L1/ŠF FScHFL1d .L2/

for every d 2 Z and southwest region S of Z2.

The strategy of the proof of this result consists in decomposing a concordance into standard pieces and
then a careful usage of the maps introduced by Sarkar [2011] on grid diagrams. In fact, starting from
Sarkar’s work, we can construct maps induced by some specific cobordisms. Some of these maps were
already used by the author in [Cavallo 2018].

Remark 1.3 Zemke [2019c], using different techniques, also defined maps induced by (decorated) link
cobordisms, which conjecturally coincide with the ones presented in this paper. We can use such maps to
give another proof of Theorem 1.2: namely, according to [Zemke 2019c, Theorems A and C] every link
concordance induces a graded isomorphism in link Floer homology; while the fact that the F–filtration is
preserved follows from [Zemke 2019b, Theorem 1.4]. This argument is similar to the one in [Zemke
2019a], which proved a version of Theorem 1.2 for knots.

Theorem 1.2 allows us to define some numerical concordance invariants for links; including a generalization
of Alfieri’s ‡S [2019], the �C–invariant of Hom and Wu [2016] (see also [Rasmussen 2003]) and the
secondary upsilons, defined by Kim and Livingston [2018]. We briefly describe how to extract some of
these invariants.

Write cCFL1� .L/ for the filtered chain homotopy type of the link Floer complex of L. Once we fix a
filtered basis, we can represent such a model complex in the plane by .j; A/, where j and A represent
the minimal algebraic and Alexander filtration level, respectively, and � is the Maslov grading of each
generator. We use the fact that dimF Ffj60gcHFL10 .L/D 1— see Theorem 2.1 — and then compute
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how far we can shift the region S while being able to find a generator for such a homology class in
cCFL10 .L/. In this way, given a southwest region S , we associate a real number to it that we call ‡S .L/;
the complete definition can be found in Section 2.2.

In the case of knots, ‡S .L/ is a normalization of the invariant of Alfieri [2019]. This choice was made
because, say At is the region of the plane consisting of the pairs .j; A/ with At C j.2� t /6 0, we have

‡At .K/D ‡K.t/ for t 2 Œ0; 2�;

and the latter is the ‡–function of Ozsváth, Stipsicz and Szabó [Ozsváth et al. 2017a].

Moreover, since there is a unique homology class in Ffj60gcHFL11�n.L/ nFfj6�1gcHFL11�n.L/, the
same procedure allows us to define another family of invariants which we call ‡�S .L/. Clearly, for
knots we have ‡S .K/D ‡�S .K/ for every S . The following proposition summarizes some of the main
properties of ‡S .L/.

Proposition 1.4 Suppose that L, L1 and L2 are links in S3 and L has n components. Then ‡S .L/ and
‡�S .L/ are concordance invariants and

(1) �.L/ D �‡ 0L.0/ and ��.L/ D �.‡�L/
0.0/, where the invariants �.L/ and ��.L/ are defined in

[Cavallo 2018];

(2) ‡S .L/D‡�S .L/ and ‡�S .L/D‡
�
�S .L/ for any S , where �S is the region obtained by reflecting

S along the line fj �AD 0g;

(3) ‡S .L/D ‡S .�L/ and ‡�S .L/D ‡
�
S .�L/ for any S , where �L is the reverse of L;

(4) ‡S .L
�/D�‡�

�S
.L/, where L� is the mirror image of L and �S is the topological closure of the

complement of the region obtained by reflecting S using the central symmetry of R2 at the origin;

(5) ‡L1#L2.t/D ‡L1.t/C‡L2.t/ and ‡�L1#L2
.t/D ‡�L1.t/C‡

�
L2
.t/ for t 2 Œ0; 2�, where L1 #L2

is a connected sum of L1 and L2;

(6) ‡L.t/ D
1
2
.1 � n C �.L// � t and ‡�L.t/ D

1
2
.n � 1 C �.L// � t for t 2 Œ0; 1� whenever L is

quasialternating and �.L/ is the signature of the link as in [Gordon and Litherland 1978].

We prove that each ‡S .L/ gives a lower bound for the slice genus g4.L/, which as usual is defined as
the minimum genus of a compact, oriented surface † properly embedded in D4 such that @†D L. We
recall that, since we can add tubes between surfaces in D4 without increasing the genus, we can suppose
that any such † is also connected. Moreover, in Section 4.4 we define the notion of distance hS .m/ from
the point .0;m/ to the centered southwest region S , where centered means that .0; 0/ 2 @S ; therefore, we
have the following result.

Theorem 1.5 If L is a link in S3 with n components then

�‡S .L/6 h˙S .g4.L/Cn� 1/ and �‡�S .L/6 h˙S .g4.L//

for every centered southwest region S of R2. In particular , for the classic ‡–functions ,

�‡L.t/6 t .g4.L/Cn� 1/ and �‡�L.t/6 t �g4.L/ for t 2 Œ0; 1�:

Algebraic & Geometric Topology, Volume 24 (2024)
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Now let us consider the southwest regions Vk for k > 0, defined as the subset of the plane consisting
of the pairs .j; A/ such that j 6 0 and A6 k. We can now define the invariant �C.L/ as the minimum
k such that �2 �VL.k/ WD‡Vk .L/D 0. An equivalent definition of �C.L/ was given in [Cavallo 2018,
Section 4]; although, the invariant was denoted by �.L/ and the concordance invariance was not proven.

Proposition 1.6 Suppose that L, L1 and L2 are links in S3, and L has n components. Then �C.L/ is a
concordance invariant ,

06 �.L/6 �C.L/6 g4.L/Cn� 1 and �C.L1 #L2/6 �C.L1/C �C.L2/:

Ozsváth, Stipsicz and Szabó [Ozsváth et al. 2017b] introduced the homology group HFL0.L/ that they
called the unoriented link Floer homology group. From HFL0.L/ they define the �–set of L which is a
set of 2n�1 integers and is an isotopy invariant of unoriented links after a suitable normalization.

Moreover, for knots they showed that �.K/, which coincides with ‡K.1/ and is the only element of the
�–set in this case, gives a lower bound for the 4–dimensional smooth crosscap number 4.K/, which is
the minimum first Betti number of a compact surface F properly embedded in D4 and such that @F DL.
Note that this time F is not necessarily orientable (and always nonoriented).

Starting from these results, in this paper we consider a slightly different version of HFL0.L/ and we
prove that it is an unoriented concordance invariant. Since it shares much information with the original
group and we only use this new version, we denote it in the same way.

We say that a collection of n disjoint annuli † is an unoriented concordance between L1 and L2, which
are n–component links, if † is a concordance between L01 and L02, obtained by changing the orientation
of some components on L1 and L2 respectively.

Theorem 1.7 The group HFL0.L1/
�
Œ1
2
�.L1/

�
� is j –filtered isomorphic to HFL0.L2/

�
Œ1
2
�.L2/

�
� when-

ever L1 is unoriented concordant to L2.

From Theorem 1.7 we obtain that the wideness of the �–set, j�max.L/ � �min.L/j, and the numbers
�max.L/�

1
2
�.L/ and �min.L/�

1
2
�.L/ are unoriented concordance invariants of L. Using the same

techniques in Section 4.4, we show that such invariants give lower bounds for  .k/4 .L/, a version of the
4–dimensional smooth crosscap number for links. In fact, we say that  .k/4 .L/ is defined as the minimum
first Betti number of a compact surface, properly embedded in D4, which has k connected components
and is bounded by L.

Theorem 1.8 Say the n–component link L in S3 bounds a compact , unoriented surface F , properly
embedded in D4, with k connected components. Then

jk� 1� �max.L/C �min.L/j6  .k/4 .L/:

A corollary of this theorem is the following result, which was already proved in a different way by Donald
and Owens [2012].

Algebraic & Geometric Topology, Volume 24 (2024)
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Corollary 1.9 Every quasialternating link L can bound an unoriented , compact surface F , properly
embedded in D4, only when the Euler characteristic �.F / is at most equal to one.

Theorem 1.8 gives a bound that involves the wideness of �.L/. We give other inequalities in the following
theorem.

Theorem 1.10 Consider an n–component link L in S3 which bounds a compact , unoriented surface F ,
properly embedded in D4, with k connected components. Thenˇ̌

�max.L/�
1
2
�.L/� 1

2
.k�n/

ˇ̌
6  .k/4 .L/ and

ˇ̌
�min.L/�

1
2
�.L/� 1

2
.2� k�n/

ˇ̌
6  .k/4 .L/:

In particular , when k D n,ˇ̌
�max.L/�

1
2
�.L/

ˇ̌
6  .n/4 .L/ and

ˇ̌
�min.L/�

1
2
�.L/Cn� 1

ˇ̌
6  .n/4 .L/;

and when k D 1, ˇ̌
�i .L/�

1
2
�.L/� 1

2
.1�n/

ˇ̌
6  .1/4 .L/

for every �i .L/ in the �–set of L.

We apply this result to the family of links Ln D T �2;4 # T #n
3;4; namely, the connected sum of the mirror

of the torus link T2;4 and n torus knots T3;4. In particular, we show that fLng for n > 0 is a family of
2–component links such that  .1/4 is arbitrarily large.

Corollary 1.11 Given the link LnD T �2;4 #T #n
3;4, we have  .2/4 .Ln/D nC1 and  .1/4 .Ln/> n for n> 0.

The paper is organized as follows: in Section 2 we summarize the construction of the link Floer complex
cCFL1.L/ and we describe how to define the filtered homology group FScHFL1.L/ and the invariant
‡S .L/. Moreover, we prove the equivalence between stable and local equivalence of knot Floer chain
complexes stated in Theorem 1.1. In Section 3 we prove the concordance invariance of cCFL1.L/.
In Section 4 we define the other ‡–type invariants and we prove some of their properties, including
Proposition 1.4. We also give the proof of Theorem 1.5, which describes our bound for the slice genus.
Finally, in Section 5 we introduce the group HFL0.L/ and the �–set of L, showing that they give
unoriented concordance invariants. Moreover, we study their behavior under unoriented cobordisms and
we prove the lower bounds for  .k/4 .L/.

Acknowledgements The author would like to thank Antonio Alfieri and András Stipsicz for their many
conversations about the ‡–invariant; and Kouki Sato for his observations. The alternative argument to
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2 Link Floer homology

2.1 Chain complex and homology

Throughout the paper we assume that the reader is familiar with the construction of the link Floer homology
chain complexes, both when links are represented with multipointed Heegaard diagrams [Ozsváth and
Szabó 2004a; 2004b; 2008] or grids [Manolescu et al. 2007; Ozsváth et al. 2015]. We only recall the
main features.

Let us consider DD .†; ˛; ˇ;w; z/ a multipointed Heegaard diagram for an oriented n–component link
L in S3. The chain complex cCFL1.D/ is the free F ŒU; U�1�–module over the intersection points
T DT˛\Tˇ in the symmetric power Sym.†; ˛; ˇ/— see [Ozsváth and Szabó 2004a; 2008] — where F

is the field with two elements and w and z are two n–tuples of basepoints in †; see [Ozsváth and Szabó
2008]. The differential @� is defined by counting pseudo-holomorphic curves on some special [Ozsváth
and Szabó 2008] domains in Sym.†; ˛; ˇ/ with Maslov index � equal to one [Lipshitz 2006; Ozsváth
and Szabó 2004b]; denote the set of such domains by �2. Then for every intersection point x we can
write

@�x D
X
y2T

X
�2�2.x;y/
�.�/D1

m.�/ �U nw.�/y;

where m.�/ 2 F depends also on the choice of an almost-complex structure on Sym.†; ˛; ˇ/ and
06 nw.�/D nw1.�/C � � �Cnwn.�/ is the multiplicity of the basepoints w in �. Moreover, we say that

@�.U˙1p/D U˙1 � @�p

for any x 2 T and p 2 cCFL1.D/.

For every x 2 T we can assign an absolute Z–grading, called Maslov grading [Ozsváth and Szabó 2008],
which is denoted by M.x/ and can be extended to the whole complex by taking

M.U˙p/DM.p/� 2

for any p homogeneous. We then have

cCFL1.D/D
M
d2Z

cCFL1d .D/

as F–vector spaces; moreover, there is a map

@�d W cCFL
1
d .D/! cCFL1d�1.D/

for any d 2 Z.

The chain complex cCFL1.D/ comes with a natural increasing filtration, usually denoted by the algebraic
filtration j , defined as

j tcCFL1.D/D U�t � cCFL�.D/;

where cCFL�.D/ is the free F ŒU �–module over T . It is easy to check that the differential @� respects j .

Algebraic & Geometric Topology, Volume 24 (2024)



Locally equivalent Floer complexes and unoriented link cobordisms 3241

We define the homology group

cHFL1.L/D
M
d2Z

cHFL1d .L/D
M
d2Z

Ker @�
d

Im @�
dC1

:

Since the Maslov grading and the differential only depend on w, such a group, together with the
algebraic filtration, is isomorphic to HF1.S3; n/Š F ŒU; U�1�2

n�1

, where the n denotes the number of
basepoints in the Heegaard diagram. The filtration j descends to homology in the following way. Say
�d W Ker @�

d
! cHFL1d .L/ is the quotient map; then

j tcHFL1d .L/D �d .Ker @�d \ j
tcCFL1.D//;

which is an F–subspace of cHFL1d .L/. More specifically, we have the following theorem.

Theorem 2.1 Say the link L has n components. Then

j .dCk/=2cHFL1d .L/

j .dCk/=2�1cHFL1d .L/
ŠF F.

n�1
k /

whenever d � k mod 2 and 06 k 6 n� 1. It is zero otherwise.

Proof From [Ozsváth and Szabó 2008] we know that HF�.S3; n/ has 2n�1 generators such that exactly�
n�1
k

�
of them have Maslov grading �k. Since

HF1� .S
3; n/ŠFŒU;U�1� HF

�
� .S

3; n/˝FŒU � F ŒU; U
�1�;

one has

cHFL1d .L/ŠF

8<:
F2

n�2

if n> 2;
F if nD 1 and d is even;
f0g if nD 1 and d is odd;

and this determines the Maslov gradings.

Now we want to compute the filtration j . We note that all the generators of HF�.S3; n/ have minimal
j–filtration level zero. Hence, the statement is true for j 0; in fact if we substitute d D�k in then we
obtain the right distribution of the Maslov gradings. At this point, in order to prove the theorem, we only
need to observe that the multiplication by U˙1 drops the minimal level of the algebraic filtration by ˙1
and the Maslov grading by ˙2.

Figure 1 shows the distribution of the Maslov grading and the minimal j–level for two- and three-
component links.

2.2 The Alexander and the F–filtrations

In the same way as the Maslov grading, we can assign to every x 2 T another absolute Z–grading: the
Alexander grading A.x/, which also is extended to cCFL1.D/ by taking

A.U˙1p/D A.p/� 1

Algebraic & Geometric Topology, Volume 24 (2024)
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Figure 1: Maslov gradings and algebraic filtration for 2– (left) and 3–component links (right).
The algebraic level j is on the x–axis and the Maslov grading is on the y–axis.

for any p homogeneous. We recall that in [Ozsváth and Szabó 2008] the Alexander grading is introduced
as a multigrading A.x/D .A1.x/; : : : ; An.x//; in this paper we define A.x/ WD A1.x/C � � �CAn.x/.

In this case, the differential @� does not preserveA.x/; for this reason we introduce the Alexander filtration.
Let us consider the F ŒU �–subspace AscCFL1.D/ generated by all the elements p in cCFL1.D/ such
that A.p/6 s. The A–filtration is an increasing filtration like j and it is such that

(2-1) f0g ŠAscCFL1d .D/� � � � �ANscCFL1d .D/D cCFL
1
d .D/;

which follows from [Ozsváth and Szabó 2008]; moreover, it is again easy to show that it is preserved
by @�. Note that Ns and s depend on d .

We define F for now as a double-increasing filtration. More specifically, we say that

Ft;scCFL1.D/D j tcCFL1.D/\AscCFL1.D/

and clearly @� also respects F. We now extend the F–filtration on the homology group, in the way that it
is indexed by southwest regions of the lattice Z2 (resp. the plane R2), using an idea of Alfieri [2019].
A southwest region S � Z2 (resp. R2) is a subset of Z2 (resp. a topological submanifold of R2) such
that if .Nt ; Ns/ 2 S then s 6 Ns and t 6 Nt imply .t; s/ 2 S . Moreover, we require S to differ from ∅ and Z2

(resp. R2).

Consider again the map �d W Ker @�
d
! cHFL1d .L/. Define

Ker @�d;S D Ker @�d \SpanfFt;scCFL1d .D/ j .t; s/ 2 Sg WD Ker @�d \FScCFL1d .D/:

Then we say that
FScHFL1d .L/D �d .Ker @�d;S /� cHFL1d .L/

Algebraic & Geometric Topology, Volume 24 (2024)
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A

j

.t; s/

Figure 2: The southwest region Wt;s is the subset f.j; A/ j j 6 t or A6 sg of R2.

for any d 2Z. Note that the level Ft;s corresponds to the southwest region Vt;s D f.j; A/ j j 6 t; A6 sg,
while j t WD Ffj6tg and As WD FfA6sg correspond to f.j; A/ j j 6 tg and f.j; A/ j A6 sg respectively.

The filtration F is increasing in the sense that if S1 � S2 are two southwest regions then

FS1cHFL1� .L/� FS2cHFL1� .L/:

Moreover, it has the following property.

Proposition 2.2 Fix an integer d , denote byWt;s the southwest region in Figure 2 and take Vt;s as before.
Then there exists a pair .t; s/ such that FScHFL1d .L/Š f0g for every southwest region S �Wt;s .

Furthermore , there is another pair .t 0; s0/ such that FT cHFL1d .L/Š cHFL1d .L/ for every southwest
region T � Vt 0;s0 .

Proof Since cCFL1.D/ is finitely generated as an F ŒU; U�1�–module, cCFL1
d
.D/ is a finite-dimen-

sional F–vector space. Then there are integers A, the minimal Alexander level containing a generator
of cCFL1

d
.D/, and B , the same considering algebraic levels, by (2-1). If we choose t < B and s < A

then FWt;scCFL1
d
.D/Š f0g and so FWt;scHFL1d .L/ is also zero. The first claim now follows from

the fact that F is an increasing filtration; for the second one we reason exactly in the same way.

From [Ozsváth and Szabó 2008] we have the following important theorem.

Theorem 2.3 (Ozsváth and Szabó) The F–filtered chain homotopy type of cCFL1.D/, together with
the Maslov grading , is a link invariant of L, where D is a Heegaard diagram for L.

For simplicity, from now on we may denote our chain complex by cCFL1� .L/, implicitly referring to any
of the representatives of the filtered chain homotopy type. This result guarantees that also the F–filtration
on cHFL1� is a link invariant, justifying our notation.

Algebraic & Geometric Topology, Volume 24 (2024)
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We call a graded isomorphism F between the homology groups of two links L1 and L2 a filtered
isomorphism if F and its inverse F�1 both preserve the filtration F. This is equivalent to say that F
restricts to isomorphisms

FScHFL1d .L1/ŠF FScHFL1d .L2/

for every d 2 Z and southwest region S of Z2.

When L1 and L2 are isotopic links, Theorem 2.3 implies that cCFL1.L1/ is locally equivalent
to cCFL1.L2/, following the notation of Zemke [2019a]. This means we can find chain maps
f W cCFL1.L1/! cCFL1.L2/ and g W cCFL1.L2/! cCFL1.L1/ which both preserve F and
induce F–filtered isomorphisms between cHFL1.L1/ and cHFL1.L2/.

Corollary 2.4 Suppose that the link L1 is isotopic to the link L2 in S3. Then there is a local equivalence
between cCFL1.L1/ and cCFL1.L2/.

Note that we can assume f to be a chain homotopy equivalence, but in general a local equivalence is
not necessarily an F–filtered chain homotopy equivalence. This would happen if the chain homotopies
between f and its homotopy inverse also preserve F.

We call a southwest region S of R2 centered if .0; 0/ belongs to the boundary @S of S . Consider

Sk D
˚
.t; s/ 2R2 j

�
t C 1

2
k; sC 1

2
k
�
2 S

	
;

where k 2R. We define the invariant ‡S .L/ as follows. Given a centered southwest region S of R2, we
say that

‡S .L/ WDmaxfk 2R j FSkcHFL10 .L/� Ffj60gcHFL10 .L/g:

We recall that the F–level fj 6 0g coincides with the level j 0 of the algebraic filtration. Note
also that Theorem 2.1 implies dimF cHFL10 .L/ > 1 for links with three or more components, but
dimF Ffj60gcHFL10 .L/ is always equal to one. For this reason, in the definition of ‡S , we need the
region Sk not only to contain a generator of the total homology in Maslov grading zero, but also that
such an element is homologous to one which lives in the algebraic level j 0.

Corollary 2.5 The real number ‡S .L/ is a link invariant for every southwest region S of R2.

Proof This follows immediately from Proposition 2.2 and Corollary 2.4.

2.3 Duality and mirror images

Let us start this subsection with a Heegaard diagram D for an oriented link L in S3. As we recalled in
Section 2.1, from D we obtain the chain complex .cCFL1.D/; @�/. We now define the corresponding
dual complex .cCFL1.D/�; @�� / as follows.

The space cCFL1.D/� as an F ŒU; U�1�–module is isomorphic to

(2-2) HomFŒU;U�1�.cCFL
1.D/;F ŒU; U�1�/:
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A

j

S

A

j

�S

Figure 3: The dotted boundary in the picture on the right is not part of �S .

If x is an intersection point then its dual x� is the functional which sends x into 1 and the other intersection
points into 0; and this implies p� 2 cCFL1.D/� can be defined by F ŒU; U�1�–linearization of the dual
of the intersection points. More specifically, we say that

cCFL1d .D/
�
WD .cCFL1

�d .D//
�
D fp� 2 cCFL1.D/� j 1 2 p�.cCFL1m .D// implies mD�dg:

Notice that
cCFL1.D/� ŠF

M
d2Z

cCFL1d .D/
�;

but cCFL1.D/� 6ŠF HomF .cCFL
1.D/;F/. In particular, U˙1p� WD .U�1p/� and thus

M.U˙1p�/DM..U�1p/�/D�M.U�1p/D�M.p/� 2DM.p�/� 2

as expected.

We can also define the dual filtration F�. In order to do this, we introduce the concept of inverse �S
of a southwest region S in Z2 (resp. R2). We take �S as the complement of the image of S under the
symmetry centered in the origin of the plane; see Figure 3 for an example.

Lemma 2.6 If S is a southwest region then �S is also a southwest region.

Proof The mirror image of S is a northeast region. The complement of a northeast region is a southwest
region; in fact, if .x; y/ 2 �S and . Nx; Ny/ … �S with Nx 6 x and Ny 6 y then . Nx; Ny/ belongs to the northeast
region .�S/c, which means that .x; y/ is also in .�S/c. This is a contradiction.

The dual filtration is defined as

.F�/ScCFL1d .D/
�
WD Ann F�ScCFL1

�d .D/D fp
�
2 cCFL1d .D/

�
j p�.F�ScCFL1

�d .D//D 0g

for any southwest region S . We observe that if S 0 � S then �S � �S 0 and so Ann F�S
0

� Ann F�S . This
means that F� is still an increasing filtration.
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The only missing part in the dual complex is the differential. We introduce @�� as follows. For every
x� 2 cCFL1.D/� and y 2 cCFL1.D/,

.@��x
�/.y/D x�.@�y/:

Moreover, we take @�� .Up
�/D U � @��p

�.

Lemma 2.7 The map @�� is a differential , drops the Maslov grading by 1 and preserves the filtration F�.

Proof First,
@�� .@

�
�x
�.y//D .@��x

�/.@�y/D x�.@� ı @�y/D 0D 0.y/

for any y 2 cCFL1.D/. For the second claim, suppose p� 2 cCFL1
d
.D/�. Then @��p

�.q/D p�.@�q/,
so if q 2 cCFL1

�dC1
.D/ then @�q 2 cCFL1

�d
.D/. In addition, if r … cCFL1

�dC1
.D/ is homogeneous

then @��p
�.r/D 0 and this implies

@��p
�
D @��p

�
jcCFL1

�dC1
.D/2 .cCFL

1
�dC1.D//

�
D cCFL1d�1.D/

�:

Finally, suppose that p� 2 .F�/ScCFL1
d
.D/� for a southwest region S . Then p�.F�ScCFL1

�d
.D//D 0.

If q 2 F�ScCFL1
�dC1

.D/ then .@��p
�/.q/D 0, since @�q 2 F�ScCFL1

�d
.D/, which implies that

@��p
�
2 Ann F�ScCFL1

�dC1.D/D .F
�/ScCFL1d�1.D/

�:

We can now prove that the dual complex we have just defined is related to the complex obtained from a
Heegaard diagram of the mirror image of L. We denote by Cd ŒŒa�� the graded complex given by Cd�a.

Theorem 2.8 If .cCFL1.D/; @�/ is the chain complex associated to a Heegaard diagram D for L then
there is a diagram D�, representing the mirror image L� of L, such that

.cCFL1.D�/; @�D�/D .cCFL
1.D/�; @�� /ŒŒ1�n��

as F–filtered , graded chain complexes.

Proof If DD .†; ˛; ˇ;w; z/ then D� D .�†; ˛; ˇ;w; z/. This identifies the domain � 2 �2.x; y/ with
�� 2 �2.y; x/; see [Ozsváth and Szabó 2008; Ozsváth et al. 2017a]. Moreover, using the formula in
[Lipshitz 2006] it is easy to check that � and �� have the same Maslov index. The identification that
proves the theorem is x! x�, extended U –equivariantly to the whole complexes, where x� denotes the
dual of x as before. We first show that such a map is indeed a chain map:

.@�D�.x//
�.t/D

X
y2T

X
�2�2.y;x/
�.�/D1

m.�/ �U nw.�/y�.t/D
X

�2�2.t;x/
�.�/D1

m.�/ �U nw.�/;

@�� .x
�.t//D x�.@�t /D x�

�X
y2T

X
�2�2.t;y/
�.�/D1

m.�/ �U nw.�/y

�
D

X
�2�2.t;x/
�.�/D1

m.�/ �U nw.�/;

which holds for every generator t of cCFL1.D/, and so the claim is proved.
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�3 �2 �1 0 1 2

�2

�1

0

1

2

A

j

�3 �2 �1 0 1 2

�2

�1

0

1

2

A

j

Figure 4: The complex cCFL1.T2;3/ is on the left and cCFL1.T �2;3/ on the right. Both chain
complexes are pictured ignoring the U –action. Black, white and gray dots represent Maslov
gradings 1, 0 and �1 respectively.

Now we argue that our identification correctly shifts the Maslov and Alexander gradings. Suppose that
M.x/D d . Then by definition it is M�.x�/D�d . We observe that by [Ozsváth and Szabó 2008],

M.x/�M.y/D �.�/� 2nw.�/D �.��/� 2nw.��/DMD�.y
�/�MD�.x

�/

with � 2 �2.x; y/, and then MD� is reversed as a relative grading, which means MD�.x/D�d C c with
c 2Z. Now we use the fact that the Maslov grading is always normalized in the way that the top grading,
where the total homology is nontrivial, is zero [Ozsváth and Szabó 2008]. This gives c D 1�n as wanted.

Finally, consider x such that A.x/D s. As before, using the relation

A.x/�A.y/D nz.�/�nw.�/

whenever � 2�2.x; y/ and the fact that the Alexander grading is always symmetric, we find AD�.x/D�s.
We use the definition of F� to recover

A�.x
�/Dminfa 2 Z j x� 2 .A�/acCFL1.D/�g

Dminfa 2 Z j x�.A�a�1cCFL1.D//D 0g

D �maxfa 2 Z j x …Aa�1cCFL1.D/g

D �minfa 2 Z j x 2AacCFL1.D/g

D �s:

Note that the identification in Theorem 2.8 also gives that the homology group of the mirror image of L
is the dual of the homology group of L, where the latter group is defined exactly as in (2-2). Furthermore,
as an example in Figure 4 we show the filtered chain complexes for the positive and the negative trefoil.

2.4 Local and stable equivalences of knot Floer chain complexes

Hom [2017] introduced a different equivalence relation for the complexes CFK1.K/D cCFL1.K/,
when K is a knot. More specifically, we say that the Floer complexes associated to the knots K1 and K2
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are stably equivalent if we have an F–filtered chain homotopy equivalence

CFK1.K1/˚A' CFK
1.K2/˚B;

where A and B are acyclic chain complexes; in other words, H�.A/DH�.B/D f0g. Here we recall
[Hendricks and Hom 2019, Corollary 3.2], which shows that the notion of stable equivalence coincides
with the one of local equivalence, in the case of knots.

Lemma 2.9 (Hendricks and Hom) If CFK1.K/ is locally equivalent to CFK1./D F ŒU; U�1�.0/
then

CFK1.K/' F ŒU; U�1�.0/˚A;

where A is acyclic.

Thanks to the following result, we can see the local equivalence relation that we defined for link Floer
complexes in Section 2.2 has a natural generalization to links of the stable equivalences introduced by
Hom.

Proof of Theorem 1.1 If our chain complexes are stably equivalent then, in order to define the local
equivalence, we just have to take the restriction of the filtered chain homotopy equivalence and its inverse.
Conversely, let us suppose that f W CFK1.K1/! CFK1.K2/ and g W CFK1.K2/! CFK1.K1/

define a local equivalence. Then

CFK1.K1/˝CFK
1.K2/

� CFK1.K2/˝CFK
1.K2/

� F ŒU; U�1�.0/
f˝Id f 0

g˝Id g 0

where both the pairs of chain maps give local equivalences. The existence of f 0 and g0 can be proved in
the same way as in [Zemke 2019a, Lemma 2.18].

By Lemma 2.9,
CFK1.K2/˝CFK

1.K2/
�
' F ŒU; U�1�.0/˚A;

CFK1.K1/˝CFK
1.K2/

�
' F ŒU; U�1�.0/˚B;

where A and B are acyclic. Therefore,

CFK1.K1/˚A' CFK
1.K1/˝ .CFK

1.K2/˝CFK
1.K2/

�/

' CFK1.K2/˝ .CFK
1.K1/˝CFK

1.K2/
�/' CFK1.K2/˚B:

It is important to observe that when L is a link with n components and n is at least two, the chain
complex cCFL1.L/˝cCFL1.L/� is not locally equivalent to the complex cCFL1.n/ representing
the unlink. In fact, these groups have different dimensions as F ŒU; U�1�–modules. Furthermore, in
Section 4.3 we give an example of a link L for which such a chain complex is not locally equivalent to
any cCFL1.m/ for m 2N.
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3 Concordance

3.1 Canonical form of oriented link cobordisms

The definition of link cobordism is standard in literature; in particular, for this paper the reader might
find helpful to look at [Cavallo 2018; Sarkar 2011]. We only recall that we always assume the connected
components of a smooth cobordism † ,! S3 � I , from L1 to L2, to have boundary on both the links.

Given a surface † as before, we assume for now that † is oriented; we study unoriented cobordisms only
in the last section of the paper. Then † consists of four elementary pieces, three of them corresponding
to a critical point in the cobordism: birth, band and death moves; while the fourth is a link isotopy, which
represents a piece with no critical point. Band moves come in two types: split, if the move turns one
component into two, and merge moves, when two components are joint into one.

For the purpose of this paper, it is more useful to consider what we call extended birth and death moves.
These are the composition of a birth and a merge move and of a split and a death move respectively;
see Figures 8 and 11. In addition, we call a torus move the composition of a split move with a merge
move which rejoins together the newly created components; see Figure 6. Hence, if Li has ni for i D 1; 2
components, while † has k connected components and genus g.†/, then the canonical form of † is the
composition (up to isotopies) of b extended birth moves, n1�k merge moves, g.†/ torus moves, n2�k
split moves and d death moves in this specific order. This implies that † can be arranged as shown in
Figure 5; see [Cavallo 2018].

When L1 and L2 both have n components, † is a concordance if it is the union of n disjoint annuli †i ,
which means that each †i is a knot concordance between the i th components of the two links. From
Figure 5 we immediately see that in the case of a concordance there are no torus moves (g.†/D 0/. This
means that the canonical form of a concordance can be decomposed into three standard pieces: extended
birth moves, isotopies and extended death moves.

L1 L2

Figure 5: Canonical form of oriented cobordisms between two links.
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L1 L2

Figure 6: A torus move corresponds to two consecutive band moves on the same component.

In this section we define maps which relate the chain complexes of the links, this time constructed using
grid diagrams, before and after each of these moves. Of course we do not need to study the isotopy
cobordism; in fact, in this case Theorem 2.3 and Corollary 2.4 already tell us that the complexes are
filtered chain homotopy equivalent and that in particular there exists a local equivalence. The strategy we
follow is the same as [Cavallo 2018].

3.2 Overview on grid diagrams

A grid diagram D of an oriented n–component link L in S3 is a grid of grd.D/ � grd.D/ squares,
representing the fundamental domain of a torus, together with a set of O–markings ODfO1; : : : ; Ogrd.D/g

and one of X–markings XD fX1; : : : ; Xgrd.D/g, such that there are exactly one O and one X in every
column and every row. Moreover, we choose a nonempty subset sO which consists of at most one
O–marking for each component of L. We call these O–markings special and the others normal.

The link L can be drawn in D by connecting the O’s with the X ’s on a row and the X ’s with the O’s on
a column, specifying an orientation on L. Vertical lines always overpass the horizontal lines.

The chain complex cCFL1.D/ is an F ŒV1; V �11 ; : : : ; Vm; V
�1
m ; U; U�1�–module, where

grd.D/� 1>m> grd.D/�n

is the number of normal O–markings, and is freely generated by the grid states S.D/. The differential is
given by

@�x D
X

y2S.D/

X
r2Rectı.x;y/

V
O1.r/
1 � � �V Om.r/m �UO.r/y

for any y 2 S.D/, where Oi .r/ is equal to one if the normal O–marking Oi 2 r and zero otherwise, and
O.r/ is the number of special O–markings in r . The set Rectı denotes some special rectangles in D;
see [Ozsváth et al. 2015] for details. As in Section 2.1 we extend the differential to cCFL1.D/ by
taking @�.V ˙1i p/D V ˙1i � @�p for every i D 1; : : : ; m and p in the complex. The variables Vi are all
homotopic to U so our homology group still has a natural structure of an F ŒU; U�1�–module.
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Figure 7: A grid diagram representing the unlink2. The red circles denote the special O–markings.

The Maslov and Alexander gradings are also combinatorially defined from D [Ozsváth et al. 2015] and
each variable drops them by 2 and 1 respectively; while to define the j –filtration we need to specify that
the level t is generated by the elements in

V
i1
1 � � �V

im
m U i � cCFL�.D/;

where i1C � � � C imC i D �t and cCFL�.D/ is the free F ŒV1; : : : ; Vm; U �–module over S.D/. With
this definitions in place we have the following theorem of [Manolescu et al. 2007]; see also [Sarkar 2011].

Theorem 3.1 (Manolescu, Ozsváth, Szabó and Thurston) The A–filtered chain homotopy type as an
F ŒU; U�1�–module of cCFL1� .D/ coincides with the one of cCFL1� .D/ together with the Maslov
grading and the algebraic filtration , where D is a grid and D is a Heegaard diagram for L. In particular , if
D1 and D2 represent isotopic links then cCFL1� .D1/ is locally equivalent to cCFL1� .D2/.

The way the filtered homology group cHFL1.L/ is defined and how the filtration F descends into
homology are the same as in the previous section.

Remark 3.2 More precisely, Theorem 3.1 tells us that cCFL1� .D1/ is A–filtered, but not necessarily
F–filtered chain homotopy equivalent to cCFL1� .D2/, while all the maps induced by link isotopies
preserve the algebraic filtration; in the sense that, say m1 and m2 are the numbers of normal O–markings
inD1 andD2, the image of V i11 � � �V

im1
m1 U

i �cCFL1� .D1/ is contained in V i11 � � �V
im1
m1 U

i �cCFL1� .D2/

when m16m2 or V i11 � � �V
im2
m2 U

iCim2C1C���Cim1 �cCFL1� .D2/ when m1>m2 for every .m1C1/–tuple
of integers .i1; : : : ; im1 ; i/. We call this relation between cCFL1� .D1/ and cCFL1� .D2/ (or between
the complexes given by a grid and a Heegaard diagram for the same link) an almost filtered chain homotopy
equivalence and it implies that the complexes are locally equivalent, as stated in Theorem 3.1.

Figure 7 shows a grid diagram for the two-component unlink2. We conclude this subsection with a
lemma that we need for later.

Lemma 3.3 Given a grid diagram D for a link , we can always change the X–markings to obtain another
diagram D0 which represents an unlink.

Proof We apply the following algorithm. Let us shift the rows of D until there is a special O–marking in
the top row (remember that D is the fundamental domain of a torus); then, starting from this O–marking
denoted by O1, we put an X–marking just below O1. We keep doing this procedure with the O–markings
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L1

L2

D1 D2 D3

D4

Figure 8: An extended birth move, corresponding to a 0–handle attachment followed by a 1–
handle (left). The picture on the right shows only the component of† where the 0–handle appears.

in the row below, unless we reach an Oi such that OiC1 (in the row below) is special. Note that this can
happen also when i D 1. In this case we put the new X–marking in the same column of Oi , but not in the
row below while in the row where the previous special O–marking appeared.

When it happens that two consecutive rows j and j C 1 both have special O–markings on them, we put
the X–marking in the same square of Oj and we continue the algorithm from OjC1. At some point we
reach the lowest row; in this case, we assume the next row is the very top row (which contains a special
O–marking) and we put X accordingly.

The reader may shift the rows back to the original ordering; in any case, it is easy to check that the new
diagram D0 represents an unlink and the number of components coincides with the number of the special
O–markings in D.

3.3 Extended birth moves

Let us study the concordance † given as in Figure 8: we first need a suitable choice of grid diagrams Di
for i D 1; : : : ; 4, representing the links that appear in the extended birth move at the times shown in the
picture. Second, we define maps b1 WD1!D2 and b2 WD3!D4; the first map represents the disjoint
union of L1 with an unknot, while the second one the merge move that we need in order to join the new
component to L1. Note that the diagrams D2 and D3 present isotopic links; then the corresponding chain
complexes are related by an almost filtered chain homotopy equivalence, as in Theorem 3.1, and thus
they are locally equivalent.

Let us start with b2: the merge move is described by the diagram fragments in Figure 9, where we
assumed that no special O–markings were on the new unknotted component. More explicitly, we are
picking the diagram D3 in the way that it contains the fragment on the left in Figure 9, while D4 is
the resulting diagram after applying the move. At this point we define D03 and D04 as the grid diagrams
obtained by applying the algorithm in Lemma 3.3 to D3 and D4. This means that they are both diagrams
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Figure 9: Band move in a grid diagram.

(the same ones!) forn, where n is the number of components of L1 and L2, with the O–markings in
the same position as in D3 and D4.

Since the differential and the j–filtration do not depend on the position of the X–markings as we see
from their definition in Section 3.2, and this holds also for the Maslov grading [Ozsváth and Szabó 2008;
Ozsváth et al. 2015], the identity map

Id W cCFL1.D03/! cCFL1.D04/

is a chain map, which clearly induces a graded isomorphism in homology and preserves the algebraic
filtration.

Proposition 3.4 The map b2 WD Id W cCFL1.D3/! cCFL1.D4/ preserves the Maslov grading and
the F–filtration and induces an isomorphism in homology.

Proof In order to prove the claim we have to show that the map induces a graded isomorphism in
homology and that preserves the two filtrations j and A. The first two properties only depend on the
O–markings so they hold because b2 is defined as the identity map; we only need to show that

b2.A
scCFL1.D3//�AscCFL1.D4/:

This can be checked by proving that AD4.x/6AD3.x/ for every x 2S.D3/. Note that this is not obvious,
even if b2 is the identity; in fact, this time we need to consider the X–markings in their original position,
not like in D03 and D04, and the Alexander grading depend on the X ’s. Hence, we need to use a result of
Sarkar [2011, Section 3.4], which gives us exactly what we need.

We now want to define b1. We suppose D1 has an X in the top-right corner; then we use the move in
Figure 10. Of course the new doubly marked square is not a special O–marking. We consider the filtered
NE–stabilization map

sNE
W cCFL1.D1/! cCFL1. zD2/

defined in [Manolescu et al. 2007; Ozsváth et al. 2015; Sarkar 2011]. Stabilizations relate isotopic links;
therefore, such a map is an almost filtered chain homotopy equivalence for Theorem 3.1 and thus a local
equivalence.
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D1
D1

D2 zD2
D1 nXtr

Figure 10: Birth move in a grid diagram. In the diagram zD2, the top right X–marking Xtr in D1
does not appear.

We say that b1 WD sNE W cCFL1.D1/! cCFL1.D2/. This makes sense because the stabilization maps,
in the filtered setting, are independent of the position of the X–markings. Hence, we have the following
proposition.

Proposition 3.5 The map b1 W cCFL1.D1/! cCFL1.D2/ preserves the Maslov grading and the
F–filtration and induces an isomorphism in homology.

Proof We cannot argue that b1 is an A–filtered chain homotopy equivalence, because the X–markings
in D2 are different with respect to the ones in zD2. On the other hand, we still have that it is a chain
homotopy equivalence and preserves the j–filtration; in fact, as in Proposition 3.4 these two properties
ignore the X ’s. Therefore, we just need to show that AD2.s

NE.x//6 AD1.x/ for every x 2 S.D1/. This
follows from another result of Sarkar [2011, Section 3.4].

Going back to the concordance †, we obtain the following theorem.

Theorem 3.6 There is a map b† W cCFL1.D1/! cCFL1.D4/, which preserves the Maslov grading
and the F–filtration and induces an isomorphism

b�† W cHFL1.L1/! cHFL1.L2/:

In particular , this means that

b�†.F
ScHFL1d .L1//� FScHFL1d .L2/

for every d 2 Z and southwest region S of Z2.

Proof We have that b†D b2 ıb ıb1, where b is the almost filtered chain homotopy equivalence between
the complexes given by D2 and D3. Then the statement follows from Theorem 3.1 and Propositions 3.4
and 3.5, because each piece of the map induces a graded isomorphism in homology and preserves the
filtration F.

3.4 Extended death moves and invariance

An extended death cobordism is described in Figure 11. If † ,! S3�I is such a cobordism between two
n–component links L1 and L2 then †�, the same cobordism seen in the ambient manifold S3 � I with
reversed orientation, can be considered an extended birth cobordism from L�2 to L�1 . Then we can prove
the following proposition.
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L2

L1

Figure 11: An extended death cobordism, corresponding to a 2–handle attachment together with
a 1–handle.

Theorem 3.7 There is a map d† W cCFL1.L1/! cCFL1.L2/ which preserves the Maslov grading
and the F–filtration and induces an isomorphism in homology.

Note that, since cCFL1
d
.D/ is usually not a finite dimensional F–vector space whenD is a grid diagram,

we cannot directly apply Theorem 2.8 in this case, although this can be done after more work.

Proof Denote by cCFL1.Li / the filtered chain homotopy type of the complexes associated to Li . By
Theorems 2.8 and 3.1, the dual complex cCFL1.Li /� represents the almost filtered chain homotopy
type of cCFL1.D�i /.

We use Theorem 3.6 to say that, up to composing with some j–filtration preserving A–filtered chain
homotopy equivalences, we can suppose the existence of a map b†� W cCFL1.L2/�! cCFL1.L1/

�

which has all the property we want. If we take b†�;� as the dual of this map then

b†�;� W cCFL
1.L1/! cCFL1.L2/

preserves the filtration F and induces precisely a graded isomorphism in homology; this is because the
definition of the dual complex in Section 2.3 implies that cCFL1.L/�� has a natural identification with
cCFL1.L/ for every link L.

We conclude by saying that d† WD b†�;� again up to composition with some j–filtration preserving
A–filtered chain homotopy equivalences.

Now with this theorem set we can prove one of the main results of the paper.

Proof of Theorem 1.2 After applying Theorems 3.6 and 3.7, by considering the maps induced by a
concordance † from L1 to L2, we obtain a graded isomorphism F , between the homology groups, such
that F.FScHFL1d .L1//� FScHFL1d .L2/, which gives

(3-1) dimF FScHFL1d .L1/6 dimF FScHFL1d .L2/:
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Figure 12: The centered southwest regions A0 (left), A1 (middle) and A2 (right) of R2.

In order for F to be a filtered isomorphism we also need that it restricts to an isomorphism on each level
of the F–filtration. To see this we take another concordance †0 from L2 to L1 and, in the same way as
before, we get the opposite inequality with respect to (3-1).

We now show that the ‡–type invariants are indeed concordance invariants. In order to prove this fact,
we only need that the F–filtered isomorphism type of the homology group is a concordance invariant.

Theorem 3.8 The real number ‡S .L/ is a concordance invariant for every centered southwest region S
in R2.

Proof By Theorem 1.2,

FSkcHFL10 .L1/� Ffj60gcHFL10 .L1/ () FSkcHFL10 .L2/� Ffj60gcHFL10 .L2/

for every k 2R, since L1 is concordant to L2. By definition, this immediately implies ‡S .L1/D‡S .L2/
for every southwest region S .

4 Upsilon-type invariants

4.1 Definition of ‡ �
S
.L/ and the ‡ –function for links

In Section 2.2 we saw that Ffj60gcHFL10 .L/ is isomorphic to F for every link. Using Theorem 2.1 we
can also argue that

Ffj60gcHFL11�n.L/

Ffj6�1gcHFL11�n.L/
ŠF F ;

where n is the number of components of L. Then, for a given centered southwest region S �R2, we can
define

‡�S .L/ WDmaxfk 2R j FSkcHFL11�n.L/ 6� Ffj6�1gcHFL11�n.L/g:

Theorem 1.2 implies that ‡�S .L/ is also a concordance invariant. Moreover, we observe that, for knots,
‡� coincides with ‡ .
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Figure 13: The complex cCFL1.T3;3/ on the left and cCFL1.T 03;3/ on the right. The 2 on
the central staircase is the multiplicity of the subcomplex. White, gray and brown dots represent
Maslov gradings 0, �1 and �2 respectively, while black dots represent the others.

In [Ozsváth et al. 2017a] the ‡–invariant is described as a piecewise linear function ‡K.t/ W Œ0; 2�!R

such that ‡K.2� t /D‡K.t/ for every knot K and t . We call this function the classical ‡–invariant. In
the case of links we give a similar definition, which can be seen as a particular case of ‡S .

Consider the centered southwest region

At WD
˚
.j; A/ 2R2 j A � 1

2
t C j

�
1� 1

2
t
�
6 0

	
for t 2 Œ0; 2�; see Figure 12. It can be shown — see [Alfieri 2019] — that ‡At .K/ D ‡K.t/ for every
knot K. Moreover, we define

‡L.t/ WD ‡At .L/ and ‡�L.t/ WD ‡
�
At
.L/

for every link. The reader can easily check that these R–valued functions are piecewise linear and
‡L.0/D ‡

�
L.0/D 0.

Example 4.1 In Figure 13 we show the chain complexes for the .3; 3/–torus link, which can be computed
from the Heegaard diagram in Figure 14. We write T3;3 when we orient the three components in the same
direction, while T 03;3 denotes the same link with the orientation reversed on one component. From this
picture we can easily compute the ‡–functions:

‡T 03;3
.t/D 0 if t 2 Œ0; 2�; ‡�

T 03;3
.t/D

�
t if t 2 Œ0; 1�;
2� t if t 2 Œ1; 2�;

‡T3;3.t/D

8<:
�3t if t 2

�
0; 2
3

�
;

�2 if t 2
�
2
3
; 4
3

�
;

�6C 3t if t 2
�
4
3
; 2
�
;

‡�T3;3.t/D

�
�t if t 2 Œ0; 1�;
�2C t if t 2 Œ1; 2�:
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z1

w1

z2

w2

z3

w3

Figure 14: A Heegaard diagram for the link T3;3. The ˛–curves are red, while the ˇ–curves are blue.

Finally, we show that the classical ‡–invariants do not determine the F–filtered isomorphism type of
cHFL1.L/. In fact, take the knot K D T4;5 # T �2;3I2;5 # T �2;5 whose homology is shown in Figure 15,
where T2;3I2;5 is the .2; 3/–cable of T2;5. Kim and Livingston [2018] proved that ‡K.t/D‡�K.t/D 0 for
every t 2 Œ0; 2�. On the other hand, it is easy to check that‡V0.K/D�2, where V0Df.a; b/ ja60; b60g,
while ‡V0./D 0.

4.2 Symmetries

In this subsection we study some of the main properties of the ‡–invariants. We start from this proposition
from [Ozsváth and Szabó 2008].

�4 �3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

A

j

Figure 15: The acyclic summand of the chain complex CFK1.K/, with K D T4;5 #T �2;3I2;5 #T �2;5.
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Proposition 4.2 (Ozsváth and Szabó) The F–filtered chain homotopy type cCFL1.L/ of a link Floer
complex is independent of the (global ) orientation of L.

In particular, we can identify the homology group of a link L and its reverse.

Corollary 4.3 There is an F–filtered isomorphism cHFL1.L/ $ cHFL1.�L/. In particular ,
‡S .L/D ‡S .�L/ and ‡�S .L/D ‡

�
S .�L/ for every centered southwest region S of R2.

We remind the reader that this result is not true if we reverse the orientation only on some of the components
of L, as we saw in the previous subsection with the link T3;3.

Say �S is the southwest region obtained from S after applying the reflection r of the plane with respect
to the line fA� j D 0g. We prove the following property.

Theorem 4.4 We have ‡S .L/D‡�S .L/ and ‡�S .L/D‡
�
�S .L/ for every centered southwest region

S of R2. In particular , one has ‡L.t/D ‡L.2� t / and ‡�L.t/D ‡
�
L.2� t / for every t 2 Œ0; 2�.

Proof Since a chain complex for �L is obtained by switching the role of w and z in a Heegaard diagram
for L, and then of the filtrations A and j , Corollary 4.3 tells us that cCFL1.L/ is symmetric under r up
to homotopy. Moreover, this symmetry is chain homotopic to the identity by [Sarkar 2015, Lemma 4.6]
and the claim follows.

For the second part of the statement, we just need to observe that the reflected southwest region �At
corresponds to A2�t .

With this theorem set, from now on we consider the ‡–functions as defined on Œ0; 1�, since their values
on Œ1; 2� are then determined automatically.

Now we want to study the relation between the‡ ’s ofL and its mirror image. We recall that, in Section 2.3,
we defined �S as the complement of the region obtained from S by applying a central symmetry. Then
we say that �S is the topological closure of �S .

Proposition 4.5 For an n–component link L,

‡S .L
�/D�‡�

�S
.L/

for every centered southwest region S of R2. In particular , we obtain ‡L�.t/ D �‡�L.t/ for every
t 2 Œ0; 1� and for a knot K one has ‡S .K�/D�‡�S .K/.

Proof We apply Theorem 2.8 to argue that there is an identification

FScHFL10 .L
�/$ .F�/ScHFL1n�1.L/

�
D Ann F�ScHFL11�n.L/
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A

j

Figure 16: The centered southwest region T in the picture is such that T D �T .

that preserves the containment relations. Hence, we only need to use the definition of ‡ :

‡S .L
�/Dmaxfk 2R j FSkcHFL10 .L

�/� Ffj60gcHFL10 .L
�/g

Dmaxfk 2R j Ann F�SkcHFL11�n.L/� Ann Ffj6�1gcHFL11�n.L/g

Dmaxfk 2R j F.�S/�kcHFL11�n.L/� Ffj6�1gcHFL11�n.L/g

D �minfk 2R j F.�S/kcHFL11�n.L/� Ffj6�1gcHFL11�n.L/g

D �maxfk 2R j F�SkcHFL11�n.L/ 6� Ffj6�1gcHFL11�n.L/g D �‡
�

�S
.L/

for every centered southwest region S in R2.

The third claim is trivial, while for the second one we note that �At D At for every t 2 Œ0; 1�.

We observe that the southwest regions At are not the only S such that �S D S as we see from Figure 16.

Let us recall that the homology group 1HFL.L/ (resp. 1HFL.L/) is defined as the bigraded homology of
the associated graded object (resp. the A–filtered graded homology) of the complex 1CFL.L/, given by
setting U D 0 in cCFL1.L/; see [Cavallo 2018; Ozsváth and Szabó 2008] for details.

Lemma 4.6 If a cycle in Ffj60gcCFL1.L/ is a generator of the homology group cHFL1.L/, and its
homology class has minimal j –level zero , then its projection to 1CFL.L/ is a generator of 1HFL.L/.

Proof By [Rasmussen 2003, Lemma 4.5] we know that, up to changing basis, the complex cCFL1.L/
is such that the differential of the bigraded object associated to 1CFL.L/ is zero. Therefore, if we pick a
generator with minimal j–level zero then its projection cannot be zero in 1HFL.L/, because clearly it
would be homologous to an element of U �Ffj60gcCFL1.L/D Ffj6�1gcCFL1.L/.

We use the mirror image symmetry to prove the following proposition. We assume the reader to be
familiar with the definition of the concordance invariants �.L/ and ��.L/, given in [Cavallo 2018].
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Figure 17: A positive staircase (left), a negative staircase (middle) and an acyclic square (right).
The acyclic subcomplex of cCFL1.L/, when L is as in Theorem 4.8, is the direct sum of acyclic
squares.

Proposition 4.7 For a link L,

�.L/D�‡ 0L.0/ and ��.L/D�.‡�L/
0.0/:

Furthermore , each slope of ‡L.t/ and ‡�L.t/ is an integer s such that the Alexander grading sub-
group 1HFL�;s.L/ is nonzero , and if t0 2 .0; 1/ is a point where the slope changes from s1 to s2 then
t0 2 Z=js2� s1j and js2� s1j> 2.

Proof We prove the first part of the statement. We take t 2 Œ0; "/ with " very small and we show
that for such t’s one has ‡L.t/ 6 �t � �.L/. Suppose that the homology class of x is a generator of
Ffj60gcHFL10 .L/. By Lemma 4.6, Nx, the projection of x to 1CFL0;�.L/, is a generator of 1HFL0.L/.
Hence, assuming ‡L.t/ > �t � �.L/ contradicts the fact that �.L/ is the minimum A–level s such that
As1HFL0.L/ has dimension one; see [Cavallo 2018].

We now show that ‡L.t/ > �t � �.L/. In fact, the same argument we used before also shows that
‡�L�.t/6�t ��

�.L�/ for t 2 Œ0; "/ and then �‡L.t/6�t .��.L// from Proposition 4.5 and the symmetry
properties of ��; see [Cavallo 2018]. This proves the claim; in fact, the version for the ‡�–function can
be proved applying Proposition 4.5.

The second part of the proposition follows from the same proof of [Ozsváth et al. 2017a, Proposition 1.4]
and [Feller et al. 2019, Observation 2.2].

Using this result we immediately compute the ‡–functions for the Hopf links H˙. In fact H˙ is a
nonsplit 2–component link that bounds an annulus in S3. Since 1HFL detects the Thurston norm [Ni 2009,
Theorem 1.1], this implies that 1HFL�;s.H˙/ is nonzero only when sD�1; 0; 1 and then ‡H˙ and ‡�H˙
are determined by the �–invariants, which are computed in [Cavallo 2018, Corollary 3.7]. Therefore,

‡HC.t/D�t; ‡�H�.t/D t and ‡�HC.t/D ‡H�.t/D 0

for every t 2 Œ0; 1�.
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We conclude this subsection by stating a result of Petkova [2013] that allows us to determine cCFL1.L/
for every nonsplit alternating link. We recall that an n–component link L is 1HFL–thin if its homology
group 1HFLd;s.L/ is supported on the line s D d C 1

2
.n� 1� �.L//, where �.L/ is the signature of L.

Theorem 4.8 (Petkova) Suppose that the link L has n components and it is 1HFL–thin. Then the chain
complex cCFL1.L/ is given as the direct sum of some F ŒU; U�1�–subcomplexes as in Figure 17. More
specifically, for every

s 2
˚
1
2
.n� 1� �.L//� k

	
with k D 0; : : : ; n� 1;

we have
�
n�1
k

�
positive (resp. negative) staircases when s is positive (resp. negative). Moreover , the

acyclic subcomplex is determined by

�.1HFL.L//.t; t�1/D
X
d2Z

.�1/d dimF 1HFLd;s.L/ � ts D .t1=2� t�1=2/n�1 � rL.t1=2� t�1=2/;

where rL.z/ is the Conway normalization of the Alexander polynomial of L.

Note that quasialternating links (and then nonsplit alternating links) are 1HFL–thin; see [Cavallo 2018;
Ozsváth et al. 2015]. In Figure 18 we show a Whitehead link and its corresponding complex.

4.3 Connected sums and disjoint unions

It follows from the work of Ozsváth and Szabó that the chain complex for a connected sum of the links
L1 and L2 is given by the tensor product between the ones of L1 and L2.

Theorem 4.9 (Ozsváth and Szabó) Given two links L1 and L2, denote by L1 #i;j L2 the connected
sum performed on the i– and j –component of L1 and L2, respectively. Then

cCFL1.L1 #i;j L2/Š cCFL1.L1/˝FŒU;U�1� cCFL
1.L2/:

In particular , the complex cCFL1.L1 #L2/ does not depend on i and j .

Since F ŒU; U�1� is a principal ideal domain, using the Künneth formula and Theorem 2.1 on the
identification in Theorem 4.9 gives

Ffj60gcHFL10 .L1 #L2/ŠF Ffj60gcHFL10 .L1/˝F Ffj60gcHFL10 .L2/

and

Ffj60gcHFL12�n1�n2.L1 #L2/

Ffj6�1gcHFL12�n1�n2.L1 #L2/
ŠF

Ffj60gcHFL11�n1.L1/

Ffj6�1gcHFL11�n1.L1/
˝F

Ffj60gcHFL11�n2.L2/

Ffj6�1gcHFL11�n2.L2/
;

where ni is the number of components of Li and we recall that n1 C n2 � 1 is the one of L1 # L2.
Furthermore, if the homology classes of xi are generators for Ffj60gcHFL10 .Li / then Œx1 ˝ x2� is
a generator of the homology group Ffj60gcHFL10 .L1 # L2/. In the same way, if yi is such that
Œyi � is a generator of cHFL11�ni .Li /, with minimal j–level zero, then Œy1 ˝ y2� is a generator of
cHFL12�n1�n2.L1 #L2/ and its minimal algebraic level is again zero.
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Figure 18: The complex cCFL1.W / (right) of the Whitehead link W (left).

We can now study how the ‡–invariants behave under connected sums. For every centered southwest
region S of R2 we define

env.S/D f.j; A/ 2R2 j j D a1C a2 and AD b1C b2 where .ai ; bi / 2 S for i D 1; 2g:

Clearly, the region env.S/ is still a southwest region (unless it coincides with the whole R2) and
S � env.S/. Moreover, we take h.S/ 2 Z>0[fC1g as

inffk 2N j S�k � env.S/g

and we state the following proposition.

Proposition 4.10 Let us consider a link Li with ni components for i D 1; 2 and S a centered southwest
region of R2. Then

‡S .L1 #L2/> ‡S .L1/C‡S .L2/� h.S/;

‡�S .L1 #L2/> ‡�S .L1/C‡
�
S .L2/� h.S/:

In particular , if S D env.S/ then the ‡ ’s and ‡�’s are superadditive under connected sums.

Proof The proof of the two inequalities is exactly the same; hence, we only do the first one. From what
we said at the beginning of the subsection we can take x and y, such that their homology classes are
generators of Ffj60gcHFL10 .Li / for i D 1; 2, in the region S‡S .Li / D Si , and we obtain that Œx˝y�
is a generator of Ffj60gcHFL10 .L1 #L2/ and x˝y 2Fenv.S/1C2 cCFL10 .L1 #L2/. Therefore, from
the definition of h.S/ it follows that

env.S/1C2 � S1C2�h.S/

and x˝y 2 FS1C2�h.S/cCFL10 .L1 #L2/, proving the inequality.
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Figure 19: The centered southwest region T is such that h.T /D 0.

There are examples of southwest regions S with h.S/¤ 0 and ‡ is not superadditive. Take the region
V1 D f.j; A/ 2R2 j j 6 0; A6 1g, then

�4D ‡V1.T2;3 #T2;7/ < ‡V1.T2;3/C‡V1.T2;7/D 0C .�2/D�2:

Corollary 4.11 If a centered southwest region S is such that �S D S and h.S/D 0 then

‡S .L1 #L2/D ‡S .L1/C‡S .L2/ and ‡�S .L1 #L2/D ‡�S .L1/C‡
�
S .L2/

for every pair of links L1 and L2. In particular , this holds for the classical ‡ functions.

Proof By Propositions 4.5 and 4.10,

‡S .L1/C‡S .L2/� h.S/6 ‡S .L1 #L2/6 ‡S .L1/C‡S .L2/C h.�S/:

The claim follows by using the assumption that h.S/D h.�S/D 0. The same proof works for ‡�.

We observe that there are centered southwest regions, different from the At ’s, for which h.S/D 0 and
their ‡–invariants are superadditive; see Figure 19.

Example 4.12 By Corollary 4.11, for the positive and negative Hopf link one has ‡HC#H�.t/D�t and
‡�HC#H�

.t/D t for every t 2 Œ0; 1�. In particular, we have an example when cCFL1.L/˝cCFL1.L�/
is not locally equivalent to the chain complex of an unlink; in fact, it is ‡m D 0 for every m 2N.

The disjoint union of two links can be seen as a special connected sum. In fact, the link L1 tL2 is
isotopic to L1 #2 #L2, where the two connected sums are performed on different components of the
unlink2.

Proposition 4.13 The chain complex of the link L1 tL2 is given by

cCFL1.L1 tL2/Š cCFL
1.L1 #L2/˝FŒU;U�1� cCFL

1.2/

Š cCFL1.L1 #L2/˚ cCFL1.L1 #L2/ŒŒ1��;

where ŒŒ � �� denotes a shift in the Maslov grading.
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Proof It is easy to compute that cCFL1� .2/ Š F ŒU; U�1�.0/˚ F ŒU; U�1�.�1/. Hence, the claim
follows from Theorem 4.9.

Note that, since the chain complex for the connected sum is independent of the choice of the components,
cCFL1.L1 tL2/D cCFL

1..L1 #L2/t/; in other words, there is an identification between the
chain complexes for the disjoint union and the link obtained by adding an unknot to any connected sum
of L1 and L2.

Corollary 4.14 Given two links L1 and L2,

‡S .L1 tL2/D ‡S .L1 #L2/ and ‡�S .L1 tL2/D ‡
�
S .L1 #L2/

for every southwest region S of R2.

Proof This follows immediately from Theorem 2.1 and Proposition 4.13.

4.4 Slice genus

Suppose that a link L has n components and bounds a smooth, compact, oriented surface † ,!D4 with
genus g.†/ and k connected components. Then, after removing k open disks from it, we can see † as a
smooth cobordism between the k–component unlinkk and L. If we look at the canonical form of link
cobordisms described in Section 3.1 then † is such that, from left to right, there are no merge moves, the
torus moves are g.†/ in total and there are exactly n� k split moves. Other than these, the cobordism †

might have pieces representing concordances, which induce local equivalences as shown in Section 3.

The goal of this subsection is to study how much the ‡–invariants of L differ from zero (‡S .n/D 0

for every S ) when L bounds a surface † as before. We use grid diagrams like in Section 3.

Let us start from the torus move; see Figure 6. We define a map t as the identity between the grid
diagram representing the link before the move and the one obtained by applying Figure 9 twice. Such a
map is a chain map, induces a graded isomorphism in homology and preserves the j–filtration by the
same argument in Section 3.3: since the links before and after the moves have both k components, the
corresponding diagrams have the same O–markings (both normal and special). Previously we used a
result of Sarkar [2011] to show that b2 is A–filtered of degree zero. Since now we are composing the
same map twice, but the first time the number of components is increasing, this is no longer true. In fact,
the map t is A–filtered of degree 1; see [Sarkar 2011, Section 3.4].

Now we study the split moves as in the left side of Figure 20. We may want to define a map s in a similar
way as what we do for t : using the same procedure for the map b2, but this is not possible. In fact, the
link L2 has one more component than L1, so the number of special O–markings is different and s would
not be a chain map. To avoid this problem, before applying the split move we add a disjoint unknot to L1
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L1

L2

unknot

connected sum

L1

L2

Figure 20: A split move. The two cobordisms in the picture are isotopic in S3 � I after capping the unknot.

and after the split move we connect sum the unknot to the component without special O–markings. This
is pictured on the right side of Figure 20. In this way, we can define a map

s2 W cCFL
1
0 .D1 t/! cCFL10 .D2/;

where Di is a grid diagram for Li , exactly in the same way as t . Now from Proposition 4.13, the map

s1 WD cCFL
1
0 .D

0
1/! cCFL10 .D

0
1 t/D cCFL

1
0 .D

0
1/˚ cCFL

1
1 .D

0
1/

is the inclusion of cCFL10 .D
0
1/ as the first summand of cCFL10 .D

0
1t/; and we recall that D0i is the

grid diagram obtained from Di by applying the algorithm in Section 3.2. Hence, the map s1 preserves
the Maslov grading and the filtration F. We conclude that the composition

s WD s2 ı s1 W cCFL
1
0 .D1/! cCFL10 .D2/

induces a graded injective homomorphism in homology, preserves j and it is A–filtered of degree 1.

Given a centered southwest region S of R2, we say that

S Cm WD f.j; A/ 2R2 j .j; A�m/ 2 Sg

for every m 2N, an example is given in Figure 21. We define the nonnegative integer hS .m/ as

minfk 2N j .0;m/ 2 S�kg

and we recall that the reversed region �S is defined in Section 4.2 by applying to S the reflection of R2

with respect to the line fA� j D 0g. Then we can prove that each ‡ gives a lower bound for the genus
of †.

Proposition 4.15 If L is an n–component link in S3, which bounds a surface † as before , then

�‡S .L/6 h˙S .g.†/Cn� k/

for every centered southwest region S of R2.
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A

j

S

A

j

S C 1

Figure 21: A centered southwest region S on the left and the southwest region S C 1 on the right.

Proof We construct a map f† by composing the maps t and s defined in this subsection, together with
the concordance maps in Section 3. We obtain that

f†.F
ScCFL10 .k//� FSCg.†/Cn�kcCFL10 .L/

for every S . In particular, if the homology class of x is a generator of Ffj60gcHFL10 .k/ then f �† Œx�
is a generator of Ffj60gcHFL10 .L/. This immediately implies that ‡S .L/> �hS .g.†/Cn� k/ and
we complete the proof by observing that ‡�S .L/D ‡S .L/ from Theorem 4.4.

A similar lower bound holds with ‡� in place of ‡ , but it is clear that the proof cannot work as the one of
Proposition 4.15. In fact, we used the map s that preserves the Maslov grading, while the ‡�–invariants
of Li are computed by finding generators in cHFL11�m.L1/ and cHFL1�m.L2/ respectively, where m
is the number of components of L1. To jump this hurdle, in the following lemma we introduce another
map s0 induced by the split move.

Lemma 4.16 Suppose thatL1 andL2 are as in the left side of Figure 20 andD1 andD2 are corresponding
grid diagrams. Then we can find a chain map

s0 W cCFL1d .D1/! cCFL1d�1.D2/

for every d 2 Z, which preserves the F–filtration and induces an isomorphism

Ffj60gcHFL11�m.L1/

Ffj6�1gcHFL11�m.L1/
ŠF

Ffj60gcHFL1�m.L2/

Ffj6�1gcHFL1�m.L2/
;

where m is the number of components of L1.

Proof We represent the split move using the fragments of D1 and D2 as in Figure 22, where this time
the number of special O–markings on each component is the same both before and after the move. We
define s0 as

s0.x/D

�
x if c 2 x;
Ux otherwise;

and s0.V1p/D U � s
0.p/;
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c

O1

˛

ˇ

Figure 22: Another split move in a grid diagram. We recall that special O–markings are colored in red.

for every grid state x 2 S.D1/, every p 2 cCFL1.D1/ and Vi–equivariant for i > 1, where V1 is the
variable associated to the normal O–marking O1; see Figure 22.

Consider the diagramsD01 andD02, obtained by applying the algorithm in Section 3.2 toD1 andD2; hence,
the diagrams Di and D0i have same O–markings. Denote by D03 the diagram obtained by removing the
row ˛ and the column ˇ fromD02; then cCFL1.D02/ is isomorphic to cCFL1.D03/˚cCFL

1.D03/ŒŒ1��

by Proposition 4.13. Finally, let us call � W cCFL1.D02/! cCFL1.D03/ the map given by adapting to
our setting the homotopy inverse of the map i ıH used in [Cavallo 2018, Proposition 3.1]. This map
coincide with the special destabilization in [Sarkar 2011, Section 3.3].

The map s0 was also studied by Sarkar [2011, Section 3.3], and he proves that � ı s0 D dNO is one of the
destabilization maps in [Manolescu et al. 2007; Ozsváth et al. 2015]. Such a map is induced by the link
isotopy relating D01 and D03 which means it is an almost filtered chain homotopy equivalence, and a local
equivalence by Remark 3.2. Therefore, the map s0 W cCFL1.D1/! cCFL1.D2/ induces an injective
homomorphism in homology and drops the Maslov grading by one, while the fact that s0 preserves the
Alexander filtration A is shown in [Sarkar 2011, Section 3.4].

In order to conclude the proof we just need to observe that s0 does not change the minimal j–level of a
generator of the homology in Ffj60gcCFL1.D1/; and note that this only depends on the O–markings.
Since the identification in Proposition 4.13 is an isomorphism of chain complexes, we would have that if
s0 would drop the minimal j –level then the same should be true for � ı s0 D dNO, but this is impossible
because the latter is a local equivalence.

Now we can prove the main result of this subsection.

Proposition 4.17 Suppose that L is an n–component link in S3 which bounds a smooth , compact ,
oriented surface † ,!D4, with k connected components. Then

�h
˙�S .g.†//6 �‡S .L/6 h˙S .g.†/Cn� k/;

�h
˙�S .g.†/Cn� k/6 �‡

�
S .L/6 h˙S .g.†//

for every centered southwest region S of R2.

Algebraic & Geometric Topology, Volume 24 (2024)



Locally equivalent Floer complexes and unoriented link cobordisms 3269

A

j

.0; k/

Vk

A

j

.0;�k/

Wk

Figure 23: The centered southwest regions Vk (left) and Wk (right) of R2 for any integer k > 0.

Proof The fact that �‡�S .L/ 6 h˙S .g.†// follows in the same way as in Proposition 4.15 by using
Lemma 4.16. Then we apply Propositions 4.5 and 4.15.

This theorem immediately gives the lower bound in Theorem 1.5 for the smooth slice genus g4.L/ of a
link, which is defined as the minimum genus of a smooth, oriented, compact surface properly embedded
in D4 and that bounds L. For knots such lower bounds agree with the ones of Alfieri [2019] and Ozsváth,
Stipsicz and Szabó [Ozsváth et al. 2017a].

Example 4.18 We observe that, when L bounds a planar (genus zero) surface inD4, we have ‡S .L/6 0
and ‡�S .L/> 0 for every S centered.

4.5 Other concordance invariants from the link Floer complex

4.5.1 The invariant �C Let us consider the centered southwest regions

Vk WD f.j; A/ 2R2 j j 6 0; A6 kg

with k2N; see Figure 23. We denote the‡–invariants associated to these regions by�2�VL.k/D‡Vk .L/.
It follows from [Alfieri 2019] that the invariants VK.k/ determine some of the invariants hk of a knot K,
which were introduced by Rasmussen [2003].

Proposition 4.19 (Alfieri) Suppose that K is a knot in S3. Then VK.k/D hk.K/ for every k 2N.

Applying Proposition 4.17 we obtain that hk.K/D VK.k/6 g4.K/�k for a knot K and 06 k 6 g4.K/,
which coincides with [Rasmussen 2003, Corollary 7.4]. Furthermore,

06 VL.k/6 g4.L/Cn� k� 1 if k < g4.L/Cn� 1;

VL.k/D 0 if k > g4.L/Cn� 1;
and

VL.k/> VL.kC 1/

for every link L. Finally, Theorem 3.8 tells us that VL.k/ is a concordance invariant for every k 2N.
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Hom and Wu [2016] define the knot concordance invariant �C and they prove that such invariant gives a
lower bound for the slice genus g4. Using our results we can easily extend �C to links: we say that

�C.L/ WDminfk 2N j VL.k/D 0g:

It is easy to check [Hom 2017] that for knots such a definition coincides with the one in [Hom and Wu
2016] and it generalizes its well-known properties.

Proposition 4.20 The nonnegative integer �C.L/ is a concordance invariant of links.

Proof If L1 is concordant to L2 then VL1.k/D VL2.k/ for every k 2N as we saw before. Hence, one
has VL1.k/D 0 if and only if VL2.k/D 0.

Consider the southwest regions Wk in Figure 23; we see immediately that one has Wk D �V k and then
‡�Wk

.L/D 2 �VL�.k/ for every k 2N by Proposition 4.5. We say that

O�.L/Dmaxf�C.L/; �C.L�/g;
where

�C.L�/Dminfk 2N j VL�.k/D 0g Dminfk 2N j ‡�Wk .L/D 0g

which is also a concordance invariant.

Theorem 4.21 Suppose that L is an n–component link in S3. Then

06 �C.L/6 O�.L/6 g4.L/Cn� 1 and �.L/6 �C.L/:

Furthermore , the invariants �C.L/ and O�.L/ are subadditive:

�C.L1 #L2/6 �C.L1/C �C.L2/ and O�.L1 #L2/6 O�.L1/C O�.L2/

for every pair of links L1 and L2.

Proof We saw before that if VL.k/¤ 0 then k < g4.L/C n� 1. Since �C.L/ is the minimal k such
that VL.k/ D 0 and g4.L/ D g4.L

�/, we conclude that O�.L/ 6 g4.L/C n � 1. We now show that
�.L/6 �C.L/. Suppose that s is the minimal integer such that VL.s/D 0; then there is an element x in
FVscCFL10 .L/ whose homology class is a generator of the homology with minimal j –level zero. The
claim follows from Lemma 4.6.

For the last part of the theorem, take elements x1 and x2 as before for L1 and L2 respectively. From
Section 4.3 we know that

x1˝ x2 2 F
V
�C.L1/C�

C.L2/cCFL10 .L1 #L2/

has the same properties. Since‡Vk .L1#L2/6 0 for every k, this implies VL1#L2.�
C.L1/C�

C.L2//D 0.
Now, denote by J1 and J2 either the links L1 and L2 or the links L�1 and L�2 , depending on which ones
give the maximal �C.J1 #J2/. Then

O�.L1 #L2/D �C.J1 #J2/6 �C.J1/C �C.J2/6 O�.L1/C O�.L2/:
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�3 �2 �1 0 1 2 3 4

�2

�1
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1

2

3
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A

j

Figure 24: The relevant acyclic summand of cCFL1.L/, where L D T2;9 # T �2;3I2;5 #H #n�1
� .

Here, by relevant we mean the summand which contains the generators of Ffj60gcHFL10 .L/,
in the decomposition induced by the connected sum, according to Theorem 4.9. We have that
�.L/D 0 and �C.L/D 2.

Theorem 4.21 tells us that �C gives a lower bound to the slice genus at least as good as the one given
by � . An example where this happens is shown in Figure 24.

Let us write 2 �WL.k/D ‡Wk .L/. In the same way as before,

06WL.k/6 g4.L/� k if k < g4.L/;

WL.k/D 0 if k > g4.L/;
and

WL.k/>WL.kC 1/
for every link L.

We call L�.L/ the nonnegative integer

max
˚
minfk 2N jWL.k/D 0g;minfk 2N jWL�.k/D 0g

	
;

which shares similar properties with O�.L/. In particular, L�.L/D O�.L/ for knots.

Theorem 4.22 Suppose that L is an n–component link in S3. Then L� is a concordance invariant ;
moreover ,

06 L�.L/6 g4.L/ and ��.L/6 L�.L/:

Furthermore , the invariant L�.L/ is also subadditive:

L�.L1 #L2/6 L�.L1/C L�.L2/

for every pair of links L1 and L2.
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Proof It follows in the same way as in the proof of Proposition 4.20 and Theorem 4.21, by applying
Lemma 4.6 and Proposition 4.17. We just need to observe that

minfk 2N jWL�.k/D 0g Dminfk 2N j ‡�Vk .L/D 0g:

This result implies that if L bounds a compact planar surface properly embedded in D4 then L�.L/D 0.

4.5.2 Secondary upsilon invariants In a paper of Allen [2020] we find an example of two noncon-
cordant knots with the same ‡–invariants. These knots are the torus knot T5;7 and the connected sum
T2;5 #T5;6. Their chain complexes are pictured in [Allen 2020, Figures 4 and 6].

Starting from this example, we build the links J1 D T5;7 #H #n�1
C

and J2 D T2;5 #T5;6 #H #n�1
C

. Since
we can compute the complex of the positive Hopf link,

cCFL1.HC/D CFK
1.T2;3/˚F ŒU; U�1�.�1/;

we easily obtain that the homology groups of J1 and J2 are F–filtered isomorphic. On the other hand, it
is still possible to show that cCFL1.J1/ is not locally equivalent to cCFL1.J2/, which means that the
filtered isomorphism (or its inverse) is not induced by a chain map that preserves the filtration F.

In order to find an obstruction for the existence of such a map, we need to use another family of invariants,
which was introduced by Kim and Livingston [2018] and by Alfieri [2019] for knots. We define the
secondary ‡–invariants ‡ .2/

SC;S�;S
.L/ of an n–component link L as �‡S .L/ plus the supremum of

k 2 Z such that
F
Sk[.S

C

C
/[.S�� /cCFL11 .L/

contains a 1–chain a with @�aD x1C x2; the cycles

x1 2 F
.S
C

C
/
cCFL10 .L/ and x2 2 F.S

�
� /cCFL10 .L/

have the property that their homology classes are generators of Ffj60gcHFL10 .L/, where ˙D‡S˙.L/
and SC, S� and S are three centered southwest regions of R2. Note that ‡ .2/

SC;S�;S
.L/ can be C1, as

it happens for the unknot.

We can define a secondary ‡�–invariant exactly in the same way, only this time we consider elements in
Maslov gradings 1�n and 2�n. For the sake of simplicity, in this subsection we only write proofs for
‡
.2/

SC;S�;S
.L/, but all the results also hold for this version of the invariant.

Proposition 4.23 Let us consider a link L. Then the invariant ‡ .2/
SC;S�;S

.L/ is a concordance invariant
for every triple of centered southwest regions SC, S� and S of R2.

Proof Suppose that L1 is concordant to L2 and ‡ .2/
SC;S�;S

.L1/ < ‡
.2/

SC;S�;S
.L2/. Then there is an

integer k > ‡ .2/
SC;S�;S

.L1/C‡S .L1/ such that

z˙ 2 F
S˙
˙ cCFL10 .L2/;
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the homology class ŒzC�D Œz�� is the generator of Ffj60gcHFL10 .L2/ and there exists

ˇ 2 F
Sk[.S

C

C
/[.S�� /cCFL11 .L2/

with @�ˇ D zCC z�. We recall that ˙ D ‡S˙.L1/D ‡S˙.L2/, since ‡ is a concordance invariant.

From Theorem 1.2 we know that the corresponding chain complexes of two links are locally equivalent.
Then we find a chain map g W cCFL10 .L2/! cCFL10 .L1/, which preserves F and induces an F–filtered
isomorphism between cHFL10 .L2/ and cHFL10 .L1/. Therefore, we can take

g.zC/Cg.z�/D g.@�ˇ/D @�g.ˇ/

and we have
g.z˙/ 2 F

S˙
˙ cCFL10 .L1/;

the homology class Œg.zC/�D Œg.z�/� is the generator of Ffj60gcHFL10 .L1/ and

g.ˇ/ 2 F
Sk[.S

C

C
/[.S�� /cCFL11 .L1/:

This is a contradiction, because it implies k 6 ‡ .2/
SC;S�;S

.L1/C‡S .L1/.

Now we can show that the links J1 and J2 are not concordant. We have that

cCFL11�n.J1/D cCFL
1
0 .T5;7/ and cCFL11�n.J2/D cCFL

1
0 .T2;5 #T5;6/

up to acyclics; hence, if J1 and J2 were concordant then Proposition 4.23 should imply

‡
.2/

SC;S�;S
.T5;7/D .‡

�/
.2/

SC;S�;S
.J1/D .‡

�/
.2/

SC;S�;S
.J2/D ‡

.2/

SC;S�;S
.T2;5 #T5;6/

for every southwest regions S˙ and S . This is not true, as shown by Allen [2020].

We showed that the secondary ‡–invariants can give more information than the F–filtered isomorphism
type of cHFL1.L/; nonetheless, the following proposition holds. Here we recall that the invariants
VL.0/ and WL.0/, corresponding to the southwest regions V0 and W0, are defined before in Section 4.5.

Proposition 4.24 If VL.0/ D WL.0/ D 0 then all of the ‡’s of L are zero and all of the ‡ .2/’s of L
are C1. In the same way, if VL�.0/ D WL�.0/ D 0 then all of the ‡�’s of L are zero and all of the
.‡�/.2/’s of L areC1.

Proof Suppose that S is a centered southwest region of R2. Then V0 � S and 0D ‡V0.L/6‡S .L/.
In the same way, S �W0 and ‡S .L/6 ‡W0.L/D 0. This implies ‡S .L/D 0.

Consider two centered southwest regions S˙ of R2. Then V0 � SC \ S�, so there is a cycle, which
represents the generator of the algebraic level zero of cHFL10 .L/, in

FV0cCFL10 .L/� FS
C

cCFL10 .L/\FS
�

cCFL10 .L/:

Since ‡S .L/D 0 for every S from before, we obtain ‡ .2/
SC;S�;S

.L/DC1. The proof for ‡� is exactly
the same by Proposition 4.5.
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In particular, for knots we have the following corollary.

Corollary 4.25 For a knot K, if VK.0/D VK�.0/D 0 then ‡S .K/D 0 and ‡ .2/
SC;S�;S

.L/DC1 for

all southwest regions S˙ and S of R2.

Proof This follows immediately from Propositions 4.5 and 4.24.

In fact, it is possible to prove that VK.0/ D VK�.0/ D 0 forces CFK1.K/ to be stably equivalent to
F ŒU; U�1�.0/, the filtered chain homotopy type of the unknot; see [Hom 2017].

5 Unoriented Heegaard Floer homology

5.1 The homology groupHFL0.L/

Let us take a Heegaard diagram D for a link L in S3. The chain complex CFL0.L/ is the filtered chain
homotopy type of CFL0.D/, the free F ŒU; U�1�–module over T D T˛ \Tˇ with differential given by

@0x D
X
y2T

X
�2�2.x;y/
�.�/D1

m.�/ �U nw.�/Cnz.�/y;

where �, n�.�/ and m.�/ are as in Section 2.1, and

@0.U˙1p/D U˙1 � @0p

for any x 2 T and p 2 CFL0.D/.

Foe every x 2 T we define the ı–grading as

ı.x/DM.x/�A.x/:

It is easy to check that, with this definition, the variable U˙1 drops the ı–grading by ˙1. Moreover,
there is a map

@0d W CFL
0
d .D/! CFL0d�1.D/

for any d 2 Z.

The chain complex CFL0.L/ also has the algebraic filtration j , defined as in Section 2.1 by

j tCFL0.L/D U�t �CFL00.L/;

where CFL00.L/ is the free F ŒU �–module over T and t 2 Z. Note that the latter group was the original
unoriented chain complex defined in [Ozsváth et al. 2017b]. It is easy to check that the differential @0

preserves j .

We define the homology group as usual:

HFL0.L/D
M
d2Z

HFL0d .L/ and FtHFL0d .L/D �d .Ker @0d;t / WD �d .Ker @0d \FtCFL0.L//;

where �d W Ker @0
d
!HFL0.L/ is the quotient map.
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Proposition 5.1 For every n–component link L,

HFL0.L/ŠFŒU;U�1� F ŒU; U�1�2
n�1

;

with ı–homogeneous generators , and

F0HFL0.L/

F�1HFL0.L/
ŠF F2

n�1

:

Proof The first claim follows from [Ozsváth et al. 2017b], while the second one from the fact that the
U –action drops the ı–grading by one: each homology class in F0HFL0.L/nF�1HFL0.L/ corresponds
exactly to an F ŒU; U�1�–summand of HFL0.L/.

In [Ozsváth et al. 2017b] it is proved that HFL0.L/ is an isotopy link invariant. This is also implied by
the following theorem.

Theorem 5.2 There exists a chain map

i W cCFL1.L/˚ cCFL1.L/ŒŒ�1��! CFL0.L/;

which is an isomorphism of F–vector spaces that identifies the Maslov grading with the ı–grading.

Proof Let us consider all the intersection points x1; : : : ; xl whose Maslov grading has the same parity
of d . We define

i0d W cCFL
1
d .L/! CFL0d .L/;

U k1x1C � � �CU
klxl 7! U 2k1�A.x1/x1C � � �CU

2kl�A.xl /xl ;

and
i1d W cCFL

1
d .L/! CFL0d�1.L/;

U k1x1C � � �CU
klxl 7! U 1C2k1�A.x1/x1C � � �CU

1C2kl�A.xl /xl :

These maps are linear by definition; let us prove that they are also injective. We observe that

i"d .U
k1x1C � � �CU

klxl/¤ 0;

where " is 0 or 1, because the monomials U "C2ki�A.xi /xi for i D 1; : : : ; l are linearly independent in
CFL0

d�"
.L/; hence, the kernel of i"

d
is trivial.

We now show that id D i0d C i
1
dC1

is surjective. Suppose that q D U h1x1C� � �CU hlxl 2 CFL0d .L/. If
hi �A.xi / mod 2 then there exists a ki such that 2ki �A.xi /D hi ; otherwise, if hj �A.xj /C1 mod 2
then there exists a kj such that 1C 2kj �A.xj /D hj . Therefore, say q D q1C q2 and qi consists of
monomials of these two kinds respectively; we find p1 and p2 such that

id .p1; p2/D i
0
d .p1/C i

1
dC1.p2/D q1C q2 D q

and the claim follows.

Since i0
d

and i1
dC1

are both injective and their images have trivial intersection, and then give a direct sum
of CFL0

d
.L/, we obtain that each id is a linear isomorphism between cCFL1.L/˚ cCFL1.L/ŒŒ�1��

in ı–grading d and CFL0
d
.L/.
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In order to complete the proof we now have to show that i is a chain map, which means i ı.@�; @�/D @0ıi .
Since i is linear we can just check monomials. We have

.id�1 ı .@
�; @�//.U kx; 0/D id�1.@

�.U kx/; 0//

D i0d�1.U
k@�x/

D U 2k � i0d�1

�X
y2T

X
�2�2.x;y/
�.�/D1

m.�/ �U nw.�/y

�

D

X
y2T

X
�2�2.x;y/
�.�/D1

m.�/ �U 2kC2nw.�/�A.y/y

and

.@0 ı id /.U
kx; 0/D @0.i0d .U

kx//D @0.U 2k�A.x/x/D
X
y2T

X
�2�2.x;y/
�.�/D1

m.�/ �U 2k�A.x/Cnw.�/Cnz.�/y:

To conclude we need to see that nw.�/�A.y/D nz.�/�A.x/ and this holds for every � 2 �2.x; y/;
see [Ozsváth and Szabó 2008]. The proof for the monomials .0; U hy/ is the same.

The graded object associated toCFL0.L/ is 1CFL0.L/, which is the version of 1CFL obtained by collapsing
the bigrading accordingly. Hence, if L1 and L2 are isotopic links then

1HFLd 0.L1/ŠF 1HFLd 0.L2/
for every d 2 Z. This means that both HFL0.L/ and 1HFL0 are link invariants.

5.2 The �–set and unoriented concordance

We start this subsection with some properties of HFL0.L/.

Lemma 5.3 For every link L,

(1) if there is a chain map F W cCFL1.L1/! cCFL1.L2/ which preserves the F–filtration then the
map F 0 W CFL0.L1/! CFL0.L2/, defined as i2 ı .F ˚F ŒŒ�1��/ ı i�11 , preserves j ;

(2) if cCFL1.L1/ is locally equivalent to cCFL1.L2/ then there is a j–filtered and ı–graded
isomorphism between HFL0.L1/ and HFL0.L2/.

Proof Let us prove (1). We have to show that F 0 is j–filtered of degree zero. We do this by proving
that if U kx 2 FtCFL0.L1/ then F 0.U kx/ 2 FtCFL0.L2/ for every monomial.

We assume that k > �t . Then one has

i�11 .U kx/D

�
.U .kCA.x//=2; 0/ if kCA.x/ is even;
.0; U .�1CkCA.x//=2/ if kCA.x/ is odd:
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Now, when kCA.x/ is even, we can write

.F ˚F ŒŒ�1��/.i�11 .U kx//D

�X
y2T

a.x; y/ �U .kCA.x//=2C�.x;y/y; 0

�
;

with a.x; y/ 2 F . This yields

F 0.U kx/D
X
y2T

a.x; y/ �U kCA.x/�A.y/C2�.x;y/y

and it is easy to check that we get the same result when kCA.x/ is odd. To conclude we need to argue
that A.y/6A.x/C2�.x; y/. Since F preserves F, it is both j and A–filtered of degree zero. Therefore,
it is �.x; y/> 0 and A.y/6 A.x/C�.x; y/ whenever a.x; y/D 1 and the claim follows.

To prove (2) take the maps f W cCFL1.L1/! cCFL1.L2/ and g W cCFL1.L2/! cCFL1.L1/,
which both preserve the F–filtration. Theorem 5.2 implies that f 0, defined as i2ı.f ˚f ŒŒ�1��/ıi�11 , and g0,
defined in the same way from g, induce ı–graded isomorphisms in homology. Moreover, Lemma 5.3(1)
also gives that they preserve j . Hence, HFL0.L1/ is j–filtered isomorphic to HFL0.L2/.

The first consequence of this lemma is that the group HFL0 is also a concordance invariant.

Corollary 5.4 If the link L1 is concordant to the link L2 then the unoriented link Floer homology group
HFL0.L1/ is j–filtered isomorphic to HFL0.L2/, which means that

FtHFL0d .L1/ŠF FtHFL0d .L2/

for every t; d 2 Z.

Proof From Theorem 1.2 we know that cCFL1.L1/ is locally equivalent to cCFL1.L2/. The claim
then follows from Lemma 5.3(2).

By Theorem 2.1 we know that for an n–component link L,

Ffj60gcHFL1d .L/

Ffj6�1gcHFL1d .L/
ŠF F.

n�1
�d /

for d D 0; : : : ; 1�n. Let us denote by fh1; : : : ; h2n�1g a basis for the direct sum of such groups, where
the homology classes hi satisfy that for each i , there is an integer k and a Maslov grading d 2 Œ0; 1�n�
such that hi 2 F.A1/kcHFL1d .L/=F.A1/kC1cHFL1d .L/, where A1 is the centered southwest region

f.j; A/ 2R2 j j CA6 0g

that we used in Section 2.2 to define ‡L.1/, and, for any fixed k and d , the number of hi with those k
and d is exactly

dimF
F.A1/kcHFL1d .L/

F.A1/kC1cHFL1d .L/
:
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We also take h1 to be the only homology class as above in Maslov grading 0 and h2n�1 the same, but in
Maslov grading 1�n.

We define ui .L/ for i D 1; : : : ; 2n�1 as the maximum k 2R such that F.A1/kcHFL1d .L/ contains the
homology class hi . Note that the unordered set fu1.L/; : : : ; u2n�1.L/g does not depend on the choice
of the hi , but only on the F–filtered isomorphism type of cHFL1.L/. Moreover, u1.L/D‡L.1/ and
u2n�1.L/D ‡

�
L.1/.

Now let �.L/D f�1.L/; : : : ; �2n�1.L/g be the set of ı–gradings of a homogeneous F–basis of

F0HFL0.L/

F�1HFL0.L/
:

This set exists by Proposition 5.1 and it does not depend on the choice of the basis, but only on the
j–filtered isomorphism type of HFL0.L/. We have the following lemma.

Lemma 5.5 A homogeneous F–basis as before is obtained by taking the homology classes of elements
fU k1q1; : : : ; U

k
2n�1q2n�1g, where qi D i0

di
.pi / and pi represents the homology class hi in Maslov

grading di for every i D 1; : : : ; 2n�1.

Proof Since i is an isomorphism from Theorem 5.2, there is an injective map cHFL1.L/!HFL0.L/

identifying the Maslov grading with the ı–grading. This means that if p is a representative for h, with
Maslov grading d , then i0

d
.p/ represents a nonzero homology class inHFL0.L/; moreover, representatives

of distinct homology classes are sent into representatives of distinct homology classes, by Theorem 5.2.

The element qD i0
d
.p/ is in ı–grading d , but the minimal j –level of Œq� is not necessarily zero; although,

since the ı–grading is an absolute Z–grading and the U –action drops it by one, there is an integer k such
that U kŒq� has indeed minimal j–level equal to 0.

The fact that the set of all the U kq obtained in this way gives a basis as wanted is assured by the condition
we put on the choice of the hi .

We use this lemma to show that the �–set of L is closely related to the set fu1.L/; : : : ; u2n�1.L/g.

Proposition 5.6 Let �.L/ and ui .L/ for i D 1; : : : ; 2n�1 be as before. Then �i .L/Dui .L/Cdi , where
ui .L/ is associated to the homology class hi with Maslov grading di . In particular , �1.L/D‡L.1/ and
�2n�1.L/D ‡

�
L.1/C 1�n.

Proof Suppose that pi D U k1x1 C � � � C U
k`x` 2 cCFL

1
di
.L/ represents the homology class hi ;

moreover, we assume that

kj �A.U
kj xj /D 2kj �A.xj /> ui .L/ for any j D 1; : : : ; `

and 2k1�A.x1/D ui .L/.
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By Lemma 5.5, qi D i.pi /D U 2k1�A.x1/x1C � � � CU 2k`�A.x`/x` 2 CFL0di .L/ represents a nonzero
homology class in HFL0

di
.L/ and U�2k1CA.x1/ � qi is in minimal algebraic level zero. Moreover, we

saw that we get a homogeneous basis by considering all the hi and then, by definition of �.L/,

�i .L/D ı.U
�2k1CA.x1/ � qi /D ı.qi /C 2k1�A.x1/D di Cui .L/

for every i D 1; : : : ; 2n�1.

We can shift HFL0.L/ in order to turn it into an unoriented link invariant.

Theorem 5.7 CFL0.L1/
�
Œ1
2
�.L1/

�
� is j–filtered chain homotopy equivalent to CFL0.L2/

�
Œ1
2
�.L2/

�
�

whenever L1 is isotopic to L2 as unoriented links , where � is the signature of a link as in [Gordon and
Litherland 1978]. In particular , the set

�.L/� 1
2
�.L/D

˚
‡L.1/�

1
2
�.L/; : : : ; ‡�L.1/C 1�n�

1
2
�.L/

	
is an unoriented link invariant for every link L.

Proof Changing the orientation of a link L from EL1 to EL2, by reversing the orientation on the i th

component, results in a grid diagram G where the Oi–markings and the Xi–markings are swapped. Then
everything stays the same except for the ı–grading, which is renormalized. Using [Ozsváth et al. 2017b,
Proposition 7.1] we conclude that

ı1.x/� ı2.x/D
1
2
�. EL1/�

1
2
�. EL2/

for every grid state x of G.

It is important to note that, if we only compute the group HFL0.L/, we do not know how to identify
‡L.1/ and ‡�L.1/C 1� n in the �–set of L. This means that the latter is an unoriented link invariant
only if considered as an unordered set of 2n�1 integers, up to an overall shift that can be determined from
a diagram representing L. Furthermore, an analogue of the last result holds for unoriented concordant
links.

Proof of Theorem 1.7 This follows in the same way as the last theorem, using Corollary 5.4.

5.3 Unoriented cobordisms

5.3.1 Normal form and Euler number Let us denote by �max (resp. �min) the maximal (resp. minimal)
value in the �–set of a link. From [Ozsváth et al. 2017b, Theorem 5.2] if there is an oriented saddle
between L and L0, where L0 has one more component with respect to L, then

(5-1) �max.L
0/6 �max.L/6 �max.L

0/C 1

and

(5-2) �min.L
0/6 �min.L/6 �min.L

0/C 1:

The following inequalities agree with Proposition 4.17.
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L1
L2

Figure 25: Canonical form of unoriented cobordisms between two links: only one connected
component of F is shown. The nonorientable saddles are Möbius strips with a small open disk
removed.

Proposition 5.8 Suppose that a link L bounds a compact oriented surface †, properly embedded in D4,
with genus g.†/ and k connected components. Then

�g.†/C k�n6 �max.L/6 g.†/ and �g.†/C 1�n6 �min.L/6 g.†/C 1� k:

Proof From Corollary 5.4 we know that �max and �min are concordance invariants. Hence, since every
oriented cobordism † betweenk and an n–component link L can be decomposed as explained at the
beginning of Section 4.4, and the values of �max.k/ and �min.k/ are 0 and 1� k respectively, the
claim follows from (5-1) and (5-2).

We now want to study how these invariants behave when we consider unoriented cobordisms. First, we
note that there still exists a normal form; in fact, comparing the oriented case with the results of Kamada
[1989] applied to cobordisms, we obtain that every unoriented cobordism F between L1 and L2 can be
written as in Figure 25. Hence, we just need to check what happens to the �–set when two links are
related by many nonorientable saddles. Of course, we can just study the case where there is only one
such move, since the general case is obtained by composing the cobordism in Figure 26.

We recall that, if F is an unoriented cobordism, there is a well-defined integer e.F /, called the Euler
number, defined as

e.F / WD
X

p2F\F 0

"p

where "p is the sign of a oriented basis of TpF ˚ TpF 0, induced by a local orientation system of F ,
compared with the one given by the orientation of Tp.S3 � I /; and where F 0 denotes a push-off of F
along the trivialization of �.L1/ (resp. �.L2/) in S3 � f0g (resp. S3 � f1g) given by the Seifert framing;
see [Gordon and Litherland 1978; Ozsváth et al. 2017b]. Clearly, e.F /D 0 if F is an orientable knot
cobordism.

The integer e.F / can also be interpreted in the following way. Suppose that L1 has n components,
while L2 has m; since F is homotopy equivalent to a 1–dimensional CW-complex, its normal 1–sphere
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L1

L2

Figure 26: A nonorientable saddle corresponds to a nonoriented band move on a single component.

bundle admits a section F 0. The boundary of F 0 consists of the links L01 and L02, which can be oriented
accordingly to L1 and L2. Then

e.F /D

nX
iD1

`k.Li1; .L
i
1/
0/�

mX
jD1

`k.Lj2 ; .L
j
2/
0/:

The reader can check that this definition is independent of the choice of the section; see [Gordon and
Litherland 1978].

From the previous statement we obtain that if F is the union of disjoint surfaces F1; : : : ; Fk then
e.F /D e.F1/C� � �Ce.Fk/. In particular, a nonorientable saddle as in Figure 26 has Euler number equal
to that of the unique nonorientable component.

Lemma 5.9 Suppose that L1 and L2 are related by a nonorientable saddle F . Say D1 and D2 are planar
diagrams for them such that the saddle is represented as in Figure 27. Denote by D0i the corresponding
diagram obtained from Di by deleting all the components that do not appear in the saddle. Then

e.F /D wr.D01/�wr.D02/C ";

where " is equal to 1 if the crossing is positive and �1 if is negative.

Proof From what we said before, e.F / D e.F 0/, where F 0 is a nonorientable saddle between K1
and K2, the components of the links represented by D01 and D02. Since e.F 0/ is computed from a tubular

D1 D2

Figure 27: The nonorientable saddle is represented in the diagrams as an unoriented resolution of
a crossing, where both arcs belong to the same component of L1.
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nonoriented band move

unoriented resolution

Figure 28: Each of two rows shows a direction of the equivalence of the two representations of a
nonorientable saddle.

neighborhood of F 0 and F 0 is disjoint from the other annuli of F , we have that e.F 0/ can be computed
using [Ozsváth et al. 2017b, Lemma 4.3]:

e.F 0/D wr.D01/�wr.D02/C ":

The fact that every nonorientable saddle can be seen as an unoriented resolution of a crossing (and vice
versa) follows easily from Figure 28.

5.3.2 Unorientable saddle move We use the grid diagrams and maps defined in [Ozsváth et al. 2017b,
Section 5]. Say G1 and G2 are grid diagrams for L1 and L2, which are related by a nonorientable saddle
as in Figure 29. Then we have chain maps � WCFL0.G1/!CFL0.G2/ and �0 WCFL0.G2/!CFL0.G1/,
such that �0 ı � D � ı �0 D U , defined as

�.x/D

�
Ux if x\A¤∅;
x if x\AD∅;

and �0.x/D

�
x if x\A¤∅;
Ux if x\AD∅;

for every grid state x.

O

X

O

O

O O

OX

X

X

X

X

G1 G2G0

Figure 29: Nonorientable saddle in a grid diagram. Assume the markings in the first two columns
of G1 belong to the same component of L1; we switch the X–marking in the first column with
the O–marking in the second one to get G0. Then starting from the X at the bottom, we reverse
all the markings on this component of the link until we obtain the diagram G2.
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Lemma 5.10 The maps � and �0 as before drop the ı–grading by
1
4
.2� e.F //� 1

2
.`k.K1; L1 nK1/� `k.K2; L2 nK2//;

1
4
.2C e.F //C 1

2
.`k.K1; L1 nK1/� `k.K2; L2 nK2//;

respectively. Here , Ki is the component of Li where we perform the nonorientable saddle move.

Proof Say G1, G0 and G2 are as in Figure 29, with orientations on G1 and G2 given as in Section 3.2.
We prove the claim for the map �. From [Ozsváth et al. 2017b, Proposition 5.7] and its proof we have
that ıG1.x/D ıG0.�.x// and

ıG0.�.x//�ıG2.�.x//D�
1
4
Œwr.G1/�wr.G2/C1�2�

D�
1
4
Œwr.G11/�wr.G12/C1�2��

1
4
Œ2 �`k.K1; L1 nK1/�2 �`k.K2; L2 nK2/�;

where G1i is the subdiagram representing Ki . Then

ıG2.�.x//D ıG1.x/�
1
4
.2� e.F //C 1

2
.`k.K1; L1 nK1/� `k.K2; L2 nK2//

by Lemma 5.9. The case of �0 is done in the same way.

This lemma implies the following result.

Proposition 5.11 Suppose that Li and Ki are as before and F is the corresponding nonorientable saddle.
Then

�max.L1/�
1
4
.2� e.F //C 1

2
Œ`k.K1; L1 nK1/� `k.K2; L2 nK2/�

6 �max.L2/6 �max.L1/C
1
4
.2C e.F //C 1

2
Œ`k.K1; L1 nK1/� `k.K2; L2 nK2/�;

where L1 nK1 and L2 nK2 are oriented in the same way. The same is true for �min.

Proof Since �0 ı � D � ı �0 D U we have that � and �0 induce isomorphisms in homology. Therefore,
the claim follows from Lemma 5.10 and the definition of �max and �min.

These inequalities do not depend on the orientation of the components of L1 and L2 where the saddle
appears. The proof of this statement is given in Lemma 5.12.

5.4 Bounds for the unoriented slice genus of a link

Suppose that the n–component (unoriented) link L bounds a compact, unoriented surface F , with k
connected components and Euler number e.F /, properly embedded in D4. Define vD v1C � � �C vk as
in Figure 30. Using the notation in [Gordon and Litherland 1978], we write

�. EL/ WD
X

16i<j6n

`k. ELi ; ELj /

for the total linking number of EL and we take Ne EL.F / WD e.F /� 2�.
EL/, where EL means that we pick an

orientation of L. Then Ne EL.F /D 0 when F is oriented and EL inherits its orientation from F ; see [Gordon
and Litherland 1978, Section 5].
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L

k

g tori v nonorientable

saddles

yL

Figure 30: The number vi denotes how many nonorientable saddles there are on each of the k
components of F . In the picture we omitted the attachment of the extended birth and death moves.

Lemma 5.12 Suppose that a link LD yLD @F as in Figure 30 is such that nD k, which means that F is
the union of n disjoint unoriented surfaces Fi , each one bounding a knot. Then

(5-3) �g� 1
2
vC 1

4
Ne EL.F /6 �max. EL/6 gC 1

2
vC 1

4
Ne EL.F /

and

(5-4) �g� 1
2
vC 1�nC 1

4
Ne EL.F /6 �min. EL/6 gC 1

2
vC 1�nC 1

4
Ne EL.F /

for every possible orientation we put on L.

Proof If vD 0 then the claims are true since in this case Ne EL.F /D e.F /D�.
EL/D 0 (every orientation on

L is compatible with one on F ) and by Proposition 5.8. Suppose that v > 1; we prove the last statement
first. We assume (5-3) and (5-4) are satisfied for one orientation EL and we prove them for another one, that
we call EL0. Obviously, we can also suppose that EL0 is obtained from EL by just reversing the orientation
on one component of L, that we denote by K.

By [Ozsváth et al. 2015, Corollary 2.7.10] and Theorem 5.7,

�. EL0/D �. EL/C `k. EK; EL n EK/;

where here � denotes either �max or �min. Hence, since

�. EL0/D �. EL n EK/� `k. EK; EL n EK/D �. EL/� 2 `k. EK; EL n EK/;

we obtain
1
4
Ne EL0.F /D

1
4
Ne EL.F /C `k.

EK; EL n EK/:
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This means that if we add `k. EK; EL n EK/ to each term in the inequalities in (5-3) and (5-4) then we obtain
precisely the corresponding equations for EL0; and this part of the proof is complete.

We now prove that the inequalities hold for at least one orientation of L. We proceed by induction on v,
where the initial step has been done at the beginning of the proof. Therefore, we assume that (5-3) and
(5-4) hold for EL and we prove them for EL0, where this time L0 is related to L by a nonorientable saddle
move as in Figure 27. Denote by K and K 0 the components of L and L0 where the move is performed.
We orient them as in the proof of Lemma 5.10 and Proposition 5.11.

We show the case of (5-3); the argument for (5-4) is exactly the same. We start by writing

�g� 1
2
vC 1

4
Ne EL.F /6 �max. EL/ and �max. EL/6 gC 1

2
vC 1

4
Ne EL.F /

from the inductive step; we call S the saddle move and F 0 the surface obtained by gluing S to F , which
means @F 0 D L0. Then the first inequality becomes

�g� 1
2
.vC1/C 1

4
Ne EL0.F

0/D�g� 1
2
vC 1

4
Ne EL.F /C

�
�
1
2
C
1
4
e.S/C 1

2
`k. EK; ELn EK/� 1

2
`k. EK 0; EL0n EK 0/

�
6 �max. EL/C

�
�
1
2
C
1
4
e.S/C 1

2
`k. EK; ELn EK/� 1

2
`k. EK 0; EL0n EK 0/

�
6 �max. EL

0/;

where the first equality can be easily computed from the definition of Ne and the last inequality follows
from Proposition 5.11. In the same way,

�max. EL
0/6 �max. EL/C

�
1
2
C
1
4
e.S/C 1

2
`k. EK; EL n EK/� 1

2
`k. EK 0; EL0 n EK 0/

�
6 gC 1

2
vC 1

4
Ne EL.F /C

�
1
2
C
1
4
e.S/C 1

2
`k. EK; EL n EK/� 1

2
`k. EK 0; EL0 n EK 0/

�
6 gC 1

2
.vC 1/C 1

4
Ne EL0.F

0/:

This concludes the proof because all the terms in (5-3) and (5-4) are preserved under concordance; hence,
we can ignore extended births and deaths in F .

This lemma allows us to prove Proposition 5.13. Suppose that L is a link which bounds an unoriented
surface F in D4, with F1; : : : ; Fk as connected components, as in Figure 30. Fix an orientation on L; we
need to define the integer �. EL;F / WD �.L1/C � � �C�.Lk/, where Li is the oriented sublink of EL such
that Li D @Fi . Note that the orientation on Li has nothing to do with Fi which may be nonorientable as
well. We say that �.Li /D 0 when Li is a knot.

We also write yL for the k–component link which appears before the split moves in the decomposition of
F in Figure 30. Hence, if we denote by yF � F the subsurface such that yLD @ yF then yL and yF satisfy
the hypothesis of Lemma 5.12.

Proposition 5.13 With the notation established above , the following inequalities are satisfied for the 2k

orientations of L which are determined by the ones on yL:

�g� 1
2
vCk�nC 1

4
Ne EL.F /6 �max.L/6 gC 1

2
vC1

4
Ne EL.F /;

�g� 1
2
vC1�nC 1

4
Ne EL.F /6 �min.L/6 gC 1

2
vC1� kC 1

4
Ne EL.F /:
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Proof We have that
`k.yLi ; yLj /D

X
t2Ii ; l2Ij

`k. ELt ; ELl/

for every i; j D 1; : : : ; k, where Ia is the set of the components of L in La for aD 1; : : : ; k. Therefore,
one has �.yL/C�. EL;F /D �. EL/. We name F 0 � F the cobordism between yL and L and we obtain

Ne EL.F /D e.F /� 2�.
EL/D e. yF /C e.F 0/� 2.�.yL/C�. EL;F //D NeyL.

yF /C .e.F 0/� 2�. EL;F //;

and from this, say F 0i D F
0\Fi is a connected component of F 0, we argue that

e.F 0/� 2�. EL;F /D

kX
iD1

.e.F 0i /� 2�.Li //

by definition of the Euler number. Since each F 0i is oriented and it is a cobordism from yLi D yL\Fi
to Li , we can cap F 0i off in D4 by gluing a compact oriented surface with boundary yLi . In this way, we
obtain an oriented surface Gi such that @Gi DLi and e.Gi /D e.F 0i / for every i D 1; : : : ; k and then

kX
iD1

.e.F 0i /� 2�.Li //D

kX
iD1

.e.Gi /� 2�.Li //D

kX
iD1

NeLi .Gi /D 0

because the orientation on Li is induced by the one on Gi (which is the same induced by F 0i ).

We have proved that Ne EL.F /D NeyL.
yF / and now we can apply Lemma 5.12 to show that

�g� 1
2
vC 1

4
Ne EL.F /6 �max.yL/6 gC 1

2
vC 1

4
Ne EL.F /

and
�g� 1

2
vC 1� kC 1

4
Ne EL.F /6 �min.yL/6 gC 1

2
vC 1� kC 1

4
Ne EL.F /:

In order to conclude the proof, we apply (5-1) and (5-2) which tell us that

�max. EL/6 �max.yL/6 �max. EL/Cn� k and �min. EL/6 �min.yL/6 �min. EL/Cn� k;

provided that the orientation on L belongs to the 2k ones induced by an orientation of F 0.

We can use this result to prove that the wideness of the �–set of L gives a lower bound for the unoriented
slice genus  .k/4 .L/, which is defined as the smallest first Betti number of a surface F as in Figure 30
with k connected components.

Proof of Theorem 1.8 This follows from Proposition 5.13 because 2gC vCn� k is exactly the first
Betti number of F .

Note that Theorem 1.7 tells us that �max.L/� �min.L/ is an unoriented concordance invariant of L. As a
consequence of Theorem 1.8 we obtain Corollary 1.9; see also [Donald and Owens 2012, Section 5] for
another proof of this result.
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Figure 31: The link T2;4; this link becomes the 2–component unlink after the unoriented resolution
of the crossing on the blue component.

Proof of Corollary 1.9 Suppose that F is the unoriented surface with maximal value of �.F / and
say it appears like in Figure 30. As we saw in the proof of Theorem 1.8, the first Betti number of F is
2gC vCn� k and then the same theorem implies

k� 16 2gC vCn� k

because, for a quasialternating link L, �max.L/D �min.L/ by Theorem 4.8.

The latter inequality can be rewritten as

2k�n� 2g� v 6 1

and it is easy to check that the left-most side is precisely �.F /.

In particular, suppose that the quasialternating link L has n components and F is the disjoint union of a
disks and n� a Möbius strips. Then a can be at most equal to one.

We saw in Theorem 1.7 that we can shift HFL0. EL/ to obtain an unoriented concordance invariant of links.
This suggests that we can modify the bounds in Proposition 5.13 in a way that only unoriented invariants
appear. The main tool to achieve this goal is the Gordon–Litherland formula [1978, Corollary 500],

(5-5)
ˇ̌
�. EL/� 1

2
Ne EL.F /

ˇ̌
6  .k/4 .L/;

where LD @F and F D F1 t � � � tFk .

Proof of Theorem 1.10 We just need to apply (5-5) to Proposition 5.13.

Note that the quantities that appear in the left-most side of all the inequalities in Theorem 1.10 are
unoriented concordance invariants; in particular, they are independent of the choice of the orientation
on L.

We conclude the paper with a couple of applications, which imply Corollary 1.11. First, we compute

.2/
4 .Ln/ when Ln is the 2–component link T �2;4 #T #n

3;4.
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Corollary 5.14 
.2/
4 .Ln/D nC 1 for every n> 0.

Proof Since T �2;4 is nonsplit alternating we can easily compute �min.T
�
2;4/D 1 using Theorem 4.8, while

the fact that �.T #n
3;4/D�2n is known from [Ozsváth et al. 2017b, Corollary 1.4]. Moreover, applying

Corollary 4.11 we obtain that

�min.Ln/D �min.T
�
2;4/C �.T

#n
3;4/D 1� 2n:

Now we just use Theorem 1.10 and remember that �.T �2;4/D 3 and �.T3;4/D�6, soˇ̌
1� 2n� 1

2
.3� 6n/C 1

ˇ̌
D
ˇ̌
nC 1

2

ˇ̌
6 nC 16  .2/4 .Ln/:

In order to complete the proof we observe that there is a sequence of nC 1 nonorientable saddles that
changeLn into the unlink2: there is one from T3;4 to the unknot and we perform one on each summand,
while we can go from T2;4 to2 by an unoriented resolution of a crossing; see Figure 31.

Finally, we show that  .1/4 .Ln/ can be arbitrarily large.

Corollary 5.15 
.1/
4 .Ln/> n for every n> 0.

Proof We use the last inequality in Theorem 1.10 with �min.Ln/ and we immediately obtainˇ̌
1� 2n� 1

2
.3� 6n� 1/

ˇ̌
D n6  .1/4 .Ln/:

We point out that these two results cannot be obtained by using Theorem 1.8 alone.
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