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Hermann Weyl’s philosophical reflections remain a topic of considerable interest in the history and philosophy 
of science. In particular, Weyl’s commitment to a form of idealism, as it pertains to his reading of Husserl and 
Fichte, has garnered much discussion. However, much less attention has been given to Weyl’s later, and at that 
only partial, turn towards a form of empiricism (i.e. from the late 1920s onward). This lack of focus on Weyl’s 
later philosophy has tended to obscure some of the most significant lessons that Weyl sought to draw from his 
decades of research in the foundations of mathematics and physics. In this paper, I develop some aspects of what 
I will term as Weyl’s ‘modest’ empiricism. I will argue that Weyl’s turn toward empiricism can be read in the 
context of a development of Helmholtz’s epistemological program and his unique form of ‘Kantianism’. The hope 
is that this reading will not only provide a better understanding of Weyl’s later thought, especially his (1954) 
criticism of Cassirer, but that it may also provide the basis for a novel ‘Weylian’ account of the mathematization 
of nature underwriting the group-theoretic methodology of parts of modern physics.
. . . . . . . . . . . . . . . . . .

It is the common fate of man and his science that we do not begin 
at the beginning; we find ourselves somewhere on a road the origin 
and end of which are shrouded in fog (Weyl, 1948 [2017], p. 156).

1. Introduction

The history of twentieth century physics is filled with a colourful 
cast of characters, but even within this rarefied group, Hermann Weyl 
cuts a fine figure. Weyl is best known, at least within the physics com-
munity, for the insightful and prescient nature of his work—e.g. on the 
early development of general relativity, the pursuit of unified field the-
ory, and the application of group theory in quantum mechanics. Weyl’s 
initial foray into physics was primarily concerned with its appropri-
ate mathematical formulation. This was natural, given that Weyl was 
a mathematician by trade rather than a physicist. But the influential 
nature of Weyl’s research served to bolster a broader trend within the 
mathematical community (at least in the Göttingen tradition of Klein, 
Minkowski, and Hilbert) towards a deeper engagement with the foun-
dations of physics.

Weyl’s work as a physicist tended to blur the boundaries between 
mathematics and nature, and his philosophical thought has often been 

interpreted in this context. This reading is certainly natural, but the 
problem with placing too much focus on any particular aspect of Weyl’s 
work is that we run the risk of obscuring one of the most interesting 
features of his thought: namely, its eclectic nature (e.g. see Sigurds-
son, 1991). Like many of his contemporaries, Weyl’s interests were both 
wide-ranging and idiosyncratic, reaching far beyond his specific areas 
of expertise in mathematics and physics into the broader realm of philo-
sophical discourse. However, unlike many of his contemporaries, Weyl’s 
work, as a whole, was motivated by a fundamental belief in the unity 
of thought. Throughout his life, Weyl continually strove to interweave 
his vast and ever evolving studies (in particular those at the intersection 
of mathematics, physics, and philosophy) into a unified framework for 
physical enquiry. To Weyl, mathematics, physics, and philosophy did 
not represent independent fields of study, but interdependent means 
of tackling the fundamental problem of knowledge—i.e. to determine 
what is true and objective in our thought (e.g. Weyl, 1954).

Weyl not only derived inspiration from his philosophical studies, 
but also explored the philosophical implications of his work in mathe-
matics and physics. However, at no point could Weyl’s thought be said 
to neatly align with any particular philosophical school. In fact, Weyl’s 
philosophical thought could hardly be said to be entirely coherent—e.g. 
one can find concurrent threads of idealism (including Leibnizian, Kan-
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tian, and later German idealism), Husserlian phenomenology, realism, 
empiricism, panpsychism, and forms of theism (including traditional 
theism, mysticism, and possibly even fideism—though that may be a 
bit of a stretch).1 Nonetheless, Weyl’s loosely ‘Platonic’ belief in a fun-
damental unity in mathematics, physics, and philosophy, as part of the 
general problem of knowledge, remained the essential insight motivat-
ing his philosophical thought. Indeed, it is the true depth of Weyl’s 
belief in a profound harmony between mathematics, physics, and phi-
losophy that makes him so inimitable from a present-day perspective.

In light of Weyl’s significant contributions in both mathematics and 
physics, and his wide-ranging interest in philosophy, it should come 
as no surprise that his philosophical thought has been the subject of 
perennial discussion in the history and philosophy of science. In par-
ticular, Weyl’s ever evolving idealism (and his commitment to a form 
of Husserlian phenomenology) has been the subject of much debate. 
In this context, it has rightly been noted that Weyl’s reading of both 
Husserl and Fichte served as a major motivation for his work in mathe-
matics and physics from the late 1910s to the middle of the 1920s (e.g. 
see Sigurdsson, 1991, Ryckman, 2005; and Sieroka, 2007). However, 
much less attention has been given to Weyl’s later, and at that only par-
tial, turn towards a form of empiricism (i.e. from approximately 1925 
onward). This shift in philosophical focus was motivated by a crisis in 
Weyl’s thought, which was brought on by his engagement with quantum 
theory and the need to account for its apparent empirical foundation 
(e.g. see Weyl, 1927/1949a, 1928 [1949], 1929, 1948, 1949b, 1954; 
and Scholz, 2004, 2018, 2019). In Weyl’s view, the development of 
quantum theory had made it clear that physical theory could no longer 
be led by considerations of mathematical harmony or theoretical unity 
alone, quantum theory had shown that we must now take our lead more 
directly from nature herself.

Weyl’s later empiricism might loosely be called a form of ‘modest’ 
empiricism, in contrast to a ‘strict’ empiricism which seeks, or demands, 
an empirical ground for all knowledge. In his turn toward empiricism, 
Weyl sought to not only follow nature’s lead, but to precisely identify 
the sense in which nature can serve to guide the theoretical construction 
of a picture of reality. However, Weyl never lost sight of the limita-
tions of empiricism, and the need to account for the a priori basis of 
scientific thought. Weyl remained sensitive to the perils of both naive 
empiricism and unconstrained idealism. In his search for a viable mid-
dle ground between these extremes, Weyl traced out the foundations 
for a unique form of empiricism within what one might call a broadly 
Helmholtzian tradition—a tradition that sought to harmonize some of 
the central tenets of empiricism and transcendental idealism.

The lack of focus on Weyl’s later turn toward a form of empiricism 
has tended to obscure some of the most significant lessons that Weyl 
sought to draw from his decades of research in the foundations of math-
ematics and physics. In this paper, I will look to develop some of the 
central tenets of Weyl’s ‘modest’ empiricism, as one thread within the 
unique tapestry that makes up his later philosophy of science. In this 
context, I will place a particular focus on Weyl’s shifting views con-
cerning the relationship between mathematics, physics, and philosophy. 
Throughout, I will consider the extent to which Weyl’s later empiricism 
can be read as a development of Helmholtz’s ‘Kantian’ empiricism.2

This development should not be read as a strict historical development 

1 This is not to say that all of these “isms” are strictly incoherent with one 
another, but rather the collection as a whole is somewhat untenable. For the 
Leibnizian, Kantian, German idealist, and Husserlian aspects, see Weyl (1918a, 
1918b, 1932 [2009], 1934 [2009], 1949a), Ryckman (2005), and Sieroka 
(2007). For the empiricist, see Weyl (1934 [2009]) and Scholz (2004, 2018). 
For the realist, see Weyl (1949a) and Sigurdsson (1991). For the panpsychism, 
see Weyl (1934 [2009]) and Sigurdsson (1991). For the theism, see Weyl (1932
[2009]), including possibly Fideism (i.e. in the sense that faith stands above 
reason) in Weyl (1932 [2009], p. 46).

2 Here, and in what follows, the label ‘Kantian’ should not be understood to 
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indicate a direct development of Kant’s thought, but rather a development of 
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of Helmholtz’s thought, in its entirety, but rather as a looser philosoph-
ical development—one which looked to draw on certain key aspects 
of Helmholtz’s philosophy as the basis for future development, and pro-
vide a novel reformulation of the basic intuition or insight underwriting 
the Helmholtzian philosophical tradition. My aim is not to argue that 
this is the only suitable interpretation of Weyl’s later thought, as there 
are many threads, but to highlight one way of understanding certain 
aspects of Weyl’s later empiricism. The hope is that this reading may 
provide not only a better understanding of a few major themes in Weyl’s 
later thought, particularly his 1954 criticism of Cassirer, but that it may 
also form the basis for a modern structural-empiricist philosophy in the 
Helmholtzian tradition, a ‘Weylian’ philosophy that could offer a novel 
understanding of the group-theoretic methodology underlying parts of 
modern physics.

In an attempt to make this paper somewhat self-contained, I will 
begin with a brief account of Helmholtz’s ‘Kantian’ empiricism, as it 
emerges through his work on the problem of space (which concerns 
which geometrical structures can serve as a viable ground for the de-
scription of physical space) and the problem of knowledge (which con-
cerns which aspects of our thought can be taken to be true and/or 
objective). I will then turn to a discussion of Weyl’s work, and look 
to develop some aspects of his thought on Helmholtz, and related top-
ics, as it pertains to his broader turn toward empiricism. I will then take 
a short detour to present a few basic aspects of Cassirer’s neo-Kantian 
position. This detour will serve to provide important context for a more 
detailed engagement with Weyl’s 1954 essay on Cassirer and the unity 
of knowledge. In analysing this essay, I will outline, in general terms, 
what I have labelled as Weyl’s ‘modest’ empiricism.

2. Helmholtz’s ‘Kantian’ empiricism

Helmholtz’s philosophical reflections were guided by both a deep 
appreciation for the Kantian tradition and a firmly held commitment 
to scientific empiricism. Following Kant, Helmholtz held that an appeal 
to a priori ‘laws of thought’ was necessary to account for the problem 
of knowledge, as they constituted the very possibility of experience.3

However, as an adherent to the principles of scientific empiricism, 
Helmholtz also sought to provide a naturalist account of all physical 
and mental phenomena. The attempt to resolve the apparent conflict 
between these two positions was at the centre of Helmholtz’s epistemo-
logical reflections.

With respect to Helmholtz’s commitment to a form of empiricism, 
Hatfield (1990, p. 11, 166-168) draws an important distinction be-
tween traditional empiricism (i.e. a ‘strict’ empiricism), which holds 
that all knowledge is grounded on experience (pace Locke and Hume), 
with what he terms as Helmholtz’s “empirism”, which holds that all 
knowledge is gained, or learned, through experience, but not neces-
sarily grounded on it (given Helmholtz’s commitment to a form of 
critical idealism). Helmholtz’s unique blend of empiricism and critical 
idealism remains a topic of long-standing discussion in the history and 
philosophy of science.4 However, I will argue that it was Helmholtz’s 
‘empirism’ that provided the essential insight and motivation for Weyl’s 
‘modest’ empiricism.5

In this section, I will provide a brief account of some aspects of 
Helmholtz’s thought on the problem of space and the nature of percep-

the broadly Kantian tradition in late 19th and early 20th century philosophy of 
science.

3 Here, by the use of the term ‘laws of thought’, I intend to indicate 
Helmholtz’s loose commitment to some aspects of critical idealism, whether 
that includes the classic Kantian system or variations in its historical develop-
ment.

4 For example, see Turner, 1977, Hatfield, 1990, Cahan, 1993, Schiemann, 
1998, Heidelberger, 1998, Lenoir, 2006; Patton, 2009, 2018; De Kock, 2014; 
and Biagioli, 2016.

5 In fact, it is Weyl’s unique account of how knowledge is gained, or learned, 

through experience that is the characteristic feature of his ‘modest’ empiricism.
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tion. Here, I will place a particular focus on Helmholtz’s development of 
a form of ‘Kantian’ empiricism (or ‘empirism’). Throughout, I will high-
light the points that will become most important for Weyl. As such, the 
subsequent discussion will focus on two of Helmholtz’s most influen-
tial epistemological essays—i.e. “On the Origin and Significance of the 
Axioms of Geometry” (1876 [1977]) and the “The Facts in Perception” 
(1878 [1977]).

The basic problem underlying Helmholtz’s essay on the axioms of 
geometry (1876) is whether the axioms of Euclidean geometry serve as 
the a priori form of intuition and a necessary presupposition of scien-
tific thought, as Kant suggested. Helmholtz’s essential insight is that the 
problem of space is not separate from, or unrelated to, the problem of 
knowledge in general. Thus, the question of the origin of the axioms of 
geometry becomes part of the general question of the relation between 
our means and ways of knowing (i.e. between our thought and our ex-
perience of nature). In particular, Helmholtz argued that in tackling the 
problem of space, the problem of perceptual knowledge is of paramount 
importance. It is not a question solely of how we think about nature 
(i.e. through geometry or mechanics), but also of how we see, hear, and 
touch it.

Helmholtz sets out his discussion from what he takes to be the basic 
Kantian position: namely, that spatial geometry serves as “a form, given 
a priori, of all outer intuition” (1876 [1977], p. 1), but he notes that this 
does not mean that spatial geometry is a formal scheme into which con-
tent is fit, rather only the content that is constrained in a particular 
‘lawlike’ way can become intuitable for us. In order to study the a priori
nature of this constraint, Helmholtz considers what limitations can be 
imposed on the structure of space under the most general assumptions 
concerning our spatial form of intuition. These assumptions, according 
to Helmholtz, are grounded on the very possibility of experience (un-
derstood within the context of the nature of our perceptual faculties). 
They entail that there exist fixed physical relations, i.e. rigid bodies, 
and that space is both homogeneous and isotropic. From these assump-
tions, Helmholtz derives the set of geometrical structures that can serve 
to underwrite any possible experience. It is here that Helmholtz points 
out that Euclidean geometry is not the only spatial structure that is 
consistent with these assumptions—in fact, any spatial structure with 
a constant curvature will do. The important conclusion being that Eu-
clidean geometry is not a necessity of thought, at least in Helmholtz’s 
sense. All that remains is to show that such spaces are imaginable, as a 
possible experience, as, for Helmholtz, this would “refute the claim that 
the axioms of geometry are in Kant’s sense necessary consequences of a 
transcendental form, given a prior, of our intuitions” (1876 [1977], p. 
18).6

To demonstrate that non-Euclidean spaces are imaginable, Helmholtz 
presents his famous ‘mirror world’ thought experiment. Here, one imag-
ines beings (with similar faculties as our own), who are the inhabitants 
of a world with spherical or pseudo-spherical geometry—Helmholtz 
suggests that we can imagine such a world in which the happenings of 
our world are mapped, e.g. as in a concave or convex mirror. The sim-
ple point being, to quote Helmholtz (1876 [1977], p. 23), is “to show 
how one can deduce from the known laws of our sense perceptions [...] 
the series of sense perceptions which a spherical or pseudo-spherical 
world would give us if it existed.” He continues: “In this respect too 
we nowhere meet an impossibility or deductive fault”. Indeed, suit-
ably translated, both worlds would accord with all known facts, and 
Helmholtz concludes: “For this reason, we also cannot admit [that] the 
axioms of our geometry are based upon the given form of our faculty of 
intuition, or are connected with such a form in any way”.7

6 Here, it is important to note that Helmholtz interprets the notion of a pos-
sible experience along psychological lines, as the experience of a cognizing 
subject, and not along the typical Kantian line of a possible experience in gen-
eral. I would like to thank an anonymous referee for highlighting this point.

7 Of course, as Helmholtz notes, this all rests on a presumed mechanical ac-
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count of the rigidity of bodies. It is only the union of geometry and mechanics 
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However, at this point, the problem appears to remain only par-
tially solved, as a lot still depends on Helmholtz’s unique account of the 
relation between imagination and intuition, and his account of the na-
ture of our senses and the laws governing perception. For this reason, 
Helmholtz’s essay on the axioms of geometry is naturally complemented 
by a reading of his essay on the nature of perception (1878 [1977]). Af-
ter some preamble, Helmholtz begins this essay with what he takes to 
be the fundamental question. Citing Fichte, he asks: “What is true in 
our intuition and thought?” and “In what sense do our representations 
correspond to actuality?” (1878 [1977], p. 117).

Drawing on his studies on the physiology of perception (e.g. 1867
(1910) [1925] and 1868 [1873]), Helmholtz sets out his basic position. 
He (1878 [1977], p. 121-122) notes that

Inasmuch as the quality of our sensation gives us a report of what 
is peculiar to the external influence by which it is excited, it may 
count as a symbol of it, but not as an image. For from an image 
one requires some kind of likeness with the object of which it is an 
image—from a statue alikeness of form, from a drawing alikeness of 
perspective projection in the visual field, from a painting alikeness 
of colours as well. But a sign need not have any kind of similarity at 
all with what it is the sign of. The relation between the two of them 
is restricted to the fact that like objects exerting an influence under 
like circumstances evoke like signs, and that therefore unlike signs 
always correspond to unlike influences.8

For Helmholtz (1878 [1977], p. 122), this is enough to form

an image of lawfulness in the process of the actual world. Every law 
of nature asserts that upon preconditions alike in a certain respect, 
there always follow consequences which are alike in a certain other 
respect.

However, he notes that in the very act of perception, one presupposes 
a law-like connection between the symbols of sensation and the objects 
of which they are a sign.9 In our representations of objects, we assume 
that the laws of connection, whereby the symbols given by sensations 
are related to constitute a definite object, correspond to the relations 
characterizing the object of our experience.10 In this sense, the very 
act of perception involves an act of thought—one presupposes that the 
laws of thought, whereby symbols are related, correspond to the laws 
of connection characterizing the objects of which they are a sign.

Furthermore, Helmholtz suggests that when we hold such laws of 
connection to have an existence, independent of our representations, 
we call them a cause (1878 [1977], p. 139), and this lawfulness be-
comes “the essential presupposition for the character of the actual” 

that possesses any empirical significance, thus one could always hold fast to the 
Kantian position with a suitable change in one’s mechanics.

8 In one of his earlier popular lectures, Helmholtz (1853 [1873], p. 54) 
presents the basic idea a little more succinctly. He suggests that “Perhaps the 
relations between our sense and the external world may be best enunciated as 
follows: our sensations are for us only symbols of the external world, and corre-
spond to them only in some such way as written characters of articulate words 
to the things they denote. They give us, it is true, information respecting the 
properties of things without us, but no better information than we give a blind 
man about colour by verbal descriptions”.

9 There is a possible tension here between the descriptive or naturalistic as-
pects of the Helmholtzian epistemological program and the manner in which 
Helmholtz could account for the normativity introduced through a priori el-
ements (e.g. see Hatfield, 1990, ch. 5). It remains an open question whether 
Weyl’s later empiricism inherits this tension from Helmholtz, given his weaker 
commitment to a methodological ‘naturalism’. I want to thank an anonymous 
referee for bringing this issue to my attention.
10 Here, we must not read this correspondence too strongly, and keep in mind, 
as Helmholtz notes in his Physiological Optics (1867 [1925] p. 20), that an 

“idea and the thing conceived [...] belong to two entirely different worlds.”.



N. Stemeroff

(1878 [1977], p. 140).11 On Helmholtz’s account, this means that we 
have no access to, nor can we represent, the thing-in-itself (any attempt 
at such a ‘representation’ is a contradiction of terms for Helmholtz). All 
we can attain “is an acquaintance with the lawlike order in the realm of 
the actual, admittedly only as portrayed in the sign system of our sense 
impressions” (1878 [1977], p. 141). This ‘modest’ view should be kept 
in mind in any reading of Helmholtz’s empiricism.12

In this context, Helmholtz (1878 [1977], p. 141) is able to precisely 
define progress in science. He holds that “every correctly formed hy-
pothesis sets forth, as regards its factual sense, a more general law of 
the appearances than we have until now directly observed — it is an at-
tempt to ascend to something more and more generally and inclusively 
lawlike.” Thus, lawfulness becomes the condition of cognition and com-
prehensibility. The belief in the complete comprehensibility of nature 
serves as an ideal, it is expressed through the law of causality, and the 
law of causality becomes the truly “a priori given [...] transcendental 
law” (1878 [1977], p. 142).

With this in mind, we are now able to fill in a few more details 
concerning Helmholtz’s work on the problem of space. Helmholtz takes 
something to be imaginable if it can be shown to be a possible object 
of experience. Thus, the ‘laws of sense perception’ correspond to the 
laws of thought that demarcate the domain of possible experience. In 
this context, we immediately see that the problem with Kant is that the 
domain of possible experience that he outlines is too constrictive—the 
laws of thought (and of sense perception) can now be seen to be far 
more general in light of Helmholtz’s account of scientific cognition.

To sum up, Helmholtz (1878 [1977], p. 162-163) notes that

Kant’s doctrine of the a priori forms of intuition is a very fortunate 
and clear expression of the state of affairs; but these forms must be 
devoid of content and free to an extent sufficient for absorbing any 
content whatsoever that can enter the relevant form of perception. 
But the axioms of geometry limit the form of intuition of space in 
such a way that it can no longer absorb every thinkable content, if 
geometry is at all supposed to be applicable to the actual world. If 
we drop them, the doctrine of the transcendentality of the form of 
intuition of space is without any taint. Here, Kant was not critical 
enough in his critique [...].

On Helmholtz’s account, the Kantian line between the a priori and a 
posteriori has shifted. The a priori is now limited to the general form of 
intuition, which constrains the class of allowable geometries to those of 
constant curvature. This shift in the Kantian line between the a priori
and a posteriori marks the entrance for a new form of empiricism. The 
a priori is now taken to constitute the general form of intuition, which 
itself must be general enough to encompass all conceivable content. 
But it is the content, that determines which of the possible forms are 
taken to be applicable, or actual. Thus, the a priori outlines the field of 
possibilities, while we must learn from nature which forms can serve as 
the basis for a scientific account of reality. It is here that the axioms of 
Euclidean geometry win the day, but Helmholtz notes that this remains 
a contingent fact.

11 In his physiological optics, von Helmholtz (1867 [1925] p. 32) notes that 
we can never come to know of an external world “except by inferring from the 
changing sensation that external objects are the causes of this change.” Thus, 
“the law of causation, by virtue of which we infer the cause from the effect, 
has to be considered also as being a law of our thinking which is prior to all 
experience.” In this sense, certain ‘laws of nature’ derive not from nature herself, 
but from our urge to understand.
12 In one of Helmholtz’s popular lectures (1868 [1873], p. 274-275), he char-
acterizes the empirical nature of his theory, which he terms the ‘Empirical 
Theory’, as follows: “The Empirical Theory regards the local signs (whatever 
they really may be) as signs, the significations of which must be learnt, in order 
to arrive at a knowledge of the external world.” This is characteristics of what 
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Hatfield (1990, p. 11, 166-168) terms as Helmholtz’s ‘empirism’.
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3. Weyl on the problem of space, Helmholtz, and related themes

In the early 1920s, Weyl famously pursued a deep and influential 
study of the problem of space (e.g. 1921 [1952], 1922, 1923a, 1923b) 
building on the tradition of Helmholtz, Klein, and Lie. In the late 1920s, 
he presented an expanded philosophical reflection on this study, and its 
implications for Helmholtz’s thought on the relation between thought 
and reality, more broadly. In this section, I will provide a brief summary 
of some of the ideas behind Weyl’s work on the problem of space, before 
turning to his later reflections on Helmholtz, the nature of perception, 
and the foundations of scientific knowledge.13

Weyl’s interest in the problem of space developed out of prior work 
on the foundations of differential geometry (e.g. 1918b) and the geo-
metrical structure of Einstein’s theory of general relativity (1918a). In 
1918a, Weyl sought to develop what he termed a ‘purely local’ ver-
sion of Einstein’s theory, which no longer assumed that length relations 
could be compared at distant points—i.e. a theory with no global stan-
dard of length or ‘gauge’. Within this generalized geometrical structure, 
Weyl was able to provide a surprising formal unification of the theories 
of gravity and electromagnetism. This important result, led Weyl to con-
sider, in even more general terms, the basic constraints on the allowable 
form of spacetime within any possible physical theory. In addition, in 
1919, Weyl published a new edition of Riemann’s habilitation lecture, 
together with his commentary, and through this commentary, Weyl 
pursued an even more general examination of the class of allowable 
geometries that could serve as a viable foundation for any conceivable 
physical geometry.

By the beginning of the 1920s, Weyl had already started to some-
what temper his hopes for a ‘geometrical’ unification of electromag-
netism and gravitation, along the lines of his early gauge theory 
(1918a), but he still maintained that the generalized geometry at the 
basis of the theory contained an essential insight (Scholz, 2004, p. 174). 
It was this insight that Weyl sought to spell out through his work on the 
problem of space. Weyl’s approach to the problem was firmly within 
what one might call the Helmholtzian tradition, though suitably re-
interpreted in light of its group-theoretic refinement through the work 
of Sophus Lie (e.g. 1886/87, 1890a, 1890b, 1893).

Helmholtz had sought to determine the most general geometrical 
structures that would allow for the free mobility of a rigid body, which 
he took to be a principle grounded on the possibility of experience. 
However, Helmholtz simply assumed that the requirement of free mo-
bility would delimit not only the allowable global structure of space, but 
its infinitesimal structure as well. But as Lie (1886/87, 1890a, 1890b) 
pointed out, this assumption was not entirely justified in Helmholtz’s 
construction (e.g. see Scholz, 2016, p. 4; Biagioli, 2016, p. 159; Bernard, 
2018, p. 48-50). As a result, Lie reformulated Helmholtz’s requirement 
of free mobility in a modern group theoretic perspective—i.e. as a 
group of transformations that preserve congruence—and simply stip-
ulated that this group structure holds at the infinitesimal scale. The 
problem, at least from a philosophical perspective (e.g. see Bernard, 
2018, p. 50-52), is that this stipulation seemed to undermine the moti-
vation for Helmholtz’s empiricist program in the context of the problem 
of space, as it was no longer based directly on the ‘forms’ underwriting 
the very possibility of experience.

Setting the problem of empirical support aside for the time being, 
Weyl’s aim was to readdress the problem of space from the perspective 
of modern group theory (à la Lie) in light of recent developments in 
mathematics and physics. In the process, as Scholz (2019) notes, Weyl 
initially stripped Helmholtz’s analysis of his intention to ground the 
choice of geometrical axioms directly on the ‘facts of experience’, and 
sought to readdress the question of the homogeneity of space (or rather 

13 For a more detailed discussion of Weyl’s work on the problem of space, and 
its historical context, see the edited volume on the subject by Bernard and Lobo 

(2019).
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now spacetime) in a manner that was appropriate in the context of 
general relativity, and its subsequent generalization in Weyl’s gauge 
theory. But in the process, Weyl still pursued the problem from what 
one might call a broadly ‘Kantian’ perspective (e.g. see Bernard & Lobo, 
2019, vi-x).

In an attempt to develop the ‘Kantian’ aspects of Helmholtz’s work 
on the problem of space, Weyl sought to identify the a priori constraints 
on the ‘essence of space’ (e.g. see Scholz, 2004, p. 178-179). For Weyl, 
these constraints were no longer grounded on the possibility of experi-
ence, but on a formal study of the nature of congruence and similarity 
in the most general characterization of a geometrical structure. In this 
context, as Scholz (2019, p. 216-217) notes, Weyl “wanted to dig deeper 
and motivate, or even derive, a generalized metrical structure from con-
gruence and similarity concepts”. To accomplish this, Weyl looked to 
define an abstract group structure that could be taken to characterize 
these concepts.

In the fourth edition of Space Time Matter (1921 [1952]), Weyl pro-
vides a short outline of his initial plan (i.e. circa 1920-1921) for a 
group-theoretic solution to the problem of space. Here, Weyl looks to 
define a local metrical structure through a group of congruent transfor-
mations. He suggests that the “metrical constitution of the manifold at 
a point is known if, among the linear transformations of [a] vector body 
(i.e. the totality of vectors [at a point]), those are known that are con-
gruent transformations of themselves” (1921 [1952], p. 138).14 Weyl 
terms these infinitesimal congruent transformations “rotations” of the 
vector body, and notes that “since a rotation is “not to alter” the vector 
body it must obviously be a transformation that leaves the infinitesimal 
elements of volume unaffected” (1921 [1952], p. 139).15 Through this 
terminology, Weyl clearly wants to suggest that the group of congruent 
point transformations can be taken to serve as an abstract generaliza-
tion of the rotations of a body at a point in classical geometry (see 
Scholz, 2004, p. 176).

With a point congruence relation in hand, Weyl turns to the charac-
terization of the “metrical relationship” between two separated points 
in an infinitesimal neighbourhood. He suggests that such a relationship 
can be defined though a notion of infinitesimal “congruent transfer-
ence” (1921 [1952], p. 140), which determines the relationship be-
tween the congruence groups at each point in an infinitesimal neigh-
bourhood. Weyl held that any viable notion of congruent transference 
must require that the congruent relations of a vector body at a given 
point are preserved when the vector body is transferred to a point in 
an infinitesimal neighbourhood—though the specific congruence group 
at each point may differ. Thus, any transference may be labelled as 
a congruent transference so long as the relevant congruence relations 
are maintained.16 In this case, Weyl notes the infinitesimal congruence 
group at every point can be said to be of the same “kind”, differing only 
in terms of what Weyl labels as their “orientation”—an abstract gener-
alization of the congruence relations between bodies at different points 
in classical geometry (see Scholz, 2004, p. 176).17 And while the con-
gruence group, or group of rotations, at each point may differ, they are 

14 He continues that “there are just as many different kinds of measure-
determinations as there are essentially different groups of linear transforma-
tions”.
15 In the context of what Weyl terms a Pythagorean metrical space (i.e. a ‘lo-
cally Euclidean’ space), he notes that the “rotations” would correspond to the 
point transformations under which the Pythagorean-Euclidean metric is invari-
ant.
16 More precisely, Weyl defined such a notion of a “congruent transference” 
through a linear connection with arbitrary numerical coefficients.
17 For example, in Weyl’s conformal geometry (1918a), different “orientation-
s” might correspond to different choices of length scales, or gauges, at each 
point, and the congruent transference would define the length connection (in 
addition to the usual metric connection) between neighbouring points in any 
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“similar” in that they define similar congruence relations; “thus there is 
a homogeneity in this respect” (1921 [1952], p. 140).

Yet, up to this point, Weyl had only presented a highly abstract char-
acterization of the notions of similarity and congruence, and their role 
in the delineation of a geometrical structure. Weyl had yet to clarify the 
sense in which these general notions can be applied to delimit the form, 
or essence, of “real” space. To do this, Weyl (1921 [1952], p. 141) sets 
out to determine the category of metrical spaces to which “real space 
belongs”, at least “according to Pythagoras’ and Riemann’s ideas”. He 
notes that the existence of a group of rotations, or point-congruences, 
at every point defines “a property that belongs to space as a form of 
phenomena; it characterizes the metrical nature of space.” In contrast, 
the “metrical relationship” between neighbouring points “is not deter-
mined by the nature of space, nor by the mutual orientation of the 
groups of rotation at the various points of the manifold.” Rather, on 
what Weyl takes as Riemann’s view, the metrical relationship is deter-
mined by the distribution of the “material content” of space.18 Thus, the 
“metrical relationship”, must be general enough to encompass any con-
ceivable disposition of material content. This is what Weyl takes as his 
first axiom for the characterization of “real” space—i.e. that the met-
rical relationship between neighbouring points must be as flexible as 
possible to adapt to any material distribution.19

However, one problem remained. Weyl’s account of the structure of 
“real” space is not yet sufficient to account for what he took to be the 
essential insight contained in Riemannian geometry, and by extension 
Einstein’s theory of relativity. Weyl had come to the realization, through 
the work of Levi-Civita (1917) and through his own studies (e.g. 1918a, 
1918b, 1919), that the essence of Riemannian geometry is contained in 
the fact that its metrical structure defines a unique notion of parallel 
transport (e.g. see Dewar & Eisenthal, 2020). To maintain this concep-
tual insight, Weyl required, as a second axiom for the characterization 
of “real” space, that his “metrical relationship” define a unique affine 
connection (1921 [1952] p. 142).20

To conclude, Weyl (1921 [1952] p. 146-147) suggested that these 
two axioms, together with the specified congruence and similarity struc-
ture, may be sufficient to single out the class of geometries with a 
non-degenerate quadratic form. In his subsequent work, Weyl (e.g. 
1923a, 1923b) was able to formally show that these constraints do in-
deed pick out such a class of metrical structures—which he later termed 
as the class of geometries of Euclidean-Pythagorean form (i.e. the gen-
eralized class of pseudo-Riemannian geometries at the heart of Weyl’s 
early gauge theory) (e.g. see Scholz, 2004, p. 183).21 This result stood 
as the culmination of Weyl’s efforts on the problem of space, and served 
to capture the fundamental insight contained within the development 
of the theory of relativity and its subsequent generalization in Weyl’s 
conformal geometry (1918a). For Weyl, at least in the early 1920s, this 
‘Euclidean-Pythagorean’ form served as the true Kantian a priori form 
of space (or rather spacetime), constituting the underlying geometrical 
structure for any conceivable spacetime theory.

In the late 1920s, Weyl presented a short reflection on his study 
of the problem of space in an book on the philosophy of mathemat-
ics and natural science (1927 [1949a]).22 Here, he notes that his study 

18 Weyl often associates this essential insight with Riemann and not Einstein.
19 This first axiom could be taken as an expression of Helmholtz’s belief that 
the a priori forms must be “devoid of content and free to an extent sufficient 
for absorbing any content”, however the relevant constraint no longer emerges 
from the form of perception, but from the form of a dynamical spacetime theory.
20 This second axiom can be taken as a revised expression of Helmholtz’s prin-
ciple of congruent motion—i.e. free mobility of a rigid body.
21 Some of the relevant details of this story can be found in Coleman & Korté, 
2001; Scholz, 2004, 2016; Bernard & Lobo, 2019; and Dewar & Eisenthal, 2020.
22 This text will actually serve a double purpose in this paper. It was origi-
nally published in 1927, and subsequently revised and translated into English in 
1949. However, the revisions in the translated text were limited to only certain 

sections, and thus some parts (e.g. those under discussion here) were written 
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has shown, just as Helmholtz had done earlier, that ‘the ‘a priori field 
of possibilities’ is far more general than previously thought. However, 
in contrast to Helmholtz, Weyl had shown that the allowable class of 
metrical structures is not given a priori, but rather their more general 
“Euclidean-Pythagorean” form (Weyl, 1927 [1949a], p. 134). It is now 
the material content that determines the local metrical structure of any 
given spacetime region, a posteriori. Thus, once again, the Kantian line 
between the a priori and a posteriori has shifted. And while Helmholtz 
argued that Kant was not critical enough in his critique, in Weyl’s opin-
ion, neither was Helmholtz—though due to no fault of his own.

At this point, it is important to reiterate that, for Weyl, the motiva-
tion for the axioms underwriting his solution to the problem of space 
did not derive from empirical ‘facts’ relating to the nature of percep-
tion and cognition (following Helmholtz), but from purely theoretical 
considerations. They were based on Weyl’s detailed study of infinitesi-
mal geometry and the role that the affine connection plays in general 
relativity, as the “guiding field” characterizing the inertial structure of 
the world (Weyl, 1927 [1949a], p. 106). Thus, Weyl’s characterization 
of “real” space emerged not from our direct contact with nature, but 
from our broader theoretical understanding of it.23 And though Weyl 
took himself to be working within the Helmholtzian tradition, he never 
sought to identify anything like an empirical ground for his work.

Weyl’s early thought was heavily influenced by a belief in a pre-
established harmony between mathematics and ‘nature’ (i.e. phenom-
enal reality), a belief that was prevalent in the Göttingen school of 
mathematics in which he was reared (Sigurdsson, 1991). Weyl’s early 
approach to the philosophy of science, and the problem of knowledge 
more generally, was centred on a study of the nature and justifica-
tion of this apparent harmony. But by the mid-1920s, Weyl’s belief 
that theoretical construction could be guided solely by considerations of 
mathematical harmony, or theoretical unity, had been shattered. With 
the advent of quantum theory, Weyl quickly realized that he needed to 
reorient his thought toward a greater emphasis on the empirical basis 
of scientific thought.24

However, even when Weyl abandoned his broadly idealist ‘geomet-
rical program’ in the foundations of physics, he still sought to maintain 
some of the essential insights that he had gained from his studies on 
the problem of space, particularly those concerning the essential role 
that mathematics plays in scientific cognition. Yet, by the late 1920s, 
the question of the empirical support for Weyl’s work on the problem 
of space had remained unanswered, and it is natural to wonder how 
Weyl’s thought could be reinterpreted along the lines of his developing 
empiricism. Given that Weyl abandoned Helmholtz’s appeal to ‘empiri-
cal facts’ to ground the form of space (or spacetime), on what empirical 
basis, if any, could he characterize ‘real’ space out of the more general 
field of possibilities? To answer this question, and to understand how 
Weyl sought to reformulate central aspects of his earlier thought along 
empiricist lines, we will have to take a journey through Weyl’s later re-
flections on Helmholtz, the nature of thought and perception, and the 
empirical grounds for symbolic construction in theoretical physics.

In an essay entitled “Mind and Nature” (1934 [2009]), Weyl 
presents a detailed discussion of Helmholtz’s thought on the nature 

in 1927, and others (e.g. those discussed later on in this section) in 1949. The 
result is a fascinating mixture of Weyl’s early and later thought.
23 Note that in the preceding characterization of the empirical ground of the 
Helmholtzian program the relevant ‘facts’ are defined as preconditions for the 
possibility of experience (and scientific measurement). Helmholtz presupposes 
that the laws of thought, whereby the symbols given through sensation are re-
lated, correspond to the laws of connection characterizing the objects of which 
they are representation. The ‘facts’ underwriting the appeal to the free mobility 
of rigid bodies are ‘laws of sense perception’, which correspond to the laws of 
thought that demarcate the domain of possible experience.
24 This crisis was motivated, in part, by the apparent fundamental length scale 
imposed by the quantum of action, in contradiction to speculative mathematical 
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of perception and the relation between thought and ‘reality’. Weyl be-
gins with a detailed study of the sensations of sight and hearing. Here, 
he mainly summarizes Helmholtz’s work, but he also provides an in-
teresting, and novel, account of the relation between incident light and 
the sense of colour perception. Weyl appeals to his studies of projec-
tive geometry to suggest that, physiologically, our colour perception 
is limited to those features of incident light that are invariant under a 
projective mapping to the two-dimensional retinal plane. And this idea 
serves as the guiding metaphor for Weyl’s subsequent account of the 
epistemology of science.

After a discussion of the physiology of the senses, and the phys-
iological grounding of the psycho-physical relation, Weyl turns to a 
general discussion of Helmholtz and the relation between sensation 
and thought. In this discussion, Weyl appeals to Helmholtz’s distinc-
tion between images and signs, and defends Helmholtz’s account of the 
necessity of an assumed correspondence between the law-like ordering 
of signs and the law-like ordering in nature. Furthermore, he defends 
Helmholtz’s empiricism (or empirism), whereby Weyl (1934 [2009], p. 
94-95) notes that the signs given by sensation, are taken to stand ini-
tially without meaning, and that it is left to us to learn to “read”, or 
better relate, these signs, according to our laws of thought, such that 
they can serve as a ground for action.

On the relation between signs and objects, Weyl suggests (1934
[2009], p. 95), drawing on his account of colour perception, that math-
ematics “has introduced the name isomorphic representation for the 
relation which according to Helmholtz exists between objects and their 
signs.”25 Thus, perceptual knowledge is limited to those features of the 
world that are invariant under a mapping to our perceptual faculties. 
He takes this to provide a clear and precise formulation of Helmholtz’s 
view, specifically defining the relation whereby signs are related to their 
objects.

In a similar vein as Helmholtz, Weyl also sought to extend this ac-
count to characterize the structural relation that can be taken to hold 
between thought and reality, more generally—particularly in the case 
of scientific knowledge. Weyl suggests (1934 [2009], p. 95-96) that

science can never determine its subject-matter except up to an iso-
morphic representation. The idea of isomorphism indicates the self-
understood, insurmountable barrier of knowledge. It follows that 
toward the “nature” of its objects science maintains complete indif-
ference.

Thus, on Weyl’s view, scientific knowledge is limited to a group-
theoretic description of certain properties in nature that are invariant 
under an isomorphism. However, Weyl will only partially clarify why 
this is the case, at least to the extent that scientific knowledge can 
be said to be grounded on the basic acts of sense perception (à la 
Helmholtz). It is only in a later essay on the relation between math-
ematics and nature, that he will address, at a more abstract level, why 
this constraint (which merely derives only from a limitation on percep-
tual knowledge) is taken to apply to all forms of knowledge.

Towards the end of the essay, Weyl turns to the sceptical impli-
cations of this view concerning the form of knowledge that can be 
obtained through the senses. He begins with a brief summary of the 
history of scepticism concerning the veridicality of our senses (i.e. from 
the pre-Socratics onward). To Weyl, the most radical consideration is 
not the sceptical attack on secondary qualities, but Leibniz’s attack on 
the primary qualities of shape and extension.26 He notes (1934 [2009], 

25 Weyl then clarifies this thought through a discussion of the correspondence 
between the points of the projective plane and colour sensations. He highlights 
the sense in which these two domains are isomorphic to one another, and that 
this relation constitutes the fundamental limit of perceptual knowledge.
26 Weyl’s endorsement of Leibniz’s thought is a common theme throughout his 

philosophical reflections.
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p. 99) that Leibniz’s view is given its classical expression in Kant, and 
that now “not even space and time may be attributed to the objective 
world”, they “are instead intuitive forms of our consciousness”.

Weyl then reflects on the implication of these thoughts as regards 
the construction of an objective picture of reality. Weyl (1934 [2009], 
p. 104) asks,

How can this be accomplished, how can one get rid of space and 
time, if one is concerned with the objective world? At first glance, it 
seems quite impossible. But it can be done.

Weyl suggests that this is only possible through theoretical construc-
tion in mathematical physics. However, the ‘reality’ that is depicted in 
physics is only a symbolic construction, nothing more. But, Weyl notes 
(1934 [2009], p. 105) that the symbolic construction of nature is not ar-
bitrary, it “is built up in several steps from what is immediately given; 
the transition from step to step is made necessary by the fact that the 
objects given at one step reveal themselves as manifestations of a higher 
reality, the reality of the next step.”27

Weyl (1934 [2009], p. 109) summarizes his view as follows:

Science proceeds realistically when it builds up an objective world 
in accordance with the demand which we previously expressed with 
Helmholtz that the objective configuration is to contain all the fac-
tors necessary for the subjective appearances: no diversity in expe-
rience that is not founded on a corresponding objective diversity. 
On the other hand, science concedes to idealism that this objec-
tive world is not given, but only propounded (like a problem to 
be solved) and that it can be constructed only by symbols. But the 
fundamental thought of idealism gains prevalence most explicitly 
by the [...] maxim: the objective picture of the world may not ad-
mit any diversity that cannot become manifest in some diversity of 
perception.

It is in this last maxim, that Weyl takes the structural limits of percep-
tion to constitute a limit on knowledge. However, it is important to note 
that Weyl takes this notion of ‘perception’ to apply broadly.28

At this point, the sense in which Weyl initially sought to general-
ize the Helmholtzian program should be fairly clear. Both Helmholtz 
and Weyl looked to ground what Weyl would call the theoretical con-
struction of reality (e.g. through a given set of axioms of geometry) on 
that which serves as a necessary and factual condition of the possibil-
ity of experience. Weyl holds that the ‘facts of perception’ must serve as 
the ultimate ground of scientific cognition, but he looks to re-construe 
these ‘facts’, and the notion of experience that they underwrite, in a 
more general sense. Furthermore, he precisely defines the formal man-
ner in which perception can be related to ‘reality’, and how a scientific 
picture of ‘reality’ can be built up on this basis through the progress of 
science.

But still, we are left with a fundamental problem. In Weyl’s work on 
the problem of space, he held that the ‘essence of space’ derives not from 
the direct facts of experience, but rather from the most general con-
straints on a geometrical structure in a dynamical spacetime theory. In 
his account of perception and cognition, he suggests that it is the nature 
of our perceptual faculties, very broadly construed, that constitute a 
fundamental limit on scientific knowledge. For Helmholtz, the two were 

27 This echoes Helmholtz’s views on the progress of science. However, in this 
context, Weyl does not cite Helmholtz directly, but his student Hertz, and his 
closely related views concerning the symbolic nature of scientific thought.
28 This becomes evident in his discussion of the constraints that must be im-
posed on theoretical construction. The first is a demand for concordance, by 
which Weyl means a requirement of consistency (both an internal form of for-
mal consistency and an external form of empirical consistency—i.e. consistent 
with experience, vaguely construed). The second is a demand for parsimony, by 
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coextensive, as the laws of sense perception, and laws of thought more 
generally, constituted the very possibility of experience, and set a con-
straint on the allowable form of spatial intuition in scientific cognition. 
This is what grounded Helmholtz’s ‘Kantian’ empiricism.29 However, 
for Weyl, there is a vast gulf between the group-theoretic constraints 
emerging from our forms of perception and the ‘laws of connection’ 
emerging from physical theory (e.g. a dynamical spacetime theory). 
How is this gulf to be overcome?

In order to answer this question, we must return to Weyl’s (1949a) 
expanded and revised edition of his 1927 book on the philosophy of 
mathematics and natural science. This revision offered Weyl the oppor-
tunity to not only comment on his earlier philosophical thought, but to 
further elaborate on developments in his thought concerning the rela-
tion between mathematics and nature—particularly those which he had 
outlined in a recent lecture (1948). As Scholz (2018, p. 57) notes, Weyl’s 
1948 lecture can be read as a preliminary, but also a somewhat deeper, 
investigation of the central problem of the relation between mathemat-
ics and nature, as it appears in Weyl’s later published writings (e.g. 
1949a and 1952). In what follows, I will draw on the 1948 and 1949a 
texts somewhat interchangeably, as entire sections of the 1948 text are 
copied directly into the 1949a publication.

Weyl’s later reflections on the problem of space, and the role of 
the a priori in delimiting scientific thought more generally, begin with a 
study of the problem of objectivity in both the mathematical and natural 
sciences. Following Felix Klein, Weyl (1948 [2017], p. 155), notes

By whatever difficulties an epistemological analysis of objectivity is 
beset, we can say today in quite a definite manner what the adequate 
mathematical instrument is for the formulation of this idea. It is the 
notion of a group.

Within mathematics, Weyl held that the only relations that can be said 
to have any objective significance are those that are invariant under an 
automorphism group, as only once “the group is given [do] we know 
what like-ness or similarity means—namely two figures are similar (or 
alike, or equivalent) that arise from each other by a transformation of 
[the automorphism group]—and also under what condition a relation 
is objective, namely if it is invariant with respect to all transformations 
of [the automorphism group]” (1949a, p. 73-74). Thus, for Weyl, ob-
jectivity is a relational notion, as it is the choice of group that serves to 
define the very sense in which two structures, or sets of relations, can 
be compared.

In the context of modern mathematics, Weyl holds that any group 
can be taken to characterize an objective structure. In turn, the collec-
tion of all possible groups demarcates the collection of possible struc-
tures, up to an isomorphism. In his view, the same basic idea is true 
in physics, but here we are no longer free in the selection of a group 
structure, rather we are constrained by nature.

In the investigation of “real” space, for example, Weyl notes (1948
[2007], p. 156) that “neither the axioms nor the basic relations are 
given”—i.e. by nature. Rather, we select, at the outset, a set of basic 
relations that we hold to possess objective significance. But to do this, 
we must start with a group. The problem is that ‘nature’ does not wear 
her group structure on her sleeve. To even begin the process of un-
derstanding nature, we must come with a group structure in hand—as 
empty-handed, no science would be possible. Yet, there is no way to 
know at the outset which among the infinite possibilities is the ‘right’ 
choice. Thus, in science, Weyl notes (as in Dante’s Divine Comedy), we 
must start in “mezzo del camin” (in the middle of the journey). He sug-
gests that it is “the common fate of man and his science that we do not 

29 Recall that for Helmholtz, one must presuppose that the laws of thought, 
whereby symbols are related, correspond to the laws of connection character-
izing the objects of which they are images—this is where Helmholtz appeals to 

an a priori principle of causality in physical theory.
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begin at the beginning; we find ourselves somewhere on a road the ori-
gin and end of which are shrouded in fog”. But although we may find 
ourselves somewhat lost on a path, this does not mean that our journey 
is aimless. We must continually “question Nature to reveal to [us] her 
true group of automorphisms.”

In this context, Weyl returns to the notion of congruence, as it per-
tains to the problem of space, and looks to draw a broader philosophical 
lesson from his earlier studies. In contrast to the notion of similarity, 
Weyl notes that congruence is a purely geometrical concept, which he 
takes to be based on our common-sense notion of a practically rigid 
body. He (1948 [2017], p. 158) notes that while the notion of congru-
ence is, at first, relative to such a practically rigid body, its “factual 
independence of it is one of our most fundamental experiences.” Clas-
sically, the congruent mappings of a space form a group, which Weyl 
terms the congruence group, or group of Euclidean motions. And classi-
cally, he suggests that the facts suggested an “interpretation according 
to which the congruence group [...] expressed an intrinsic structure of 
space itself; a structure stamped by space upon all the inhabitants of 
space.”

Weyl then defines the formal sense in which a congruence group 
can be said to have objective significance. On his account, this can only 
be the case if the congruence group can be shown to be an invariant 
subgroup of the group of similarities, which Weyl defines as the group 
of automorphisms of Euclidean space (or what we would now call the 
symmetry group of Euclidean space). As an example, if, following Weyl
(1948 [2017], p. 159-161; 1949a, p. 79-83), we associate the group Γ
with the general group of similarities, or automorphisms, of Euclidean 
space, then we can show that Δ+, the group of Euclidean motions (i.e. 
under translation and rotation), is an invariant subgroup of the group 
of similarities. Thus, congruent structures are necessarily similar (but 
not vice versa), and the group of congruent motions can be said to have 
objective significance in Euclidean space. This same relation holds in 
the case of the group of orthogonal transformations, Δ, and the group 
of parallel displacements.

From a mathematical perspective, a group (e.g. Δ) constitutes an 
objective relation provided that it is an invariant subgroup of the sim-
ilarity transformations of a Euclidean space. However, from a physical 
perspective, e.g. the perspective of classical theory, Weyl (1948 [2017], 
p. 161; 1949a, p. 82) notes that a “far deeper aspect of the group Δ than 
that of describing the mobility of rigid bodies is revealed by its role as 
the group of automorphisms of the physical world.” The idea is that from 
a mathematical perspective, the group of similarity transformations of a 
Euclidean space delimits the groups of transformations that can be con-
sidered to be invariant subgroups. Out of these subgroups, some have 
the added property of defining the group of “automorphisms of the phys-
ical world” in the sense that all the laws of nature are invariant under 
this group (1948 [2017], p. 160; 1949a, p. 83).

Thus, Weyl held that physical symmetries are a subset of a broader 
class of mathematical symmetries, which serve to define their objective 
significance. It is in this formal sense that Weyl held that mathemat-
ics, in particular group theory, serves a necessary presupposition of the 
possibility of experience, as one must have a mathematical structure in 
hand to define which physical structures posses objective significance. 
And from this perspective, the problem of space can only be solved by 
identifying the group structure that defines the broader mathematical 
conception of space, and then defining which invariant subgroups can 
be taken to have a physical significance. The aim is to identify the ba-
sic group of transformations under which the laws of nature, as they 
pertain to the motion of bodies, are invariant.

In classical physics, he (1948 [2017], p. 161) notes that

Parts of space that arise from each other by a transformation of the 
group Δ [i.e. the group of orthogonal transformations] are physically 
equivalent. This is the way in which Helmholtz defines congruence. 
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In the context of relativistic physics, Weyl suggests that one would have 
to appeal to the generalization of the orthogonal group in spacetime.30

But Weyl notes (1948 [2017], p. 161-162) that the development of gen-
eral relativity has taught “us that the group of physical automorphisms 
is much larger than we had assumed so far.” In general relativity, Weyl 
notes (1948 [2017], p. 162) that the congruence structure of special rel-
ativity has now been generalized to consist of “all transformations (sat-
isfying certain continuity or differentiability conditions).” The essential 
point is that the generalization, or rather extension, of the mathematical 
symmetries of a physical theory would correspond to a potential exten-
sion of its physical symmetries—the extension would serve to ground a 
new ‘field of a priori existing possibilities’.

Now, we can start to get a sense of the manner in which Weyl’s later 
reflections on the problem of space, and the problem of knowledge more 
generally, lead to a profound generalization (or even reformulation) of 
the Helmholtzian program. Whereas Helmholtz sought to ground the 
constraints on the axioms of geometry on the ‘facts’ underwriting the 
possibility of experience, Weyl understood, better than almost anyone 
else, the problems that the advent of general relativity posed to such a 
program. In its stead, Weyl looked to ground his account of the ‘essence 
of space’ on a set of very general considerations concerning the structure 
of knowledge, but he also sought to connect these considerations back 
to our most basic forms of understanding. It is here that Weyl would 
argue that while the constraints on scientific knowledge are not directly 
derivable from the form of our perception, they are not entirely separate 
from, or prior to, experience, either.

If, following Helmholtz, we begin our study of the problem of space 
with our common-sense notion of a practically rigid body, Weyl would 
suggest that, in doing this, we are no longer taken to start at the be-
ginning of knowledge, as Helmholtz argued. Our common-sense notions 
are simply based on a natural choice of underlying group structure—i.e. 
one that is grounded on the general form of our thought and motivated 
by the nature of our perceptual faculties and our initial assumptions 
concerning the law-like, and causal, ordering of nature. However, in 
the progress of science, this structure has been shown to be merely a 
local manifestation of a deeper, or more fundamental, structure. The 
Helmholtzian program is simply one step in the journey of thought, not 
a beginning but an initial foray, a key stage in our questioning of na-
ture in the search for an extension of the group structure underlying our 
thought. The quest for knowledge requires a point of departure, but this 
point is not the fulcrum of an Archimedean level on which one can raise 
an objective reality. The search for such a point remains the problem of 
knowledge, it is the task of scientific enquiry, not its beginning.

The true a priori is not, as Helmholtz suggested, a principle of causal-
ity which defines the law-like ordering of the signs given in sense 
perception, but a more general structural orientation of thought toward 
reality based on a given group structure (a generalization of Helmholtz’s 
law-like ordering) which characterizes the concept of objectivity.31 This 
is true in both our understanding of nature and our own sense per-
ception, which is the ground for its applicability. The specific laws of 
thought, i.e. the specific group structures that define our basic notions 
of similarity and congruence, which we must presuppose to even begin 
to process of understanding ‘nature’, are contingent. But Weyl would 
suggest that we must learn from nature which laws possess physical 
significance. To Weyl, the very process that sits at the foundation of 
the laws of thought, which underwrites our understanding of the forms 
of perception, is the very same process that underwrites modern phys-
ical theory. This process, whereby one builds up the latter from the 
former, is far more complex and convoluted, as it was for Helmholtz, 

30 Weyl had already accepted that quantum theory provides an absolute mea-
sure of length, which precludes the larger group of similarities from having 
direct physical significance.
31 Here, Weyl would be in harmony with Poincaré, though this connection is 

not addressed directly by Weyl in this context.
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but the basic lesson remains the same. The objective world is to be 
constructed from experience, “nicht gegeben, sondern aufgegeben”, as 
the classic neo-Kantian dictum states, not given but to be propounded 
(Weyl, 1949a, p. 117).32

However, this reading of Weyl remains somewhat implicit in these 
later reflections (i.e. in Weyl, 1948 and 1949a). Weyl will only make 
this strain of thought explicit in a later essay on the unity of knowl-
edge (1954), where he presents a brief critique of Ernst Cassirer’s 
neo-Kantian philosophy of science. Given Helmholtz’s influence on both 
Weyl and Cassirer, it is natural to wonder whether Weyl’s thought may 
be amenable to a more traditional neo-Kantian reading, à la Cassirer 
(1910 [1923], 1921 [1923], and 1936 [1956]). However, Weyl would 
explicitly deny such an association. Weyl’s basic disagreement with the 
neo-Kantian position concerns the fundamental grounding of scientific 
thought. For Cassirer, this ground rests on the symbolic forms under-
lying scientific cognition, as he argues that it is on this basis that we 
fashion an objective reality. In Cassirer’s thought, the symbolic forms 
serve as, what Weyl (1954) terms, “the luminous center” of our thought. 
Weyl seeks a different, and explicitly more empirical, ground. In under-
standing why, we can not only gain a better picture of Weyl’s thought, 
but also his specific commitment to a form of Helmholtzian ‘empirism’. 
To place this discussion in the appropriate context, I will first introduce 
some aspects of Cassirer thought on Helmholtz, group theory, and the 
progress of science.

4. A brief interlude: cassirer’s neo-Kantian philosophy of science

Given the vast literature on Cassirer’s philosophy of science, I will 
only touch on a few themes in his work that will help to better contextu-
alize Weyl’s criticism.33 In particular, I will start with a brief discussion 
of Cassirer’s (1938 [1944]) paper on group theory and the theory of 
perception. I will then turn to some of his earlier thought to expound 
upon a few of the themes that emerge in this later work.

In his group theory paper (1938 [1944]), Cassirer places a strong 
emphasis on the constitutive role that group theory plays as an “or-
ganizing and unifying principle” in the foundations of science (1938
[1944], p. 1). Given the subject of the essay, Cassirer naturally begins 
with a discussion of Helmholtz and the problem of space. He suggests 
(1938 [1944], p. 2) that Helmholtz was

Kantian in so far as he endorsed the thesis of space as a ‘transcen-
dental form of intuition’, and he persistently clung to this thesis. But 
this thesis was to him the beginning, and not the solution, of the 
problem.

While the general form of space is given a priori, its specific structure 
(i.e. Euclidean or non-Euclidean) is not. This all depends on the ax-
ioms, which are determined by one’s account of the manner in which 
figures can be displaced in space (a determination which itself requires 
certain presuppositions). Thus, for Helmholtz, “the axioms at the basis 
of every geometry may then be interpreted as statements concerning 
determinate groups of movements.” The objective validity of these ax-
ioms depends not merely on the a priori ‘form’ of space, but upon one’s 
account of experiments with ‘rigid bodies’.

Following Klein, Cassirer (along with Weyl) holds that every system 
of geometry is characterized by its group. He notes that after Poincaré’s 
pioneering work, the concept of a group becomes the true fundamental 
concept a priori. As for Poincaré, the concept of a group precedes and 

32 However, this distinction raises the question of whether Weyl’s thought 
should be read along the lines of a ‘modest’ or Helmholtzian empiricism, or 
a more general neo-Kantianism (e.g. following the Marburg neo-Kantian tradi-
tion). This concern will be addressed in the following two sections.
33 For a discussion of some of the current debates concerning Cassirer’s philos-
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underwrites all experience. Poincaré (1902 [1905], p. 90) notes that “is 
imposed on us not as a form of sensibility, but as a form of understand-
ing”. In this context, Cassirer (1938 [1944], p. 4) points out that “all 
that experience can do is lead the mind in a certain direction, as a re-
sult of which it may construct such a system of geometrical concepts 
as yields the simplest and most convenient instrument for the descrip-
tion of physical phenomena.” In our mind is the latent idea of a group, 
and experience merely guides us in selecting one such group for the 
construction of a physical geometry.

However, in contrast to Helmholtz (and Weyl), Cassirer (1938
[1944], p. 5) argues that experience is not “the source of concepts, 
but merely the occasional cause of their formation.” He looks to show 
that the type of concept (i.e. that of a group and the invariant theory 
of objectivity it entails) to be a general form that extends far deeper 
and further than the domain of geometry. He suggests (1938 [1944], p. 
19) that, “Metaphorically speaking, it extends down to the very roots of 
perception itself.”—i.e. the concept of group and the concept of invari-
ance are necessary conditions of the constitution of both the perceptual 
world and that of geometrical thought.

To Cassirer (1938 [1944], p. 20), perception

is a process of objectification, the characteristic nature and tendency 
of which finds expression in the formation of invariants. It is within 
this process that the distinction between “reality” and “appearances” 
emerges.

Cassirer suggests that the search for truth is the search for constancy. 
It is the process by which thought seeks out invariants to constitute 
the basis of our orientation towards an ‘objective existence’. He (1938
[1944], p. 21) then notes that this “function is as much a condition of 
perception of objective existence as it is a condition of objective knowl-
edge.”

Cassirer holds (1938 [1944], p. 22) that these “reflections on the 
concept of group permit us to define more precisely what is involved 
in, and meant by, that “rule” which renders both geometrical and per-
ceptual concepts universal. The rule may, in simple and exact terms, be 
defined as that group of transformations with regard to which variation 
of the particular image is considered.” On his view, one simply extends 
this basic idea to all forms of knowledge—this conception operates as 
“the constitutive principle of the construction of the mathematical uni-
verse”.

The difference in emphasis in Cassirer and Weyl should be apparent 
at this point. While Weyl continually sought to defend the empiri-
cal ground of the Helmholtzian tradition, Cassirer, following Poincaré 
places a much stronger emphasis on the constitutive role that group the-
ory plays in our thought. Nature does not inform us of the appropriate 
group structure, it is rather us that dictates to nature the form that she 
must adopt, at least to be an object of our experience. To better under-
stand this latter point, I will briefly present some of Cassirer’s earlier 
thought on the nature of scientific cognition and the development of 
general relativity.

In two famous texts, Substance and Function (1910 [1923]) and 
Einstein’s Theory of Relativity (1921 [1923]), Cassirer presents an in-
sightful and influential neo-Kantian philosophy of science. In Substance 
and Function, he argues that concept formation in modern physics is 
a natural extension of the mode of concept formation in mathematics, 
where such reasoning gains its fullest clarity. He suggests that the es-
sential character of all mathematical constructions, is that they gain 
their meaning by their connections within the system of relations de-
fined by a mathematical formalism. Cassirer holds that the same basic 
idea is true for a physical theory. He (1910 [1923], p. 165) notes that 
the concepts of “mathematical physics have no other meaning and func-
tion than to serve as a complete intellectual survey of the relations of 
empirical being.” The basic idea being that we “inscribe the data of 
experience in our constructive schema, and thus gain a picture of phys-

ical reality; but this picture always remains a plan, not a copy” (1910
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[1923], p. 186). Science aims at truth, but this truth concerns nothing 
other than the “unity and completeness in the systematic construction 
of experience” (1910 [1923], p. 187).34

On the neo-Kantian ‘genetic’ view of knowledge, scientific thought 
is taken to be both historically contingent and in a state of continu-
ous development. Cassirer suggests that the systematic construction of 
experience is extended through the development of science. This ex-
tension does not take place according to some arbitrary caprice, but 
through a law of progress. As Cassirer (1910 [1923], p. 187) notes, this 
“law is the ultimate criterion of ‘objectivity’.” Thus, the progress of sci-
ence is taken to be guided by fixed principles, and put simply the aim 
of critical philosophy (i.e. neo-Kantian philosophy) is to determine the 
principles that serve as the condition for the possibility of any conceiv-
able physical theory (e.g. see 1910 [1923], p. 269). It is these principles 
that lie at the basis of the concept of connection according to natural 
law, which are appropriately termed a priori, in the sense that they con-
stitute, or make possible, judgements concerning the facts of natural 
science. It is these connections that we term objective (e.g. see Cassirer, 
1910 [1923], p. 273).

In addition, Cassirer suggests that our thought in this regard is 
strictly regulated, it is directed by “the idea of a ‘fixed and permanent’ 
realm of objectively necessary relations” (1910 [1923], p. 315). He 
holds that knowledge is constituted in a series of acts, a series that must 
be run through to gain an understanding of the rules for its progress. 
But the key point for Cassirer is that to grasp the sense in which sci-
ence, as a whole, concerns an objective reality, “we must conceive the 
series as converging toward an ideal limit.” In fact, he suggests (1910
[1923], p. 321) that the “system and convergence of the series takes the 
place of an external standard of reality”. Experience, as it is described 
by science, can only be taken to be objective in the sense that the prin-
ciples underwriting the development of our constructive schema can be 
said to be part of the final theory of nature—i.e. the final theory to 
which our current theories are taken to eventually, though only ideally, 
converge. Thus, Cassirer would agree with Helmholtz, that we must pre-
suppose that the laws of our thought correspond to the laws of nature. 
Otherwise, no objective experience would be possible. But in contrast 
to Helmholtz, the significance of the laws of thought is not something 
that we must learn through nature, rather it is only to the extent that 
nature conforms that she is knowable in the first place.

The problem remains to identify the systematic connection on which 
this convergence rests. In his text on the revolution in thought brought 
about by the theories of special and general relativity, Cassirer (1921
[1923], p. 365) notes, echoing Helmholtz, that thought “can only tran-
scend an earlier construction by replacing it by a more general and more 
inclusive one”. In this context, he holds that it “is the general form of 
natural law which we have to recognize as the real invariant and thus 
as the real logical framework of nature in general” (1921 [1923], p. 
374).35 On this account, in the transition from the theory of special 
relativity to the theory of general relativity, the same principle for the 
construction of the concepts of natural science is taken to hold, only in 
a more general form. Now, natural law is freed entirely from any con-
nection to a preferred set of coordinate systems. In this transition, the 
pure formal concepts persist as relatively fixed despite the change of 
physical ideals.36

34 It is in this sense that Cassirer’s argued above that the search for truth is 
a search for constancy, as such constancy is the basis for a unified picture of 
reality.
35 It is interesting to note that Cassirer seems to have based his formal reading 
of general relativity, at least as is indicated by his citations, on the first edition 
of Weyl’s Space-Time-Matter, and their early thought on general relativity can 
appear very closely related as a result.
36 Here our general notions of “space and time are distinguished as the ulti-
mate, agreeing unities. They seem, in this sense, also, to constitute the real a 
priori for any physics and the presupposition of its possibility as a science” (1921
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In fact, Cassirer holds that general relativity stands at the end of a 
methodological development that unifies all systematic principles into 
the “supreme postulate” of the invariance of all magnitudes and laws 
under arbitrary transformations of the frame of reference (1921 [1923], 
p. 404). This is an expression of the “true systematic form of nature and 
its laws” (1921 [1923], p. 407). However, he holds out that possibility 
that even the most remote constructions of pure mathematics may find 
such a general application within physical thought. Thought advances 
by means of its own determinations (i.e. through its conception of re-
ality according to natural law). The history of physics has witnessed a 
profound shift to more abstract mathematical construction, and it is in 
these constructions that the physicists finds her reality.

5. Weyl’s modest empiricism

In his essay on the unity of knowledge (1954 [2009]), Weyl offers a 
critique of Cassirer’s neo-Kantianism, and develops a contrasting form 
of ‘modest’ empiricism. At the outset, Weyl makes it clear that he holds 
Cassirer in very high esteem. But in his critique, he notes that Cassir-
er’s account of knowledge is susceptible to a charge of vacuity. One 
can always highlight a constitutive structure underwriting any form of 
thought, but Cassirer, in his later writings (particularly, 1944), fails to 
draw these forms together in anything like a unified picture of cogni-
tion. Weyl (1954 [2009], p. 195), in his usual poetic manner, suggests 
that all we are left with is a “suite of bourrées, sarabands, minuets, and 
gigues” (i.e. a series of dances) rather than variations on a single theme, 
and he asks, are we not left “with a promise unfulfilled”.37

Weyl, in defending an earlier, and more traditional, form of critical 
idealism (e.g. in 1921), would have been much more sympathetic to 
the development of Kant’s thought underlying Cassirer’s neo-Kantian 
position. It is only after the shock of quantum theory, that Weyl came 
to believe that we must now take our lead more directly from nature 
herself. At this stage, the consonances and dissonances between Weyl 
and Cassirer should now be apparent. The key point of disagreement 
concerns Cassirer’s claim that it is the form of our thought that imposes 
a strict constraint on the scientific account of nature. In Weyl’s view 
the arrow goes the other around—it is not the abstract group-theoretic 
structure that constitutes the form of our objective reality, rather it is 
the most general group theoretic notions that are built up through our 
interactions with nature, by the very act of knowing and perceiving. 
In the progress of science they are refined and generalized, by way of 
a structural analogy, as we come to learn how to form a picture of 
reality in modern theoretical physics. It is in this sense that Weyl looks 
to defend central aspects of the Helmholtzian ‘empirist’ tradition.

However, this is not to say that Weyl himself is able to present any-
thing like a unified picture of cognition, and he acknowledges such. 
Leaving aside the general problem of thought, he quickly turns to mod-
ern science, and presents a series of puzzles concerning our understand-
ing of reality and consciousness. But despite these puzzles, he notes that 
there is a unity in scientific thought, not of content but of method—i.e. 
the method of symbolic construction.

In each science, Weyl holds that we construct a picture of reality, 
and these pictures must be in concordance with the assumed empirical 
facts in each domain, but that is all. We can no longer pretend that this 
picture corresponds to nature. Weyl suggests (1954 [2009], p. 199) that

the words “in reality” must be put between quotation marks; who 
could seriously pretend that the symbolic construct is the true real 

theory, the distinction between ‘space’ and ‘matter’ is inextricably blurred—“All 
dynamics tends more and more to be resolved into pure metrics”. Here, Cassirer 
directly cites Weyl (1918a), to suggest that the theory of general relativity has 
finally fulfilled the dream of Descartes for a purely geometrical physics.
37 Here, each dance is taken to characterize the constitutive structure of a 
given form of knowledge, but we are left without a unified theme tying the 

dances together to give a structural account of knowledge itself.
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world? Objective Being, reality, becomes elusive; and science no 
longer claims to erect a sublime, truly objective world above the 
Slough of Despond in which our daily life moves.

He notes that all we are left with is mathematical symbols, i.e. free 
creations of the human mind (Weyl, 1954 [2009], p. 202).

Of course, Weyl (1954 [2009], p. 199) holds that a theory of nature 
must be confronted with experience, but is does so

as a whole, while the individual laws of which it consists, when 
taken in isolation, have no verifiable content. This discords with the 
traditional idea of truth, which looks at the relation between Being 
and Knowing from the side of Being, and may perhaps be formulated 
as follows: “A statement points to a fact, and it is true if the fact to 
which it points is so as it states.” The truth of physical theory is of a 
different brand.

We are thus faced with the fundamental dilemma: “the objective Being 
which we hoped to construct as one big piece of cloth each time tears 
off; what is left in our hands are—rags.”

Weyl continues (1954 [2009], p. 199), in his typical fashion,

The notorious man-in-the-street with his common sense will un-
doubtedly feel a little dizzy when he sees what thus becomes of 
that reality which seems to surround him in such firm, reliable and 
unquestionable shape in his daily life. But we must point out to him 
that the constructions of physics are only a natural prolongation of 
operations his own mind performs (though mainly unconsciously) 
in perception, when, e.g., the solid shape of a body constitutes it-
self as the common source of its various perspective views. These 
views are conceived as appearances, for a subject with its contin-
uum of possible positions, of an entity on the next higher level of 
objectivity: the three-dimensional body. Carry on this “constitutive” 
process in which one rises from level to level, and one will land at 
the symbolic constructs of physics. Moreover, the whole edifice rests 
on a foundation which makes it binding for all reasonable thinking: 
of our complete experience it uses only that which is unmistakably 
aufweisbar.38

That which is ‘aufweisbar’ is that which is readily exhibited—i.e. the 
‘facts of experience’ in a given domain. It is the part of experience that 
Weyl takes to ground scientific knowledge, it is the empirical support 
upon which theoretical construction rests.

Taking a step back, and putting everything together, Weyl (1954
[2009], p. 202) suggests that at the basis of all knowledge there lie 
a few acts. The first two are the acts of intuition and understanding. 
They constitute the mind’s original attempt to grasp reality and under-
stand it. These are the acts through which, in science, we identify the 
basic ‘experimental facts’, which we take to be given directly through 
experience (understood broadly), i.e. Weyl’s aufweisbar. For instance, 
at a certain stage in the development of science, this would entail our 
basic common-sense notions concerning empirical reality. If, following 
Helmholtz, we take as an example our common-sense understanding 
of a practically rigid body, Weyl would suggest that these notions are 
merely based on a specific understanding of our perceptual faculties, 
mode of experience, and the law-like ordering of nature. This under-
standing is a point of departure, not the infallible core of knowledge, 
and is subject to revision through our interaction with ‘reality’.39

The next act defines the field of possibilities, which Weyl (1954
[2009], p. 202) terms a “mathematical game” in which we build up the 

38 The term aufweisbar is left untranslated in the original.
39 This Helmholtzian ‘empirist’ reading of the basic facts underwriting scien-
tific intuition and understanding marks a profound shift in Weyl thought away 
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domain of possible structure. For Weyl, the domain of possible groups 
demarcates the domain of possible structures, up to an isomorphism. 
Thus, the generalization, or rather extension, of the group structure (or 
mathematical symmetries) of a physical theory would correspond to a 
potential extension of its domain of application. The extension would 
serve to ground a new ‘field of a priori existing possibilities’. Indeed, 
this is how one might read Weyl’s famous dictum (1952) that all a pri-
ori statements have their origin in symmetry. Thus, in the progress of 
science, a given structure may be shown to be merely a local manifesta-
tion of something deeper, or more fundamental. In this act, one probes 
the field of possibilities in the search for an extension of the group struc-
ture underlying scientific thought.

The final act is that of construction. Here one builds, on the basis 
of the pre-established field of possibilities, a new physical theory, and 
thereby searches the field of possibilities for extensions that possess 
what Weyl would term as ‘physical significance’. But this significance is 
not an ontological but rather an epistemological significance—i.e. one 
leading to a novel physical insight. In addition, it is important to note 
that this act of construction entails both the theoretical construction of 
a picture of reality and the facts of experience which it entails (i.e. the 
new experimental facts of the theory). It is only in the later step that 
one attempts to ‘close the loop’, as it were, and re-establish a new set of 
empirical facts, a new aufweisbar, in the context of a novel theory, to 
serve as a ground for the next stage in the development of science.

Weyl suggests (1954 [2009], p. 203) that in this account he feels 
that he is “closer to the unity of the luminous center than where Cas-
sirer hoped to catch it: in the complex symbolic creations which this 
lumen built up in the history of mankind.” In our attempt to compre-
hend ‘reality’, Weyl suggests that we must be guided by nature herself. 
Of course, we must come to ‘reality’ with our laws of thought in hand, 
otherwise she would remain incomprehensible. These laws are mutually 
constituted by the nature of our cognitive and perceptual faculties, but 
that is only a contingent fact. Through the progress of science, we learn 
the meaning of these structural forms and their application by way of 
experience. And it is here that the nature of Weyl’s ‘modest’ empiricism 
and his generalization of the Helmholtzian program comes to the fore.

Through his account of the basic forms of symbolic construction that 
underwrite both the nature of our perceptual faculties and our under-
standing of objectivity in the natural sciences, Weyl was finally able to 
bridge the apparent gulf between the group-theoretic constraints emerg-
ing from our forms of perception and the ‘laws of connection’ emerging 
from physical theory. Weyl came to the realization that the two could 
be seen to be defined as different stages of development within the same 
general mathematical structure, thus the latter could be constituted by 
the former through the progress of scientific cognition. In this sense, 
it is the mathematical constitution of cognition that finally bridges the 
gap and serves to underwrite the apparent harmony between mathemat-
ics and nature through defining the field of both domains. The abstract 
mathematical constructions one finds in physics are seen to be no more 
detached from reality as our common-sense understanding of any ob-
ject, such as the table in front of me. They are both constituted by the 
same basic series of acts.

In this sense, Weyl’s ‘modest’ empiricism presents not only a philo-
sophical development but also a profound reformulation of certain as-
pects of the Helmholtzian account of scientific knowledge. Weyl held, 
along with Helmholtz, that in the initial acts of intuition and under-
standing, the mind must seek out invariants as the ground for the 
construction of a picture of reality. This group structure is mutually con-
stituted by the nature of our faculties and the ‘reality’ which we inhabit. 
However, it is precisely in the subsequent acts through which we define 
the field of possibilities, and pursue abstract theoretical construction, 
that Weyl outlines the contours of a novel structural empiricism—one 
that looks to ground the flights of group theoretic prognostication, 
which one finds throughout modern physics, on the fundamental acts 
of human understanding. Indeed, when a modern theoretical physicist 

‘plays around with group theory to try to get physics out of it’ (an ex-
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pression of Howard Georgi’s),40 Weyl would suggest that physicists are 
only doing what we have always done in the basic acts of perception 
and cognition, just at a much more abstract, and explicit, level. This 
process remains as connected to ‘reality’ as our common-sense notions, 
as both are based on the same fundamental series of acts. The only dif-
ference is that the former is built up from the latter through the history 
of thought, but in terms of its connection to reality, this remains a dif-
ference of degree not of kind (the former presumably being closer to 
‘reality’).

6. Conclusion

Weyl’s later turn toward a ‘modest’ empiricism marked a signifi-
cant shift in his philosophical thought. The hope is that this study of 
Weyl’s later turn toward a form of empiricism may open up Weyl stud-
ies to a broader reading of his eclectic philosophy of science. But, once 
more, this later turn toward empiricism should not be read as a strict 
historical development of Helmholtz’s thought. It was rather a looser 
philosophical development—one which picked up certain key aspects of 
Helmholtz’s philosophy as the basis for future development, and looked 
to provide a novel reformulation of the fundamental intuition or insight 
underwriting the Helmholtzian philosophical tradition. Of course, this 
is not the only viable interpretation of Weyl’s later thought, as there are 
many threads, but this reading serves to highlight a significant theme 
in Weyl’s later thought, one which is worthy of further study.
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