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Extended methodology 1 
 2 
S1.1 NMIP-2: global Nitrogen/N2O Model Inter-comparison Project phase 2 3 
 4 
The NMIP2 is a follow-up model intercomparison project of NMIP (Tian et al., 2018), which provides 5 
estimates of N2O emissions from natural and agricultural soils and covers the time period 1850-2020. Eight 6 
process-based Terrestrial Biosphere Models (TBMs) participate in NMIP-2. In general, N2O emissions 7 
from soil are regulated at two levels, which are the rates of nitrification and denitrification in the soil and 8 
soil physical factors regulating the ratio of N2O to other nitrous gases (Davidson et al., 2000). For N input 9 
to land ecosystems, all eight models considered N fertilizer use, atmospheric N deposition and biological 10 
fixation, but five models considered manure as N input. For vegetation processes, all models included 11 
dynamic algorithms in simulating N allocation to different living tissues and vegetation N turnover, and 12 
simulated plant N uptake using the “Demand and Supply-driven” approach. For soil N processes, all eight 13 
models simulated N leaching according to water runoff rate; however, models are different in representing 14 
nitrification and denitrification processes and the impacts of soil chemical and physical factors. The 15 
differences in simulating nitrification and denitrification processes are one of the major uncertainties in 16 
estimating N2O emissions. Model characteristics in simulating major N cycling processes associated with 17 
N2O emissions in each participating model are briefly described in Table S1.  18 
 19 
Table S1. Model characteristics in simulating major N cycling processes 20 

 CLASS
IC DLEM ELM ISAM LPX-

Bern O-CN ORCHIDEE VISIT 

Open C cycle 
a Yes Yes Yes Yes Yes Yes Yes Yes 

C-N coupling Yes Yes Yes Yes Yes Yes Yes Yes 
N pools b (3, 1, 3) (6,6,8) (6,4,5) (6,4,4) (4,3,8) (9,6,9) (9,6,9) (4,1,4) 
Demand and 
supply–
driven plant 
N uptake 

Yes Yes Yes Yes Yes Yes Yes Yes 

N allocation c Dynami
c 

Dynami
c 

Dynam
ic 

Dynam
ic 

Dynami
c 

Dynami
c Dynamic Dynam

ic 
Nitrification f(T, 

SWC, 
CNH4) 

f(T, 
SWC, 
CNH4) 

f(T, 
SWC, 
pH, rh, 
CNH4) 

f(T, 
SWC, 
CNH4) 

f(T, 
SWC, 
CNH4) 

f(T, 
SWC, 
pH, 
CNH4) 

f(T, SWC, 
pH, CNH4) 

f(T, 
SWC, 
pH, 
CNH4) 

Denitrificatio
n f(T, 

SWC, 
CNO3) 

f(T, 
SWC, 
clay, 
rh, 
CNO3) 

f(T, 
SWC, 
pH, rh, 
CNO3) 

f(T, 
SWC, 
CNO3) 

f(T, 
SWC, 
Rmb, 
CNO3) 

f(T, 
SWC, 
pH,  Rm

b, CNO3) 

f(T, SWC, 
pH,  denitrif
ier, CNO3) 

f(SWC, 
rh, 
CNO3) 

Mineralizatio
n, 
immobilizati
on 

f(C:N) f(C:N) f(C:N) f(C:N) f(C:N) f(C:N) f(C:N) f(C:N) 

N leaching f(runoff
, CNO3, 
CNH4) 

f(runoff
, CNO3, 
CNH4) 

f(runoff
, CNO3) 

f(runof
f, CNO3, 
CNH4) 

f(runoff
, CNO3) 

f(runoff
, CNO3, 
CNH4) 

f(runoff, 
CNO3, CNH4) 

f(runoff
, CNO3) 

NH3 
volatilization f(CNH3) 

f(T, 
SWC, No f(CNH3) 

f(T, 
SWC, f(CNH3) 

f(SWC, pH, 
CNH4) 

f(T, 
SWC, 
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pH, 
CNH4) 

pH, 
CNH4) 

pH, 
CNH4) 

Plant N 
turnover d 

Dynami
c 

Dynami
c 

Dynam
ic 

Dynam
ic 

Dynami
c 

Dynami
c Dynamic Dynam

ic 
N resorption Fixed f(C:N) Fixed f(C:N) Fixed Fixed Fixed Fixed 
N fixation 

f(Nlimit) 

f(T, 
SWC, 
CNH4, 
CNO3) 

f(T, 
C:N) f(ET) 

Implied 
by mass 
balance 

f(Nlimit) Fixed f(ET) 

N fertilizer 
use Yes Yes Yes Yes Yes Yes Yes Yes 

Manure N 
use No Yes No Yes No Yes Yes Yes 

N deposition Yes Yes Yes Yes Yes Yes Yes Yes 
a “Open” denotes that excess N can be leached from the system. 21 
b Numbers of N pools (vegetation pools, litter pools, soil pools). 22 
c Dynamic denotes time-varied N allocation ratio to different N pools. 23 
T: soil temperature, SWC: soil water content, clay: soil clay fraction, ET: evapotranspiration, denitrifier: 24 
soil denitrifier biomass, rh: soil heterogeneous respiration, Nlimit: N limitation of vegetation growth, 25 
CNO3: soil NO3

- content, CNH4: soil NH4
+ content. 26 

 27 
All NMIP2 models are driven by consistent input datasets (i.e., climate, atmospheric CO2 concentration, 28 
land cover change, irrigation, atmospheric N deposition, mineral N fertilization, and manure N application 29 
and deposition) and implemented consistent simulation experiments (SH0 – SH12; Table A4). Nitrogen 30 
inputs data used in NMIP2 simulations are from History of anthropogenic Nitrogen inputs (HaNi) dataset 31 
(Tian et al., 2022), which takes advantage of different data sources in a spatiotemporally consistent way to 32 
generate a set of high-resolution (5 arcminutes) gridded N input products from 1850 to 2020. HaNi data set 33 
shows that the total anthropogenic N inputs to global terrestrial ecosystems increased from 29.05 Tg N yr-34 
1 in the 1860s to 267.23 Tg N yr-1 in the 2010s, with the dominant N source changing from atmospheric N 35 
deposition (before the 1900s) to manure N (the 1910s-2000s), and to synthetic fertilizer in the 2010s (Fig. 36 
B3). The climate data used to run historical simulations is the half degree CRU-JRA2.2 6-hourly forcing 37 
over 1901- 2020 (https://catalogue.ceda.ac.uk/uuid/4bdf41fc10af4caaa489b14745c665a6). Annual CO2 38 
concentration during 1850-2020 were derived from ice core CO2 data and NOAA annual 39 
observations(https://www.esrl.noaa.gov). Historical distribution of cropland, pasture, rangeland and 40 
irrigation during 1850-2020 were from Land-Use Harmonization 2 (LUH2) dataset (Hurtt et al., 2020). The 41 
original dataset of LUH2 is at a resolution of 0.25° x 0.25° longitude/latitude. We aggregated all geo-42 
referenced input data into a consistent spatial resolution of 0.5° x 0.5° longitude/latitude to run NMIP2 43 
models. 44 
 45 
NMIP2 models perform a subset of 13 simulations (SH0-SH12) to quantify N2O emissions from both 46 
agricultural and natural soils during the study period, and to disentangle the effects of multiple 47 
environmental factors on soil N2O emissions. The SH1 results were taken as the “best estimates” of soil 48 
N2O emissions because they include the effects of all driving factors that models can take into account. In 49 
the SH0 simulation, driving forces were kept constant at the level in 1850 over the entire simulation period 50 
(1850-2020). According to previous N2O budget studies, atmospheric N2O growth rate and Monte-Carlo 51 
method, we suggest the following criteria for the N2O budget inclusion (Table A6), and the criteria for 52 
carbon components are consistent with TRENDY. By comparing results from factorial simulation 53 
experiments (SH0 - SH12), we attribute changes in soil N2O emissions to seven natural and anthropogenic 54 
factors, namely, climate (CLIM, including precipitation, humidity, temperature and photosynthetic active 55 
radiation changes), atmospheric CO2 concentration (CO2), land cover change (LCC), irrigation (IRRI), 56 
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atmospheric N deposition (NDEP), mineral N fertilizer use (NFER), and manure N use in cropland 57 
(MANN). In order to understand soil N2O emissions dynamics caused by crop cultivation, we further 58 
separate the global and regional N2O emissions into those derived from cropland soils and those from soils 59 
of other land ecosystems. In this study, we attribute the impact of a single factor on cropland N2O emissions. 60 
Five models (DLEM, ISAM, O-CN, ORCHIDEE, and VISIT) considered the effects of manure N 61 
application in cropland, therefore, we use these five models’ results to calculate the manure N effect (SH1-62 
SH2). Meanwhile, we used results from all the eight models (i.e., CLASSIC, DLEM, ELM, ISAM, LPX-63 
Bern, O-CN, ORCHIDEE, and VISIT) to calculate the effects of synthetic N fertilizer use (SH1-SH3) and 64 
atmospheric N deposition (SH1-SH4). The effect of N deposition in natural ecosystems (SH1-SH4) and the 65 
effects of CO2 (SH1-SH7) and climate (SH1-SH8) on global terrestrial ecosystems are calculated from the 66 
eight NMIP2 models mentioned above. 67 
 68 
Table S2. Criteria for the N2O budget inclusion 69 

Carbon criteria N2O criteria 

(1) Steady state after spin-up, 
diagnosed from SH0 run: steady-state 
defined as an offset < 0.10 PgC yr-1, 
drift < 0.05 PgC yr-1 per century (i.e. 
first is the average over 1850-2020, 
second is the slope x 100). 

(1) Steady state after spin-up, diagnosed from SH0 run: drift < 
0.2 Tg N2O-N yr-1 per century (i.e. the slope x 100). 

(2) Net annual land flux is a carbon 
sink over the 1990s and 2000s as 
constrained by global atmospheric 
and oceanic observations (Keeling & 
Manning, 2014), diagnosed from SH3 
run. 

(2) Inside the present-day (2007-2016) land emission range: 7-
13 Tg N2O-N yr-1, diagnosed from SH1 run. The upper limit 
was calculated using the maximum total N2O emissions minus 
the minimum estimates of other sources, and the lower limit 
was calculated using the minimum total N2O emissions minus 
the maximum estimates of other sources. The range of total 
emissions was estimated by a one-box model using 
atmospheric N2O growth rate, and the range of the sum of 
other sources was calculated by a Monte-Carlo 
method      using estimates from Tian et al. (2020).  

 (3) Inside the pre-industrial land emission range: 3 to 9 Tg 
N2O-N yr-1, diagnosed from SH1 run. This range is derived 
from the pre-industrial atmospheric burden/N2O lifetime 
minus ocean and river/ coastal/estuary emissions (Michael J. 
Prather et al., 2015).  

 70 
 71 
S1.2 Brief description of algorithms associated with N2O flux in each NMIP2 model: 72 
S1.2.1: CLASSIC 73 
The representation of nitrogen cycling in CLASSIC is described in Asaadi and Arora (2021) and Kou 74 
Giesbrecht and Arora (2022). N2O production due to both nitrification and denitrification are represented. 75 
N2O loss during nitrification (𝐼!!"; g N m-2 d-1) is represented with the following equation: 76 

𝐼!!" = 𝜂!!"𝑓#(𝑇$.&)𝑓#(𝜓)𝑁!'" 																																																																																																																		(1) 77 
𝜂!!" is a coefficient (d-1), 𝑓#(𝑇$.&) is a dimensionless scalar that depends on soil temperature averaged over 78 
the top 0.5m soil depth (𝑇$.&), 𝑓#(𝜓) is a dimensionless scalar that depends on soil matric potential (𝜓), and 79 
𝑁!'" is the soil ammonium pool (g N m-2). 80 
N2O loss during denitrification (𝐸!!"; g N m-2 d-1) is represented with the following equation:  81 
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𝐸!!" = 𝜇!!"𝑓((𝑇$.&)𝑓((𝜃)𝑁!"#                                                                                                     (2) 82 
𝜇!!" is a coefficient (d-1), 𝑓((𝑇$.&) is a dimensionless scalar that depends on soil temperature averaged over 83 
the top 0.5m soil depth (𝑇$.&), 𝑓((𝜃) is a dimensionless scalar that depends on soil moisture (𝜃), and 𝑁!"# 84 
is the soil nitrate pool (g N m-2). 85 
 86 
S1.2.2: DLEM 87 
The nitrogen cycle scheme in DLEM2.0 (Xu et al., 2017; Yang et al., 2015; Tian et al. 2020) are similar as 88 
DLEM1.0 (Lu and Tian, 2013; Tian et al., 2012b; Tian et al., 2010; Tian et al., 2011; Xu et al., 2011), 89 
However, the N2O emission schemes in DLEM2.0 (Xu et al., 2017) have been modified based on Chatskikh 90 
et al. (2005) and Heinen (2006).  91 
 92 
𝑅)*+ = 𝑘)*+_-./𝑓(𝑇1)𝑓(𝑊𝐹𝑃𝑆)𝐶!'0																                                                                            (3) 93 
 94 
 𝑅12) = 𝑘12)_-./𝑓(𝑇2)𝑓(𝑊𝐹𝑃𝑆)𝐶!"3                                                                     (4)    95 
 96 
where  𝑅)*+  is the daily nitrification rate (g N/m2/d); 𝑅12)  is the daily denitrification rate (g N/m2/d); 97 
𝑓(𝑇1) and 𝑓(𝑇2) are the impact function of daily soil temperature on nitrification and denitrification, 98 
respectively; 𝑓(𝑊𝐹𝑃𝑆)  is the impact function of water-filled pore space (WFPS) on nitrification, 99 
denitrification and N2O diffusion; 𝑘)*+_-./ is the maximum fraction of NH4

+-N that is converted to NO3
--100 

N or gases (0-1); 𝑘12)_-./ is the maximum fraction of NO3
--N that is converted to gases (0-1); 𝐶!'0 and 101 

𝐶!"3 are the soil NH4
+-N and NO3

--N content (g N/m2). N2O from denitrification and nitrification processes 102 
are calculated as, 103 
 104 
𝑅!4" = (𝑅)*+ + 𝑅12))𝑓(𝑇3)(1 − 𝑓(𝑊𝐹𝑃𝑆))              (5) 105 
 106 
where 𝑅!4"  is the daily N2O emission rate (g N/m2/d);  𝑓(𝑇3)  is the impact function of daily soil 107 
temperature on N2O diffusion rate from soil pores. The calculation methods for these functions and 108 
parameters were described in detail in Xu et al. (2017) and Yang et al. (2015).   109 
 110 
S1.2.3: ELM    111 
The nitrogen dynamics in ELM is simulated based on the theory of equilibrium chemistry approximation 112 
(Zhu et al., 2016). Plants, soil microbes, and abiotic factors such as mineral surfaces coexist in the same 113 
soil environment and vie for a diverse array of nutrients, including NH4+, NO3-. Due to the limited 114 
availability of these nutrients, intense competitive interactions are expected. The competition of those 115 
limited resources is represented by consumer–substrate networks, therefore, the uptake of nutrient substrate 116 
by each consumer is dependent on the relative competitiveness of one consumer over the others. Nutrient 117 
consumers’ competitiveness is parametrized with kinetic parameters (Zhu et al., 2016). As a result, neither 118 
plan nor soil microbes get the first priority to access nutrient substrates. Instead, when the potential nutrient 119 
demands (from all nutrient consumers) exceed the supply at a given time step, the allocation of limited 120 
nutrients among the consumers affects their performance (e.g., plant growth, soil organic matter 121 
accumulation, nitrification, denitrification rates). ELM adopts a multiple-consumer-multiple-substrate 122 
competition network (Zhu et al., 2016; Zhu et al., 2019) to simulate (1) nitrogen uptake facilitated by 123 
nitrogen carrier enzymes, (2) binding of a nutrient substrate to a particular enzyme precludes it from 124 
attaching to other enzymes, and (3) rates and affinities of consumers for different substrates. After the 125 
nutrient competition has been resolved, scaling terms (𝑓(𝐸𝐶𝐴)*+) and 𝑓(𝐸𝐶𝐴12))) will be applied to the 126 
potential nitrification and denitrification processes: 127 
 128 
𝑅)*+ = 𝑘)*+_-./𝑓(𝜃)𝑓(𝑇)(1 − 𝑓(𝑂))𝑓(𝐸𝐶𝐴)*+)𝐶!'0                                                              (6) 129 
 130 
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𝑅12) = 𝑚𝑖𝑛	(𝑓(𝑑𝑒𝑜𝑚𝑝), 𝑓(𝐶!"3))𝑓(𝐸𝐶𝐴12))																																																																																		(7)	131 
 132 
where 𝑘)*+_-./ is the maximum nitrification rate, 𝑓(𝜃), 𝑓(𝑇), 𝑓(𝑂) are soil moisture, temperature, and 133 
oxygen scalars, respectively. 𝑓(𝑑𝑒𝑜𝑚𝑝) and 𝑓(𝐶!"3) are carbon limited and NO3- limited denitrification 134 
rates (Del Grosso et al., 2000). 135 
 136 
S1.2.4: ISAM 137 
ISAM model contains detailed calculations of the terrestrial ecosystem's organic and mineral N cycle (Yang 138 
et al., 2009). The major N processes in ISAM include biological fixation, leaching, mineralization and 139 
immobilization, plant uptake, nitrification, and denitrification. The soil biogeochemistry module of ISAM 140 
shares the same ten soil layers (to 3.5 m depth) as the soil biogeophysics and calculates the vertical transport 141 
of SOC and N (Shu et al., 2020; Yang et al., 2009). N2O emission in ISAM N2O is produced as a byproduct 142 
of nitrification and denitrification (Xu et al., 2021). N2O module explicitly accounts for the vertical transport 143 
of C, N, and O2 within every soil layer for both saturated and unsaturated soil conditions by accounting for 144 
the process of oxygen diffusing into the soil from the atmosphere and the soil oxygen supply. The model 145 
also explicitly accounts for the effects of anoxic and oxic environments on nitrification (Nni, Eq. 6) and 146 
denitrification (Nde, Eq. 7). Both environments are calculated based on the fraction of anoxic soil depending 147 
on soil O2 concentration, which is non-linearly correlated with the chemical pathways forming N2O.  148 
 149 
𝑁)* = 𝑁𝐻05 × (1 − 𝑒67$%_'×7('_'×9)*) × 𝐹:'_-_)* ×	𝑅1 	                                                          (8) 150 
 151 
𝑁12 = 𝑁𝑂36 	× 𝑟12 × 𝑅ℎ × 𝐹:'_-_12 × 𝑅1                                                                                   (9) 152 
 153 
where 𝑁𝐻05 and  𝑁𝑂36	are ammonium and nitrate pool sizes; 𝐹+2_- is temperature modifier;  𝐹;-_- is soil 154 
moisture modifier; 𝑟)* and 𝑟12 are base nitrification and denitrification rates; 𝐹:'_-_)* and 𝐹:'_-_12 are pH 155 
modifiers for nitrification and denitrification; 𝑅1 is relative soil anoxic fraction; Rh (= 1-𝑅1)is heterotrophic 156 
respiration.  157 
 158 
Under anoxic soil conditions, N2O is produced through denitrification, while under oxic soil conditions, 159 
more N2O is produced from nitrification. The model accounts for soil NH4

+ volatilization at the soil surface 160 
when NH4

+ in NH4
+-containing fertilizers (e.g., urea) is converted to ammonia gas, depending upon pH 161 

(Huang and Gerber, 2015). The soil NH4
+ volatilization in the model is also affected by the anoxic condition, 162 

which increases under a higher temperature and relatively lesser soil anoxic condition. The model accounts 163 
for the impacts of pH on nitrification, denitrification, and volatilization rates (Li et al., 2000; Xu-Ri and 164 
Prentice, 2008). We prescribe the soil pH from the Global Soil Dataset for Earth System Modeling dataset 165 
(GSDE) (Shangguan et al., 2014). 166 
 167 
S1.2.5: LPX-Bern 168 
The implementation of nitrogen dynamics in LPX-Bern is based on the work of Xu-Ri and Prentice (2008). 169 
Nitrogen uptake by plants is governed by their demand and the availability of nitrogen in two soil pools 170 
representing ammonium and nitrate. Nitrogen from deposition and fertilization are added to these inorganic 171 
soil pools. Losses include ammonium volatilization, nitrate leaching as well as N2O and NO production 172 
during nitrification and N2O, NO and N2 production during denitrification. Aerobic nitrification of 173 
ammonium is dependent on soil temperature (Tsoil) and indirectly on soil water content due to the 174 
partitioning of wet and dry soil: 175 
 176 
𝑅)*+ = 𝑚𝑎𝑥)*+𝑓<(𝑇;=*>)𝐶!'0,19@                                                                                                 (10)  177 
 178 
where 𝑚𝑎𝑥)*+ = 0.92	𝑑𝑎𝑦6<		is the daily maximum nitrification rate at 20°C.  179 
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Anaerobic denitrification of nitrate in wet soil depends on labile carbon availability and soil temperature: 180 
 181 
𝑅12) = 𝑅-B/(𝑅-B + 𝐾-B)𝑓4(𝑇;=*>)𝐶!"3,C2+/(𝐶!"3,C2+ + 𝐾))                                                (11) 182 
 183 
The parameters  𝐾-B and 𝐾) are taken from Xu-Ri and Prentice (2008) and 𝑅-B is the microbiotical soil 184 
respiration. The amount of nitrogen lost as N2O due to nitrification and denitrification is modelled as a 185 
function of soil temperature, water content and the respective process rate.   186 
         187 
S1.2.6: O-CN 188 
The treatment of inorganic soil nitrogen dynamics in O-CN follows largely Xu-Ri and Prentice (2008). O-189 
CN (Zaehle and Friend, 2010) considers N losses to NH3 volatilisation, NOx, N2O and N2 production and 190 
emission, as well as NH4 and NO3 leaching. Inorganic nitrogen dynamics in the soil are tightly coupled to 191 
plant uptake and net mineralization. The anaerobic volume fraction of the soil is estimated by an empirical 192 
function of the fractional soil moisture content (Zaehle et al., 2011). The fraction of ammonium in the 193 
aerobic part of the soil is subject to nitrification, according to: 194 
 195 
𝑅)*+ = 𝑣𝑚𝑎𝑥)*+𝑓(𝑇1)𝑓(𝑝𝐻1)𝐶!'0                                 (12)                                                                                            196 
 197 
where f(pH1) is the soil pH response functions for nitrification (Li et al., 1992; Xu-Ri and Prentice, 2008), 198 
and vmaxnit is the maximum daily nitrification rate under 20°C and favourable pH conditions (Xu-Ri and 199 
Prentice, 2008).  200 
 201 
Gross denitrification of the fraction of nitrate under anoxic conditions is modelled as: 202 
 203 
𝑅12) = 𝑅-B/(𝑅-B + 𝐾-B)𝑓(𝑇2)𝑓(𝑝𝐻2)𝐶!"3/(𝐶!"3 + 𝐾))                                                  (13) 204 
 205 
where f(pH2) is the soil pH response functions for denitrification (Li et al., 1992; Xu-Ri and Prentice, 2008), 206 
Rmb is the soil microbial respiration rate, and Kmb and Kn parameters taken from Li et al. (1992).  207 
 208 
The N2O production from nitrification and denitrification is then calculated as:  209 
 210 
𝑅!4" = 𝑎)*+𝑓(𝑇1)𝑅)*+ + 𝑏12)𝑓(𝑇2)𝑓(𝑝𝐻3)𝑅12)                                                                    (14) 211 
 212 
where anit and bdenit are fraction loss constants, f(pH3) is a pH-modifier changing the degree of denitrification 213 
producing N2O versus NOx or N2 (Zaehle et al., 2011). Emissions of volatile compounds are simulated 214 
using the empirical emission of Xu-Ri and Prentice (2008).  215 
 216 
S1.2.7: ORCHIDEE 217 
Modeling of the mineral N dynamics by the ORCHIDEE model originates from the formulations used in 218 
the O-CN (Zaehle and Friend, 2010). It is composed of five pools for ammonium/ammoniac, nitrate, NOx, 219 
nitrous oxide, and di-nitrogen forms. N2O production in both nitrification and denitrification processes are 220 
represented.  221 
 222 
The potential daily rate of nitrification, 𝑅)*+, occurs only on the aerobic fraction of the soil and is a function 223 
of temperature, pH, and ammonium concentration (CNH4): 224 
 225 
𝑅)*+ = (1 − 𝑓(𝑊𝐹𝑃𝑆))𝑓(𝑇1)𝑓(𝑝𝐻1)𝑘)*+𝐶!'0                                                                       (15) 226 
 227 
where knit is the reference potential NO3- production per mass unit of ammonium. 228 
 229 
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S1.2.8: VISIT 230 
The nitrogen cycle scheme of VISIT is composed of three organic soil nitrogen pools (microbe, litter, and 231 
humus), two inorganic soil nitrogen pools (ammonium and nitrate), and vegetation pools. Fertilizer is 232 
considered as an input to the ammonium and nitrate pools at a fixed ratio, and manure as an input into the 233 
litter organic nitrogen pool. N2O emissions through nitrification and denitrification are estimated using the 234 
scheme developed by Parton et al. (1996). Nitrification-associated N2O emission (𝑅)*+,!4") is evaluated as 235 
follows, 236 
 237 
𝑅)*+,!4" = 𝑓(𝑊𝐹𝑃𝑆)𝑓(𝑝𝐻1)𝑓(𝑇1)(𝐾-./ + 𝐹-./𝑓(𝑁𝐻4))                                                   (16) 238 
 239 
where Kmax is the soil-specific turnover coefficient; Fmax is the parameter of maximum nitrification gas flux; 240 
and f(NH4) is the effect of soil ammonium on nitrification. Denitrification-associated N2O emission 241 
(𝑅12),!4") is evaluated by the following equation: 242 
 243 
𝑅12),!4" = 𝑅12)(1 + 𝑅!4/!4")                                                                                                  (17)   244 
                245 
𝑅12) = 𝑚𝑖𝑛	(𝑓(𝑁𝑂3), 𝑓(𝐶𝑂4)) × 𝑓(𝑊𝐹𝑃𝑆)                                           (18)                      246 
 247 
where RN2/N2O is the fractionation coefficient, which is also a function of WFPS, soil nitrate, and 248 
heterotrophic respiration, 	𝑓(𝑁𝑂3) is the maximum denitrification rate in high soil respiration rate condition, 249 
𝑓(𝐶𝑂4) is the maximum denitrification rate in high NO3

- levels, and 𝑓(𝑊𝐹𝑃𝑆) is the effect of WFPS on 250 
denitrification rate. 251 
 252 
N2O production by nitrification (RN2O,nit, g N-N2O/m2/d) is expressed as a function of the potential daily rate 253 
of nitrification (Rnit, g N-NO3

-/m2/d), temperature and the water content as shown in Zhang et al. (2002).  254 
 255 
𝑅!4",)*+ = 𝑓(𝑊𝐹𝑃𝑆)𝑓(𝑇1)𝑅)*+𝑝!4",)*+                                                                                    (19)                                              256 
 257 
where pN2O,nit (g N-N2O (g N-NO3

-)-1) is the reference N2O production per mass unit of NO3
- produced by 258 

nitrification. The denitrification occurs on the anaerobic fraction of the soil which is computed as a function 259 
of the water-filled porosity (f(WFPS)) and is controlled by temperature, pH, soil NO concentration and 260 
denitrifier microbial activity (amicrob, g m-2) (Li et al., 2000).  261 
 262 
𝑅!4",12) = 𝑓(𝑊𝐹𝑃𝑆)𝑓(𝑇2)𝑓(𝑝𝐻)𝑓(𝑁𝑂)𝑝!4",12)𝑎-*E9=B                                                      (20)                                                             263 
 264 
where f(NO) is a Michaelis-Menten shape function and pN2O,den is the reference N2O production per mass 265 
unit of denitrifier microbes. 266 
 267 
S2 The FAOSTAT inventory 268 
The FAOSTAT emissions data (FAO, 2022) are computed at Tier 1 following IPCC (2006), Vol. 4. The 269 
overall equation is as follows: 270 
Direct emissions are estimated at the country level, using the formula: 271 
 272 
                                                     Emission = A * EF                                                                            (21) 273 
 274 
where emission represents kg N yr-1; A represents the amount of N in the following items (annual synthetic 275 
N applications/manure applied to soils/manure left on pasture/manure treated in manure management 276 
systems/crop residue/biomass burned amount) in kg N yr-1; EF = Tier 1, default IPCC emission factors, 277 
expressed in kg N/kg N. 278 
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 279 
Indirect emissions are estimated at the country level, using the formula: 280 
 281 
                                                Emission = Av&l * EF                                                                         (22) 282 
 283 
where emission represents kg N yr-1; A v&l represents the fraction of manure/synthetic N fertilizers that 284 
volatize as NH3 and NOx and are lost through runoff and leaching in kg N yr-1; EF = Tier 1, default IPCC 285 
emission factors, expressed in kg N/kg N. 286 
 287 
Synthetic N fertilizers: N2O from synthetic fertilizers is produced by microbial processes of nitrification 288 
and denitrification taking place on the addition site (direct emissions), and after volatilization/redeposition 289 
and leaching processes (indirect emissions). 290 
 291 
Manure management: The term manure includes both urine and dung (i.e., both liquid and solid material) 292 
produced by livestock. N2O is produced directly by nitrification and denitrification processes in the manure, 293 
and indirectly by nitrogen (N) volatilization and redeposition processes. 294 
Manure applied to soils: N2O is produced by microbial processes of nitrification and denitrification taking 295 
place on the application site (direct emissions), and after volatilization/redeposition and leaching processes 296 
(indirect emissions). 297 
 298 
Manure left on pastures: N2O is produced by microbial processes of nitrification and denitrification taking 299 
place on the deposition site (direct emissions), and after volatilization/redeposition and leaching processes 300 
(indirect emissions). 301 
 302 
Crop Residue: N2O emissions from crop residues consist of direct and indirect emissions from nitrogen (N) 303 
in crop residues left on agricultural fields by farmers and from forages during pasture renewal (following 304 
the definitions in the IPCC guidelines (IPCC, 2006)). Specifically, N2O is produced by microbial processes 305 
of nitrification and denitrification taking place on the deposition site (direct emissions), and leaching 306 
processes (indirect emissions). 307 
 308 
Cultivation of organic soils: The FAOSTAT domain “Cultivation of organic soils” contains estimates of 309 
direct N2O emissions associated with the drainage of organic soils – histosols – under cropland and grazed 310 
grassland. 311 
 312 
Burning-savanna: N2O emissions from the burning of vegetation biomass in the land cover types: Savanna, 313 
Woody Savanna, Open Shrublands, Closed Shrublands, and Grasslands. Burning-crop residues: N2O 314 
produced by the combustion of a percentage of crop residues burnt on-site. Burning-biomass: N2O 315 
emissions from the burning of vegetation biomass in the land cover types: Humid tropical forests, other 316 
forests, and organic soils.  317 
 318 
S3 The EDGAR v7.0 inventory  319 
The new online version, EDGAR v7.0 (https://edgar.jrc.ec.europa.eu/dataset_ghg70) incorporates a full 320 
differentiation of emission processes with technology-specific emission factors and additional end-of-pipe 321 
abatement measures and as such updates and refines the emission estimates. The emissions are modelled 322 
based on the latest scientific knowledge and available global statistics primarily from International Energy 323 
Agency (IEA, 2021) for energy related sectors, FAO statistics (FAO, 2022) for agriculture, which were 324 
complemented for the rest of sectors with United States Geological Survey (USGS), International Fertiliser 325 
Association (IFA), Gas Flaring Reduction Partnership (GGFR)/U.S. National Oceanic and Atmospheric 326 
Administration (NOAA) and World Steel Association (worldsteel) recent statistics; the methods are those 327 
recommended by IPCC (2006). Official data submitted by the Annex I countries to the United Nations 328 

https://edgar.jrc.ec.europa.eu/dataset_ghg70
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Framework Convention on Climate Change (UNFCCC) and to the Kyoto Protocol are used to some extent, 329 
particularly regarding control measures implemented since 1990 that are not described by international 330 
statistics. A fast-Track approach was used to extend the N2O emission time series for the latest years up to 331 
2021 (Crippa et al., 2021; Crippa et al., 2022). 332 
 333 
The N2O emission factors for direct soil emissions of N2O from the use of synthetic fertilizers, from manure 334 
used as fertilizers, and from crop residues are taken from IPCC (2006), which updated the default IPCC 335 
emission factor in the IPCC Good Practice Guidance (2000) with a 20% lower value. N2O emissions from 336 
the use of animal waste as fertilizer are estimated considering both the loss of N that occurs from manure 337 
management systems before manure is applied to soils and the additional N introduced by bedding material 338 
(Janssens-Maenhout et al., 2019). N2O emissions from fertilizer use and CO2 from urea fertilization are 339 
estimated based on IFA and FAO recent statistics. 340 
 341 
N2O emissions from manure management are based on the distribution of manure management systems 342 
from Annex I countries reporting to the UNFCCC, Zhou et al. (2007) for China and IPCC (2006) for the 343 
rest of the countries. 344 
 345 
Different N2O emission factors are applied to tropical and non-tropical regions. N and dry matter content 346 
of agricultural residues are estimated from the cultivation area and yield for 24 crop types from FAO (2022) 347 
and using emission factors of IPCC (2006). 348 
 349 
Indirect N2O emissions from leaching and runoff of nitrate are estimated from N input to agricultural soils. 350 
Leaching and runoff are assumed to occur in all agricultural areas except non-irrigated dryland regions, 351 
which are identified with maps of FAO Geonetwork (https://www.fao.org/land-water/databases-and-352 
software/geonetwork/en/). The fraction of N lost through leaching and runoff is based on the study of Van 353 
Drecht et al. (2003). The updated emission factor for indirect N2O emissions from N leaching and run-off 354 
from the IPCC (2006) guidelines is selected, while noting that it is 70% lower than the mean value of the 355 
1996 IPCC Guidelines and the IPCC Good Practice Guidance IPCC (1996; 2000). 356 
 357 
Indirect N2O emissions from atmospheric deposition of N of NOx and NH3 emissions from non-agricultural 358 
sources, mainly fossil fuel combustion, are estimated using N in NOx and NH3 emissions from these sources 359 
as activity data, based on EDGAR v7.0 database for these gases. The same emission factor from IPCC 360 
(2006) is used for indirect N2O from atmospheric deposition of N from NH3 and NOx emissions, as for 361 
agricultural emissions (Janssens-Maenhout et al., 2019).      362 
 363 
The uncertainties for EDGAR N2O emissions estimated by Solazzo et al. (2021) are based primarily on the 364 
uncertainties in emissions factors and activity data statistics from the IPCC (2006).  Globally, these 365 
emissions are accurate within an interval of ±113 for energy, -12% to +16% for industrial processes and 366 
product use, -225 to +302 for agriculture, -159% to 203% for waste and ±112% for others; the most 367 
uncertain emissions are those related to N2O from waste and agriculture.   368 
 369 
S4 The UNFCCC inventory (need description of UNFCCC) 370 
The UNFCCC collects detailed data on GHG emissions from its parties. Following extensive guidance 371 
developed by IPCC (Buendia et al., 2019; Eggleston et al., 2006), parties to the convention prepare national 372 
GHG inventories, including emissions (and sinks) of N2O. All anthropogenic activities are covered, in 373 
agriculture both direct and indirect N2O emissions are included. While IPCC basically provides emission 374 
factor approaches, parties are encouraged to take account of national specificities, use national factors and 375 
data, wherever available, or develop emission models, with adequate scientific proof provided. 376 
Combustion-related emissions and emissions from industrial processes may take advantage of emission 377 
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monitoring or specific plant operation conditions, if provided. Emission processes that are not associated 378 
with anthropogenic activities are also not covered in the inventories. 379 
 380 
Obligations and quality of data provided differ strongly by country category. High scrutiny is put on GHG 381 
inventories from countries listed in Annex-I of the convention (Annex-I countries include most European 382 
countries, U.S. and Canada, Australia and New Zealand, and Japan). Annex-I countries are obliged to 383 
provide annual national inventories in considerable detail and have to be very transparent also in terms of 384 
methodology used and underlying information. Each year, time-series of emissions and underlying data 385 
since 1990 (in a few cases, alternative base years are used) up to the pre-previous year are freshly provided 386 
in April each year (e.g., in April 2023 data up to the year 2021 had to be provided), leading to a 387 
homogeneous data series. Reports and emission data are provided (to UNFCCC, and to all users from the 388 
UNFCCC web site at https://unfccc.int/reports) in standardized format such that they can be transferred to 389 
databases. National results are routinely being checked and evaluated by expert teams in form of specific 390 
internal and external audits to assure data quality and consistency. 391 
 392 
National information is highly relevant also for non-Annex I countries to the UNFCCC and is being 393 
collected and distributed by UNFCCC as well. Requirements are much less stringent, however, as parties 394 
are expected to provide data only according to their own capabilities and the support they get from other 395 
countries. The so-called Biannual Update Reports are to be prepared every other year only. While in 396 
principle following the same IPCC guidance, commitments to format, timing, and quality assessment are 397 
by far less stringent, and the own ambition level of the respective party (country) may determine much of 398 
the outcome. In any case, self-reporting of a country always also means the party is willing to take the 399 
responsibility of the emissions reported. 400 
 401 
The “EDGAR/UNFCCC” dataset used in this paper utilizes the database for Annex-1 countries for 402 
emissions from fossil-fuel consumption, industrial processes, waste and wastewater, and merges with the 403 
respective set derived from EDGARv7.0 for all remaining countries.   404 
 405 
S5.1 The SRNM model: Flux upscaling model 406 
The SRNM model (Wang et al., 2020) was applied to simulate direct cropland-N2O emissions. In SRNM, 407 
N2O emissions were simulated from N application rates using a quadratic relationship, with spatially 408 
variable model parameters that depend on climate, soil properties, and management practices. The original 409 
version of SRNM was calibrated using field observations only from China (Zhou et al., 2015). In this study, 410 
we used the global N2O observation dataset to train it to create maps of gridded annual emission factors of 411 
N2O and the associated emissions at 5-minute resolution from 1901 to 2014(Cui et al., 2021). The gridded 412 
EF and associated direct cropland-N2O emissions are simulated based on the following equation: 413 
 414 
 415 

                                                                                                   (23) 416 
where 417 

                                                       (24) 418 

                                                    (25) 419 
and i denotes the sub-function of N2O emission (i=1, 2, …, I) that applies for a sub-domain division Wi of 420 
six climate or soil factors, j represents the type of crop (j=1-2, 1 for upland crops and 2 for paddy rice), k is 421 
the index of climate or soil factors (k=1-6, i.e., soil pH, clay content, SOC, BD, the sum of cumulative 422 
precipitation and irrigation, mean daily air temperature). Wi denotes a set of the range of multiple xk. Eijt 423 
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denotes direct N2O emission flux (kg N ha-1 yr-1) estimated for crop type j in year t in the ith sub-domain, 424 
Nijt is N application rate (kg N ha-1 yr-1), and aij and bij are defined as summation of the product of xk and lijk 425 
over k. The random terms l and f are assumed to be independent and normally distributed, representing the 426 
sensitivity of a and b to xk. e is the model error. m and m¢ are the mean effect of xk for a and b, respectively. 427 
s, s¢, w, w¢, andt are standard deviations. Optimal sub-domain division, associated parameters mean 428 
values and standard deviations were determined by using the Bayesian Recursive Regression Tree version 429 
2 (BRRT v2), constrained by the extended global cropland-N2O observation dataset. The detailed 430 
methodological approach of the BRRT v2 is described by Zhou et al (2015). 431 
 432 
S5.2 Global cropland N2O observation dataset 433 
We aggregated cropland N2O flux observation data from 180 globally distributed observation sites from 434 
online databases, on-going observation networks, and peer-reviewed publications (Figure S1). Chamber-435 
based observations were only included in this dataset. These data repositories are as follows: the 436 
NitroEurope, CarbonEurope, GHG-Europe (EU-FP7), GRACEnet, TRAGnet, NANORP, and 14 meta-437 
analysis datasets (Decock, 2014; Harris et al., 2014; Helgason et al., 2005; Hénault et al., 2005; Hickman 438 
et al., 2014; Kim et al., 2013a; Kim et al., 2013b; Lehuger et al., 2011; Leppelt et al., 2014; Rochette and 439 
Janzen, 2005; Sacks et al., 2010; Shcherbak et al., 2014; Stehfest and Bouwman, 2006; Walter et al., 2015). 440 
Four types of data were excluded from our analysis: (i) observations without a zero-N control for 441 
background N2O emission, (ii) observations from sites that used controlled-release fertilizers or nitrification 442 
inhibitors, (iii) observations not covering the entire crop growing season, (iv) observations made in 443 
laboratory or greenhouse. We then calculated cropland-N2O emissions as the difference between observed 444 
N2O emission (E) and background N2O emission (E0). Values of EF were estimated for each nonzero N 445 
application rate (Na) as direct cropland-N2O emission divided by Na: EF = (E − E0)/Na. This yielded a 446 
global dataset of direct cropland-N2O emissions, N-rate-dependent N2O EFs and fertilization records from 447 
each site (i.e., 1,052 estimates for upland crops from 152 sites and 154 estimates for paddy rice from 28 448 
sites), along with site-level information on climate, soils, crop type, and relevant experimental parameters. 449 
Total numbers of sites and total measurements in the dataset were more than doubled those for previous 450 
datasets of N2O EF. The extended global N2O observation network covered most of fertilized croplands, 451 
representing a wide range of environmental conditions globally. For each site in our dataset, the variables 452 
included four broad categories: N2O emissions data, climate data (cumulative precipitation and mean daily 453 
air temperature), soil attributes (soil pH, clay content, SOC, BD), and management-related or experimental 454 
parameters (N application rate, crop type). More details on global cropland N2O observation dataset can be 455 
found in Cui et al. (2021). 456 
 457 
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 458 
Figure S1 Global observation dataset of N2O EF for direct soil emissions. Green area indicates the 459 
harvested areas of all crops derived from the Earthstat. Sites are indicated in different colors for maize, 460 
wheat, rice, and other crops. 461 
 462 
S5.3 Gridded input datasets: 463 
The updated SRNM model was driven by many input datasets, including climate, soil properties, 464 
agricultural management practices (e.g., fertilization, tillage, irrigation), as well as the historical distribution 465 
of cropland. Cumulative precipitation and mean daily air temperature over the growing season were 466 
acquired from the CRU TS V4.06 climate dataset (0.5-degree resolution) (Harris et al., 2014), where 467 
growing season in each grid cell was identified following Sacks et al. (2010)The patterns of SOC, clay 468 
content, BD, and soil pH were acquired from the HWSD v1.2 ((Berdanier and Conant, 2012), 1-km 469 
resolution). Both climate and soil properties were re-gridded at 5-arc-minute spatial resolution using a first-470 
order conservative interpolation widely used in the CMIP5 model intercomparison (Yang et al., 2017). The 471 
annual cropland area at 5-arc-minute spatial resolution from 1961 to 2020 was obtained from the History 472 
Database of the Global Environment (HYDE 3.2.1) (Goldewijk et al., 2017).  473 
 474 
For fertilization, crop-specific N fertilizer inputs (including synthetic N fertilizers, crop residues and 475 
manure), fertilizer types, and placement during 1961-2020 were obtained from Adalibieke et al., (2023).  476 
The frequency (i.e., one or multiple times) of N fertilization were the same as Cui et al. (2021) and we 477 
assumed that the frequency remained constant during the study period. For tillage, the fraction of tillage by 478 
crop during 1961-2020 was obtained from Adalibieke et al., (2023), which was constructed with the country 479 
and province (or state) level no-tillage area data during 1961-2020 and downscaled to grid with the method 480 
of Porwollik et al. (2019). For irrigation, the History Database of the Global Environment (HYDE version 481 
3.2) (Goldewijk et al., 2017) and the MIRCA2000 dataset (Portmann et al., 2010) were used to compile the 482 
global crop-specific irrigation proportion data from year 1961 to 2020. Categories of cropland in HYDE 483 
provided new distinctions with irrigated and rain-fed crops (upland crops, other than rice), irrigated and 484 
rain-fed rice during 1960-2017. The national-level dataset of “Agricultural area actually irrigated” was 485 
obtained from (FAO, 2022), which was used to scale the baseline year 2015 maps of irrigated area from 486 
HYDE over the period 2016-2020. The area of irrigated upland crops from HYDE was first disaggregated 487 
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into 21 crops based on the irrigated proportion from MIRCA2000 for per grid cell. We assumed an even 488 
share of irrigated area by each upland crop during the period 1961-2020, like MIRCA2000. Finally, the 489 
crop-specific irrigated area was masked by reporting harvested area, then the irrigated proportion of each 490 
crop can be calculated as the crop-specific irrigated area divided by the physical area of each crop. For rice, 491 
we further divided irrigated rice into continuously and intermittently flooded systems as provided by Cui 492 
et al. (2021), and we assumed that the irrigation proportion was kept the same during the study period. 493 
 494 
S6 Global N flow in aquaculture  495 
We applied the IMAGE-GNM aquaculture nutrient budget model for shellfish and finfish (Bouwman et al., 496 
2013; Bouwman et al., 2011) to calculate the nutrient flows in aquaculture production systems. These flows 497 
comprise feed inputs, retention in the fish, and nutrient excretion. Individual species within crustaceans, 498 
seaweed, fish and molluscs are aggregated to the International Standard Statistical Classification of Aquatic 499 
Animals and Plants (ISSCAAP) groups (FAO, 2022), for which production characteristics are specified. 500 
Feed and nutrient conversion rates are used for each ISSCAAP group to calculate the feed and nutrient 501 
intake based on production data from FAO (FAO, 2020). Feed types include home-made aquafeeds and 502 
commercial compound feeds with different feed conversion ratios that also vary in time due to efficiency 503 
improvement; in addition, the model accounts for algae in ponds, that are often fertilized with commercial 504 
fertilizers or animal manure, consumed by omnivore fish species like carp. A special case is the filter-505 
feeding bivalves that filter seston from the water column, and excrete pseudofeces, feces and dissolved 506 
nutrients. Based on production data and tissue/shell nutrient contents, the model computes the nutrient 507 
retention in the fish. Using apparent digestibility coefficients, the model calculates outflows in the form of 508 
feces (i.e., particulate nutrients) and dissolved nutrients. Finally, nutrient deposition in pond systems and 509 
recycling are calculated. For computing the N2O emissions, we consider the amount of N released to the 510 
environment, i.e., the difference between N intake and N in the harvested fish, which includes all the 511 
nutrient excretion. Since in pond cultures part of that N is managed, we made the amount of N recycling 512 
explicit, as well as ammonia emissions from ponds. This is to avoid double counting when computing N2O 513 
emissions from crop production. 514 
 515 
S7 Continental Shelves N2O fluxes 516 
N2O emissions from the global ocean do not include the contribution from continental shelves and are added 517 
here using the extended mask of Laruelle et al. (2017) to delineate the coastal ocean. This mask excludes 518 
estuaries and inland water bodies, while its outer limit is set 300 km away from the shoreline. Within this 519 
coastal ocean domain, gridded N2O emissions were calculated using one data-driven estimate and three 520 
high-resolution model estimates from two distinct models, all interpolated on the same 0.25° x 0.25° grid. 521 
Models and data are each covering different time-periods and only one climatology is provided, keeping 522 
the original timespan of each product: 1988-2017 for the observation-based product that relied on a random-523 
forest (RF) algorithm to interpolate N2O data (Yang et al., 2020) from the MEMENTO  database (MEM-524 
RF) (Kock and Bange, 2015), 1998-2018 for the estimate relying on the high-resolution configuration 525 
(Berthet et al., 2019) of the global ocean-biogeochemical component of CNRM-ESM2-1 (CNRM-0.25°), 526 
1998-2013 and 2006-2013 for the estimates relying on the ECCO-Darwin model running at 1/3° (ECCO-527 
Darwin1) and 1/6° (ECCO-Darwin2), respectively. The resulting climatology can be considered as broadly 528 
representative of the last 2-3 decades. Each product is further described as follows: 529 
 530 
S7.1 MEM-RF 531 
The N2O air-sea flux reconstruction by Yang et al. (2020) is based on a synthesis of over 158,000 532 
observations of N2O mixing ratio, partial pressure, and concentration in the surface ocean from the 533 
MEMENTO database (https://memento.geomar.de) (Kock and Bange, 2015) and additional cruises 534 
(Dataset S1) (Yang et al., 2020). N2O measurements are converted to surface N2O mixing ratio anomalies 535 
using observations from the NOAA atmospheric flask dataset (Hall et al., 2007), and extrapolated to a 0.25-536 
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degree resolution global monthly climatology using an ensemble of 100 random forest realizations. The 537 
random forest algorithm predicts N2O mixing ratio anomalies based on their relationship to oceanographic 538 
predictors that include hydrographic variables, nutrients, oxygen, chlorophyll, net primary production, and 539 
seafloor depth. Reconstructed mixing ratio climatologies are used to estimate air-sea fluxes by applying a 540 
commonly used gas exchange parameterization (Wanninkhof, 2014). Two formulations of piston velocity 541 
are adopted: one based on a quadratic dependence on wind speed (Wanninkhof, 2014), and one that 542 
explicitly accounts for bubble-mediated fluxes (Liang et al., 2013). Sea ice cover, surface temperature, 543 
salinity and atmospheric pressure are taken from ERA5 reanalysis (Hersbach et al., 2017). Calculations are 544 
performed with two high-resolution wind products (ERA5 and CCMP) that are available at 0.25, 6-hourly 545 
resolution for the period from 1988 to 2017, yielding four permutations of the piston velocity. The resulting 546 
ensemble of 400 global N2O air–sea flux estimates is averaged in time to obtain monthly mean climatologies. 547 
A description of the dataset and methods is presented in Yang et al. (2020). The code used to produce these 548 
datasets is archived on a public GitHub repository at https://github.com/yangsi7/mapping-ocean-n2o (DOI: 549 
10.5281/zenodo.3757194). 550 
 551 
S7.2 CNRM-0.25°  552 
N2O fluxes have been inferred from the global ocean-biogeochemical component of CNRM-ESM2-1 553 
(Séférian et al., 2019) run at 0.25° horizontal resolution with 75 vertical levels in the ocean. This high-554 
resolution configuration is described in Berthet et al. (2019) and is based on the NEMOv3.6 oceanic model 555 
(Madec, 2008), the multi-category sea ice model GELATOv6 (Salas y Mélia, 2002) and the PISCESv2-gas 556 
model for marine biogeochemistry (Aumont et al., 2015), which includes an updated version of (Martinez-557 
Rey et al., 2015) for the marine N2O module. The simulation was first spun-up during 300 years under 558 
preindustrial conditions and then has been forced by the OMIP2-compliant JRA55-do-1-5 atmospheric 559 
reanalysis (Tsujino et al., 2020; Tsujino et al., 2018) considering the historical evolution of CO2 and N2O 560 
in the atmosphere since the year 1850. Boundary conditions for nitrogen deposition and riverine inputs are 561 
prescribed from monthly climatologies. The suboxic production of N2O uses the oxygen‐dependent 562 
formulation of Jin and Gruber (2003) and is enhanced at low oxygen concentrations. This formulation 563 
encompasses N2O production during remineralization, nitrification and grazing, as well as a sink term 564 
corresponding to N2O consumption under anoxic conditions by denitrification. The oceanic N2O partial 565 
pressure is computed based on the surface N2O concentration and the N2O solubility in the ocean. Sea-to-566 
air N2O fluxes are then computed using the standard gas exchange parameterization of Wanninkhof (1992; 567 
2014). 568 
 569 
S7.3 ECCO-Darwin & ECCO2-Darwin  570 
For this study we generated global air-sea fluxes of nitrous oxide (N2O) from the global ocean by using two 571 
models that include the same biogeochemical component but embedded in two different ocean physical 572 
settings, ECCO2-Darwin and ECCO-Darwin. 573 
 574 
The first model, ECCO2-Darwin model, is a global physical-biogeochemical ocean model with nominal 575 
horizontal grid of 1/6 of degree therefore eddy-permitting at lower latitudes.  576 
The second model is ECCO-Darwin, a global physical-biogeochemical ocean model with nominal 577 
horizontal grid resolution of 1/3 of degree (Carroll et al., 2020). The ECCO-Darwin model is forced with 578 
an atmospheric forcing corresponding to the 1992-present optimized with adjoint technique in order to 579 
realistically represent the observed physical ocean climate variability. An extensive description of this 580 
model run of ECCO2-Darwin including the optimized atmospheric forcing spanning from 2004 to 2013 581 
can be found in Manizza et al., (2019, 2023) while for ECCO-Darwin a more detailed model description 582 
can be found in Carroll et al., (2020). Both models have 50 vertical levels and in the top 100 m the model 583 
is vertically resolved with 10-meter grid boxes. 584 
 585 
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The Darwin biogeochemical/ecological model used for this study explicitly represents the cycle of carbon, 586 
oxygen, phosphorus, silica, and iron in the global ocean. It also has an ecosystem component representing 587 
five groups of phytoplankton and two groups of zooplankton (Manizza et al., 2019, Carroll et al., 2020). 588 
 589 
For this version of the model, we implemented a parameterization of the oceanic cycle of N2O using the 590 
scheme of Nevison et al., (2003) based on the oceanic oxygen cycle previously represented in ECCO2-591 
Darwin model (Ganesan et al., 2020). The air-sea gas flux of N2O was parameterized according to 592 
Wanninkhof (1992). 593 
 594 
In the ECCO2-Darwin simulation the 2004-2005 period was discarded, and we used the 2006-2013 period 595 
only for our analysis. However, the ECCO-Darwin numerical simulation was run for the 1992-2014 period, 596 
but we discarded the inclusion of the output relative to the 1992-1996 period in our analysis due to the 597 
model adjustment in this initial part of our numerical simulation. The results of these simulations were also 598 
used in the study of Resplandy et al. (2023). 599 
 600 
S8 Open Ocean N2O fluxes 601 
N2O is produced in the open ocean by microbial activity during organic matter cycling in the subsurface 602 
ocean, and its production pathways are influenced by the local environmental oxygen level. In the oxic 603 
ocean N2O is produced as a byproduct during the oxidation of ammonia to nitrate, mediated by ammonia 604 
oxidizing bacteria and archaea. N2O is also produced and consumed in sub- oxic and anoxic waters through 605 
the action of marine denitrifiers during the multi-step reduction of nitrate to gaseous N. The oceanic N2O 606 
distribution therefore displays significant heterogeneity with background levels of 10-20 nmol/l in the well-607 
oxygenated ocean basins, high concentrations (> 40 nmol/l) in hypoxic waters, and N2O depletion in the 608 
core of ocean oxygen minimum zones (OMZs). 609 
 610 
For this synthesis open ocean N2O emissions to the atmosphere were compiled from four global ocean 611 
biogeochemistry models/Earth System models that simulate the production, consumption and circulation 612 
of oceanic N2O (Table 6). N2O flux exchange between ocean and atmosphere is derived using gas-exchange 613 
parameterizations applied to modeled surface ocean N2O. Versions of the four submitting models also 614 
participated in the previous N2O budget synthesis (Tian et al., 2020a). Model details and updates to the 615 
previous N2O budget synthesis are summarized below. 616 
The models differ in aspects of physical configuration (e.g., spatial resolution), meteorological forcing 617 
applied at the ocean surface, and in their parameterizations of ocean biogeochemistry; specific details on 618 
individual models are provided in the publications listed in Table 1. Towards this N2O budget synthesis, 619 
modelling groups reported grid-resolved (1o×1o horizontal resolution) monthly estimates of ocean-620 
atmosphere N2O fluxes for the period 1980-2020 (or for as many years as possible in that period). 621 
 622 
S8.1 U. Bern: Bern-3D 623 
N2O fluxes are derived from the Bern-3D Earth System Model of Intermediate Complexity which includes 624 
a prognostic marine biogeochemistry model (based on (Parekh et al., 2008) and (Tschumi et al., 2011)). 625 
Configuration of the model for simulation of N2O is outlined in Battaglia and Joos (2018). Model 626 
simulations were run at a native resolution of horizontal resolution of 41 by 40 grid cells and 32 627 
logarithmically scaled vertical layers. Modifications of the biogeochemistry model relevant for the N2O 628 
cycle include the assignment of organic matter remineralization to aerobic and anaerobic pathways 629 
dependent on mean grid-cell dissolved oxygen level. N2O is produced by nitrification as a product of 630 
remineralization rate and a specified N2O yield which has a functional form dependent on oxygen level (see 631 
details in (Battaglia and Joos, 2018)).  N2O consumption by denitrification processes is represented by a 632 
first-order kinetics formulation which also includes a dependence on local oxygen level to account for the 633 
relative importance of denitrification-related N2O production and consumption processes in each gridcell.  634 
Measurements of dissolved N2O (surface and interior) from the MEMENTO database (Kock and Bange, 635 
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2015) together with an ensemble of model runs are used to constrain the model parameters governing N2O 636 
production and consumption mechanisms. From a pre-industrial equilibrium state the model is forced by 637 
historical CO2 emissions, non-CO2 radiative forcing, and land-use changes. N2O in the atmosphere is 638 
prescribed based on historical data. 639 
 640 
S8.2 CNRM: CNRM‐ESM2‐1 641 
N2O fluxes are provided by the CNRM‐ESM2‐1 Earth System model. The ocean model component is based 642 
on NEMO Version 3.6 (Madec et al., 2017) and coupled to  the GELATO sea ice model (Salas y Mélia, 643 
2002) Version 6 and the marine biogeochemical model PISCESv2‐gas (Aumont et al., 2015). The spatial 644 
model resolution follows the eORCA1L75 grid, with a nominal horizontal resolution of 1o and with higher 645 
resolution in the tropics (increasing to ~(1/3)o). The model has 75 vertical levels with higher resolution 646 
towards the ocean surface. The simulations were forced at the surface by the atmospheric state of JRA55-647 
do v1.5.0 (Tsujino et al., 2018). Atmospheric N2O concentration is given as annual means as specified by 648 
CMIP6 protocols and is linearly interpolated in time. Parameterization of the marine N2O cycle follows that 649 
of Martinez-Rey et al. (2015) with some modifications. N2O production is driven by an oxygen‐dependent 650 
yield of N2O, which encompasses production from denitrification and nitrification processes.  This 651 
formulation also assumes a constant background yield representing N2O production by nitrification and a 652 
consumption of N2O in suboxic conditions.  Originally implemented by Martinez-Rey et al. (2015), the 653 
marine N2O parameterization has benefited from a recoding and an improved calibration presented in 654 
Berthet et al. (2023). Further details of the model biogeochemistry and configuration are provided by 655 
Séférian et al. (2019) and Berthet et al. (2019). 656 
 657 
S8.3 UVic2.9 658 
N2O model fluxes are derived from the UVic2.9, Earth System Model of Intermediate Complexity with 659 
prescribed monthly climatological winds (Kalnay et al., 1996) and ice sheets (Peltier, 2004), configuration 660 
outlined in Landolfi et al. (2017).  Oceanic subsurface N2O production is parameterized following (Zamora 661 
and Oschlies, 2014), as a function of O2 consumption with a linear O2 dependency, inherently including 662 
both nitrification and denitrification. In O2-deficient waters (<4 mmol m−3), denitrification becomes a sink 663 
of N2O consumed at a constant rate. The gradient driving the air-sea N2O gas exchange, is computed online 664 
based on departure of the surface ocean concentration from the saturation value using the solubility 665 
coefficients of Weiss and Price (1980) and time-varying prescribed atmospheric N2O concentrations 666 
(historical and RCP8.5).   The model was spun-up for 6000 years with preindustrial boundary conditions 667 
(solar and volcanic and aerosol forcing, fixed atmospheric CO2 of 280 ppm and N2O of 276 ppb, and 668 
preindustrial atmospheric N deposition). 669 
 670 
S8.4 UEA: NEMO-PlankTOM10.2 671 
N2O model fluxes are derived from the NEMO-PlankTOM10.2 ocean model. The physical circulation 672 
component is NEMO v3.1 (Madec, 2008), with horizontal resolution of 2o longitude, and a variable 673 
latitudinal resolution (average ~1o) with higher resolution in the tropics and polar regions. The   model has 674 
30 vertical layers, with variable resolution ranging from 10m in the upper 100m to 500m at depths of 5000 675 
m. The biogeochemical component relies on the marine ecosystem model PlankTOM10, which includes 676 
representation of 10 plankton functional types (Le Quéré et al., 2016). It has been extended by Buitenhuis 677 
et al. (2018) to include nitrogen cycle processes, and prognostic and diagnostic models of N2O production.  678 
N2O is produced from nitrification and denitrification pathways, with oxygen dependent yields employed 679 
to account for varying production and consumption processes in hypoxic waters. Nitrogen cycle parameters 680 
are optimized using ocean databases of dissolved N2O (MEMENTO, Kock and Bange (2015)) nitrification 681 
rates (Yool et al., 2007), and surface ammonium concentrations (Johnson et al., 2015; Paulot et al., 2015). 682 
Further details on model configuration are provided in (Buitenhuis et al., 2018).   683 
 684 
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S9 Net N2O emission from land cover change  685 
This section mainly involves the calculation of post-deforestation N2O emissions, deforestation induced 686 
N2O reduction and N2O emissions from forest regrowth (afforestation or reforestation). The methods 687 
include both bookkeeping and process-based modeling.   688 
 689 
S9.1 Deforestation area, crop/pasture expansion and secondary forests 690 
The LUH2 v2h (land use harmonization, http://luh.umd.edu) land use data was used to derive the 691 
deforestation area and its partition between crops and pastures during 1860−2020. LUH2 categorizes forest 692 
lands into forested primary land and potentially forested secondary land, while croplands are divided into 693 
C3 annual crops, C3 perennial crops, C4 annual crops, C4 perennial crops, and C3 N-fixing crops.  694 
 695 
In the empirical computation of deforestation induced N2O emissions, all sub-classes within each land use 696 
type were treated the same. Thus, only the annual transition area from forests to croplands or managed 697 
pasture was needed. In the process-based estimates, the DLEM model was improved to further account for 698 
the classifications of primary forests, secondary forests (further partitioned into established and newly 699 
converted by an age threshold of 15 years), croplands/pastures /rangelands (further partitioned into 700 
established and newly converted by an age threshold of seven nine years). Each land use type can be divided 701 
into several different plant functional types (PFTs). Specifically, within a grid cell, cropland can only be 702 
dominated by only one crop type. The pastures and rangelands can be either C3 type or C4 type. To generate 703 
the historical spatial distribution of PFTs, a potential vegetation map and the accompanied composition 704 
ratio map of each natural PFT acquired from the Synergetic Land Cover Product (SYNMAP) were jointly 705 
used with LUH2 v2h. 706 
 707 
S9.2 Methods 708 
The bookkeeping method was mainly applied to the tropical areas, where forests generally have high N2O 709 
emissions. Specifically, the average tropical forest N2O emission rate of 1.974 kg N2O-N ha-1 yr-1 was 710 
adopted as the baseline. Two logarithmic response curves of soil N2O emissions (normalized to the baseline) 711 
after deforestation were developed:  and . This form of 712 
the response functions can effectively reproduce the short-lived increase in soil N2O emissions after initial 713 
forest clearing and the gradually declining emission rates of converted crops/pastures (Melillo et al., 2001; 714 
Verchot et al., 1999). Using these two curves and the baseline, we kept track of the N2O reduction of tropical 715 
forests and the post-deforestation crop/pasture N2O emissions at an annual timescale. 716 
 717 
There are not many studies on N2O emissions from secondary tropical forests that regrowth after crop or 718 
pasture abandonment. Sullivan et al. (2019) lumped together all forms of N "gas loss" including NO and 719 
N2O for secondary forests across the tropics and the results showed gas loss gradually increases with age 720 
since the regrowth of secondary forest. Keller and Reiners (1994) also reported a gradual recovery of soil 721 
nitrate and soil emissions of N2O and nitric oxide (NO) during 20 years of secondary forest succession, 722 
which however did not return to the level of the primary forests. In this study, using field observations from 723 
Davidson et al. (2007) and Keller and Reiners (1994), we regressed normalized N2O emissions (relative to 724 
a reference mature forest) of secondary tropical forests with their ages as y=0.0084x + 0.2401 (R2 = 0.44; 725 
unit of x is year). The derived y values were multiplied by tropical forest N2O emissions estimated by 726 
NMIP2 models that do not distinguish secondary forests from primary forests. 727 
 728 
The DLEM model was run with varying climate and CO2 with other factors held constant to estimate forest 729 
baseline emissions and unfertilized crop/pasture emissions from 1860-2020. The climate data were acquired 730 
from CRUJRA, which is a fusion of the CRU and JRA reanalysis products at a spatial resolution of 0.5° × 731 
0.5° and a daily time-step. The atmospheric CO2 data were obtained from NOAA GLOBLVIEW-CO2 732 
dataset (https://www.esrl.noaa.gov), which are derived from atmospheric and ice core measurements. In 733 

https://www.esrl.noaa.gov/
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the tropical area, both estimates from the DLEM model and the bookkeeping method were adopted, whereas 734 
in extra-tropical area, we only adopted the DLEM outputs.  735 
 736 
S10 Inland water, estuaries, and coastal vegetation 737 
 738 
S10.1 Dynamic Land Ecosystem Model-Terrestrial/Aquatic Continuum (DLEM-TAC) 739 
To quantify N2O emissions from global inland waters (rivers, lakes, and reservoirs), we use a process-based 740 
coupled terrestrial-aquatic model, which builds up on the Dynamic Land Ecosystem Model (DLEM). 741 
DLEM-TAC is a fully distributed, process-based land surface model which couples the major land 742 
processes (terrestrial hydrology, plant phenology and physiology, soil biogeochemistry) and aquatic 743 
dynamics (lateral transport and in-stream biogeochemistry) (Pan et al., 2021; Tian et al., 2015; Tian et al., 744 
2020b; Yao et al., 2020). The land component of DLEM-TAC explicitly simulates the carbon, nitrogen, 745 
and water fluxes between plants, soil, and atmosphere, and the surface and drainage runoff and nitrogen 746 
load from the land module are used as      input for      the aquatic module. The simulated nitrogen load 747 
includes dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), particulate organic 748 
nitrogen (PON), and runoffs, sewers as the initial condition of the aquatic module. 749 
 750 
DLEM-TAC aquatic module calculated lateral water transport and the associated aquatic biogeochemical 751 
processes by adopting a scale-adaptive scheme. The water transport scheme, which coupled hillslope flow, 752 
subnetwork flow, and main channel flow, simulated the water transport processes within grid cells. In the 753 
aquatic module, lakes and reservoirs were linked with small streams and large rivers, forming a river-lake-754 
reservoir corridor (Wollheim et al., 2008)). Particularly, lakes that are linked to small streams are typically 755 
small in size and are defined as small lakes, while those linked to large rivers are usually had large size and 756 
are defined as large lakes; similarly, reservoirs that are linked to main channels are considered as large 757 
reservoirs, while those that are linked to small streams are considered as small reservoirs. The incoming 758 
flow of a linked river-lake-reservoir corridor drains to lakes first, and the outflow rate of lakes and reservoirs 759 
is determined based on the predefined residence time obtained from the global lake dataset (Lehner et al., 760 
2011; Messager et al., 2016; Yao et al., 2022). The aquatic N module was developed based on the scale 761 
adaptive water transport scheme, including lateral transport, decomposition of organic matter, particle 762 
organic matter deposition, nitrification, and denitrification. The detailed description could be found in the 763 
previous studies (Pan et al., 2021; Tian et al., 2020b; Yao et al., 2020). 764 
 765 
Following our previous work referring to the development of water transport and biogeochemistry, we 766 
developed an inland water N2O module within the aquatic biogeochemical component of the DLEM 767 
framework (Yao et al., 2020). The net fluxes of dissolved N2O (including physical and biogeochemical 768 
processes) in the main channel (high-order streams) and subnetwork (small rivers) are estimated as: 769 
 770 
(∆M_N2O) / ∆t = Fa + Ywater + D – R – E                                                                                                                                          (26) 

where M_N2O is the total mass of dissolved N2O in the main channel or subnetworks (g N), ∆t is the time 771 
step, Fa is advective N2O fluxes (g N d-1), Ywater is the N2O production within the water column (g N d-1), 772 
D is the dissolved N2O from rainfall to rivers (i.e. deposition) (g N d-1) with an initial concentration equal 773 
to the atmospheric equilibrium N2O concentration, R is the flux from N2O reduction (g N d-1) to nitrogen 774 
gas, and E is the riverine N2O efflux (g N d-1) through the air-water interface. 775 
 776 
Input data. The driving data of DLEM-TAC include the climate variables, atmospheric CO2 concentration, 777 
land use change, nitrogen (N) deposition, N fertilizer, and manure application with a spatial resolution of 778 
0.5°× 0.5°. The daily climate variables (precipitation, mean temperature, maximum temperature, minimum 779 
temperature, and shortwave radiation) were obtained from the CRUNCEP dataset (https://vesg.ipsl.upmc.fr) 780 
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for 1901-2019. Climate data of each year during 1850-1900 was randomly sampled from 1901-1920. 781 
Annual atmospheric CO2 concentration from 1900-2019 was obtained from the NOAA GLOBALVIEW-782 
CO2 dataset (https://www.esrl.noaa.gov). The annual land use change data was derived from a potential 783 
natural vegetation map (synergetic land cover product) and a prescribed cropland area dataset from the 784 
history database of the global environment v.3.2 (HYDE 3.2, ftp://ftp.pbl.nl/hyde). The data of N fertilizer, 785 
manure N application, and N deposition data was obtained from (Tian et al., 2022). 786 
 787 
In the aquatic module, the required channel dataset included channel slope, channel width, and channel 788 
length generated from the Hydroshed dataset (Lehner et al., 2008) and DDM30 dataset (Döll and Lehner, 789 
2002). The flow direction and distance data were obtained from the Dominant River Tracing (DRT) dataset. 790 
For modeling water dynamics in lakes and reservoirs, we generated 0.5 grid level surface water area, 791 
upstream area, volume, depth, and average residence time for lakes based on the Hydrolakes dataset 792 
(Messager et al., 2016), while the GRanD database provided the same information for reservoirs (Lehner 793 
et al., 2011). 794 
 795 
Simulation protocol. DLEM-TAC simulations include three steps: equilibrium run, spin-up run and two 796 
transit runs, one with dam operation close, and another one with dam operation open. First, the equilibrium 797 
run is required to obtain the initial and steady condition of carbon, nitrogen, and water pool at the pre-798 
industrial level in each grid cell (Thornton and Rosenbloom, 2005). In this step, we held all the driving 799 
forces such as climate data, atmospheric CO2 concentration, land use data, and nitrogen additions consistent 800 
with the first year’s data we used in the simulation. Second, we conducted a 30-year spin-up run by 801 
randomly selecting climate data within the 1850s (Tian et al., 2012a). This step can alleviate the disturbance 802 
of driving data changes in the transit run. Then we conduct the natural flow simulation with the dam model 803 
temporarily closed, and all the driving forces change over time. After the natural flow simulation, we set 804 
up a management flow simulation with the dam module open, specifically the dam module needs natural 805 
flow in the previous run as model input. 806 
 807 
S10.2 Mechanistic Stochastic Modeling of N2O emissions from large rivers, lakes, reservoirs, and 808 
estuaries:   809 
          810 
To calculate the cascading loads of TN and TP delivered to each water body along the river–reservoir–811 
estuary continuum, we spatially routed all reservoirs from the GRanD database (Lehner et al., 2011), with 812 
river networks from Hydrosheds 15s (Lehner et al., 2008) and, at latitudes above 50°N, Hydro1K 813 
(http://edc.usgs.gov/products/elevation/gtopo30/hydro/), which were in turn connected to estuaries as 814 
represented in the “Worldwide Typology of Nearshore Coastal Systems” of Dürr et al. (2011). In addition, 815 
the global database HydroLAKES (Messager et al., 2016) was used to topologically connect 1.4 million 816 
lakes with a minimum surface area of 0.1 km2 within the river network. Note that besides natural lakes, 817 
HydroLAKES includes updated information on 6,796 reservoirs from the GRanD database, which was used 818 
in the study of Maavara et al. (2019). In order to estimate the TN and TP loads to each water body, we then 819 
relied on a spatially explicit representation of TN and TP mobilization from the watershed into the river 820 
network (see (Maavara et al., 2019) for details (Bouwman et al., 2009; Van Drecht et al., 2009). 821 
 822 
For the estimation of N2O emission, we applied two distinct model configurations, respectively named DS1 823 
and DS2 in Maavara et al. (2019). DS1 estimates N2O emissions from denitrification and nitrification based 824 
on an EF of 0.9%, which is in the mean of published values (Beaulieu et al., 2011), and the assumption that 825 
N2O production equals N2O emissions (Maavara et al., 2019). For DS2, the reduction of N2O to N2 during 826 
denitrification if N2O is not evading sufficiently rapidly from the water body is considered. The fluxes in 827 
the model represent lumped sediment-water column rates and were resolved at the annual timescale. The 828 
use of water residence time as an independent variable in both the mechanistic model and the upscaling 829 
process introduces an important kinetic refinement to existing global N2O emission estimates. Rather than 830 
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applying an average EF (directly scaling N2O emissions to N inputs) to all water bodies, the use of water 831 
residence time explicitly adjusts for the extent of N2O production and emission that is kinetically possible 832 
within the timeframe available in a given water body. Simulated N2O emission rates were evaluated against 833 
UNFCCC measurement-based upscaling methods applied to reservoirs (Deemer et al., 2016) and rivers 834 
(Hu et al., 2016) as well as a UNFCCC observation-driven regional estimate of lake N2O emissions based 835 
on literature data (Lauerwald et al., 2019).      836 
 837 
S10.3 Meta analysis-based N2O emissions from large rivers 838 
Data from 70 published studies between 1998 and 2016 that provided N2O emission from streams and rivers 839 
were compiled by Hu et al. (2016). The N2O emission factors (EF = N2O /DIN) and emission rates (ER = 840 
EF * DIN load, kg N2O-N yr–1) were calculated for each studied river. Exploratory multiple regression 841 
analyses were conducted to predict EF and ER using various combinations of factors (N concentrations, 842 
loads, yields, DOC: DIN, discharge, and watershed area) and different functions. Among them, DIN yield 843 
(kg N yr–1 km–2) was identified as the best predictor of EF and ER. Using the optimal model and DIN loads 844 
for 6400 global rivers calculated by the NEWS2-DIN-S model (McCrackin et al., 2014), we estimated 845 
global riverine N2O emissions (Hu et al., 2016). 846 
 847 
S10.4 Stream and river N2O emissions combining machine-learning and model-based upscaling 848 
Marzadri et al. (2021) developed a novel approach that combines a data-driven Random Forest Machine 849 
Learning (RM-ML) model with a physically-based upscaling model to predict near global (neglecting 850 
Arctic and Antarctic areas) riverine N2O emissions flux (F*N2O given by the ratio between the flux of N2O, 851 
FN2O, and the in-stream flux of dissolved inorganic nitrogen species FDIN) from both surface (i.e. water 852 
column) and subsurface (i.e. benthic zone and hyporheic zone) riverine environments. In particular, to 853 
capture the local scale processes responsible for N2O emissions and to provide estimations at different 854 
spatial scales (from local reach up to the global scale) the model compute two different denitrification 855 
Damköhler numbers (given by the ratio between a characteristics time of transport and a characteristics 856 
time of denitrification (Marzadri et al., 2021; Marzadri et al., 2017)) starting from the hydro-morphological 857 
and biogeochemical information provided by the RM-ML model. Model results at the local reach scale 858 
shows that nearly 50% of the riverine N2O emissions comes from small streams (i.e. widths lower than 10 859 
m, although they represent only the 13% of the total riverine surface area worldwide) while at the large 860 
scale predict a near-global annual riverine N2O emissions around 72.8 GgN2O−N/yr. 861 
 862 
S10.5 Meta-analysis based N2O emissions from estuaries and coastal vegetation 863 
N2O emissions from estuaries and coastal vegetated ecosystems were obtained from a meta-analysis of 864 
observed N2O fluxes (Rosentreter et al., 2023). In brief, the meta-data analysis relies on a categorization of 865 
estuaries into ‘tidal systems and deltas’, ‘lagoons’, and ‘fjords’. Water-air N2O fluxes from 123 estuary 866 
sites globally were then compiled from peer-reviewed publications until the end of 2020. Coastal vegetation 867 
comprises ‘mangrove’, ‘salt marsh’, and ‘seagrass’ ecosystems and N2O sediment-water-air fluxes were 868 
compiled from 55 sites globally from peer-reviewed publications until the end of 2020. A non-parametric 869 
bootstrapping method (1000 iterations of the median of samples) was used to resample N2O fluxes per unit 870 
area for each estuary and coastal vegetation type in each of the 18 regions using the ‘boot’ function in the 871 
package ‘boot’ in R software. Results from the bootstrapping output (minimum, Q1, median, mean, Q3, 872 
maximum) were then scaled to the surface area of each estuary and coastal vegetation type in each of the 873 
18 regions. If an ecosystem type had less than three sites in a region, we applied the global statistics of this 874 
type in this region. Note that the meta-data analysis only provides flux assessments at the scale of the 18 875 
regions.  876 
 877 
S11 Atmospheric inversion models      878 
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Emissions were estimated using four independent atmospheric inversion frameworks (see Table 1). The 879 
frameworks all used a Bayesian inversion method. The approach used here finds the maximum posteriori 880 
(MAP), or optimal, estimate of emissions, that is, those, which when coupled to a model of atmospheric 881 
transport, provide the best agreement to observed N2O mixing ratios while being guided by their prior 882 
probability. In this particular case, where both the likelihood and prior probability are assumed to be 883 
distributed normally, the optimal emissions are equivalent to those that minimize the cost function, 884 
 885 

                                                    (27) 886 
 887 
where x and xb are, respectively, vectors of the multivariate means of the posterior and prior emission 888 
distributions, B is the prior error covariance matrix for emissions, y is a vector of observed N2O mixing 889 
ratios, R is the observation error covariance matrix, and H(x) is the model of atmospheric transport (for 890 
details on the inversion method see (Tarantola, 2005)). The optimal emissions, x, were found by solving 891 
the first order derivative of equation (21): 892 
 893 

                                                                      (28) 894 
 895 
where (H′(x))T is the sensitivity of the atmospheric observations to emissions, derived from an adjoint 896 
model of transport. In frameworks INVICAT, PyVAR-CAMS and GEOS-Chem, equation (5b) was solved 897 
using a variational approach (Thompson et al., 2014; Wells et al., 2015; Wilson et al., 2014), which uses a 898 
descent algorithm and computations involving the forward and adjoint models. In framework MIROC4-899 
ACTM (Patra et al., 2018), equation (22) was solved directly by computing a transport operator, H from 900 
integrations of the forward model, such that Hx is equivalent to H(x), and taking the transpose of H (Patra 901 
et al., 2022). 902 
 903 
Each of the inversion frameworks used a different model of atmospheric transport with different horizontal 904 
and vertical resolutions (see Table 1). The transport models TOMCAT and LMDz5, used in INVICAT and 905 
PyVAR-CAMS respectively, were driven by ECMWF ERA-5 and ERA-Interim wind fields respectively, 906 
MIROC4-ACTM was driven by JRA-55 wind fields, and GEOS-Chem was driven by MERRA-2 wind 907 
fields. While INVICAT, PyVAR-CAMS, and GEOS-Chem optimized the emissions at the spatial 908 
resolution of the transport model, MIROC4-ACTM optimized the error in the emissions aggregated into 84 909 
land and ocean regions. All frameworks optimized the emissions with monthly temporal resolution. The 910 
transport models included an online calculation of the loss of N2O in the stratosphere due to photolysis and 911 
oxidation by O(1D) resulting in mean atmospheric lifetimes of between 118 and 129 years, broadly 912 
consistent with recent independent estimates of the lifetime of 116±9 yr (Prather et al., 2015)). 913 
 914 
All inversions used N2O measurements of discrete air samples from the National Oceanic and Atmospheric 915 
Administration Carbon Cycle Cooperative Global Air Sampling Network (NOAA). In addition, discrete 916 
measurements from the Commonwealth Scientific and Industrial Research Organisation network (CSIRO) 917 
as well as in-situ measurements from the Advanced Global Atmospheric Gases Experiment network 918 
(AGAGE), the NOAA CATS network, and from individual sites operated by University of Edinburgh (UE), 919 
National Institute for Environmental Studies (NIES), the Finnish Meteorological Institute (FMI) and the 920 
Japan Meteorological Agency (JMA) were included in INVICAT, PyVAR-CAMS and GEOS-Chem. 921 
Measurements from networks other than NOAA were corrected to the NOAA calibration scale, NOAA-922 
2006A, using the results of the WMO Round Robin inter-comparison experiment 923 
(https://www.esrl.noaa.gov/gmd/ccgg/wmorr/), where available. For AGAGE and CSIRO, which did not 924 
participate in the WMO Round Robins, the data at sites where NOAA discrete samples are also collected 925 
were used to calculate a linear regression with NOAA data, which was applied to adjust the data to the 926 
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NOAA-2006A scale. For the remaining CSIRO sites where there were no NOAA discrete samples, the 927 
mean regression coefficient and offset from all other CSIRO sites were used. The inversions used the 928 
discrete sample measurements without averaging, and hourly or daily means of the in-situ measurements, 929 
depending on the particular inversion framework. 930 
 931 
Each framework applied its own method for calculating the observation space uncertainty, the square of 932 
which gives the diagonal elements of the observation error covariance matrix R. The observation space 933 
uncertainty accounts for measurement and model representation errors and is equal to the quadratic sum of 934 
these terms. Typical values for the observation space uncertainty were between 0.3 and 0.5 ppb for all 935 
inversion frameworks. 936 
 937 
Prior mean emissions were based on estimates from terrestrial biosphere and ocean biogeochemistry models 938 
as well as from inventories. INVICAT, PyVAR-CAMS and GEOS-Chem used the same prior estimates for 939 
emissions from natural and agricultural soils from the model OCN v1.1 (Zaehle et al., 2011) and for biomass 940 
burning emissions from GFEDv4.1s. For non-soil anthropogenic emissions (namely those from energy, 941 
industry and waste sectors), INVICAT, PyVAR-CAMS, and GEOS-Chem used EDGAR v5. MIROC4-942 
ACTM used the VISIT model (Inatomi et al., 2010; Ito et al., 2018) for emissions from natural soils and 943 
EDGAR 4.2 for all anthropogenic emissions, including agricultural waste burning, but did not explicitly 944 
include a prior estimate for wildfire emissions. 945 
 946 
For the prior mean estimate of ocean fluxes, INVICAT, PyVAR-CAMS and GEOS-Chem used the 947 
prognostic version of the PlankTOM-v10.2 model (Buitenhuis et al., 2018) with a global total source 2.5 948 
TgN yr-1. Prior uncertainties were estimated in all the inversion frameworks for each grid cell (INVICAT, 949 
PyVAR-CAMS and GEOS-Chem) or for each region (MIROC4-ACTM) and the square of these 950 
uncertainties formed the diagonal elements of the prior error covariance matrix B.  INVICAT, PyVAR-951 
CAMS and GEOS-Chem estimated the uncertainty as proportional to the prior value in each grid cell, but 952 
MIROC4-ACTM set the uncertainty uniformly for land regions at 1 Tg N yr-1 and for ocean regions at 0.5 953 
Tg N yr-1. INVICAT also included off-diagonal covariances in B corresponding to a spatial correlation 954 
between flux uncertainties of 500 km and assumed a semi-exponential distribution of uncertainties so as to 955 
restrict the possibility of negative fluxes.      956 
 957 
 958 
S12 Atmospheric N2O Observation Networks 959 
 960 
S12.1 The NOAA Network: 961 
For atmospheric N2O observations from the NOAA network (Dutton et al. 2023), we used global mean 962 
mixing ratios from the NOAA Global Monitoring Laboratory (GML) (combined dataset based on 963 
measurements from five different measurement programs [HATS old flask instrument, HATS current flask 964 
instrument (OTTO), the Carbon Cycle and Greenhouse Gases (CCGG) group Cooperative Global Air 965 
Sampling Network (https://www.esrl.noaa.gov/gmd/ccgg/flask.php), HATS in situ (RITS program), and 966 
HATS in situ (CATS program)]. CCGG provides uncertainties with each measurement (see site files: 967 
ftp://aftp.cmdl.noaa.gov/data/greenhouse_gases/n2o/flask/surface/). The CCGG measurements for N2O 968 
analysis from more than 50 sites globally was changed to tunable infrared laser direct absorption 969 
spectroscopy (TILDAS) in mid-2019 from gas chromatography. About 40 sites of them (mostly Marine 970 
Boundary Layer sites) are used to calculate CCGG monthly mean global N2O levels. Monthly mean 971 
observations from different NOAA measurement programs are statistically combined to create a long-term 972 
NOAA/ESRL GML dataset. Uncertainties (1 sigma) associated with monthly estimates of global mean 973 
N2O, are ~1 ppb from 1977−1987, 0.6 ppb from 1988−1994, 0.3−0.4 ppb from 1995−2000, and 0.1 ppb 974 
from 2001-2017. NOAA data are generally more consistent after 1995, with standard deviations on the 975 
monthly mean mixing ratios at individual sites of ~0.5 ppb from 1995−1998, and 0.1−0.4 ppb after 1998. 976 

ftp://aftp.cmdl.noaa.gov/data/greenhouse_gases/n2o/flask/surface/
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A detailed description of these measurement programs and the method to combine them are available via 977 
https://www.esrl.noaa.gov/gmd/hats/combined/N2O.html. 978 
  979 
S12.2 The AGAGE network: 980 
The Advanced Global Atmospheric Gases Experiment (AGAGE) global network (and its predecessors ALE 981 
and GAGE) (Prinn et al., 2018) has made continuous high-frequency gas chromatographic (GC) 982 
measurements with electronic capture detection (ECD) of N2O at five globally distributed sites since 1978. 983 
Improved GC/ECD methods have been deployed over time resulting in  N2O measurement precision of 984 
about 0.35% in ALE, 0.13% in GAGE (Prinn et al., 1990) and 0.05% in AGAGE (Prinn et al., 2008; 2018). 985 
We used the global mean of AGAGE N2O measurements during 1980−2020 which are reported on the 986 
Scripps Institution of Oceanography SIO-16 scale. Further information on AGAGE stations, instruments, 987 
calibration, uncertainties and access to data is available at the AGAGE Data website: 988 
https://www.osti.gov/dataexplorer/biblio/dataset/1841748. 989 
 990 
S12.3 The CSIRO network:  991 
The CSIRO flask network (Francey et al., 2003) consists of nine sampling sites distributed globally and has 992 
been in operation since 1992. Flask samples are collected approximately every two weeks and shipped back 993 
to CSIRO GASLAB for analysis. Samples were analyzed by gas chromatography with electron capture 994 
detection (GC-ECD). One Shimadzu gas chromatograph labelled “Shimadzu-1” (S1) has been used over 995 
the entire length of the record and the measurement precision for N2O from this instrument is about 0.1%. 996 
N2O data from the CSIRO global flask network are reported on the NOAA-2006A N2O scale and are 997 
archived at the World Data Centre for Greenhouse Gases (WDCGG: https://gaw.kishou.go.jp/). Nine sites 998 
from the CSIRO network were used to calculate the annual global N2O mole fractions. Smooth curve fits 999 
to the N2O data from each of these sites were calculated using the technique outlined in Thoning et al. 1000 
(1989), using a short-term cut-off of 80 days. The smooth curve fit data were then placed on an evenly 1001 
spaced latitude (5 degree) versus time (weekly) grid using the Kriging interpolation technique. Finally, the 1002 
gridded data were used to calculate the global annual values. 1003 
 1004 
Table S3 Factors used to convert N2O in various units (by convention Unit 1=Unit 2 × conversion) 1005 

Unit 1 Unit 2 Conversion 

Tg N2O (teragrams of N2O) Tg N (teragrams of nitrogen) 1.57 

Tg N (teragrams of nitrogen) g N (grams of nitrogen) 10-12 

Tg N (teragrams of nitrogen) ppb (parts per billion) 4.79 

 1006 
Table S4 Atmospheric N2O dry mole fraction measured by different observing networks during 2000-1007 
2022. 1008 

ppb NOAA AGAGE CSIRO Min Max 

2000 315.58 316.18 315.48 315.48 316.18 

2001 316.33 316.95 316.12 316.12 316.95 

2002 316.99 317.54 316.67 316.67 317.54 

2003 317.64 318.26 317.31 317.31 318.26 

2004 318.24 318.99 317.99 317.99 318.99 

https://www.esrl.noaa.gov/gmd/hats/combined/N2O.html
https://www.osti.gov/dataexplorer/biblio/dataset/1841748
https://gaw.kishou.go.jp/
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2005 318.98 319.71 318.83 318.83 319.71 

2006 319.93 320.39 319.58 319.58 320.39 

2007 320.59 321.16 320.34 320.34 321.16 

2008 321.54 322.11 321.45 321.45 322.11 

2009 322.24 322.91 322.22 322.22 322.91 

2010 323.04 323.77 323.08 323.04 323.77 

2011 324.21 324.68 324.09 324.09 324.68 

2012 325.01 325.65 324.99 324.99 325.65 

2013 325.92 326.61 325.89 325.89 326.61 

2014 327.06 327.66 326.93 326.93 327.66 

2015 328.13 328.52 327.99 327.99 328.52 

2016 328.94 329.36 328.77 328.77 329.36 

2017 329.75 330.37 329.68 329.68 330.37 

2018 330.87 331.53 330.90 330.87 331.53 

2019 331.85 332.35 331.66 331.66 332.35 

2020 333.06 333.48 332.70 332.70 333.48 

2021 334.33 334.81 334.03 334.03 334.81 

2022 335.71 336.09 335.57 335.57 336.09 

 1009 
Table S5: Uncertainty in future projections of atmospheric N2O dry mole fraction. 1010 

ppb SSP1-1.9 SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP4-3.4 SSP4-6.0 SSP5-8.5 
Year Min Max Min Max Min Max Min Max Min Max Min Max Min Max 
2020 330.4 331.1 330.4 331.1 331.0 331.6 331.4 332.0 331.2 331.5 331.2 331.4 331.2 331.9 
2030 335.1 336.9 335.5 337.0 337.6 339.6 339.5 342.2 337.5 338.6 338.8 339.6 339.5 341.1 
2040 336.2 341.1 336.8 342.0 343.2 347.3 347.9 353.4 340.5 345.7 346.3 349.2 349.2 350.7 
2050 336.2 344.6 337.8 345.7 348.5 354.3 356.1 364.9 343.3 353.3 353.5 359.2 359.4 361.2 
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