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Highlights
Modern species delimitation is chal-
lenged by past morphological de-
scriptions, a mix of applied species
concepts, missing tools for complex
evolutionary processes and large
multi-approach datasets, and non-
standardized data integration.

The vision is to have less subjective and
standardized species delimitation ap-
proaches based on modern integrative
taxon-omics under a unified species
concept, integrating the discovery of
genetic entities with the fusion of auto-
Although species are central units for biological research, recent findings in geno-
mics are raising awareness that what we call species can be ill-founded entities
due to solely morphology-based, regional species descriptions. This particularly
applies to groups characterized by intricate evolutionary processes such as hybrid-
ization, polyploidy, or asexuality. Here, challenges of current integrative taxonomy
(genetics/genomics + morphology + ecology, etc.) become apparent: different fa-
vored species concepts, lack of universal characters/markers, missing appropriate
analytical tools for intricate evolutionary processes, and highly subjective ranking
and fusion of datasets. Now, integrative taxonomy combined with artificial intelli-
gence under a unified species concept can enable automated feature learning
and data integration, and thus reduce subjectivity in species delimitation. This ap-
proach will likely accelerate revising and unraveling eukaryotic biodiversity.
matically extracted information from
multi-approach data to find natural tax-
onomic units.

Artificial Intelligence (AI) approaches
have been launched to tackle delimi-
tation issues using classification/
clustering methods based on
supervised/unsupervised learning,
although data fusion and problem-
atic and unknown species represent
active fields of research.

AI can help accelerate the revision and
unraveling of eukaryotic biodiversity on
a scale not seen before.
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The species challenge
Globally, >2 million eukaryotic species (see Glossary) have been recognized, comprising
approximately 1 600 000 animals, 420 000 land plants, and 140 000 fungi and protists [1]i.
Estimates even range from 2 million to 1 trillion existing species [2]i, leaving most of Earth’s biodi-
versity to be described, particularly in animals and protists [1–3]. The description of taxa and their rec-
ognition as species is a long-standing debate in evolutionary biology. Scientists have been pondering
about what a species is now for more than 2000 years [4–7]. Species are the basic units we use to
understand evolutionary biology and biodiversity, and the cornerstone of nature conservation
and policy-making [5,8,9]i. However, the assessment of biodiversity has been hampered so far
by intricate evolutionary processes, as well as missing objective and reproducible concepts or
methods.

The diversity of evolutionary processes asks for integrative concepts
Evolution is driven bymutation, gene flow, genetic drift, and natural selection, leading to adaptation
and speciation. However, many eukaryotic groups are characterized by further, partly intricate
evolutionary processes. These processes can overlap and interact, resulting in groups that are
difficult to distinguish both morphologically and genetically, known as taxonomically complex
groups (TCGs) [10]. Intricate evolutionary processes in eukaryotes predominantly comprise
hybridization, polyploidy, and asexuality (other factors reviewed in [11–13]).

Hybridization
Speciation represents a protracted continuum [14], and emerging species are often incompletely
reproductively isolated for several million years, allowing gene flow [15]. Hybridization is thus
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considered a key factor in eukaryotic speciation and diversification [13,16–18]. At least 25% of
vascular plants, but only 10% of animals (including hominids) and only a few percent of fungi are
known to be involved in hybridization events [13,15,19,20]. In plants with a more frequent biparen-
tal organellar inheritance, hybridization is less likely to lead to disruption of nuclear-organellar
coadaptations that are essential for core energy production, resulting in more fertile hybrid
offspring[21–23]. Increased hybrid numbers in plants may also be attributed to less active, restric-
tive mating compared to animals (behavior) or fungi (genetic mating types/loci) [5,13]. In general,
hybridization has multiple potential outcomes, ranging from infertile/inviable offspring, introgression
of adaptive traits, or even extinction of progenitors [18,20–22]. Nevertheless, due to mutation buff-
ering, increased heterozygosity, and hybrid novelty/vigor, hybrids are also able to establish and
persist successfully over evolutionary time scales [13,18,20,24–27]. Hybridization leads to
network-like evolutionary patterns (reticulate evolution), which often violate assumptions of
model-based phylogenetic and species delimitation approaches (Tables 1 and 2).

Polyploidy and asexuality
Modern genomics has revealed episodes of ancient whole-genome duplication that preceded
key innovations in several eukaryotic lineages, especially in flowering plants, all of which share a
polyploid common ancestor [13,28,29]. In recent polyploids, multiple gene copies allow for higher
physiological and phenotypic flexibility in response to environmental conditions [30,31]. For
example, polyploids can better perform in past glaciated areas [25,31–33]. Allopolyploidy
(hybridization + polyploidy) is particularly likely to generate novel genomic and phenotypic
features, and new species can saltatorially emerge in <100–200 years, or few generations
[18,24–26,31,34,35]. Fungi are considered to be largely haploid, and most animals are diploid,
with neopolyploids scattered across fishes or insects [13,36]. Animals usually have sex chromo-
somes [36,37], resulting in distorted chromosome ratios after polyploidization and thus
intersterility/infertility [17,26,38]. In contrast, at least 35% of flowering plants are known to be
neopolyploid [39], the majority of them having no sex chromosomes [17]. In addition, polyploidy in
hermaphroditic plants often leads to self-fertilization and/or asexual reproduction, ensuring reproduc-
tive success [38]. Species delimitation approaches are mainly based on diploid models (Tables 1 and
2), and thus cannot satisfactorily handle high intragenomic variability or complex origins of polyploids.

Asexuality is closely linked to hybridization and/or polyploidy in eukaryotes, and represents
a modification of the sexual pathway [12,26,36,40–42]. Eukaryotes reproduce asexually, for ex-
ample, via unfertilized egg cells (parthenogenesis, animals), clonal seeds (apomixis, plants), or
haploid spores (sporulation, fungi) [43]. In fungi, exclusive asexual reproduction is known for
20% of species [13]. In plants and animals, asexual reproduction occurs in <1% of species,
although asexual species are important in many ecosystems (e.g., soil mites or dandelions). With-
out sex, each individual can evolve to a distinct uniparentally reproducing lineage, form
populations, and might be theoretically considered a species. However, facultative asexuality
allows for a return to sexual recombination, which can result in highly reticulate complexes with
hundreds of morphotypes/taxa [26,43]. In evolutionary time scales, asexuals can be successful
and may re-evolve to a functional diploid, sexual state [16,30,36,44]. Species delimitation
approaches must consequently consider genetic variation, differentiation, and stability of asexual
lineages to properly reconstruct their relationships.

Species concepts
Since Darwin’s and Wallace’s articulation of a theory of evolution, many species concepts have
been controversially discussed for eukaryotic groups [6,13,45,46], leading to different species
delimitation results and thus species per se (Box 1). The confusion surrounding this topic was
recognized by De Queiroz [6], who revolutionized taxonomy by strictly separating the species
2 Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx
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Glossary
Artificial intelligence (AI): technology
that aims to simulate animal/human
intelligence.
Artificial neural network (ANN):
within ML, ANNs are interconnected
neurons organized into input, hidden,
and output layers.
Asexuality: type of reproduction in
which meiotic recombination and
merging of genomes from two parents is
absent, resulting in offspring that are
genetically identical to a single parent.
Bioinformatics: interdisciplinary field
that develops methods and tools for
analyzing large biological datasets.
Convolutional neural network
(CNN): within DL, CNNs represent a
type of neural network that extracts
information through convolutions for
feature learning. Convolutions are
specialized neurons, with a small fixed-
sized receptive filter sliding over an input
tensor (matrix), summing all multiplied
values at every slide position.
Cryptic species: different genetic
lineages showing the same/very similar
morphology.
Deep learning (DL): within ML, DL
represents ANNs with feature learning.
Gene/locus: specific coding/general
region on a DNA strand.
Genomics: study of the structure,
function, and evolution of genomes.
High-throughput sequencing (HTS):
DNA sequencing technologies in a
massively parallelized manner, providing
fast and cost-effective methods.
Hybridization: fusion of previously
diverged genomes.
Machine learning (ML): within AI, ML
aims to recognize patterns in data and
learn from them in order to make
predictions.
Morphospecies: species described
exclusively or predominantly based on
morphological characters.
Multispecies coalescent (MSC):
stochastic processmodel that describes
the genealogical relationships of DNA
sequences (or alleles) sampled from
multiple species.
Polyploidy: presence of more than
two sets of chromosomes in a nucleus,
often referred to as whole-genome
duplication.
Population genetics/-omics and
phylogenetics/-omics: research fields
that study the evolutionary relationships
among groups of populations/
species using genetic/(sub)genomic
data.
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concept from delimitation. Many modern authors agree that species represent distinct genetic
ancestor-descendant lineages, interconnected by populations throughout time and/or space
[6,8,26,47–50]. Previous concepts are now treated as operational criteria, allowing the applica-
tion of De Queiroz’s unified species concept (USC) [6,45,51]. Genetically distinct eukaryotic
lineages characterized by persistence in time and space, with its individuals sharing a common
phenotype, ecological niche, or behavior, would thus be accepted as species. Unlike other
concepts, the USC universally applies to (a)sexual di- and polyploids, and/or hybrids
[8,45,47,52,53]. Nevertheless, past species descriptions, data collection, and bioinformatic
implementations of intricate evolutionary processes remain a persistent challenge for biologists.
Species delimitation has thus been a mixture of several approaches, which are applied until now
and partly in parallel, and which we classify as species delimitation 1.0–4.0 (Figure 1A–D).

Species delimitation 1.0
Traditionally, the most commonly applied delimitation criterion is morphology, which has been occa-
sionally supplemented by other datatypes (Figure 1A; [5,52]). For many morphospecies outside
TCGs, the classification is still valid and could be confirmed bymodernmethods [19,54,55]. However,
there are several challenges when using morphology-based delimitation and also identification.
Morphospecies do not necessarily represent natural evolutionary entities, for example, due to the
high subjectivity of selected diagnostic characters or potentially overinterpreted, (epi)genetically
based plasticity in relation to environmental influences [5,25,52], or because specific morphotypes
can originate multiple times, or underrepresent genome-level diversification (cryptic species)
[24,25,47,48,56–58]. Species diversity may therefore be over- or underestimated (e.g., 5 lineages in-
stead of 12 buttercup morphospecies [47]; 7 lineages instead of 1 beetle morphospecies [56]). In
addition, the existence of cryptic species is likely to underpin a vast underestimation of biodiversity
(e.g., probably >80%of insects are undescribed [2,59]). Different taxonomic treatments also can sub-
stantially impact species numbers of regional floras (e.g., increase by 50–100%, when taxa of a few
large European asexual TCGs are considered as species, [60,61]). All of this is highly problematic for
biodiversity assessment, conservation biology, and ecosystem modeling.

Species delimitation 2.0
Beyond traditional taxonomy, new species concepts proposed between the 1960s and 1990s im-
proved the theoretical background of delimitation (Box 1). Within this period, greater emphasis on ge-
netic data has provided an increasingly reliable view of species evolution [5,46,65]. Approaches relying
on single- or multi-locus datasets [e.g., mtDNA (COI), cpDNA (rbcL, matK), or nuclear sequences
(ITS, microsatellites) [5,13,58]] became the primary approach for reconstructing population genetic
and phylogenetic relationships with bioinformatic tools since the 1990s (Figure 1B). In parallel,
morphological descriptions were enhanced with (geometric) morphometric methods to better define
levels of (dis)similarity; cytological data (chromosome counts) were improved by modern tech-
niques for estimating ploidy and reproductive modes; ecological and behavioral data were
quantified by multivariate statistics to better circumscribe niche separation among species [5].

Approaches have typically been applied in parallel and manually weighted by authors to make
taxonomic decisions, but rarely integrated with reproducible analytical tools (Table 1). Awareness
substantially rose that multiple, complementary datasets are needed to describe or revise species,
and to reduce approach-specific failure rates [24,25,47,51,52,66]. Species delimitation solely based
on genetic data (also including eDNA [59]), as exemplified by the widely applied multispecies
coalescent (MSC) model, tends to infer populations or subspecies as independent evolutionary
lineages and overestimates species numbers [8,67,68]. Morphological criteria also have little
discriminatory power in cases of cryptic diversity. Ecological, chemical, or behavioral criteria often
provide insufficient resolution in groupswith highly overlapping, hybridogenous diversity. Knowledge
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx 3
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Reduced-representation
sequencing (RRS): techniques that
generate a subset of the genome using
either random or targeted approaches:
RAD-Seq/GBS methods use restriction
enzymes and result in genome-wide
SNP datasets; target enrichment (TEG)
methods are based on a collection of
hundreds of nuclear genes selected
from a target reference.
Reticulate evolution: origin of a new
lineage by the (partial) fusion of two or
more ancestral lineages. It represents
evolutionary processes that cannot be
described as bifurcating trees.
SNP: single nucleotide polymorphism.
Specific site that shows base
variation among aligned genetic
sequences.
Species: basic unit of systematic
biology, and the result of the speciation
process. Current research is focused on
finding universal definitions (e.g., the
USC).
(Unified) species concept (USC): a
theoretical concept for defining a spe-
cies, or species in general across all
organism groups.
Species delimitation (1.0-4.0):
process of inferring boundaries among
sampled individuals and determining
whether they belong to different species.
We use numbers 1.0–4.0 to classify
species delimitation developments.
Taxon: rankless taxonomic unit of
organisms.
(Integrative) taxonomy/-omics:
branch of systematics concerned with
the documentation, classification, and
naming of biodiversity. 'Integrative',
when based on multi-approach data,
and 'omics', when (sub)genomic data
are used. Systematics is the study of the
evolutionary history and relationships of
organisms.
Taxonomically complex groups
(TCGs): group of related individuals
characterized by intricate evolutionary
processes that complicate species
delimitation.
Whole genome (re)sequencing
(WGS/WGR): HTS techniques to
sequence entire genomes, either de
novo or using a reference genome.
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about genetics, ploidy levels, morphology, and geography (e.g., isolation by mountains/oceans)
can indicate whether lineages represent reproductively isolated, stable geno- and phenotypes
with specific environmental adaptations. Consequently, integrative taxonomy approaches that
systematically combine genetics with other sources of evidence allow for greater confidence and
less subjectivity in species delimitation [13,25,52,53,66,69].

Species delimitation 3.0
Despite integrative taxonomy, the speciation process still challenges taxonomists in deciding
whether observed entities represent subspecies or species. Increasing knowledge about intricate
evolutionary processes requires highly informative multi-approach datasets evaluated by efficient bio-
informatic tools. Information-rich high-throughput sequencing (HTS) data and new or improved
bioinformatic tools are now available. This astonishing progress has resulted in a plethora of taxo-
nomic descriptions and revisions [47,48,64,70], and has led to a significant increase in awareness
that morphospecies particularly in TCGs often represent ill-founded entities [24,47,48,56,57].
Integrative taxon-omics approaches that innovatively combine taxonomy with 21st century
large-scale -omics and other complementary data sources therefore started to become the new
gold standard for species delimitation in TCGs (Figure 1C) [24,25,53,56,70].

Two main HTS techniques are currently applied: reduced-representation sequencing (RRS)
and to a lesser extent whole genome (re)sequencing (WGS/WGR) [24,26,71]. These (sub)
genomic approaches result in a large number of informative markers that enable us to address
complex evolutionary questions (Table 1), which was not feasible with a more limited number of
loci before. HTS typically provides genetic information from tens to hundreds of thousands
of SNPs, or hundreds of locus/gene sequences [24,71–76]. In delimitation 2.0–3.0 studies,
both SNPs and genes are used to study phylogenetic tree conflicts, which can deliver the first
evidence for reticulate evolution [11,47,50,56,76]. Analyses of SNPs via genetic structure and
network approaches proved to be efficient in detecting interspecific gene flow, post-origin evolu-
tion, and lineage stability, while allelic information from nuclear genes also helps to clarify hybrid
origins and delimitation of a/sexual di- and polyploids under the MSC [19,24,71–73,77,78]. In ad-
dition, HTS often codelivers mitochondrial or plastid (organellar) DNA, which can be helpful in
delimiting species in certain hybridogenous eukaryotic TCGs, as thesemarkers allow us to detect
nuclear–organellar tree conflicts and maternal/paternal or even extinct progenitors [19,24,56,79].

Species delimitation 4.0
The models used so far in taxonomic approaches are based on predefined human model
assumptions simplifying complexity to make biological processes assessable or predictable. For
example, the MSC requires no hybridization, non-saltatory evolutionary rates, and random mating
within species [14,91], which is only the case in tree-like speciation of diploid, sexually reproducing
organisms. For taxonomic treatments, other challenges relate to the ranking of results according to
their importance and dataset disagreement (e.g., genotype–morphotype mismatches due to intri-
cate evolution [25,66]), or the favored species concepts (e.g., USC, BSC, or clustering concepts;
Box 1). The theory for a lineage-species concept and integrative taxonomy is widely accepted
[8,13,25,45,51,64,66], but in practice this still depends on implementability and author preferences
yielding amix of applied species concepts and thus delimitation results. New approacheswould be
highly desirable for standardized data evaluation that is independent of the focal species group,
and for automating the processing of large datasets, including feature extraction, learning, and
data integration (fusion) in feasible time frames.

Combining taxonomy with artificial intelligence (AI) may help delimit species in a less sub-
jective and more integrative and rapid way. The vision is an integrative USC (iUSC) that uses
4 Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx

CellPress logo


Table 1. Genetic datasets evaluated by appropriate bioinformatic tools and supplemented by other data sources, to delimit eukaryotic species based on modern integrative taxonomy
(species delimitation 2.0 and 3.0)a

Genetic dataset Phylogenetic/-omic
analysis

Examples of bioinformatic
tools

Evolutionary processes Can be integrated with Evolutionary
stage

Examples of recent
studies

Genome-wide SNPs
(e.g., from RAD-Seq,
WGS/WGR)

Tree
(tree-like evolution)

Structure
Network
SNP origin
(reticulate evolution)

Astral-III [80],
IQ-Tree2 [81],
RAxML_NG [82]

SNPs:
PhyloNetworks [83],
RADpainter [84],
SNiPloid [85],
sNMF [86], Structure [87]

Genes under MSC:
BPP, iBPP [88,89]
BFD*, DISSECT [90,91]
PhyloNet incl. MPAllopp [92],
Stacey [93]

Evolution of diploids (progenitors),
sexuals, (obligate asexual)
autopolyploids, and detection of
incongruences hinting at
reticulate evolution

For example, SNPs:
interspecific gene flow (introgression),
hybrid origins, hybrid/polyploid
postorigin evolution (e.g., lineage
composition or stability)

For example, genes under MSC:
exact hybrid origins (parental
contributions), and delimitation of
a/sexual di- and
polyploid lineages

Morphology
(all groups)

Biogeography and
distribution
(all groups)

Ecology
(all groups)

Ploidy
(predominantly
plants)

Reproduction and
recombination
(all groups)

Physiology and
chemistry
[predominantly plants
(algae) and fungi]

Early to middle
species
divergence

[19,24,48,56,64,76,94,95]

(Phased) nuclear
genes
(e.g., from TEG,
WGS/WGR) Middle to late

species
divergence

[25,47,48,50,57,94]

Mitochondrial
regions
(e.g., from TEG,
WGS/WGR)

Plastid regions
(e.g., from TEG,
WGS/WGR)

Tree
Network
(verification of
progenitors, further
evidence for
reticulate evolution)

RAxML_NG [82], TCS [96] Detection of extinct species, progenitors, or
lineages

Nuclear-plastid discordance (reticulate
evolution)

Early to late
species
divergence

[19,24,48,56,77,79]

aCited studies usually perform a mix of 2.0 and 3.0 approaches, which is a combination of single-/multi-locus and subgenomic datasets. The bioinformatic tools listed are related to species delimitation in various
ways: only a few approaches are strict delimitation approaches (i.e., assigning individuals into groups/species, such as RADpainter, sNMF, Structure, (i)BPP, BFD*, DISSECT, and Stacey), whereas many others
provide rather indirect evidence for delimitation (e.g., support statistics of tree-building approaches). More bioinformatic tools and recent studies can be found on FigShare upon publication (https://doi.org/
10.6084/m9.figshare.23815407).
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Table 2. Summary of the most popular MSC, and classical and current ML approaches developed for species classificationa–d

Approacha Analytical
frameworkb

Testing datasetsd Approach suitable for? Refs

Diploids/
polyploids

Sexuals/
asexuals

Tree-like/
reticulate
evolution

Data
integration
tested?

e.g., BFD*, BPP,
DISSECT, iBPP,
SPEEDEMON,
Stacey

MSC genetic
(partly simulated, single to
several genes/loci) + partly
morphometric animal datasets

yes/
yes (only
autopolyploid)

yes /
- (only
autopolyploid)

yes /
- (only Stacey)

no (only iBPP,
SPEEDEMON
potentially)

[88–91,93,118]

DELINEATE MSC tree +
PBD

genetic
(simulated)

yes /
-

yes /
-

yes /
yes (only within
the speciation
process)

no [14]

mix of ML
approaches
(unsupervised)

classical ML
(RF, VAE,
t-SNE)

genetic
(up to 1k SNPs) animal dataset

yes /
yes (potentially)

yes /
yes (potentially)

yes /
yes (potentially)

no [55]

CLADES
(supervised)

classical ML
(SVM)c

genetic - subgenomic
(few to hundreds of genes)
animal datasets

yes /
-

yes /
- (potentially if
diploid)

yes /
yes (only within
speciation
process)

no [106]

delimitR
(supervised)

classical ML
(SFS + RF)c

genetic - subgenomic
(up to 20k SNPs) animal
datasets

yes /
-

yes /
- (potentially if
diploid)

yes /
yes (only within
speciation
process)

no [105]

MMNet
(supervised)

DL (CNNs) genetic - subgenomic
(few genes, up to 10k SNPs) +
image datasets with several
animal and a single plant
group/s

yes /
yes (potentially)

yes /
yes (potentially)

yes /
yes (potentially)

yes (fusion) [109]

a
‘Supervised’ or ‘unsupervised’ indicates that the ML classifier is trained with or without labeled species data, respectively.

bAbbreviations: CNNs, convolutional neural networks; DL, deep learning; PBD, protracted birth death model; RF, random forest classifier; SFS + RF, site frequency
spectrum + random forest classifier; SVM, support vector machine; t-SNE, distributed stochastic neighbor embedding; VAE, variational autoencoder.
cAnalytical frameworks: trained classifier based on species evolve (CLADES)/classifier-based model selection (delimitR) under standard diploid population genetic models
(coalescent theory, F-statistics).
dTesting datasets: genetic, species delimitation 2.0; subgenomic, species delimitation 3.0
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AI to integrate the genetic lineage concept with operational criteria and species hypothesis
testing (Figure 1D) within the following steps: (i) examine genetic diversity, stability, and differ-
entiation of lineages (observed as phyla/clusters/discontinuities); (ii) describe the most likely
lineage-species scenarios as hypotheses; (iii) add information from the taxonomically most
important criteria to reduce criterion-dependent failures and clarify the evolutionary role; and
(iv) select the most likely hypothesis as species scenario. All datatypes can be used in AI
systems as long as they are transformable into numeric values (Figure 2A,B) [97], and can be
efficiently supplemented by collection data (e.g., molecular [98], morphological [25], or spectral ploidy
[99]) and information from critically examined online databases for genetics (e.g., NCBI or BOLD),
images (e.g., BOLD, GBIF, iDigBio, or citizen science such as iNaturalist, Flora Incognita, etc.),
ploidy (e.g., Plant DNA C-value Database or ploiDB), or biogeography/ecology (e.g., WorldClim).

Machine learning for biology
Alongside popular applications such as text generation (e.g., ChatGPT), medical diagnostics, or
self-driving cars,machine learning (ML) has gained increasing attention in biological research.
In contrast to previous model-based approaches (e.g., MSC), ML models aim to recognize
patterns in data and learn from them to make predictions [97,101]. Pioneering ML applications
include automated species identification using images or sound, DNA variant calling, or ploidy
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Box 1. Species concepts, limitations, and modern integrative taxonomy

Species delimitation depends on the applied concept, that is, the theoretical framework to define a species. Most con-
cepts agree to treat species as separately evolving metapopulation lineages, but differ in the criteria to define lineage char-
acteristics [6]. More than 30 concepts have been applied to different eukaryotic groups, developed around phenomena
such as reproductive isolation, shared origin (monophyly), morphological/genetic cohesion, or phenotypic similarity, acting
as criteria for delimitation. Consequently, each concept has its limitations, and different criteria to define or delimit species
often deliver contradictory species delimitation results [6,13,45].

For example, the biological species concept (BSC) [4] defines species as reproductively isolated, interbreeding popula-
tions. Sexual reproduction keeps lineages together and separates lineages by successive establishment through selective
pressures for mating compatibility. The BSC lacks suitability when, for example, incomplete crossing barriers exist with
related but morphologically clearly distinct species, or in obligate asexual or self-compatible taxa. Phylogenetic species
concepts (PSCs) [6,46] define species by shared ancestry (monophyly), and can be applied to both sexual and obligate
asexual taxa. However, the PSC cannot be applied, for example, to diploid groupswith recently originated non-monophyletic,
auto- and allopolyploid species [62]. Genetic [63] and morphological/phenetic [6,46] cluster concepts treat distinguishable
clusters without intermediates as species, and are particularly appropriate for TCGs.

Recent species delimitation studies have often used a combination of different criteria for different datasets to delimit a
specific group of interest and to follow an integrative taxonomic approach. For example, genetic-based criteria (e.g., in
PSCs) are well suited for animals and fungi because species become reproductively isolated efficiently or are asexual
leading to tree-like evolutionary patterns, or are only genetically recognizable in the case of cryptic species
[13,46,49,50,56,58]. Particularly in flowering plant groups, a combination of criteria is needed because reproductive
isolation is often incomplete, leading to phenotypically diverse, but macroscopically recognizable species evolving in a
reticulate manner [5,26,45,47,64].

In the past, and still today, species have been described and distinguished primarily on the basis of morphological differ-
ences (species delimitation 1.0). Using modern integrative taxonomic approaches, we know that morphospecies, espe-
cially in TCGs, often lack distinctive genetic, ecological, and even morphological features. They are the main target of
current taxonomic research (species delimitation 2.0/3.0). However, the interpretation of results from multiple approaches
and datasets for final taxonomic treatments remains highly author-dependent, but AI can help to enable less subjective
and more integrative species delimitation (species delimitation 4.0).
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estimation [59,97,99,100]. Recent ML developments predominantly rely on deep learning (DL),
which represents automated feature extraction and learning based on artificial neural net-
works (ANNs) [102]. DL needs no prior expert knowledge, which is particularly advantageous
for delimiting species in TCGs where discriminative features are difficult to identify or taxonomic
expertise is not available. ANNs are inspired by animal brains: the neuron as the basic unit repre-
sents the sum of all inputsmultiplied by their trainable weight and bias factors that is activated by a
nonlinear function (neuron firing), with all neurons organized into multiple, interconnected layers
(Figure 2C) [97,103]. Conceptually speaking, ANNs map an input to the (desired) output based
on different learning and optimization strategies. Species delimitation, treated as a classification
or clustering task, can therefore be performed using features learned from labeled data (super-
vised), unlabeled data using only the inherent structure of the data (unsupervised), or a mix of
both (semi-supervised; Figure 2C) [103,104].

ML for species delimitation
Tools such as (i)BPP, DISSECT, or Stacey [88,89,91,93] are currently the most reliable and trusted
approaches for species delimitation 2.0/3.0, but their applicability suffers from high computational
effort for locus- or species-rich datasets and mentioned biological limitations of the MSC. The first
promising, supervised (e.g., delimitR or CLADES) and unsupervised (e.g., RF or t-SNE) attempts
have been made using predominantly classical ML building on animal genetic data, which were
partly supplemented by phylogenetics andmorphology [55,69,105,106]. However, thesemethods
are often not suitable for integrative taxonomy or TCGs; for example, due to disregard of gene flow,
implementation for few-locus-based, diploid animal genetic data only, and/or lack of strategies for
dataset fusion.
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx 7
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Figure 1. Past to present to future developments in species delimitation approaches, including dataset descriptions and integration. (A) For >2000 years,
people have been describing species mainly based on their morphology (1.0). (B) Since the 1990s, genetic data have started to become the primary source for species
delimitation, including the boosted development of integrative taxonomy and a unified species concept (USC; 2.0). (C) Since the 2010s, genetics turned into genomics,
including the development of sophisticated, multispecies coalescent (MSC)-based bioinformatics and integrative taxon-omics for inferring eukaryotic species
delimitation (3.0). (D) Currently, work is underway to develop machine learning (ML)-based strategies for species delimitation, and in this study, ML-based integrative
taxon-omics under a unified species concept (iUSC) for species delimitation (4.0). Approaches 1.0–4.0 have been used to date (see details in the main text), and their
relative application for species description and delimitation over time is approximately estimated. Images, except for the artificial neural network scheme, are from
pixabay.com (free to use under the Content License).
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ANN architectures such as convolutional neural networks (CNNs) are currently most suitable
for molecular, image, video, or environmental classification tasks [97,100,102,109]. Convolutions
represent specialized neurons, with a small fixed-sized receptive filter sliding over input matrices
[97,102]. CNNs thus enable the extraction of spatially autocorrelated, hierarchical, and subtle
biological patterns with low optimization effort; they efficiently learn the importance of extracted
features via unique character combinations and under intraspecific variation [97,102,107,108].
Other network architectures like recurrent neural networks (RNNs) [102] are applied to sequential
prediction tasks (e.g., DNA base calling or songbird classification) [97,102]. However, with long
inputs, RNNs usually forget initially learned features. Recent transformer networks outperform
specific RNN/CNN tasks [97], but their computational cost grows with input length. RNNs and
transformers (to date) are therefore impractical for large integrative taxonomic datasets. CNNs
have recently been shown to efficiently and accurately integrate genetic and morphological
data to identify closely related, diploid animal species [109]. However, the fusion of large genomic
datasets with other data sources and the ability to analyze unseen species, as is usually the case
in species delimitation, are missing so far. Consequently, new ML approaches need to be devel-
oped for species discovery and delimitation.
8 Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx
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Figure 2. Scheme of ML-based implementation for integrative taxonomy under the USC (iUSC). (A) Step 1: collecting multi-approach datasets. (B) Step 2:
transforming/embedding the data as numeric matrices to use as input for the first ANN layer. (C) Step 3: running the ANN for feature extraction using supervised
learning with labeled training data from integrative taxonomy/-omics results or unsupervised learning without labeled training data (or both, semi-supervised) [97,109],
including data ranking and fusion (first DNA, then merging with other datasets), and final species classification/clustering as output of the last ANN layer. ANNs with
supervised learning are trained by adjusting layer weights and bias factors so that the predicted label matches the expected label (‘ground truth’). This feedback loop is
called backpropagation, which also can be applied in unsupervised ANNs using different optimization strategies [102,103]. Finally, outputs should be validated by
taxonomic experts. As examples, we illustrate datasets of intricate eukaryotic species complexes (cryptic speciation in gentoo penguins or fly agaric complex, and
young speciation in the goldilocks buttercup complex): Pygoscelis papua (gentoo penguins), Ranunculus auricomus (goldilocks buttercup plants), and Amanita
muscaria (fly agaric mushrooms), with taxonomically unrevised/problematic, or unknown species within groups highlighted as question marks. ANNs based on
supervised learning are applicable to datasets with low levels of problematic or unknown species, while ANNs based on unsupervised learning are more suitable for
datasets without reliable species labels. Images of symbols (A) and of species (B, C) from pixabay.com (free to use under the Content License), Ranunculus images
from Kevin Karbstein. Abbreviations: ANN, artificial neural network; iUSC, integrative unified species concept; ML, machine learning.
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In general, a basic ML model would be highly desirable for eukaryotic species delimitation
(Figure 2C). To achieve this along with optimal model accuracy, selecting biological and phyloge-
netically diverse, coarse- to fine-grained (e.g., sampling within different families or family/genus of
the examined group, and TCGs) datasets is highly recommended for learning processes. The
idea is that this pretrained MLmodel ascertains basic ancestor-descendant lineage (evolutionary)
relationships but also biological features of hybridizing, polyploid, or asexual species within TCGs
important for the delimitation process. Via transfer learning [103,110], pretrained ML models can
be used as starting points to fine-tune other supervised ML models or for further unsupervised
delimitation in specific TCGs. Nevertheless, species labels and features not included in training
processes represent an ongoing challenge for ML approaches. In supervised learning, generating
Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx 9
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data-specific learned thresholds for identifying out-of-distribution observations that substan-
tially deviate from trained taxa can be applied, among other techniques, to delimit groups
with low levels of unknown taxa [107,109,111]. Emerging unsupervised ANNs that operate
without potentially biased training labels may be more powerful, less subjective extensions to
existing approaches in discovering unknown species via clusters and gaps (Figure 2C), such
as, similarity learning or deep clustering [112,113]. These approaches do not necessarily
need intensive (phylo)genomic work and taxonomically revised treatments before running the
model.

In addition, ranking of datasets and timing of data fusion are also critical for reliable ML ap-
proaches, and represent active fields of research. Data fusion is known to improve model
accuracy, and is especially relevant for species groups characterized by high intraspecific var-
iation but low interspecific differentiation [109,111]. To follow an iUSC, genomic data should be
evaluated first, and the most likely species scenarios can then be fused with other datasets
(e.g., genomics, genomics + morphology, genomics + morphology + ecology) (Figure 2C).
As this process is highly complex, future ML delimitation approaches particularly need to
focus on incremental weighting and ranking of genomic data with further multi-approach
data for reliable species delimitation. To quantify uncertainty of ML findings, specific scores
(e.g., accuracy score) and confusion matrices (e.g., predicted vs. true species labels) for
supervised learning [107,111], or bootstrap sampling with replacement for unsupervised
learning (or similar techniques) can be applied [104]. To identify highly important features
for the ML classification or clustering process (e.g., specific DNA or image regions), and to
recognize similar or hitherto taxonomically unrecognized features, explainable AI approaches
such as Grad-CAM [114,117] are increasingly available and can be supported by multivariate
statistics based on feature correlation with previous phylogenomic, morphometric, or
ecological results.

However, the quality of ML-model predictions strongly relates to the quality of provided datasets.
Although ML models continuously improve due to richer datasets and more efficient ML archi-
tectures, there are still some pitfalls. For example, training an ML model with a few DNA
sequences that happen to be duplicates or that do not capture species variability can lead to
overfitting or loss of separability between closely related species. Rare species entries or strict
dataset filtering also often result in uneven or generally low sample sizes, negatively impacting
model performance. Statistically meaningful training, validation, and testing of ML models
require at least a few samples each (>5–10 samples/species recommended, depending on
intraspecific variation and species number [109,115]), which has often not been the case in taxo-
nomic studies. Another problem relates to artificial gaps or false overlaps in DNA alignments or
images with different colors or backgrounds leading to spurious features being recognized by
the ML model [115,116].

There are some optimization strategies to handle dataset bias (e.g., training with taxonomically
revised species groups, or loci selection), uneven sample size (e.g., data augmentation techniques),
or dataset noise (e.g., standardized image backgrounds or DNA alignment workflows)
[97,109,115], but these issues cannot be eliminated entirely. Moreover, there is probably no univer-
sal approach that could perform optimally for all given species delimitation tasks (‘no-free lunch’
theorem, [103]), and thus no one-size-fits-all solution. For example, new delimitation approaches
based on unsupervisedMLmodels may suffer frommissing biological theory or information con-
tent, and semi-supervised ML models trained with highly accurate integrative taxonomic data
could outperform them in scenarios with low levels of unknown species. In addition, the learn-
ing process of ML models is still a ‘black box’ for human observers. Although new explainable
10 Trends in Ecology & Evolution, Month 2023, Vol. xx, No. xx

CellPress logo


Outstanding questions
Will ML approaches be able to delimit
lineages/species, or just classes of
objects? Will they be able to reliably
integrate different datasets? Is there a
universal ML approach, or will ap-
proaches always need training for spe-
cific groups? Can ML flexibilize model
assumptions of current (phylo)genomic
approaches mainly developed for tree-
like evolving diploids? Who should
judge ML results? First ML approaches
allow for less subjective, integrative
species delimitation. Research should
focus on dataset fusion, the combina-
tion of ML with current phylogenomics,
and a deeper understanding of the
ML decision-making process. Current
ML results must be judged by trained
taxonomists.

How often do past descriptions overlap
with modern classifications? What
impact do revised treatments have on
local, regional, and global assessments
of biodiversity? Can we infer species
objectively as natural entities, or will
there always be subjectivity? Species
are the cornerstone of biodiversity
research. To define species as naturally
as possible, and to confidentially
differentiate them from subspecies,
varieties, or forms (which can be treated
as infraspecific taxa before more
research is done), an iUSC should be
universally applied in research, including
peer-reviewed, open-access publication
of taxonomic treatments.

Howcan the collection ofmulti-approach
data be simplified, automatized, and
made less expensive? Can we
automatically revise a substantial
number of species? Many eukaryotic
groups have not yet been studied using
even simple genetic approaches. This
is mainly due to a lack of resources,
specifically in developing countries
where most of the present biodiversity
is found. The current rate of biodiversity
loss urges us to simplify lab workflows
with universal methods, and to
automatize data collection from online
databases to accelerate species revision
and naming. Yet unknown lineages are
likely to be discovered by AI.
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AI (XAI) approaches are emerging to visualize and detect biological features learned by the ML
model [117], previous delimitation results from integrative taxonomy are needed, as well as ex-
perienced taxonomists to control and validate ML-based species classification or clustering, and
to find biological explanations in the background of group-related evolutionary and ecological
hypotheses.

Concluding remarks
Several unresolved tasks remain (see Outstanding questions). Taxonomic workflows are still
challenging due to missing integrative tools to support decisions as to whether lineages repre-
sent populations, subspecies, or species. High sampling effort for multi-approach datasets,
bioinformatic skills, and the cost of DNA sequencing and laboratory equipment are particularly
problematic for traditional alpha-taxonomists, the number of which is steadily decreasing, with
a concomitant global decline in taxonomic expertise. A new generation of biodiversity scientists
should be trained to combine expertise in methods from species delimitation 1.0–4.0, to meet
the need of documenting species in a world of declining biodiversity. Increased standardiza-
tion, automatization, and public support will be required for this task. We also need widely
accepted integrative ways of dealing with a unified species concept (e.g., iUSC) to (re)define
species as objectively and naturally as possible for biodiversity research. This should be
followed by rapid automatic integration into biodiversity databases. Now is the time for
evolutionary biologists to face current challenges in taxonomy, for example, resolving hundreds
of synonyms or doubtful names per described species, or covering the need of naming the
global biodiversity.

Integrative taxonomy based on ML may help to delimit species less subjectively as well as
more reliably and rapidly than traditional methods do and, may therefore help to revise and
unravel the eukaryotic diversity on a global scale. Basic ML networks pave the way for
broader applicability across eukaryotes and act as a starting point for delimitation at lower
taxonomic levels. Because no single universal genetic marker for species delimitation
among all eukaryotes exists, multigenomic (genomic, nuclear, and organellar) data will be
needed and should be combined with nonmolecular data. It is not clear yet how machines
will best tackle species delimitation (semi-/supervised vs. unsupervised learning), handle dis-
agreement among datasets, or rank and fuse data. However, these approaches are under
current development and require further research.
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