日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細


公開

学術論文

Valleytronics in bulk MoS2 with a topologic optical field

MPS-Authors
/persons/resource/persons201171

Russell,  Philip
Russell Emeritus Group, Emeritus Groups, Max Planck Institute for the Science of Light, Max Planck Society;

/persons/resource/persons201209

Tani,  Francesco
Tani Research Group, Research Groups, Max Planck Institute for the Science of Light, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
フルテキスト (公開)
公開されているフルテキストはありません
付随資料 (公開)
There is no public supplementary material available
引用

Tyulnev, I., Jiménez-Galán, Á., Poborska, J., Vamos, L., Russell, P., Tani, F., Smirnova, O., Ivanov, M., Silva, R. E. F., & Biegert, J. (2024). Valleytronics in bulk MoS2 with a topologic optical field. Nature, 628, 746-751. doi:10.1038/s41586-024-07156-y.


引用: https://hdl.handle.net/21.11116/0000-000F-697D-0
要旨
The valley degree of freedom of electrons in materials promises routes towards energy-efficient information storage with enticing prospects for quantum information processing. Current challenges in utilizing valley polarization are symmetry conditions that require monolayer structures or specific material engineering non-resonant optical control to avoid energy dissipation and the ability to switch valley polarization at optical speed. We demonstrate all-optical and non-resonant control over valley polarization using bulk MoS2, a centrosymmetric material without Berry curvature at the valleys. Our universal method utilizes spin angular momentum-shaped trefoil optical control pulses to switch the material’s electronic topology and induce valley polarization by transiently breaking time and space inversion symmetry through a simple phase rotation. We confirm valley polarization through the transient generation of the second harmonic of a non-collinear optical probe pulse, depending on the trefoil phase rotation. The investigation shows that direct optical control over the valley degree of freedom is not limited to monolayer structures. Indeed, such control is possible for systems with an arbitrary number of layers and for bulk materials. Non-resonant valley control is universal and, at optical speeds, unlocks the possibility of engineering efficient multimaterial valleytronic devices operating on quantum coherent timescales.