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Abstract Soil moisture flash droughts often pose significant challenges to humans and ecosystems, with
wide‐ranging socioeconomic consequences. However, the underlying mechanisms of flash droughts and their
changes remain unquantified. Taking China as a case study, we present a novel framework that combines
machine learning with interpretable and cluster techniques to investigate flash drought mechanisms from 1980
to 2018. We first quantified the temporal contribution of drivers and further identified different mechanisms
during drought onsets. We subsequently investigated the temporal changes in different mechanisms and
classified drought event types. We identified four driving mechanism types triggering drought: Concurrent
precipitation, Antecedent‐concurrent precipitation, Antecedent temperature‐concurrent precipitation, and
Antecedent transpiration‐concurrent precipitation. The total effects from vegetation transpiration contributed to
around 50% of the impacts for mechanisms involving antecedent transpiration and concurrent precipitation,
highlighting the non‐neglectable role of vegetation water consumption in drought occurrences. Remarkably,
about 60% of flash drought onsets exhibited close association with the antecedent anomalies, which contribute
approximately 50% of overall effects, emphasizing the importance of the cumulative effects of drivers.
Moreover, driving mechanisms associated with temperature and transpiration increased significantly over time,
implying an elevated influence of these factors on droughts. Our classification of drought events reveals that
nearly 70% of events were driven by at least two mechanisms, underscoring a complex time‐varying pattern of
driving factors during drought events. The proposed holistic framework not only sheds insight into the
multifaceted mechanisms driving flash droughts within China but also extends its potential applicability to
broader geographical contexts.

1. Introduction
Drought is a recurring natural disaster that poses significant risks to water resources, agriculture, and socio‐
economics (Kuwayama et al., 2019; J. Li et al., 2023; Stanke et al., 2013; van Dijk et al., 2013; Veijalainen
et al., 2019; Yuan et al., 2023). Mounting evidence suggests a potential increase in drought's frequency, duration,
and severity and a shift in inherent characteristics across the globe in the 21st century (Cook et al., 2020; T. Wang
et al., 2021). Drought is traditionally regarded as a slow and long‐lasting phenomenon (J. Li, Wang, Wu, Chen,
et al., 2020; Wilhite et al., 2007). However, in the context of global warming, soil moisture can evolve rapidly
during short‐term periods (i.e., days and weeks) and are termed “flash droughts” (Otkin et al., 2018; Svoboda
et al., 2002). Soil moisture flash droughts have attracted a great deal of attention from the scientific community
and stakeholders (Lisonbee et al., 2021) due to their devastating impact on agricultural production (Boyer
et al., 2013), fire potential (L. Wang & Yuan, 2018), inland navigation (Grigg, 2014), ecosystem health (Xi &
Yuan, 2022), and economic development (Basara et al., 2019). Therefore, understanding the dynamics and
mechanism of soil moisture flash droughts is crucial for developing effective mitigation and adaptation strategies
in the face of changing climate conditions.

Recently, there has been a surge in investigations into the mechanism of flash droughts. Mo and Lettenma-
ier (2015) introduced a classification of flash droughts into two types, that is, heat wave and precipitation deficit
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types, and suggested that heat wave droughts were associated with elevated evapotranspiration (ET) due to high
temperature (Tem), while precipitation deficit droughts were related to precipitation (Prec) and ET reduction.
However, such a definition overlooked the rapidly evolving nature of flash drought. Subsequently, L. Wang and
Yuan (2018) highlighted the swift intensification of droughts and investigated the potential drought drivers by
analyzing anomalies in relevant drivers (i.e., Tem, Prec, and ET) during both the antecedent and onset phases of
droughts. Mukherjee and Mishra (2022) employed similar methods to investigate the driving factors of flash
drought, uncovering a lagged impact of Prec changes on the evolution of such events. However, the investigation
with meteorological anomalies potentially neglects the quantitative relationships between the drivers and
droughts (Q. Zhu & Wang, 2021).

Several methods, including multiple linear regression (Noguera et al., 2022; L. Wang et al., 2016), logistic
regression (Ford & Labosier, 2017), and water balance equation (Koster et al., 2019), have been proposed to
quantify the impact of flash drought drivers. In these studies, flash droughts have been categorized based on
concurrent meteorological anomalies, such as those driven by simultaneous high‐Tem or concurrent Prec deficits
(L. Wang & Yuan, 2018). Some studies that consider antecedent meteorological conditions have not systemat-
ically quantified the individual contributions of different variables to specific events (Ford & Labosier, 2017).
Nevertheless, the cumulative effect of drivers (i.e., how both antecedent and concurrent climatic conditions
contribute to the flash droughts onset), as well as the time‐varying interplay between drivers and the whole events
(i.e., the number of distinct driver types identified in connection with a flash drought), remain unclear. Therefore,
the development of a novel framework to quantitatively explore the cumulative effect of drivers and their tem-
poral pattern within an event becomes imperative, facilitating a more profound understanding of the flash drought
mechanism.

Moreover, the relationship between vegetation activities and droughts, especially flash drought, has been
frequently investigated (Ahmad et al., 2022; L. Chen et al., 2021; Guo et al., 2023; Otkin et al., 2016; Piao
et al., 2020; Xi & Yuan, 2022; M. Zhang et al., 2022). Recent studies have underscored that flash drought oc-
currences could be indeed associated with vegetation activities (S. Li & Sawada, 2022; W. Li et al., 2022). For
example, an increase in global greening can result in elevated transpiration, exacerbating the depletion of soil
moisture (L. Chen et al., 2021; M. Zhang et al., 2022). Guo et al. (2023) found that the enhanced transpiration
anomalies have contributed to the intensification of soil moisture drought in China. Under climate change, the
contribution of vegetation transpiration to the reduction of soil moisture is projected to amplify (M. Li
et al., 2022). Overall, these studies suggest the important role of vegetation water consumption in the occurrence
and development of flash drought (L. Chen et al., 2021; M. Zhang et al., 2022). The consideration of transpiration
thus becomes imperative when dissecting the specific attributions of drought events (Song et al., 2020).

In recent years, the utilization of machine learning (ML) within the realm of earth and hydrology science has
witnessed a notable surge, driven by its capability to process massive data sets and untangle complicated relations
between drivers and response factors (Karpatne et al., 2019; Reichstein et al., 2019). However, the complex
network structure and huge parameter space in certain ML algorithms, such as deep learning, have posed chal-
lenges in comprehending the underlying mechanics (Jiang et al., 2022; Mamalakis et al., 2022; Roscher
et al., 2020). In this case, eXplainable Artificial Intelligence (XAI) recently has become a topic of intense
research, driven by the pressing need for humans to unravel the complex mechanisms and rationales (Linardatos
et al., 2020; Samek &Müller, 2019). It has demonstrated its ability to obtain novel knowledge in several research
areas related to earth and hydrological science, including climate patterns (Toms et al., 2020), flood forecasting
(Ding et al., 2020), ecosystem effects (M. Li et al., 2022; W. Li et al., 2022), flooding mechanism (Jiang
et al., 2022), and long‐lasting drought mechanism investigation (Dikshit & Pradhan, 2021a, 2021b). These studies
illustrate that XAI holds the potential to uncover the cumulative effects and time‐varying patterns of divers on
dependent variables. Hence, it is imperative to employ this cutting‐edge technique to gain insights into the im-
plicit linear or non‐linear interplay between the potential drivers and soil moisture flash droughts, thereby
advancing our understanding of the mechanisms behind flash droughts.

This study introduces a novel framework aimed at investigating the mechanism of soil moisture flash droughts
and the spatial‐temporal changes in their mechanisms, employing XAI. More precisely, we first trained long
short‐term memory (LSTM) to predict soil moisture using key potential drivers (i.e., Prec, Tem, and Tran).
Subsequently, the trained LSTM models were seamlessly integrated with an interpretation algorithm (expected
gradients (EG)) to create XAI models. These XAI models were then employed to assess the temporal
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contributions (the values of EG sequences) of individual inputs to soil moisture flash droughts. Building upon
this, we incorporate cluster analysis to categorize diverse types of flash drought onset and quantitatively discern
the potential impacts of associated factors. We finally analyzed the spatial and temporal change for different types
of events associated with different mechanisms. Overall, this study contributes to the understanding of mecha-
nisms behind flash drought and extends the state‐of‐the‐art XAI application within the realm of hydrology. Our
framework possesses the potential for generalization and application to the analysis of various other extreme
events, such as floods and heat waves, across different spatial scales.

2. Data and Methods
2.1. Data and Study Area

In this study, eastern China was taken as a case study (Figure 1a). This region was deliberately selected due to its
recurrent instances of flash droughts (L. Wang et al., 2016; L. Zhang et al., 2021), with projections indicating an
escalating risk of such events in the future (Yuan et al., 2019). This contextual backdrop offered a highly suitable
backdrop for our analytical pursuits. For training XAI models, the study area was further divided into 23 sub‐areas
according to their aridity type and geographic attributes (Figure 1b), which were obtained from the Resources and
Environmental Sciences Data Center, Chinese Academy of Sciences (http://www.resdc.cn). The detailed infor-
mation on the sub‐areas can be seen in Table S1 in Supporting Information S1.

In this study, the daily root‐zone soil moisture and Tran from 1980 to 2018 was acquired from Global Land
Evaporation Amsterdam Model (GLEAM) with a spatial resolution of 0.25° × 0.25° (Martens et al., 2017;
Miralles et al., 2011) and was resampled to a 0.5° resolution with bilinear interpolation. The Tran and soil
moisture data have been extensively employed in drought analysis, consistently demonstrating their reliability in
drought monitoring (J. Li, Wang, Wu, Xu, et al., 2020; J. Li et al., 2022; Poppe Terán et al., 2023; Uribe &
Dukes, 2021). Daily meteorological data sets from 1980 to 2018, including precipitation, mean air temperature,
relative humidity (RH), and wind speed (WS), were collected from 2,278 observational stations managed by the
China Meteorological Administration (http://data.cma.cn/) across China (Figure 1a). The data sets were inter-
polated to 0.5° × 0.5° spatial resolution by using the inverse distance weighting method to match the spatial scale
of the soil moisture data set. All the aforementioned data sets were converted to pentad (5‐day) mean time series to
match the timescale of flash drought identification.

2.2. Overall XAI Framework for Flash Drought Driving Factors Attribution

The general framework of XAI‐based flash drought driving factors quantitative attribution encompasses the
following main steps, as illustrated in Figure 2.

Figure 1. (a) Geographical locations of the study area and meteorological stations. (b) The 23 sub‐areas employed in this study. The numbers in (b) represent the ID for
each sub‐area, corresponding to the first column in Table S1 in Supporting Information S1.
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Step I establishes a nonlinear predictive relationship between the potential drivers and soil moisture with LSTM
models. Notably, precipitation deficit and elevated temperature have been recurrently linked to flash drought
occurrences (Mo & Lettenmaier, 2015; L. Wang & Yuan, 2018). Moreover, recent studies underscore the po-
tential role of anomalous vegetation water consumption, typified by heightened transpiration, in flash drought
occurrence (L. Chen et al., 2021; M. Zhang et al., 2022). Other variables, such as evapotranspiration, evaporation,
and vapor‐pressure deficit (VPD), have a certain impact on soil moisture flash droughts (P. Li et al., 2024; Mahto
& Mishra, 2023). Evapotranspiration consists of transpiration from plants and evaporation from soil, open water
surfaces, and canopy‐intercepted water (Wei et al., 2017). However, transpiration constitutes a major proportion
(approximately 60%) in evapotranspiration (Lian et al., 2018; Niu et al., 2019). Additionally, air temperature has a
substantial effect on evaporation (Kalma et al., 2008), which makes up a fraction of evapotranspiration. Since
temperature and transpiration have been considered as potential flash drought drivers, we exclude evapotrans-
piration and evaporation as potential drivers. In addition, VPD is a comprehensive index that incorporates RH and
temperature (Mahto & Mishra, 2023), and can show a high correlation with temperature. Therefore, VPD is also
excluded as a potential driver, and we established LSTM models for all sub‐areas with Prec, Tem, and Tran as
input variables, and soil moisture as output variables.

Figure 2. Flow chart of the flash drought mechanism identification based on eXplainable Artificial Intelligence.
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Step II couples the trained LSTM models with an XAI technique, termed EG (Erion et al., 2021), to quantify the
temporal contribution of input variables in predicting soil moisture. With the EG method, we can acquire the
quantitative impact of potential drivers (Prec, Tem, and Tran) on soil moisture depletion at different time steps.
We here identified soil moisture flash drought events following the method proposed by Yuan et al. (2019) based
on its widespread utilization and good performance for identifying soil moisture flash drought in recent years (Xi
& Yuan, 2023; Yuan et al., 2023; M. Zhang et al., 2022; Y. Zhang et al., 2021). First, to represent soil moisture
changes, soil moisture data was converted into percentiles throughout the same pentads for each year during
1980–2018. Second, when the soil moisture percentile decreases from above the 40th percentile to below the 20th
percentile, with a decline rate of no less than 5% percentile for each pentad, an onset of a flash drought event is
determined. Finally, a flash drought event terminates when soil moisture percentile rises up to the 20th percentile,
or the length of the flash drought event reaches 12 pentads (Christian et al., 2019; J. Li, Wang, Wu, Chen,
et al., 2020). We note that the maximum duration of a flash drought event was set at 12 pentads (60 days) to
distinguish the long‐lasting drought. If a detected flash drought event lasts longer than 12 pentads, we will focus
on the initial 12 pentads to analyze the drivers of flash drought onset. We then applied the EG method to quantify
the contribution of input variables for each time step within flash droughts.

Step III analyzes the contribution of input variables with EG calculated in Step II. We aggregated each EG
sequence into a low‐dimensional contribution vector according to their time period. Subsequently, we employed
cluster analysis to categorize these contribution vectors into distinct groupings to identify different mechanisms of
flash drought onsets. We further investigated the spatio‐temporal changes in each category. Moreover, we also
classified different types of flash drought according to the categories they contained to gain insight into the
mechanisms of flash droughts across the study area.

2.3. Long Short‐Term Memory

Long short‐term memory (Hochreiter & Schmidhuber, 1997) is an improved form of recurrent neural network
(RNN), which is designed to overcome the problems of gradient vanishing of traditional RNN and capable of
learning long‐term dependencies (Fu et al., 2016; Kratzert et al., 2018). The input of each LSTM cell consists of xt
which is the input vector of the current time step, ht− 1 which is the output of the LSTM cell at the previous time
step, and Ct− 1 which is the cell state of the LSTM cell at the previous time step. The output of each LSTM cell
consists of ht which is the output of the LSTM cell at the current time step and Ct which is the cell state of the
LSTM cell at the current time step. Each LSTM cell contains three gates: forget gate ft, input gate it, and output
gate ot. The forget gate decides how much of the previous cell state needs to be forgotten. The input gate decides
the new information that would be added to the current cell state Ct. The output gate determines the retention
degree of the cell state to ht in the current time step. C̃t is the new candidate values calculated from xt and ht− 1. The
relations mentioned above can be described as follows:

ft = σ(Wf · [ht− 1,xt] + bf ) (1)

it = σ(Wi · [ht− 1,xt] + bi) (2)

C̃t = tanh(WC · [ht− 1,xt] + bC) (3)

Ct = ft ∗Ct− 1 + it ∗ C̃t (4)

ot = σ(Wo · [ht− 1,xt] + bo) (5)

ht = ot ∗ tanh(Ct) (6)

where σ denotes the sigmoid function, ∗ denotes the element‐wise multiplication, tanh is hyperbolic tangent
function,Wf,Wi,WC, andWo denote the matrices of weights from the forget gate, input gate, cell state, and output
gate respectively, bf, bi, bC, and bo denote the bias parameters associated with forget gate, input gate, cell state and
output gate respectively.

In this study, the input layer of LSTMs includes Prec, Tem, and Tran of the current pentad and the antecedent 17
pentads (i.e., [XPrec

− 17 ,X
Prec
− 16 ,X

Prec
− 15 , ...,X

Prec
− 1 ,XPrec

0 ; XTem
− 17 ,X

Tem
− 16 ,X

Tem
− 15 , ...,X

Tem
− 1 ,XTem

0 ; XTran
− 17 ,X

Tran
− 16 ,X

Tran
− 15 , ...,X

Tran
− 1 ,XTran

0 ] ;

Water Resources Research 10.1029/2023WR036297

FENG ET AL. 5 of 20

 19447973, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036297 by M

PI 322 C
hem

ical E
cology, W

iley O
nline L

ibrary on [13/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



in which the subscript “0” represents the current pentad; the subscript “− n” stands for n pentads before the current
pentad; the ellipsis represents the time steps ranging from the − 14 to the − 2 pentads). The output layer produces
the soil moisture of the current pentad (i.e., [y0]). The selection of 18 time steps has been thoughtfully considered
to encompass the sub‐seasonal‐to‐seasonal timeframes (spanning weeks to months) relevant to flash drought
events (Pendergrass et al., 2020). The choice is also informed by prior studies suggesting that meteorological
conditions several months preceding the onset of flash droughts could wield an influence on events (L. G. Chen
et al., 2019). To mitigate the inherent stochasticity associated with ML model training, we employed a strategy
involving the training of three distinct and independent LSTMmodels for each individual sub‐area. The data set in
each sub‐region was split into a training set and a validation set in a 7‐to‐3 proportion. The training and validation
sets were established through a random selection process, while we note that the selected time periods were
consistent for every grid within a given sub‐area, maintaining spatial and temporal independence of training and
validation data sets. The Nash‐Sutcliffe coefficient of Efficiency (NSE) (Nash & Sutcliffe, 1970), the Kling‐
Gupta Efficiency (KGE) (Gupta et al., 2009; Kling, 2012), the Normalized Mean Absolute Error (nMAE), the
Normalized Root Mean Square Error (nRMSE), and Percent bias (PBIAS) were applied to evaluate the predictive
performance of the validation set for each sub‐area.

2.4. Interpretation Method and Cluster Analysis

In this study, we employed a ML interpretation method termed EG, which was developed by Erion et al. (2021).
EG was improved from another XAI method, namely Integrated Gradients (IG) (Sundararajan et al., 2017). The
IG for the ith input feature calculates an integrated gradient that aggregates local gradients over a simplified
straight‐line path (γ(α) = x′ + α(x − x′), and α ∈ [0,1]) from the baseline input x′ (α = 0) to the target input x
(α = 1), and can be described as:

ΦIG
i ( f ,x,x′) = ( xi − x′i) ×∫

1

α=0

∂f(x′ + α(x − x′))

∂xi
dα (7)

The target input refers to a specific data point for which the model's prediction is required for explanation. The
baseline input serves as a reference point for comparing against the target input when calculating feature con-
tributions. At baseline input, the network is assumed to predict nothing (Jiang et al., 2022). ∂f(x′ + α(x − x′))/∂xi
denotes the local gradient of the network f at a point interpolated between the baseline input x′ and target input x.

The EG method was developed to overcome the problem of selection of baseline input x′ in IG method (Jiang
et al., 2022), which is expressed as:

ΦEG
i ( f ,x,x′) =∫

x′

⎛

⎜
⎜
⎝(xi − x′) ×∫

1

α=0

∂f (x′ + α( x − x′))

∂xi
dα

⎞

⎟
⎟
⎠ pD( x′) dx′ (8)

The EG method assumes that the baseline input x′ follows an underlying distribution from sampling the training
data set (x′ ∈ D), and pD stands for its density function. Directly integrating over the distribution of training data
set is difficult. Therefore, the two integrals involved in Equation 8 can be regarded as expectations (Erion
et al., 2021) and Equation 8 can be reformulated as:

ΦEG
i ( f ,x) = Ex′∼D,α∼U(0,1)

⎡

⎢
⎢
⎣(xi − xi′) ×

∂f ( x′ + α( x − x′))

∂xi′

⎤

⎥
⎥
⎦ (9)

In Equation 9, U(0,1) denotes the uniform distribution between 0 and 1. In the calculation of EG, we first draw
sample x′ from the training data set and draw α from the uniform distribution U(0,1). Next, we compute the value
inside the expectation for each sample, followed by averaging the computed values over all samples (Erion
et al., 2021). Overall, ΦEG

i ( f ,x) denotes the EG score for the input feature x (which is Prec, Tem or Tran in this
case) at the ith time step. A positive or negative value of ΦEG

i ( f ,x) indicates that the feature x at the ith time step

Water Resources Research 10.1029/2023WR036297

FENG ET AL. 6 of 20

 19447973, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
036297 by M

PI 322 C
hem

ical E
cology, W

iley O
nline L

ibrary on [13/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



increase or decrease the output (which is soil moisture in this case). A larger absolute value indicates a more
significant impact.

In this study, we performed the calculation of EG with the Shapley Additive exPlanations (SHAP) package
(Lundberg & Lee, 2017). We first identified flash drought pentads (Yuan et al., 2019). Based on data sets from
1980 to 2018, we calculated EG values to quantify the influence of drivers (Prec, Tem, and Tran) on soil moisture
anomaly in all identified flash drought pentads. Flash drought events in 1980 were not considered due to the
possible unavailability of the drivers at the preceding 17 pentads. Each EG sequence has the same dimensions as
the input variables (i.e., [ϕPrec

− 17 ,ϕ
Prec
− 16 , ...,ϕ

Prec
0 ; ϕTem

− 17 ,ϕ
Tem
− 16 , ...,ϕ

Tem
0 ;ϕTran

− 17 ,ϕ
Tran
− 16 , ...,ϕ

Tran
0 ]). The three sequences for

each flash drought pentad were averaged into one sequence

(i.e., [ϕPrec
− 17 ,ϕ

Prec
− 16 , ...,ϕ

Prec
0 ; ϕTem

− 17 ,ϕ
Tem
− 16 , ...,ϕ

Tem
0 ; ϕTran

− 17 ,ϕ
Tran
− 16 , ...,ϕ

Tran
0 ] ).

In order to reduce subjectivity and uncertainty in the classification of contribution sequences, we applied cluster
analysis to group the contribution sequences into several categories. To avoid the heavy computational burden of
multi‐dimensional time series clustering while retaining feature importance information, we aggregated each
ensemble EG sequence into a low‐dimensional contribution vector with only six elements

[∑ϕPrec
A ,∑ϕPrec

C ,∑ϕTem
A ,∑ϕTem

C ,∑ϕTran
A ,∑ϕTran

C ], where∑ϕ·A and∑ϕ·C represent the sum of contribution

of a variable during the antecedent and concurrent periods, respectively. The output of explainable LSTMmodels
can be deconstructed into the sum of individual contributions from features (Lundberg & Lee, 2017). In this study,
the concurrent periods are defined as the pentads during a flash drought event, and the antecedent periods are
defined as the pentads before the onset of a flash drought event. The LSTM's input layer incorporates potential
drivers (Prec, Tem, and Tran) for the current pentad and the preceding 17 pentads. Consequently, the length of an
EG sequence for each driver at a certain pentad spans 18 pentads. Given the maximum duration of flash drought
events is 12 pentads in this study, some of the 18 pentads in an EG sequence fall within the antecedent period
(preceding flash drought onset), while the rest pertain to the concurrent period (during the flash drought event).
For example, the low‐dimensional contribution vector calculated from the EG sequence of the third pentad during

a flash drought event should be [ ∑
− 3

− 17
ϕPrec,∑

0

− 2
ϕPrec, ∑

− 3

− 17
ϕTem,∑

0

− 2
ϕTem, ∑

− 3

− 17
ϕTran,∑

0

− 2
ϕTran

] . We next applied the K‐

means method to cluster the aggregated feature contribution vectors into groups with similar patterns to obtain an
overall picture from the individual results for drought periods from all sub‐areas (Forgy, 1965). We applied the
silhouette score (Rousseeuw, 1987) to determine the optimal number of clusters for the K‐means algorithm.
Silhouette score ranges from − 1 to 1, with a higher value usually indicating a better cluster number choice. After
the optimal cluster number is determined, the EG values corresponding to the variables within each cluster will be
transformed into normalized contributions, expressed as percentages.

Moreover, the mean frequency, duration, severity, and intensity of flash drought events were calculated for each
grid cell to characterize flash droughts across the study area. The mean frequency is defined as the average
number of flash drought events per year, and the mean duration is the average number of days for which an event
lasts. The mean severity is defined as the mean accumulated soil moisture percentile deficit from the threshold of
40%, and the intensity is the average of the largest soil moisture percentile deficit (J. Li et al., 2021).

2.5. Event‐Level Analysis

To enhance our understanding of the mechanism of flash drought events, we categorized each drought event based
on the groups of contribution vectors present within each event. Precisely, within a flash drought event, if a single
cluster of contribution vectors constitutes more than 75% of the overall count, it assumes a dominant role in
shaping the event. In scenarios where the largest group represents less than 75%, we assess the proportional shares
of the two or three most significant groups. If their combined proportion exceeds 75%, they will dominate the
event. Alternatively, if none of the above conditions are met, the event will be classified as a mixed mechanism.
Recognizing that the proposed threshold of 75% was determined subjectively, we also conducted two different
thresholds (i.e., 60% and 85%) and obtained similar results.
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3. Results and Discussion
3.1. Model Predictive Performance and Characteristics of Flash
Drought Events

The NSE metric to assess LSTM models is shown in Figure 3. The NSE
values ranged from 0.68 to 0.94 across all sub‐regions, and their area‐
weighted value reached 0.84. These results indicate that LSTM models per-
formed accurately for the prediction of soil moisture. In addition, the results
of KGE, nMAE, nRMSE, and PBIAS all indicated satisfactory results (Figure
S1 in Supporting Information S1). Overall, the LSTM constructed in this
study is deemed reliable in establishing predictive relationships and further
obtaining meaningful information from the established models (Linardatos
et al., 2020; Murdoch et al., 2019).

The average frequency, duration, severity, and intensity are shown in
Figure 4. Overall, flash drought events occurred more frequently in the south
region than in the north region of east China (Figure 4a), while the duration of
flash drought events in the north region was generally longer than that of
events in the south region (Figure 4b). A generally higher severity and lower
intensity in the north region were detected (Figures 4c and 4d), which is
consistent with findings in the previous studies (L. Wang et al., 2016; Yuan
et al., 2019).

We conducted further analysis to examine the seasonal patterns of the average
frequency, duration, severity, and intensity of flash droughts (Figure S2 in
Supporting Information S1). Generally, most events occurred during summer,
followed by autumn and spring (Figures S2a–S2c in Supporting Informa-

tion S1), but few events were detected in winter (Figure S2d in Supporting Information S1). Flash droughts in the
northern part of east China were predominantly observed in summer, whereas in the southern part, they occurred
not only in summer but also in spring and autumn. In addition, the duration of autumn droughts was longer than
that of droughts in spring and summer in southern China (Figures S2e–S2g in Supporting Information S1).
Moreover, we found that severity in southern China was higher in summer and autumn than in spring (Figures
S2i–S2l in Supporting Information S1), while the intensity did not exhibit significant seasonal patterns (Figures
S2m–S2p in Supporting Information S1).

3.2. The Relationship Between Drivers and EG Values

Using the established explainable LSTM models, we calculated the EG contribution sequences of the potential
drivers. To distinguish the contributions of drivers during antecedent and concurrent periods, the high dimension
of EG sequences was converted into low‐dimensional vectors. We then applied the K‐means clustering algorithm
to identify different types of drought mechanisms. The silhouette scores and relevant analysis (Figure S3 in
Supporting Information S1) suggest that the optimal cluster number is four.

We here investigated the relationships between the potential drivers and their respective EG values, which
represent the temporal impact of these drivers on soil moisture. Notably, antecedent Prec, antecedent Tem,
antecedent Tran, and concurrent Prec exhibited non‐linear relationships with their associated EG values
(Figures 5a, 5b, and 5d). Given that EG values can shed insight into both linear and non‐linear effects of drivers on
soil moisture, these observed relationships indicate a complex interplay between flash drought drivers and soil
moisture (S. Li et al., 2016; Sehler et al., 2019). Specifically, the curves depicted in Figures 5a and 5d reveal that a
reduction in EG non‐linearly corresponds to a decrease in antecedent or concurrent precipitation. The reduced rate
of EG appears to be less than that of precipitation, suggesting that under dry soil, the sensitivity of soil moisture
reduction to decreased precipitation could diminish (B. Zhu et al., 2020). Additionally, an increase in percentiles
of antecedent temperature is associated with a decline in EG, and the decline rate of EG increases when antecedent
Tem is higher (Figure 5b). This implies that under higher antecedent temperature conditions, the sensitivity of soil
moisture reduction to increased temperature intensifies. These findings of non‐linearity also suggest that
exploring flash drought mechanisms solely through the lens of superficial driver anomalies may experience

Figure 3. Nash‐Sutcliffe coefficient of Efficiency values for the validation
sets averaged over the three independent long short‐termmemory models for
each sub‐area.
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challenges. To gain a deeper insight into the complex dynamics of flash drought mechanisms, XAI could be a
beneficial tool (Tyagi et al., 2022).

3.3. Mechanisms of Flash Drought Onset and Their Patterns

Subsequently, we investigated the spatial and temporal patterns observed from the identified clusters. Figure 6
shows the temporal patterns of the identified four clusters alongside their spatial patterns. Cluster 1 (hereafter
referred to as the “Concurrent Prec type”), accounts for 36.8% of total drought pentads, indicating that a con-
current rainfall deficit was the most prominent contributor to drought onset. Within this cluster, precipitation
deficit contributed to approximately 50% of drought onset (Figure 6a). Furthermore, it is noteworthy that con-
current high transpiration played a significant role, contributing to approximately 20% of the drought's onset
(Figure 6a). The analyses of spatial patterns revealed that concurrent Prec type predominantly manifested in
southern China (Figures 6c and 7), characterized by prevailing subtropical and humid climatic conditions (Table
S1 in Supporting Information S1).

The Antecedent‐concurrent Prec type (Cluster 2), comprises 24.2% of all drought pentads, indicating that the
primary factor driving drought is deficits in both antecedent and concurrent precipitation. Precipitation anomalies
during these periods contributed significantly to the onset of drought, with approximately 35% attributed to the
antecedent period and 30% to the concurrent period. Clusters 1 and 2 suggest that a precipitation shortage can
induce soil moisture depletion in a short period (Mo & Lettenmaier, 2016). Additionally, antecedent transpiration
and temperature showed approximately non‐negligible effects, accounting for about 15% and 10% of the overall
contribution, respectively (Figure 6b). Cluster 3 (denoting Antecedent Tem‐concurrent Prec type), constituting
19.6% of all drought pentads, underscored the significance of antecedent high temperature and concurrent rainfall

Figure 4. The spatial pattern of the characteristics of flash droughts from 1980 to 2018. Average (a) frequency (unit: times per
year), (b) duration (unit: pentad), (c) severity, and (d) intensity of flash drought events. Note: Both severity and intensity are
dimensionless.
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deficit. The identification of this mechanism indicates that a high temperature anomaly can swiftly deplete soil
moisture, triggering a flash drought, in line with prior studies (Mo & Lettenmaier, 2015; M. Wang et al., 2023).
These factors contribute substantially, with roughly 35% and 30% of effects, respectively (Figure 6e).
Antecedent‐concurrent Prec type predominantly occurred in the southwest and central part of the study region and
scattered in northeastern regions, while the Antecedent Tem‐concurrent Prec type is primarily observed in
northeastern China (Figures 6d and 6g). These regions, except for the central area, are characterized by humid
climatic conditions (Figure S5a, Table S1 in Supporting Information S1). The results suggest that the antecedent
effects of drivers (specifically, precipitation deficit and high temperature anomaly) play an essential role in flash
drought occurrences, particularly in humid regions.

Interestingly, the Antecedent Tran‐concurrent Prec type (Cluster 4), accounting for 19.4% of total drought
pentads, exhibited a complex temporal pattern. Specifically, antecedent transpiration and concurrent rainfall
deficit served as significant contributors to flash drought occurrences, accounting for approximately 35% and 30%
of the onset, respectively. Furthermore, concurrent high transpiration also showed indispensable effects,
contributing roughly 15% to drought onset (Figure 6f). This mechanism identification suggests that enhanced
transpiration, coupled with precipitation deficit, can rapidly deplete soil moisture in the context of climate change
(M. Li et al., 2022). Antecedent Tran‐concurrent Prec type primarily occurred in northern and northeastern China
(Figures 6h and 7), characterized by a predominantly semi‐humid climate (Figure S5a in Supporting Informa-
tion S1). The Cluster 4 highlights the impact of vegetation water consumption, which is revealed to be the
dominant mechanism of flash drought in certain regions (M. Li et al., 2022).

Overall, the combined proportion of Cluster 1 and Cluster 2 exceeds 60% and the two clusters show primary
contributions of antecedent and concurrent rainfall deficit. In line with previous studies (Koster et al., 2019; Mo&
Lettenmaier, 2016), the results highlighted the pivotal role of rainfall deficit in flash drought development. A
majority of flash drought onsets (Clusters 2–4), amounting to 63.23% of the total pentads, are closely associated
with antecedent conditions. This underscores the complex cumulative effects of factors driving flash drought. In
addition, the proportions of Clusters 2–4 are higher in the summer than in autumn (Figures S5c and S5d in
Supporting Information S1), indicating that the antecedent impact of drivers on flash drought is prone to be found
in humid seasons (Q. Zhu & Wang, 2021). Moreover, Clusters 2 and 3 dominate the humid regions in

Figure 5. Smoothed scatter plots between the percentile values (%) of drivers and their corresponding expected gradients values across the study region. The solid lines
are fitted by the spline function.
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southwestern and northeastern China. These findings indicate that in humid regions and seasons, elevated soil
moisture levels require an extended duration of antecedent precipitation deficits, high temperature anomalies, or
high transpiration anomalies for flash drought onset (Q. Zhu & Wang, 2021). Additionally, Cluster 4, which
denotes the importance of antecedent transpiration for flash drought occurrence, was mainly found in semi‐humid
climate zones. L. Chen et al. (2021) have found a possible association between vegetation water consumption and
flash drought occurrences in arid or semi‐arid regions. In regions with lower precipitation, latent heat flux is more
prone to enhance due to an increased leaf area coverage, consequently leading to diminished soil moisture (L.
Chen et al., 2021; Forzieri et al., 2018; Williams & Torn, 2015). Therefore, in those semi‐humid regions of
northern China, vegetation water consumption plays a more important role in flash drought occurrences.

Figure 6. The four types of contribution vectors identified by cluster analysis, presented as normalized contributions: (a) the
Concurrent Prec type, (b) the Antecedent‐concurrent Prec type, (e) the Antecedent Tem‐concurrent Prec type, and (f) the
Antecedent Tran‐concurrent Prec type. The spatial pattern of proportions of four identified mechanisms: (c) Concurrent Prec
type, (d) Antecedent‐concurrent Prec type, (g) Antecedent Tem‐concurrent Prec type and (h) Antecedent Tran‐concurrent
Prec type. Note: “A” and “C” on the horizontal axes represent antecedent and concurrent periods, respectively.
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In addition, to analyze the impact of flash drought detection method on our results, we conducted two additional
experiments using methodologies proposed by Ford and Labosier (2017) and Qing et al. (2022), yielding
generally similar results (Figures S6 and S7 in Supporting Information S1). However, while strong effects of
transpiration were also found in Cluster 4, its contribution was outweighed by concurrent and antecedent pre-
cipitation, respectively (Figures S6f and S7f in Supporting Information S1). This inconsistency between methods
might be due to the different responses of soil moisture changes to vegetation water consumption. Therefore,
enhancing the observation of transpiration during droughts and reducing uncertainty in transpiration data is
crucial to improving the robustness of studies related to vegetation water uptake (Coenders‐Gerrits et al., 2014).
Moreover, we also analyze the impacts of input variables on the identified clusters by conducting experiments
using Prec, maximum temperature (Tmax), Tran, WS, and RH, resulting in generally consistent outcomes (Figure
S8 in Supporting Information S1). Notably, the contribution of Tmax closely aligns with the contribution of mean
temperature (Figure S8e in Supporting Information S1 and Figure 6e). RH exhibits minor contributions in Cluster
3 and 4, while the contribution ofWS is minimal (Figures S8e and S8f in Supporting Information S1). The limited
influence of RH and WS may be due to their indirect effects on soil moisture through processes like evaporation
and transpiration (Davarzani et al., 2014; Thut, 1938). Overall, the outcomes from the supplementary experiments
affirm the robustness of both the flash drought identification method and variable selection employed in this
study.

3.4. Spatio‐Temporal Evolution of Mechanisms of Flash Drought Onset

To further investigate changes in the driving factors of flash droughts, we conducted a trend analysis for the four
types of driving mechanisms (Figure 8a). We first calculated the annual proportions of the four identified flash
drought mechanisms across the whole study region during 1980–2018. Then, the temporal evolution of the
proportions of four drought mechanisms was investigated with the Theil‐Sen estimator (Sen, 1968; Theil, 1992).

Figure 7. The dominant flash drought mechanism in study area. The dominant clusters were determined based on the cluster
with the largest proportion within each grid cell. In instances where multiple clusters exhibited the largest proportion, a grid
cell was deemed to be influenced by a mixture of mechanisms.
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The results unveiled statistically significant declining trends (P < 0.05) for the Antecedent‐concurrent Prec type
and a non‐significant declining trend for the Concurrent Prec type, suggesting a diminishing role of rainfall in
flash drought onset (Figure 8a). Correspondingly, both antecedent and concurrent Prec exhibit an increase
(Figures 8b and 8c). This suggests that an increase in precipitation across the study area may contribute to a
reduced impact of rainfall deficit on flash drought occurrence (Liu et al., 2015; Sun & Ao, 2013).

Conversely, along with a significant increase of temperature and a non‐significant increase of precipitation during
the antecedent period of droughts (Figure 8b), the Antecedent Tem‐concurrent Prec type exhibited a significant
increasing trend (Figure 8a). These results are consistent with previous studies (Noguera et al., 2022; Shah
et al., 2022), implying an escalating influence of antecedent high temperature in fostering the occurrence of flash
droughts under global warming (Christian et al., 2023). Furthermore, in conjunction with the sustained increase in
positive transpiration anomalies (Figures 8b and 8c), the Antecedent Tran‐concurrent Prec type exhibited an
intensified trend (Figure 8a). This trend implies a potential amplification of vegetation water consumption's role
in influencing the occurrence of flash droughts (Guo et al., 2023). These results imply a growing influence of
antecedent conditions, particularly antecedent temperature and transpiration (Shah et al., 2023).

Subsequently, we analyzed the spatial patterns of trends for each identified cluster with a 15‐year moving window
(Figure 9). The findings indicate a substantial decreasing trend in both the Concurrent Prec type and the
Antecedent‐concurrent Prec type across the predominant part of the study area, particularly in southern China
(Figure 9a). This aligns with the noteworthy increase in precipitation observed in the southern region (Q. Zhang
et al., 2011). In contrast, Antecedent Tem‐concurrent Prec exhibited widespread increased trends respectively
across study regions (Figures 9b and 9c). These shifts suggest that the occurrence of flash droughts solely driven
by concurrent Prec deficit could be diminishing under climate change, while the influence of antecedent con-
ditions on flash drought onset could become increasingly important across northern China (M. Zhang et al., 2022).
Moreover, the Antecedent Tran‐concurrent Prec type exhibited a complex spatial pattern, characterized by a
substantial upward trend in most of the southeastern and northeastern regions, which predominantly comprise
humid areas (Figure 9d). In contrast, it showed a significant decreasing trend in northern and northwestern re-
gions, which are primarily semi‐humid regions. The result suggests an escalating role of vegetation water con-
sumption in shaping soil moisture flash drought onset in humid areas, aligning with the study of Guo et al. (2023).

Figure 8. (a) Temporal evolution of four identified drought mechanisms across the whole study regions. Dashed lines represent trend slopes calculated using Theil‐Sen
estimator. (b) Trends in mean percentiles of potential flash drought drivers during antecedent periods, as calculated with Theil‐Sen estimator. Panel (c) Same as panel
(b), but for drivers during concurrent periods. Asterisks in (b) and (c) denote drivers with significant trends (P< 0.05). In panels (b, c), we first transformed the values of
drivers (Prec, Tem, and Tran) into percentiles to maintain consistency with the format of soil moisture data. Then, we computed the mean values of each driver during
the antecedent and concurrent periods of flash drought events. Subsequently, we performed trend analysis using the Theil‐Sen estimator to ascertain the trends of the
drivers and assess the significance of these trends.
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Additionally, we performed similar analyses using 10‐year and 20‐year
moving windows, yielding similar results (Figure S9 in Supporting Infor-
mation S1). Taken together, our analyses imply a potentially escalated in-
fluence of high temperature and vegetation water consumption on flash
drought onsets, paralleled by an increasing significance of antecedent con-
ditions. The temporal analysis provides valuable insights into the dynamic
nature of flash drought mechanisms, thereby enhancing our understanding of
their evolving impact on flash drought occurrences.

3.5. Classification of Flash Drought Events

To gain more insights into the underlying mechanisms shaping an individual
flash drought event, a categorization of various types of flash drought events
was conducted in this section. We first calculated the proportions of different
types of mechanisms within the pentads in each flash drought event. Subse-
quently, the preeminent types of mechanisms served as the basis for classi-
fying each specific flash drought event. Figure 10 illustrates the proportions
of identified flash drought event types. Upon employing the relatively low
threshold (60%) for classification, the results revealed that the top four event
types with the largest proportion were predominantly driven by one main
mechanism (Figure 10b). However, upon implementing higher thresholds
(i.e., 75% and 85%) for the classification, the results indicated that several of
the major event types were linked with a convergence of multiple mecha-
nisms (Figures 10a–10c). Moreover, in comparison to the results obtained
with the 60% threshold, the classifications generated using the two higher
thresholds exhibited greater stability. These classifications revealed the
intricate time‐varying pattern of flash drought events associated with multiple
mechanisms.

We next used the results based on the 75% threshold for further investigation
(Figure 10a). All events can be classified into 15 distinct categories, and roughly 70% of the events are driven by
at least two mechanisms, underscoring the multifaced nature of flash drought event drivers. Notably, the majority
of events were associated with the Antecedent‐concurrent Prec type (Cluster 2), the Antecedent Tem‐concurrent
Prec type (Cluster 3), or the Antecedent Tran‐concurrent Prec type (Cluster 4). This emphasizes the pronounced
influence of antecedent conditions in shaping the dynamics of flash drought occurrences (Shah et al., 2023). In
addition, some flash drought events were only driven by the Concurrent Prec type (Cluster 1), indicating the
crucial role of concurrent Prec deficit in flash drought occurrences (Koster et al., 2019).

We also analyzed the spatial patterns of the identified types of drought event mechanisms. Figure 11 shows the
nine most prevalent types, and the remaining types are presented in Figure S10 in Supporting Information S1. The
results showed that the spatial distribution of events driven by a single mechanism (Figures 11d–11g) exhibited
similar patterns to those shown in Figures 6a–6d. Additionally, events driven by multiple mechanisms showed
clear spatial patterns. Specifically, flash drought events linked to the Antecedent‐concurrent Prec type and the
Antecedent‐concurrent Prec type were predominantly prevalent in southwestern China (Figure 11a). Meanwhile,
events related to the Concurrent Prec type and Antecedent Tem‐concurrent Prec type were mainly observed in
northeastern China (Figure 11b). Furthermore, events associated with the Concurrent Prec type and Antecedent
Tran‐concurrent Prec type were dominant in the central part of the study region (Figure 11c). Overall, these results
suggest more diverse mechanisms for flash drought events in these regions. This circumstance could potentially
pose greater challenges in terms of prediction and mitigation efforts for flash drought events (Shah et al., 2022; M.
Zhang et al., 2022). Consequently, heightened attention may be warranted for these specific regions.

In summary, we presented a comprehensive classification of flash drought events and examined their spatial
patterns by analyzing the composition of mechanisms within the individual events. We overall identified 15
different types of flash drought events, and a majority of them (about 70%) were driven by multiple drivers,
underscoring the complex time‐varying patterns of flash drought events.

Figure 9. The spatial pattern of trends associated with different mechanisms
(unit: percent per year). (a) Concurrent Prec type, (b) Antecedent‐concurrent
Prec type, (c) Antecedent Tem‐concurrent Prec type and (d) Antecedent
Tran‐concurrent Prec type. The trends were calculated with a 15‐year
moving window. Only the grid cells with significant trend (P < 0.05) were
plotted.
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4. Conclusion
To enhance our understanding of the driving mechanisms of flash droughts and their changes for effective drought
management and adaptation strategies, this study introduces a novel framework to investigate the mechanisms of
flash droughts and their changes in eastern China by using the cutting‐edge explainable artificial intelligence
approach.

The results of the study reveal that (a) the Concurrent Prec type is the most prevalent type (accounting for 36.8%
of all pentads), mainly occurring in southern China. (b) 19.4% of drought onsets were linked to the Antecedent
Tran‐concurrent Prec type, which prevails in semi‐humid regions, underscoring the non‐neglectable contribution
of vegetation water consumption to flash droughts. (c) 63.23% of drought onsets exhibited close association with
the antecedent conditions, with the antecedent anomalies contributing approximately 50% of overall effects,
which highlights the importance of the cumulative effects of drivers in flash drought occurrences. (d) The sub-
sequent trend analyses showed that the driving mechanisms associated with the anomalies in temperature and
transpiration displayed an obvious increase, paralleled by an increasing significance of antecedent conditions.
Such results imply a potentially escalated influence of high temperature and vegetation water consumption on
flash drought onsets. (e) The classification of flash drought events based on the different types of driving
mechanisms indicates that all flash drought events in the study region can be classified into 15 types and around
70% of flash drought events were driven by at least two types of driving mechanisms, indicating a complex time‐
varying pattern of driving factors during flash drought events.

In summary, this study contributes to the scientific understanding of the underlying mechanisms driving flash
droughts and provides valuable insights for drought management and water resource planning in China. More-
over, this study presents a comprehensive framework that not only facilitates the exploration and interpretation of

Figure 10. Venn diagrams that show the percentages and total counts of flash drought event types associated with different mechanisms based on the (a) 75%, (b) 60%,
and (c) 85% threshold. The intersections of the Venn diagrams indicate the proportions of these flash drought events driven by multiple identified mechanisms. Note:
Flash drought events classified as mixed mechanism are not shown in this figure due to their scarcity.
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the multifaceted mechanisms of flash droughts within China but also potentially extends its relevance to broader
geographical contexts.

Data Availability Statement
The soil moisture and transpiration datasets from the Global Land Evaporation Amsterdam Model are publicly
available from Martens et al. (2017) and Miralles et al. (2011), and the specific download link is https://www.
gleam.eu/; the precipitation, mean air temperature, relative humidity, and wind speed data sets are obtained from
the China Meteorological Administration, which is described in J. Li et al. (2021) and can be downloaded from
https://data.cma.cn/data/detail/dataCode/A.0012.0001.S011.html.

The establishment of the LSTM models was performed using TensorFlow (Abadi et al., 2015) and Keras
(Chollet, 2015), and the interpretability analysis was performed using SHAP (Lundberg & Lee, 2017). Software
for this research is available in GitHub (TensorFlow: https://github.com/tensorflow/tensorflow; Keras: https://
github.com/keras‐team/keras; SHAP: https://github.com/shap/shap).

Figure 11. The percentage of spatial patterns corresponding to the top nine types of flash drought events associated with
different mechanisms. Events driven by (a) the Concurrent Prec type and the Antecedent‐concurrent Prec type, (b) the
Concurrent Prec type and the Antecedent Tem‐concurrent Prec type, (c) the Concurrent Prec type and the Antecedent Tran‐
concurrent Prec type, (d) the Antecedent‐concurrent Prec type, (e) the Concurrent Prec type, (f) the Antecedent Tem‐
concurrent Prec type, (g) the Antecedent Tran‐concurrent Prec type, (h) the Antecedent‐concurrent Prec type and the
Antecedent Tran‐concurrent Prec type, and (i) the Antecedent‐concurrent Prec type and the Antecedent Tem‐concurrent Prec
type.
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