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ABSTRACT

We consider the problem of computing distributed logical con-

trollers for two interacting system components via a novel sound

and complete contract-based synthesis framework. Based on a dis-

crete abstraction of component interactions as a two-player game

over a finite graph and specifications for both components given as

𝜔-regular (e.g. LTL) properties over this graph, we co-synthesize

contract and controller candidates locally for each component and

propose a negotiation mechanism which iteratively refines these

candidates until a solution to the given distributed synthesis prob-

lem is found. Our framework relies on the recently introduced

concept of permissive templates which collect an infinite number

of controller candidates in a concise data structure. We utilize the

efficient computability, adaptability and compositionality of such

templates to obtain an efficient, yet sound and complete negotiation

framework for contract-based distributed logical control. We show-

case the superior performance of our approach by comparing our

prototype tool CoSMo to the state-of-the-art tool on a robot motion

planning benchmark suite.
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1 INTRODUCTION

Games on graphs provide an effective way to formalize synthesis

problems in the context of correct-by-construction cyber-physical

systems (CPS) design. A prime example are algorithms to synthesize

control software that ensures the satisfaction of logical specifications
under the presence of an external environment, which e.g., causes

changed task assignments, transient operating conditions, or un-

avoidable interactions with other system components. The resulting

logical control software typically forms a higher layer of the control

software stack. The details of the underlying physical dynamics

and actuation are then abstracted away into the structure of the

game graph utilized for synthesis.
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Algorithmically, the outlined control design procedure via games-

on-graphs utilizes reactive synthesis, a well understood and highly

automated design flow originating from the formal methods com-

munity rooted in computer science. The strength of reactive synthe-

sis in logical control design is its ability to provide strong correct-

ness guarantees by treating the environment as fully adversarial.

While this view is useful if a single controller is designed for a

system which needs to obey the specification in an unknown envi-

ronment, it does not excel at synthesizing distributed and interacting
logical control software. While controllers for multiple interacting

systems can be obtained using existing centralized synthesis tech-

niques, it requires sharing the specifications of all the systems with

a central entity. Towards increasing privacy, a decentralized com-

putation of the controllers is preferred, to avoid centrally handling

the specifications and strategy choices of the subsystems. In the

multi-system setting, each component acts as the “environment”

for the other ones and controllers for components are designed

concurrently. Hence, if known a-priory, the control design of one

component could take the needs of other components into account

and does not need to be treated fully adversarial.

Example 1. As a simple motivating example for a distributed

logical control problem with this flavor, consider a fully auto-

mated factory producing pens as depicted in Fig. 1. It has a ma-

chine which takes raw materials for pens at 𝐴1. When required,

it can produce pens with erasers, for which it needs erasers from

𝐶1. For this, it has a robot R1 that takes the raw materials from

𝐵3 to the production machine at 𝐴1. Hence, the robot R1 needs

to visit 𝐴1 and 𝐵3 infinitely often, i.e. satisfy the LTL objective
1

𝜑1 := □♢R1 : 𝐴1 ∧ □♢R1 : 𝐵3, where R𝑖 : 𝑃 denotes that R𝑖 is in
the cell 𝑃 . For delivering the erasers to the machine, it has another

robot R2 that takes raw material from 𝐵3 and feeds the machines

via a conveyor belt at 𝐶1 if R1 feeds the raw material at 𝐴1, i.e, the

objective is to satisfy 𝜑2 := □♢R1 : 𝐴1 ⇒ □♢R2 : 𝐵3 ∧ □♢R2 : 𝐶1.

As both robots share the same workspace, their controllers need to

ensure the specification despite the movements of the other robot.

The resulting controller synthesis problem can be modeled as

a game over a finite graph 𝐺 – the vertices remember the current

position of each robot and its edges model all possible movements

between them. Each player in the game models one robot and

chooses the moves of that robot along the edges of the graph. Then

the specifications for each robot are an LTL objective over 𝐺 , for-

mally resulting in a two-objective parity2 game. While we exclude

continuous robot dynamics from the subsequent discussion, we

note that non-trivial dynamics can be abstracted into a game graph

using well established abstraction techniques (see e.g.,[3, 10, 27] for

1
We formally introduce LTL objectives in Section 2.

2
Parity games are formally introduced in Section 2. Their expressivity is needed to

allow for the full class of LTL specifications.
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Figure 1: Illustration of a factory with two mobile robots R1
and R2, discussed in Example 1-3. Cell Γ𝑖 is located in line

Γ ∈ {𝐴, 𝐵,𝐶} and row 𝑖 ∈ {1, 2, 3}. Walls are indicated by solid

lines, conveyor belts are depicted schematically.

an overview) or handled by a well-designed hand-over mechanism

between continuous and logical feedback controllers (see e.g. [24]).

Technically, the main contribution of this paper is a new algo-

rithm to solve such two-objective parity games arising from dis-

tributed logical control problems (as outlined in Example 1) in a

distributed fashion, i.e., without sharing the local specifications of
components with each other, and by performing most computations

locally. Assume-guarantee contracts have proven to be very useful

for such distributed synthesis problems and have been applied to

various variants thereof [4, 8, 11–13, 15, 17–20, 22]. The main dif-

ferences of our work compared to these works is threefold:

(i) We focus on logical control design but thereby for the full class
of 𝜔-regular specifications, making our paper most related to other

A/G-based distributed reactive synthesis approaches [13, 15, 18, 21].
(ii) We co-design both contracts and controllers, i.e., we do not as-

sume contracts to be given, as e.g. in [11, 19].

(iii) We develop a sound and complete – yet distributed – synthesis

framework. Existing tools either perform synthesis centrally, e.g.

[12, 15, 18], are not complete, e.g. [4, 17, 21], or cannot handle the

full class of LTL specifications [8, 17].

Furthermore, the existing centralized synthesis techniques out-

put a single strategy profile — one strategy per subsystem — which

heavily depend on each other. The main advantage of our approach

is the computation of decoupled strategy templates. This gives each

subsystem the flexibility to independently choose any strategy from

a huge class of strategies.

We achieve these new features in A/G-based synthesis by uti-

lizing the concept of permissive templates recently introduced by

Anand et al. [5, 7]. Such templates collect an infinite number of

controller candidates in a concise data structure and allow for very

efficient computability, adaptability and compositionality as illus-

trated with the next example.

Example 2. Consider again R1 in Fig. 1 (left) with specification 𝜑1
from Example 1. A classical reactive synthesis engine would return

a single strategy, e.g. one which keeps cycling along the path
3

𝐴1 → 𝐴2 → 𝐵2 → 𝐵3 → 𝐵2 → 𝐴2 → 𝐴1. However, R1 does not
really need to stick to a single path to fulfill 𝜑1. It only needs to

always eventually go from 𝐴1 to 𝐴2 or 𝐵1, from 𝐴2 and 𝐵1 to 𝐴3

or 𝐵2, from 𝐴3 and 𝐵2 to 𝐵3, and so on. These very local liveness

properties capture the essence of every correct controller forR1 and
3
We do not mention the not-so-relevant parts of the strategy for ease of understanding.

can be summarized as a strategy template, which can be extracted

from a classical synthesis engine without computational overhead

[7]. This controller representation has various advantages.

First, strategy templates are composable. If R1 is suddenly re-

quired to also collect and deposit goods from 𝐴3, we can indepen-

dently synthesize a strategy template for objective 𝜑 ′
1
= □♢𝐴3 and

both templates can be composed by a simple conjunction of all

present liveness properties
4
. R1 can choose a strategy that satisfies

both objectives by complying with all template properties.

Second, strategy templates keep all possible strategy choices

in-tact and hence allow for a robust control implementation. If, e.g.

due to the presence of other robots, 𝐴1 is momentarily blocked, R1
can keep visiting 𝐵3 and 𝐴3 until 𝐴1 becomes available again

5
.

Third, it was recently shown by Nayak et al. [24] that the flexi-

bility of strategy templates allows to realize logical strategy choices

by continuous feedback controllers over non-linear dynamics in a

provable correct way, without time and space discretizations.

While the above example illustrates the flexibility of strategy

templates for a single component, Anand et al. [5, 7] consider games

with only one system (and objective). The current paper novelty

leverages the easy compositionality and adaptability of the tem-

plates for contract-based distributed synthesis. Intuitively, strategy
templates collect the essence of strategic requirements for one ro-

bot in a concise data structure, which can be used to instantiate

a contract. As these contracts are locally computed (one for each

robot, w.r.t. its objective), they need to be synchronized, which

might cause conflicts that need to be resolved. This requires mul-

tiple negotiation rounds until a realizing contract is found. The

negotiation framework we present in this paper is ensured to al-
ways terminate and to be sound and complete, i.e., to always provide

a realizable contract if the synthesis problem has a solution. The

intuition behind our framework is illustrated next.

Example 3. Consider the two-robot scenario in Fig. 1(right) and

observe that robot R1 has no strategy to satisfy its specification

without any assumption on R2’s behavior, e.g. if R2 always stays
in 𝐵3, R1 can never take raw material from 𝐵3. However, since

both robots are built by the factory designers, they can be designed

to cooperate “just enough” to fulfill both objectives. We therefore

assume that R1 can “ask” R2 to always eventually leave 𝐵3, so R1
can collect the raw goods. Algorithmically, this is done by locally

computing both a strategy template [7] for R1 and an assumption
template [5] on R2. The latter contains local requirements on R2
that need to be satisfied in order for R1 to fulfill its objective.

When we then switch perspectives and (locally) synthesize a

strategy for R2 for its own objective 𝜑2, we can force R2 to obey

the assumption template from R1’s previous computation. This,

however, might again put new assumptions on R1 for the next

round. Due to the easy composability of templates, computations in

each round are efficient, leading to an overall polynomial algorithm

in the size of the game graph. In addition, the algorithm outputs a

compatible pair of strategy templates (one for each player), which

gives each player maximal freedom for realization (as outlined in

Example 2) – any control realization they pick allows also the other

4
Of course, this is not always that easy, but provably so in most practical applications.

For details see the extensive evaluation in [7].

5
Again, see [7] for an extensive case-study of this template feature.
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component to fulfill their objective. In this running example, the

resulting pair of compatible strategy templates require R1 to go to

𝐴1 when R2 is at 𝐵3, and to 𝐵3 only when the access is granted by

R2 (which R2 will grant, by following its final template), and will

also let R2 go to 𝐵3 always eventually when it arrives.

As these resulting strategy templates only capture the essence
of the required cooperation, they can also be implemented under

partial observation, as long as the required information about the

other component are extractable from these observations. Due to

page constrains, we omit the formal treatment of this case.

Outline. After presenting required preliminaries in Section 2, we

formalize the considered contract-based synthesis problem in Sec-

tion 3, and instantiate it via permissive templates in Section 4. We

then use this instantiation to devise a negotiation algorithm for its

solution in Section 5 and prove all features of the algorithm and

its output illustrated in Example 3. Finally, Section 5 provides em-

pirical evidence that our negotiation framework possess desirable

computational properties by comparing our C++-based prototype

tool CoSMo to state-of-the-art solvers on a benchmark suite.

2 PRELIMINARIES

Notation.We use N to denote the set of natural numbers including

zero. Given two natural numbers 𝑎, 𝑏 ∈ N with 𝑎 < 𝑏, we use [𝑎;𝑏]
to denote the set {𝑛 ∈ N | 𝑎 ≤ 𝑛 ≤ 𝑏}. Let Σ be a finite alphabet.

The notations Σ∗ and Σ𝜔 respectively denote the set of finite and

infinite words over Σ. Given two words 𝑢 ∈ Σ∗ and 𝑣 ∈ Σ∗ ∪ Σ𝜔 ,
the concatenation of 𝑢 and 𝑣 is written as the word 𝑢𝑣 .

Game Graphs. A game graph is a tuple 𝐺 =
(
𝑉 = 𝑉 0 ·∪𝑉 1, 𝐸

)
where (𝑉 , 𝐸) is a finite, directed graph with vertices 𝑉 and edges 𝐸,
and 𝑉0,𝑉1 ⊆ 𝑉 form a partition of 𝑉 . W.l.o.g. we assume that for

every 𝑣 ∈ 𝑉 there exists 𝑣 ′ ∈ 𝑉 s.t. (𝑣, 𝑣 ′) ∈ 𝐸. A play originating

at a vertex 𝑣0 is an infinite sequence of vertices 𝜌 = 𝑣0𝑣1 . . . ∈ 𝑉𝜔
.

Winning Conditions. Given a game graph𝐺 , a winning condition
(or objective) is a set of plays specified using a formula Φ in linear
temporal logic (LTL) over the vertex set𝑉 , i.e., LTL formulas whose

atomic propositions are sets of vertices from 𝑉 . Then the set of

desired infinite plays is given by the 𝜔-regular language L(𝐺,Φ) ⊆
𝑉𝜔

. When𝐺 is clear from the context, we simply write L(Φ). The
standard definitions of 𝜔-regular languages and LTL are omitted

for brevity and can be found in standard textbooks [9].

A parity objective Φ = Parity(P) is given by the LTL formula

Parity(P) B
∧

𝑖∈
odd
[0;𝑑 ]

©­«□♢𝑃𝑖 =⇒
∨

𝑗∈even [𝑖+1;𝑑 ]
□♢𝑃 𝑗 ª®¬ , (1)

with priority set 𝑃 𝑗 = {𝑣 : P(𝑣) = 𝑗} for 0 ≤ 𝑗 ≤ 𝑑 of vertices for

some priority function P : 𝑉 → [0;𝑑] that assigns each vertex a

priority. L(Parity(P)) contains all plays 𝜌 for which the highest

priority appearing infinitely often along 𝜌 is even. We note that

every game with an arbitrary 𝜔-regular set of desired plays can be

reduced to a parity game (possibly with a larger set of vertices) by

standard methods [9].

Games.A two-player (turn-based) game is a tupleG = (𝐺,Φ), where
𝐺 is a game graph, and Φ is the winning condition over 𝐺 . A two-
player (turn-based) two-objective game is a triple G = (𝐺,Φ0,Φ1),
where 𝐺 is a game graph, and Φ0 and Φ1 are winning conditions

over𝐺 , respectively, for Player 0 and Player 1. We call a G a parity

game if all involved winning conditions are parity objectives.

Strategies. A strategy of Player 𝑖 (for 𝑖 ∈ {0, 1}) is a function

𝜋𝑖 : 𝑉
∗𝑉𝑖 → 𝑉 such that for every 𝜌𝑣 ∈ 𝑉 ∗𝑉𝑖 holds that 𝜋𝑖 (𝜌𝑣) ∈

𝐸 (𝑣). A strategy profile (𝜋0, 𝜋1) is a pair where 𝜋𝑖 is a strategy for

Player 𝑖 . Given a strategy 𝜋𝑖 , we say that the play 𝜌 = 𝑣0𝑣1 . . . is

compliant with 𝜋𝑖 if 𝑣𝑘−1 ∈ 𝑉𝑖 implies 𝑣𝑘 = 𝜋𝑖 (𝑣0 . . . 𝑣𝑘−1) for all 𝑘 .
We refer to a play compliant with 𝜋𝑖 and a play compliant with a

strategy profile (𝜋0,𝜋1) as a 𝜋𝑖 -play and a 𝜋0𝜋1-play, respectively.

Winning. Given a game G = (𝐺,Φ), a play 𝜌 in G is winning if

it satisfies
6 Φ, i.e., 𝜌 ∈ L(Φ). A strategy 𝜋𝑖 for Player 𝑖 is winning

from a vertex 𝑣 ∈ 𝑉 if all 𝜋𝑖 -plays from 𝑣 are winning. A vertex

𝑣 ∈ 𝑉 is winning for Player 𝑖 , if there exists a Player 𝑖 winning

strategy 𝜋𝑖 from 𝑣 . We collect all winning vertices of Player 𝑖 in

the Player 𝑖 winning region ⟨⟨𝑖⟩⟩Φ ⊆ 𝑉 . We say a Player 𝑖 strategy is

winning for Player 𝑖 if it is winning from every vertex in ⟨⟨𝑖⟩⟩Φ.
Furthermore, given a game (𝐺,Φ), we say a strategy profile

(𝜋0, 𝜋1) is winning from a vertex 𝑣 ∈ 𝑉 if the 𝜋0𝜋1-play from 𝑣 is

winning. We say a vertex 𝑣 ∈ 𝑉 is cooperatively winning, if there
exists a winning strategy profile (𝜋0, 𝜋1) from 𝑣 . We collect all such

vertices in the cooperative winning region ⟨⟨0, 1⟩⟩Φ ⊆ 𝑉 . We say

a strategy profile is winning if it is winning from every vertex in

⟨⟨0, 1⟩⟩Φ. Winning strategies and cooperative winning region for a

two-objective game (𝐺,Φ0,Φ1) are defined analogously.

3 CONTRACT-BASED SYNTHESIS

Towards a formalization of our proposed negotiation framework for

distributed synthesis this section introduces the notion of assume-

guarantee contracts (Section 3.1) that we build upon, the notion

of iRmaC-specifications (Section 3.2) that describes our main goal,

and formally states the synthesis problem we solve in this paper

(Section 3.3).

3.1 Assume-Guarantee Contracts

Given a two-objective game G = (𝐺,Φ0,Φ1) we define an assume-
guarantee contract over G — a contract for short — as a tuple

C := ((A0, G0), (A1, G1)) where A𝑖 and G𝑖 are LTL specifications over

the graph 𝐺 called the assumption and the guarantee for player 𝑖 ,
respectively. It is well known that such contracts provide a certified
interface between both players, if they are

(i) compatible, i.e.,

L(G𝑖 ) ⊆ L(A1−𝑖 ), and (2)

(ii) realizable by both players from at least one vertex, i.e.,

∃𝑣 ∈ 𝑉 . ∀𝑖 ∈ {0, 1} . 𝑣 ∈ ⟨⟨𝑖⟩⟩(A𝑖 ⇒ (G𝑖 ∧ Φ𝑖 )) . (3)

Unfortunately, it is also well known that for the full class of

𝜔-regular contracts, conditions (2)-(3) are not strong enough to

provide a sound (and complete) proof rule for verification, let alone
the harder problem of synthesis. In verification, one typically resorts
to strengthening the contracts with less expressive properties [2,

23, 25, 26]. This approach was also followed by [21] for synthesis,

requiring contracts to be safety formulas. This, however, always

6
Throughout the paper, we use the terms “winning for objective Φ” and “satisfying Φ”
interchangeably.
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results in an unavoidable conservatism, resulting in incompleteness

of the proposed approaches.

Within this paper, we take a novel approach to this problem

which does not restrict the expressiveness of the formulas in (A𝑖 , G𝑖 )
but rather liberally changes the considered local specification in

(3) to one which is “well-behaved” for contract-based distributed

synthesis. We then show, that this liberty does still result in a sound

and complete distributed synthesis technique by developing an

algorithm to compute such “well-behaved” specifications whenever

the original two-objective game has a cooperative solution. Before

formalizing this problem statement in Section 3.3 we first define

such “well-behaved” specifications, called iRmaC– independently
Realizable and maximally Cooperative.

3.2 iRmaC-Specifications
We begin by formalizing a new “well-behaved” local specification

for contract realizability.

Definition 4 (iR-Contracts). A contract C := ((A0, G0), (A1, G1))
over a two-objective game G = (𝐺,Φ0,Φ1) is called independently
realizable (iR) from a vertex 𝑣 if (2) holds and for all 𝑖 ∈ {0, 1}

𝑣 ∈ ⟨⟨𝑖⟩⟩Φ•𝑖 with Φ•𝑖 := G𝑖 ∧ (A𝑖 ⇒ Φ𝑖 ), (4)

where Φ•
𝑖
is called a contracted local specification.

Intuitively, (4) requires the guarantees to be realizable by Player 𝑖

without the “help” of player Player 1−𝑖 , i.e., unconditioned from the

assumption, which is in contrast to (3). It is therefore not surprising

that iR-Contracts allow to solve the local contracted games (𝐺,Φ•
𝑖
)

fully independently (and in a zero-sum
7
fashion) while still ensuring

that the resulting strategy profile solves the original game G.
Proposition 5. Given a two-objective game G = (𝐺,Φ0,Φ1) with
iR-contract C := ((A0, G0), (A1, G1)) realizable from a vertex 𝑣 , and

contracted local specifications (Φ•
0
,Φ•

1
), let 𝜋𝑖 be a winning strategy

in the (zero-sum) game (𝐺,Φ•
𝑖
).

Then the tuple (𝜋0, 𝜋1) is a winning strategy profile for G from 𝑣 .

Proof. As 𝑣 ∈ ⟨⟨𝑖⟩⟩Φ•
𝑖
, 𝜋𝑖 is winning from 𝑣 for game (𝐺,Φ•

𝑖
),

every 𝜋𝑖 -play from 𝑣 satisfies Φ•
𝑖
= G𝑖 ∧ (A𝑖 ⇒ Φ𝑖 ). Therefore,

every (𝜋0, 𝜋1)-play from 𝑣 satisfies both Φ•
0
and Φ•

1
. Now, let us

show that L(Φ•
0
∩ Φ•

1
) ⊆ L(Φ0 ∧ Φ1). Using the definition of

contracted local specifications and by (2), we have L(Φ•
0
∧ Φ•

1
) =

L(G0 ∧ (A0 ⇒ Φ0)) ∩L(G1 ∧ (A1 ⇒ Φ1)) ⊆(2) L(A1 ∧ (A0 ⇒ Φ0))
∩L(A0 ∧ (A1 ⇒ Φ1)) = L(A0) ∩ L(A1) ∩L(A0 ⇒ Φ0) ∩ L(A1 ⇒
Φ1) = L(Φ0) ∩L(Φ1) = L(Φ0 ∧ Φ1). Therefore, every (𝜋0, 𝜋1)-
play from 𝑣 satisfies Φ0 ∧ Φ1. Hence, (𝜋0, 𝜋1) is a winning strategy

profile for G from 𝑣 . □

By the way they are defined, iR-Contracts can be used to sim-

ply encode a single winning strategy profile from a vertex, which

essentially degrades contract-based synthesis to solving a single

cooperative game with specification Φ0 ∪ Φ1. The true potential of

iR-Contracts is only reveled if they are reduced to the “essential

cooperation” between both players. Then the local contracted spec-

ifications Φ•
𝑖
will give each player as much freedom as possible to

choose its local strategy. This is formalized next.

7
A zero-sum game is a two-player game where the opponent has the negated specifi-

cation of the protagonist, i.e., (𝐺,Φ,¬Φ) , i.e., the opponent acts fully adversarially.

As defined in Section 2, this (standard version of) games is denoted by tuples (𝐺,Φ) .

Definition 6 (iRmaC-Specifications). Given a two-objective game

G = (𝐺,Φ0,Φ1), a pair of specifications (Φ•
0
,Φ•

1
) is said to be inde-

pendently realizable and maximally cooperative (iRmaC) if

L(Φ0 ∧ Φ1) = L(Φ•0 ∧ Φ
•
1
), and (5a)

⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1) = ⟨⟨0⟩⟩Φ•0 ∩ ⟨⟨1⟩⟩Φ
•
1
. (5b)

Here (5a) ensures that the contracted local games (𝐺,Φ•
𝑖
) do not

eliminate any cooperative winning play allowed by the original

specifications, while (5b) ensures that the combination of local

winning regions does not restrict the cooperative winning region.

These properties of iRmaC-specifications now allow each player to

extract a strategy 𝜋𝑖 locally and fully independently by solving the

(zero-sum) game (𝐺,Φ•
𝑖
). Then it is guaranteed that the resulting

(independently chosen) strategy profile (𝜋0, 𝜋1) is winning in G =

(𝐺,Φ0,Φ1). This is formalized next.

Proposition 7. Given a two-objective game G = (𝐺,Φ0,Φ1) with
iRmaC specifications-(Φ•

0
,Φ•

1
), the following are equivalent:

(i) there exists a winning strategy profile from 𝑣 in (𝐺,Φ0,Φ1),
(ii) for each 𝑖 ∈ {0, 1}, there exists a Player 𝑖 winning strategy

from 𝑣 in (𝐺,Φ•
𝑖
).

Proof. (Item (i)⇒Item (ii)) If there exists a winning strategy

profile from 𝑣 for the game (𝐺,Φ0,Φ1), then 𝑣 ∈ ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1).
Then, by (5b), 𝑣 ∈ ⟨⟨𝑖⟩⟩Φ•

𝑖
for each 𝑖 ∈ {0, 1}. Hence, there exists a

Player 𝑖 winning strategy from 𝑣 in (𝐺,Φ•
𝑖
) for each 𝑖 ∈ {0, 1}. (Item

(i)⇐Item (ii)) Similarly, if there exists a Player 𝑖 winning strategy

from 𝑣 for the game (𝐺,Φ•
𝑖
) for each 𝑖 ∈ {0, 1}, then 𝑣 ∈ ⟨⟨𝑖⟩⟩Φ•

𝑖
for

each 𝑖 ∈ {0, 1}. Then, by (5b), 𝑣 ∈ ⟨⟨0, 1⟩⟩(Φ0 ∧Φ1), and hence, there
exists awinning strategy profile from 𝑣 for the game (𝐺,Φ0,Φ1). □

With this, we argue that iRmaC-specifications indeed provide

a maximally cooperative contract for distributed synthesis which

allows to fully decentralize remaining strategy choices.

3.3 Problem Statement and Outline

Based on the desirable properties of iRmaC-specifications outlined
before, the main contribution of this paper is an algorithm to com-

pute iRmaC-specifications for two-objective parity games, which
are a canonical representation of two-player games with an LTL

objective for each player.

Problem 8. Given a two-objective parity game G = (𝐺,Φ0,Φ1),
compute iRmaC-specifications (Φ•

0
,Φ•

1
).

In particular, we provide an algorithm which always outputs an
iRmaC-specification s.t. the latter only results in an empty cooper-

ative winning region (via (5b)) if and only if G is not cooperatively

solvable. Thereby, our approach constitutes a sound and complete
approach to distributed logical controller synthesis. All existing so-

lutions to this problem, i.e., [18, 21], only provide a sound approach.

In addition, as outlined before, the computed iRmaC-specifications
then allow to choose winning strategies (i.e., controllers) in a fully

decentralized manner (due to Proposition 7).

Our algorithm for solving Problem 8 is introduced in Section 4

and Section 5. Conceptually, this algorithm builds upon the recently

introduced formalism of permissive templates by Anand et al. [5, 7]

and utilizes their efficient computability, adaptability and permis-

siveness to solve Problem 8. Interestingly, this approach does not
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only allow us to solve Problem 8 but also allows resulting local

strategies to be easily adaptable to new local objectives and un-

foreseen circumstances, as illustrated in the motivating example of

Section 1. We showcase the computational efficiency and the extra

features of our approach by experiments with a prototype imple-

mentation on a set of control-inspired benchmarks in Section 6.

4 CONTRACTS AS TEMPLATES

This section shows how templates can be used to solve Problem 8

and starts with an illustrative example to convey some intuition.

Example 9. In order to appreciate the simplicity, adaptability and

compositionality of templates consider the two-objective game in

Fig. 2. The winning condition Φ0 for Player 0 requires vertex 𝑐 to be

seen infinitely often. Intuitively, every winning strategy for Player 0

w.r.t. Φ0 needs to eventually take the edge 𝑒𝑎𝑐 if it sees vertex 𝑎

infinitely often. Furthermore, Player 0 can only win from vertex

𝑏 with the help of Player 1. In particular, Player 1 needs to ensure

that whenever vertex 𝑏 is seen infinitely often it takes edge 𝑒𝑏𝑐
infinitely often. These two conditions can be concisely formulated

via the strategy template Π0 = Λlive ({𝑒𝑎𝑐 }) and an assumption

template Ψ0 = Λlive ({𝑒𝑏𝑑 }), both given by what we call a live-edge

template – if the source is seen infinitely often, the given edge has

to be taken infinitely often. It is easy to see that every Player 0

strategy that satisfies Π0 is winning for Φ0 under the assumption

that Player 1 chooses a strategy that satisfies Ψ0.
Now, consider the winning condition Φ1 for Player 1 which re-

quires the play to eventually stay in region {𝑎, 𝑐, 𝑑}. This induces
assumption Ψ1 on Player 0 and strategy template Π1 for Player 1

given in Fig. 2 (right). Both are co-liveness templates – the corre-

sponding edge can only be taken finitely often. This ensures that all

edges that lead to the region {𝑎, 𝑐, 𝑑} are taken only finitely often.

The tuples of strategy and assumption templates (Ψ𝑖 ,Π𝑖 ) we
have constructed for both players in the above example will be

called contracted strategy-masks, CSM for short. If the players now
share the assumptions from their local CSMs, it is easy to see that in
the above example both players can ensure the assumptions made

by other player in addition to their own strategy templates, i.e., each

Player 𝑖 can realize Ψ1−𝑖 ∧ Π𝑖 from all vertices. In this case, we call

the CSMs (Ψ𝑖 ,Π𝑖 ) compatible. In such situations, the new specifica-

tions (Φ•
0
,Φ•

1
) with Φ•

𝑖
= Ψ1−𝑖 ∧ (Ψ𝑖 ⇒ Φ𝑖 ) are directly computable

from the given CSMs and indeed form an iRmaC-contract.
Unfortunately, locally computed CSMs are not always compatible.

To see this, consider the slightly modified winning condition Φ′
1

for Player 1 that induces strategy template Π′
1
for Player 1. This

template requires the edge 𝑒𝑏𝑑 to be taken only finitely often. Now,

Player 1 cannot realize both Ψ0 and Π′
1
as the conditions given

by both templates for edge 𝑒𝑏𝑑 are conflicting – the same edge

cannot be taken infinitely often and finitely often. In this case one

more round of negotiation is needed to ensure that both players

eventually avoid vertex 𝑑 by modifying the objectives to Φ′
𝑖
=

Φ𝑖 ∧ ♢□¬𝑑 . This will give us a new pair of CSMs that are indeed

compatible, and a new pair of objectives (Φ•
0
,Φ•

1
) that are now again

an iRmaC specification.

In the followingwe formalize the notion of templates (Section 4.1)

and CSMs (Section 4.2) and show that, if compatible, they indeed

provide iRmaC-specifications (Section 4.3). We further show how to

compute CSMs for each player (Section 4.4). The outlined negotiation
for compatibility is then discussed in Section 5.

4.1 Permissive Templates

This section recalls the concept of templates from [5, 7]. In principle,

a template is simply an LTL formulaΛ over a game graph𝐺 . Wewill,

however, restrict attention to four distinct types of such formulas,

and interpret them as a succinct way to represent a set of strategies

for each player, in particular all strategies that follow Λ. Formally,

a Player 𝑖 strategy 𝜋𝑖 follows Λ if every 𝜋𝑖 -play belongs to L(Λ),
i.e., strategy 𝜋𝑖 is winning from all vertices in the game (𝐺,Λ). The
exposition in this section follows the presentation in [5] where

more illustrative examples and intuitive explanations can be found.

Safety Templates. Given a set 𝑆 ⊆ 𝐸 of unsafe edges, the safety
template is defined as Λunsafe (𝑆) B □ ∧𝑒∈𝑆 ¬𝑒 , where an edge

𝑒 = (𝑢, 𝑣) is equivalent to the LTL formula𝑢∧⃝𝑣 . A safety template

requires that an edge to 𝑆 should never be taken.

Live-Group Templates. A live-group 𝐻 = {𝑒 𝑗 } 𝑗≥0 is a set of

edges 𝑒 𝑗 = (𝑠 𝑗 , 𝑡 𝑗 ) with source vertices src(𝐻 ) := {𝑠 𝑗 } 𝑗≥0. Given a

set of live-groups 𝐻ℓ = {𝐻𝑖 }𝑖≥0 we define a live-group template

as Λlive (𝐻ℓ ) B
∧

𝑖≥0 □♢𝑠𝑟𝑐 (𝐻𝑖 ) ⇒ □♢𝐻𝑖 . A live-group template

requires that if some vertex from the source of a live-group is visited

infinitely often, then some edge from this group should be taken

infinitely often by the following strategy.

Conditional Live-Group Templates. A conditional live-group
over 𝐺 is a pair (𝑅,𝐻ℓ ), where 𝑅 ⊆ 𝑉 and 𝐻ℓ is a set of live groups.

Given a set of conditional live groupsH we define a conditional live-
group template asΛcond (H) B

∧
(𝑅,𝐻ℓ ) ∈H (□♢𝑅 ⇒ Λlive (𝐻ℓ )). A

conditional live-group template requires that for every pair (𝑅,𝐻ℓ ),
if some vertex from the set 𝑅 is visited infinitely often, then a

following strategy must follow the live-group template Λlive (𝐻ℓ ).
Co-liveness Templates. Given a set of co-live edges 𝐷 a co-live

template is defined as Λcolive (𝐷) B
∧

𝑒∈𝐷 ♢□¬𝑒 . A co-liveness

template requires that edges in 𝐷 are only taken finitely often.

Composed Templates. In the following, a template Λ :=

Λunsafe (𝑆) ∧ Λcolive (𝐷) ∧ Λcond (H) will be associated with the

tuple (𝑆, 𝐷,H), denoted by Λ ◁ (𝑆, 𝐷,H). Similarly, Λ ◁ (𝑆, 𝐷, 𝐻ℓ )
denotes the templateΛ := Λunsafe (𝑆)∧Λcolive (𝐷)∧Λlive (𝐻ℓ ). We

further note that the conjunction of two templatesΛ◁ (𝑆, 𝐷,H) and
Λ′◁ (𝑆 ′, 𝐷′,H ′) is equivalent to the template (Λ∧Λ′)◁ (𝑆∪𝑆 ′, 𝐷∪
𝐷′,H ∪H ′) by the definition of conjunction of LTL formulas.

4.2 Contracted Strategy-Masks (CSMs)
Towards our goal of formalizing iRmaC-specifications via templates,

this section defines contracted strategy-masks which contain two

templates Ψ𝑖 and Π𝑖 , representing a set of Player 1− 𝑖- and Player 𝑖-
strategies respectively, which can be interpreted as the assumption

Ψ𝑖 on player Player 1 − 𝑖 under which Player 𝑖 can win the local

game (𝐺,Φ𝑖 ) with any strategy from Π𝑖 .

Towards this goal, we first observe that every template in Sec-

tion 4.1 is defined via a set of edges that a following strategy needs

to handle in a particular way. Intuitively, we can therefore “split”

each template into a part restricting strategy choices for Player 0 (by

only considering edges originating from 𝑉0) and a part restricting
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𝑎 𝑏𝑐 𝑑

Φ0 = □^{𝑐}
Φ1 = ^□{𝑎, 𝑐, 𝑑}
Φ′
1
= ^□{𝑎, 𝑏, 𝑐}

⇒ Ψ0 = Λlive ({𝑒𝑏𝑑 }),
⇒ Ψ1 = Λcolive (𝑒𝑎𝑏 ),
⇒ Ψ′

1
= true ,

Π0 = Λlive ({𝑒𝑎𝑐 })
Π1 = Λcolive (𝑒𝑏𝑏 )
Π′
1
= Λcolive (𝑒𝑏𝑑 )

Figure 2: A two-player game graph discussed in Example 9 with Player 1 (squares) and Player 0 (circles) vertices, different

winning conditions Φ𝑖 , and corresponding winning assumption templates Ψ𝑖 and strategy templates Π𝑖 for Player 𝑖.

strategy choices for Player 1 (by only considering edges originating

from 𝑉1), which then allows us to define CSM.

Definition 10. Given a game graph 𝐺 = (𝑉 , 𝐸), a template Λ ◁
(𝑆, 𝐷,H) over𝐺 is an assumption template (resp. a strategy template)
for player 𝑖 if for all edges 𝑒 ∈ 𝑆 ∪ 𝐷 ∪ 𝐻 holds that 𝑠𝑟𝑐 (𝑒) ∈ 𝑉1−𝑖
(respectively 𝑠𝑟𝑐 (𝑒) ∈ 𝑉𝑖 ) where 𝐻 :=

⋃{𝐻 ∈ 𝐻ℓ | (·, 𝐻ℓ ) ∈ H}.

Definition 11. Given a game (𝐺,Φ𝑖 ), a contracted strategy-mask
(CSM) for player 𝑖 is a tuple (Ψ𝑖 ,Π𝑖 ), such that Ψ𝑖 ◁ (𝑆𝑠𝑖 , 𝐷

𝑠
𝑖
,H𝑠

𝑖
) and

Π𝑖 ◁ (𝑆𝑎𝑖 , 𝐷
𝑎
𝑖
,H𝑎

𝑖
) are assumption and strategy templates for player

𝑖 , respectively.

We next formalize the intuition that CSMs collect winning strate-

gies for Player 𝑖 under assumptions on Player 1 − 𝑖 .

Definition 12. A CSM (Ψ𝑖 ,Π𝑖 ) is winning for Player 𝑖 in (𝐺,Φ𝑖 )
from vertex 𝑣 if for every Player 𝑖 strategy 𝜋𝑖 following Π𝑖 and every

Player 1 − 𝑖 strategy 𝜋1−𝑖 following Ψ𝑖 the 𝜋0𝜋1-play originating

from 𝑣 is winning. Moreover, we say a CSM (Ψ𝑖 ,Π𝑖 ) is winning for

Player 𝑖 in (𝐺,Φ𝑖 ) if it is winning from every vertex in ⟨⟨0, 1⟩⟩Φ𝑖 .

We denote by ⟨⟨𝑖⟩⟩(Ψ𝑖 ,Π𝑖 ) the set of vertices from which (Ψ𝑖 ,Π𝑖 )
is winning for Player 𝑖 in (𝐺,Φ𝑖 ). Due to localness of our templates,

the next remark follows.

Remark 13. If a CSM (Ψ𝑖 ,Π𝑖 ) is winning for Player 𝑖 in (𝐺,Φ𝑖 ) from
vertex 𝑣 , then every Player 𝑖 strategy 𝜋𝑖 following Π𝑖 is winning

for Player 𝑖 in the game (𝐺,Ψ𝑖 ⇒ Φ𝑖 ).

4.3 Representing Contracts via CSM
The previous subsection has formalized the concept of a CSM for

a local (zero-sum) game (𝐺,Φ𝑖 ) . This section now shows how

under which conditions the combination of two CSMs (Ψ0,Π0) and
(Ψ1,Π1) (one for each player) allows to construct a contract

C := ((Ψ0,Ψ1), (Ψ1,Ψ0)), (6)

(i.e, setting A𝑖 := Ψ𝑖 and G𝑖 := Ψ1−𝑖 ), which induces iRmaC-
specifications (Φ•

0
,Φ•

1
) as in (4).

The first condition we need is compatibility.

Definition 14 (Compatible CSMs). Two CSMs, (Ψ0,Π0) for Player 0
and (Ψ1,Π1) for Player 1, are said to be compatible, if for each
𝑖 ∈ {0, 1}, there exists a Player 𝑖 strategy 𝜋𝑖 that follows Π𝑖 ∧ Ψ1−𝑖 .

Intuitively, as Ψ1−𝑖 is the assumption on Player 𝑖 and Π𝑖 rep-

resents the template that Player 𝑖 will follow, we need to find a

strategy that follows both templates. Before going further, let us

first show a simple result that follows from Definition 14.

Proposition 15. Given a two-objective game G = (𝐺,Φ0,Φ1),
let (Ψ0,Π0) and (Ψ1,Π1) be two compatible CSMs s.t. (Ψ𝑖 ,Π𝑖 ) is
winning from a vertex 𝑣 for Player 𝑖 in (𝐺,Φ𝑖 ). Then the contract C
as in (6) is an iR-contract realizable from 𝑣 .

Proof. We need to show that 𝑣 ∈ ⟨⟨𝑖⟩⟩(Ψ1−𝑖 ∧ (Ψ𝑖 ⇒ Φ𝑖 )) for
each 𝑖 = 0, 1. Firstly, as the CSMs are compatible, for each 𝑖 , there

exists a Player 𝑖 strategy 𝜋𝑖 that follows Π𝑖 ∧ Ψ1−𝑖 . Hence, every
𝜋𝑖 -play satisfies both Ψ1−𝑖 . Secondly, as CSM (Ψ𝑖 ,Π𝑖 ) is winning
from 𝑣 for Player 𝑖 in game (𝐺,Φ𝑖 ), by Remark 13, every 𝜋𝑖 -play

from 𝑣 satisfies Ψ𝑖 ⇒ Φ𝑖 . Therefore, every 𝜋𝑖 -play from 𝑣 satisfies

Ψ1−𝑖 ∧ (Ψ𝑖 ⇒ Φ𝑖 ), and hence, 𝑣 ∈ ⟨⟨𝑖⟩⟩(Ψ1−𝑖 ∧ (Ψ𝑖 ⇒ Φ𝑖 )). □

To ensure that two compatible CSMs as in Proposition 15 are

not only an iR-contract but also provide iRmaC-specifications, we
utilize the main result from [5] which showed that assumption

templates can be computed in an adequately permissive8 way over

a given parity game. This notion is translated to CSMs next.

Definition 16. Given a game (𝐺,Φ𝑖 ) and a CSM (Ψ𝑖 ,Π𝑖 ) for Player
𝑖 , we call this CSM adequately permissive for (𝐺,Φ𝑖 ) if it is

(i) sufficient: ⟨⟨𝑖⟩⟩(Ψ𝑖 ,Π𝑖 ) ⊇ ⟨⟨0, 1⟩⟩Φ𝑖 ,
(ii) implementable: ⟨⟨1 − 𝑖⟩⟩Ψ𝑖 = 𝑉 and ⟨⟨𝑖⟩⟩Π𝑖 = 𝑉

(iii) permissive: L(Φ𝑖 ) ⊆ L(Ψ𝑖 ).

Note that the sufficiency condition makes the CSM winning as

formalized in the next remark.

Remark 17. If a CSM (Ψ𝑖 ,Π𝑖 ) for Player 𝑖 in a game (𝐺,Φ𝑖 ) is
sufficient, then it is winning for Player 𝑖 in (𝐺,Φ𝑖 ).

With this, we are ready to prove the main theorem of this section,

which shows that synthesis of iRmaC-specifications reduces to
finding adequately permissive CSMs which are compatible.

Theorem 18. Given a two-objective game G = (𝐺,Φ0,Φ1), let
(Ψ0,Π0) and (Ψ1,Π1) be two compatible CSMs s.t. (Ψ𝑖 ,Π𝑖 ) is ad-
equately permissive for Player 𝑖 in (𝐺,Φ𝑖 ). Then (Φ•

0
,Φ•

1
) with

Φ•
𝑖
= Ψ1−𝑖 ∧ (Ψ𝑖 ⇒ Φ𝑖 ) are iRmaC-specifications.

Proof. We need to show that the pair (Φ•
0
,Φ•

1
) satisfies (5a) and

(5b). The proof for (5a) is completely set theoretic:

(⊆) For each 𝑖 ∈ {0, 1}, it holds thatL(Φ𝑖 ) ⊆((iii)) L(Φ𝑖 ) ∩L(Ψ𝑖 ) ⊆
L(Ψ𝑖 ⇒ Φ𝑖 ) ∩ L(Ψ𝑖 ). With this we have, L(Φ0 ∧ Φ1) ⊆ L(Φ0) ∩
L(Φ1) ⊆ L(Ψ0 ⇒ Φ0) ∩ L(Ψ0) ∩ L(Ψ1 ⇒ Φ1) ∩ L(Ψ1) which
simplifies to L(Φ•

0
) ∩ L(Φ•

1
) = L(Φ•

0
∧ Φ•

1
).

(⊇) For each 𝑖 ∈ {0, 1}, it holds that L(Φ•
𝑖
) is equivalent to

L(Ψ1−𝑖 ∧ (Ψ𝑖 ⇒ Φ𝑖 )) = L(Ψ1−𝑖 ∧ (¬Ψ𝑖 ∨ Φ𝑖 )) = L((Ψ1−𝑖 ∧ ¬Ψ𝑖 )
∨(Ψ1−𝑖 ∧ Φ𝑖 )) which simplifies to L(Ψ1−𝑖 ∧ ¬Ψ𝑖 ) ∪ L(Ψ1−𝑖 ∧ Φ𝑖 ).
Then we have that L(Φ•

0
∧ Φ•

1
) = L(Φ•

0
) ∩ L(Φ•

1
) reduces

to (L(Ψ1 ∧ ¬Ψ0) ∪ L(Ψ1 ∧ Φ0)) ∩ (L(Ψ0 ∧ ¬Ψ1) ∪ L(Ψ0 ∧ Φ1))
which simplifies to L(Ψ1 ∧ Φ0) ∩ L(Ψ0 ∧ Φ1) ⊆ L(Φ0 ∧ Φ1).

Next, we show that one side of (5b) follows from (5a), whereas the

other side follows from Proposition 15: (⊇) If 𝑣 ∈ ⟨⟨0⟩⟩Φ•
0
∩ ⟨⟨1⟩⟩Φ•

1
,

then for each 𝑖 ∈ {0, 1}, there exists a strategy 𝜋𝑖 for Player 𝑖

such that every 𝜋𝑖 -play from 𝑣 belongs to L(Φ•
𝑖
). Hence, every

𝜋0𝜋1-play from 𝑣 belongs to L(Φ•
0
) ∩ L(Φ•

1
) = L(Φ•

0
∧ Φ•

1
) =

(5a)

L(Φ0∧Φ1). Therefore, 𝑣 ∈ ⟨⟨0, 1⟩⟩(Φ0∧Φ1). (⊆) If 𝑣 ∈ ⟨⟨0, 1⟩⟩(Φ0∧
8
We refer to [5] for an elaborate discussion of conditions (i)-(iii) in Definition 16.
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Algorithm 1 Negotiate(𝐺,Φ0,Φ1)
Input: 𝐺 = (𝑉 , 𝐸), Φ0 = Parity(P0), Φ1 = Parity(P1),
Output: modified specifications (Φ0,Φ1); CSMs (Ψ0,Π0), (Ψ1,Π1)
1: W𝑖 , C𝑖 ,Π𝑖 ,Ψ𝑖 ← ParityTemp(𝐺,Φ𝑖 , 𝑖), ∀𝑖 ∈ {0, 1}
2: if CheckTemplate(𝐺,Ψ1−𝑖 ∧ Π𝑖 ) = true, ∀𝑖 ∈ {0, 1} then
3: return (Φ0,Φ1), (Ψ0,Π0), (Ψ1,Π1)
4: else

5: Φ′
𝑖
← Φ𝑖 ∧ □(W0 ∩W1) ∧ ♢□¬(C0 ∪ C1) , ∀ 𝑖 ∈ {0, 1}

6: return Negotiate(𝐺,Φ′
0
,Φ′

1
)

Φ1) ⊆ ⟨⟨0, 1⟩⟩Φ𝑖 , then by Item (i), 𝑣 ∈ ⟨⟨𝑖⟩⟩(Π𝑖 ,Ψ𝑖 ). Hence, for each
𝑖 , CSM (Π𝑖 ,Ψ𝑖 ) is winning for Player 𝑖 from 𝑣 . As the CSMs are also
compatible, by Proposition 15, the contract C = (Ψ0,Ψ1) is an iR-
contract realizable from 𝑣 . Hence, by definition, 𝑣 ∈ ⟨⟨𝑖⟩⟩Ψ1−𝑖 ∧
(Ψ𝑖 ⇒ Φ𝑖 ) = ⟨⟨𝑖⟩⟩Φ•𝑖 . Therefore, 𝑣 ∈ ⟨⟨0⟩⟩Φ

•
0
∩ ⟨⟨1⟩⟩Φ•

1
. □

4.4 Computing Adequately Permissive CSMs
As stated before, Theorem 18 shows that a solution to Problem 8

reduces to finding adequately permissive CSMswhich are compatible.
Due to the close connection between adequately permissive CSMs
and adequately permissive assumption templates from [5], it turns

out that the computation of adequately permissive CSMs can be done

in very close analogy to the computation of adequately permissive

assumption templates for parity games from [5]. In particular, we

inherent (i) the observation that conjunctions of safety, co-live

and conditional live-group templates are rich enough to express

adequately permissive CSMs, and (ii) the existence of a polynomial

time (i.e., very efficient) algorithm for their construction.

Theorem 19. Given a game graph 𝐺 = (𝑉 = 𝑉0 ·∪𝑉1, 𝐸)
with parity objective Φ𝑖 , an adequately permissive CSM (Ψ𝑖 ◁
(𝑆𝑠
𝑖
, 𝐷𝑠

𝑖
,H𝑠

𝑖
),Π𝑖 ◁ (𝑆𝑎𝑖 , 𝐷

𝑎
𝑖
,H𝑎

𝑖
)) for player 𝑖 in (𝐺,Φ𝑖 ) can be com-

puted in time O(𝑛4), where 𝑛 = |𝑉 |. We call the respective proce-

dure for this computation ParityTemp(𝐺,Φ𝑖 ).

For completeness, we give the full algorithm for ParityTemp,

along with its simplified (and more efficient) versions for Safety

(Unsafe with O(𝑚),𝑚 = |𝐸 |), Büchi (BüchiTemp with O(𝑚),𝑚 =

|𝐸 |) and co-Büchi games (coBüchiTemp with O(𝑚),𝑚 = |𝐸 |) along
with additional intuition and all correctness proofs in the extended

version of the paper [6]. This exposition is given in very close

analogy to [5].

With Theorem 19 in place, the main algorithmic problem for

solving Problem 8 is to ensure that computed CSMs are compatible.
This is done via a negotiation algorithm, as already illustrated in

the last paragraph of Example 9, formalized next.

5 NEGOTIATION FOR COMPATIBLE CSMS
This section contains the main contribution of this paper w.r.t. the

algorithmic solution of Problem 8. That is, we give an algorithm

to compute adequately permissive and compatible CSMs in a mostly

distributed fashion.

Our algorithm, called Negotiate, is depicted schematically in

Fig. 3 and given formally in Algorithm 1. It uses ParityTemp to

compute adequately permissive CSMs (Ψ𝑖 ,Π𝑖 ) for each Player 𝑖 in its
corresponding game (𝐺,Φ𝑖 ) locally (Line 1 in Algorithm 1). These

(𝐺,Φ0,Φ1 )

(𝐺,Φ0 ) (𝐺,Φ1 )

ParityTemp ParityTemp

winning regionW0

co-Büchi region C0
assumption template Ψ0

strategy template Π0

winning regionW1

co-Büchi region C1
assumption template Ψ1

strategy template Π1

CheckTemplate(𝐺,Ψ0 ∧ Π1 )
CheckTemplate(𝐺,Ψ1 ∧ Π0 )

return ( (Φ0,Φ1 ), (Ψ0,Π0 ), (Ψ1,Π1 ) )

true

false

Φ𝑖 ← Φ𝑖 ∧ □(W0 ∩ W1 )
∧♢□¬(C0 ∪ C1 )

Figure 3: Flowchart illustration of Negotiate (Algorithm 1).

CSMs are then checked for compatibility (as in Definition 14) via

the function CheckTemplate defined in Section 5.1. If CSMs are

compatible, they define iRmaC-specifications (via Theorem 18) and

hence, Problem 8 is solved and Negotiate terminates.

If they are not compatible, existing conflicts need to be resolved

as formalized in Section 5.2. The required strengthening of both

CSMs is again done locally by solving games with modified specifi-

cations (red arrow looping back in Fig. 3) again via ParityTemp.

As the resulting new CSMs might again be conflicting, this

strengthening process repeats iteratively. We prove in Section 5.3

that there are always only a finite number of negotiation rounds.

5.1 Checking Compatibility Efficiently

This section discusses how the procedure CheckTemplate checks

compatibility of CSMs efficiently. Based on Definition 14, checking

compatibility of two CSMs reduces to checking the existence of

a strategy that follows the templates Ψ1−𝑖 ∧ Π𝑖 ◁ (𝑆, 𝐷,H) for
both 𝑖 ∈ {0, 1}. As our templates are just particular LTL formulas,

one can of course use automata-theoretic techniques to check this.

However, given the edge sets (𝑆, 𝐷,H) this check can be performed

more efficiently as formalized next.

Definition 20. A template Λ ◁ (𝑆, 𝐷,H) over game graph 𝐺 =

(𝑉 , 𝐸) is conflict-free if (i) every vertex 𝑣 has an outgoing edge that is
neither co-live nor unsafe, i.e., 𝑣×𝐸 (𝑣) ⊈ 𝐷∪𝑆 , and (ii) in every live-
group𝐻 ∈ 𝐻ℓ s.t. (·, 𝐻ℓ ) ∈ H , every source vertex 𝑣 has an outgoing

edge in 𝐻 that is neither co-live nor unsafe, i.e., 𝑣 × 𝐻 (𝑣) ⊈ 𝐷 ∪ 𝑆 .
The procedure of checking (i)-(ii) is called CheckTemplate(𝐺,Λ),
which returns true if (i)-(ii) holds, and false otherwise.

We note that checking (i)-(ii) can be done independently for every

vertex, hence CheckTemplate(𝐺,Λ) runs in linear time O(𝑛) for
𝑛 = |𝑉 |. Intuitively, whenever the existentially quantified edge in

(i) and (ii) of Definition 20 exists, a strategy that alternates between

all these edges follows the given template. In addition, this strategy

can also be extracted in linear time. This is formalized next.
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Proposition 21. Given a game graph𝐺 = (𝑉 , 𝐸) with conflict-free

template Λ ◁ (𝑆, 𝐷,H) for Player 𝑖 , a strategy 𝜋𝑖 for Player 𝑖 that

follows Λ can be extracted in time O(𝑚), where𝑚 is the number

of edges. This procedure is called ExtractStrategy(𝐺,Λ).

Proof. The proof is straightforward by constructing the strategy

as follows. We first remove all unsafe and co-live edges from𝐺 and

then construct a strategy 𝜋𝑖 that alternates between all remaining

edges from every vertex. This strategy is well-defined as condition

(i) in Definition 20 ensures that after removing all the unsafe and

co-live edges a choice from every vertex remains. Moreover, if the

vertex is a source of a live-group edge, condition (ii) in Definition 20

ensures that there are outgoing edges satisfying every live-group.

Thereby, the constructed strategy indeed follows Λ. □

It is worth noting that ParityTemp always return conflict-free

templates Ψ𝑖 and Π𝑖 by construction. Only when combining tem-

plates from different players into Π𝑖 ∧ Ψ1−𝑖 conflicts may arise.

However, as conflict-freeness of template Ψ1−𝑖 ∧ Π𝑖 implies the

existence of a Player 𝑖 strategy following it from Proposition 21,

this immediately implies that both CSMs are compatible, leading to

the following corollary.

Corollary 22. Given two CSMs (Ψ0,Π0) and (Ψ1,Π1) in a game

graph𝐺 , if for each 𝑖 ∈ {0, 1} the template Ψ1−𝑖 ∧Π𝑖 is conflict-free,

then the two CSMs are compatible.

We note that the converse of Corollary 22 is not true, as there

can be a strategy following Ψ1−𝑖 ∧Π𝑖 even when the corresponding

CSMs are not conflict-free. However, this does not affect the com-

pleteness of our algorithm. Therefore, we focus our attention on

ensuring conflict-freeness rather than compatibility. Moreover, if

such a strategy exists it will be retained by the conflict resolving

mechanism of Negotiate, introduced next.

5.2 Resolving Conflicts

Given a conflict in Ψ1−𝑖 ∧ Π𝑖 ◁ (𝑆, 𝐷,H) we now discuss how the

modified specifications Φ′
𝑖
(as in Line 5 of Algorithm 1) allows to

resolve this conflict in the next iteration.

For this, first assume that 𝐷 = ∅. In this case a conflict exists

because all available (live) edges are unsafe and should never be

taken. Hence, an extracted strategy (via Proposition 21) is not well-

defined (i.e., might get stuck in a vertex for which (i) of Definition 20

is false) or not ensured to be winning (i.e., will not be able to fulfill

the liveness obligations in 𝐻ℓ if (ii) of Definition 20 is false).

In order to ensure strategies to be winning, templates need to

be re-computed over a game graph where unsafe edges 𝑒 ∈ 𝑆 in

Ψ1−𝑖 ∧ Π𝑖 are removed. By looking into the details of the compu-

tation of 𝑆 within ParityTemp, we see that unsafe edges always

transition from the winning regionW𝑖 = ⟨⟨𝑖⟩⟩(Ψ𝑖 ,Π𝑖 ) to its comple-

mentW𝑖 = ¬W𝑖 , i.e., every (cooperatively winning) play should

never visit states inW𝑖 . We therefore achieve the desired effect

by adding the requirement □¬(W0 ∪ ¬W1) = □(W0 ∩W1) to
the specification, which obviously does not restrict the coopera-

tive winning region, as ParityTemp is ensured to not remove any

cooperative solution (due to Item (i) in Definition 16).

This intuition generalizes to the case where 𝐷 ≠ ∅ as follows.
Here, we need to resolve the game while ensuring that co-live edges

𝑒 ∈ 𝐷 are only taken finitely often. In analogy to unsafe edges, co-

live edges are computed by ParityTemp s.t. they always transition

to the set of vertices C𝑖 that must only be seen finitely often along a

winning play. In addition toW𝑖 , the set C𝑖 can also be memorized

during the computation of 𝐷 within ParityTemp and hence passed

to CheckTemplate in Line 1 of Algorithm 1. As for the unsafe-edge

case, we can achieve the desired effect for recomputation by adding

the requirement ♢□¬(C0 ∪C1) to the specification Φ𝑖 (see Line 5 of
Algorithm 1). Again, this obviously does not alter the cooperative

winning region of the game.

Remark 23. We note that Algorithm 1 is slightly simplified, as the

objective Φ′
𝑖
in Line 5 of Algorithm 1 used as an input to Negotiate

in latter iterations, is not a “plain” parity objective Parity(P). As
ParityTemp expects a parity game as an input, we need to convert

(𝐺,Φ′
0
,Φ′

1
) into a parity game by a simple reprocessing step. Luckily,

both additional specifications can be dealt with using classical steps

of Zielonka’s algorithm [28], a well-known algorithm to solve parity

games, which is used as the basis for ParityTemp. Concretely, we

handle the □(W0 ∩W1) part of Φ′𝑖 , by restricting the game graph

𝐺 toW =W0 ∩W1 and the ♢□¬(C0 ∪ C1) part by assigning all

vertices in C = (C0 ∪ C1) the highest odd priority 2𝑑𝑖 + 1. The
correctness of these standard transformations follows from the

same arguments as used to prove the correctness of similar steps

of the ParityTemp algorithm in the extended version [6].

5.3 Properties of Negotiate

With this, we are finally ready to prove that (i) Negotiate always

terminates in a finite number of steps, and (ii) upon termination,

the computed CSMs indeed provide a solution to Problem 8.

Termination. Intuitively, all local synthesis problems are per-

formed over the same (possibly shrinking) game graph𝐺 . Therefore,

there exists only a finite number of templates Λ◁ (𝑆, 𝐷,H) over𝐺 ,

which, in the worst case, can all be enumerated in finite time.

Theorem 24. Given a two-objective parity game G =

((𝑉 , 𝐸),Φ0,Φ1) with Φ𝑖 = Parity(P𝑖 ), Algorithm 1 always termi-

nates in O(𝑛6) time, where 𝑛 = |𝑉 |.

Proof. We prove termination via an induction on the lexico-

graphically ordered sequence of pairs ( |W| , |W \ C|). As the base
case, observe that if |W| = 0 we have thatW𝑖 = ∅ for at least on
Player 𝑖 , implying Ψ𝑖◁ (∅, ∅, ∅) and Π𝑖◁ (∅, ∅, ∅) for this Player 𝑖 . As
Ψ𝑖 ∧ Π1−𝑖 = Π1−𝑖 and Ψ1−𝑖 ∧ Π𝑖 = Ψ1−𝑖 in this case, and Ψ1−𝑖 and
Π1−𝑖 are conflict-free by construction, CheckTemplate returns

true and Negotiate terminates. If instead only |W \ C| = 0, it

follows from Remark 23 that all vertices inW have highest odd

priority, implying that in the next iterationW𝑖 = ∅ for both play-

ers, hence all templates are empty, i.e., trivially conflict-free, hence

Negotiate terminates.

Now for the induction step, suppose |W| > 0 and |W \ C| > 0

in the previous iteration. If Ψ0 ∧ Π1 and Ψ1 ∧ Π0 are conflict-free,

Negotiate terminates. Suppose this is not the case. As 𝐺 gets re-

stricted toW for this iteration (see Remark 23), unsafe edges can

only occur ifW′ ⊂ W (as they are by construction fromW′ to
¬W′ s.t. the latter is a subset ofW), whereW′ is the winning
region computed in the current iteration. IfW′ = W conflicts

need to arise from colive edges. As colive edges are computed by
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ParityTemp in a subgame that excludes all vertices with the high-

est odd priority (and therefore all vertices in C due to Remark 23),

the existence of co-live edge conflicts implies the existence of co-

live edges, which implies that |W′ \ C′ | < |W \ C|. Therefore,
( |W| , |W \ C|) always reduces (lexicographically) when conflicts

occur. Hence, the algorithm terminates by induction hypothesis.

Furthermore, as each iteration calls CheckTemplate once and

Parity twice which runs in O(|𝑉 |4) time, Algorithm 1 terminates

in O(|𝑉 |6) time. □

Soundness. While it seems to immediately follow that iRmaC-
specifications can be CSMs that Negotiate outputs, as it only ter-

minates on adequately permissive and compatible CSMs, this is only
true w.r.t. the new game (𝐺,Φ′

0
,Φ′

1
) which gets modified in every

iteration. It therefore remains to show that the resulting CSMs in-
duce iRmaC-specification for (𝐺,Φ0,Φ1), which then proves that

Negotiate solves Problem 8.

Theorem 25. Let ((Φ′′
0
,Φ′′

1
), (Ψ0,Π0), (Ψ1,Π1)) be the output of

Negotiate(𝐺,Φ0,Φ1). Then (Φ•
0
,Φ•

1
) with Φ•

𝑖
:= Ψ1−𝑖 ∧ (Ψ𝑖 ⇒

Φ′′
𝑖
) are iRmaC-specifications for (𝐺,Φ0,Φ0).

Proof. As CSM (Ψ𝑖 ,Π𝑖 ) is adequately permissive for Player 𝑖

in the game (𝐺,Φ′′
𝑖
) and as the returned CSMs are compatible, by

using Theorem 18, the contracted specifications (Φ•
0
,Φ•

1
) for the

two-objective game (𝐺,Φ′′
0
,Φ′′

1
) are iRmaC-specifications. Hence,

L(Φ′′
0
∧Φ′′

1
) = L(Φ•

0
∧Φ•

1
) and ⟨⟨0, 1⟩⟩Φ′′

0
∧Φ′′

1
= ⟨⟨0⟩⟩Φ•

0
∩ ⟨⟨1⟩⟩Φ•

1
.

Hence, in order to prove that (5) holds, it suffices to show that

Φ′′
0
∧ Φ′′

1
is equivalent to Φ0 ∧ Φ1, i.e., L(Φ′′

0
∧ Φ′′

1
) = L(Φ0 ∧

Φ1). This however immediately follows from the fact that Pari-

tyTempcomputesW𝑖 and C𝑖 in an adequately permissive manner,

i.e., never excluding any cooperative winning play. Thereby, the

addition of the terms □(W0 ∩W1) and ♢□¬(C0 ∪ C1) to the speci-
fication does not exclude cooperative winning plays either, hence

keeping L(Φ0 ∧ Φ1) the same in each iteration. □

Decoupled Strategy Extraction. By combining the properties of

iRmaC-specifications with Proposition 21, we have the following

proposition which shows that by using templates to formalize iR-
maC contracts, we indeed fully decouple the strategy choices for

both players.

Proposition 26. In the context of Theorem 25, let 𝜋𝑖 be a strategy

of player 𝑖 following Ψ1−𝑖 ∧ Π𝑖 . Then

(i) 𝜋𝑖 is winning in (𝐺,Φ•𝑖 ) from every 𝑣 ∈ ⟨⟨0, 1⟩⟩(Φ0∩Φ1), and
(ii) the strategy profile (𝜋0, 𝜋1) is winning in (𝐺,Φ0,Φ1).

Proof. (i) As the CSM (Ψ𝑖 ,Π𝑖 ) is adequately permissive for

Player 𝑖 in the game (𝐺,Φ′′
𝑖
), by Remark 17, the sufficiency condi-

tion makes it winning from all vertices in ⟨⟨0, 1⟩⟩Φ′′
𝑖
⊇ ⟨⟨0, 1⟩⟩(Φ′′

0
∧

Φ′′
1
) = ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1). Moreover, as 𝜋𝑖 follows Π𝑖 , by using

Remark 13, 𝜋𝑖 is winning in the game (𝐺,Ψ𝑖 ⇒ Φ′′
𝑖
) from

⟨⟨0, 1⟩⟩(Φ0∧Φ1). Hence, every 𝜋𝑖 -play from ⟨⟨0, 1⟩⟩(Φ0∧Φ1) satisfies
both Ψ1−𝑖 and Ψ𝑖 ⇒ Φ′′

𝑖
. As Φ•

𝑖
= Ψ1−𝑖 ∧ (Ψ𝑖 ⇒ Φ′′

𝑖
), strategy 𝜋𝑖

is winning in the game (𝐺,Φ•
𝑖
) from ⟨⟨0, 1⟩⟩(Φ0 ∧ Φ1).

(ii) This now follows directly from (i) and Proposition 7. □

Completeness. As our final result, we note that as a simple corol-

lary from Proposition 21 and Proposition 26 follows that whenever

Figure 4: Left: Example of a factory benchmark with param-

eters 𝑥 = 3, 𝑦 = 3, 𝑤 = 3, and 𝑐 = 2. Solid lines denote walls,

little up- and downward pointing arrows indicate one-way

corridors. Right: Data points for factory benchmarks with

Büchi objectives (blue circles) and parity objectives (green tri-

angles) describing average execution time over all instances

with the same grid size. The 𝑦-axis is given in log-scale.

a cooperative solution to the original synthesis problem (𝐺,Φ0,Φ1)
exists, we can extract a winning strategy profile from the CSMs
computed by Negotiate.

Corollary 27. In the context of Theorem 25, for any vertex 𝑣 from

which there exists a winning strategy profile (𝜋 ′
0
, 𝜋 ′

1
) for the two-

objective parity game (𝐺,Φ0,Φ1), there exist strategies 𝜋 ′′𝑖 from 𝑣

following Ψ1−𝑖 ∧ Π𝑖 for both 𝑖 ∈ {0, 1}.

6 EXPERIMENTAL EVALUATION

To demonstrate the effectiveness of our approach, we conducted

experiments using a prototype tool CoSMo [1] that implements the

negotiation algorithm (Algorithm 1) for solving two-objective parity

games. All experiments were performed on a computer equipped

with an Apple M1 Pro 8-core CPU and 16GB of RAM.

6.1 Factory Benchmark

Building upon the running example in Section 1, we generated

a comprehensive set of 2357 factory benchmark instances. These

instances simulate two robots, denoted as 𝑅1 and 𝑅2, navigating

within a maze-like workspace. We used four parameters, i.e., size

of the maze 𝑥 × 𝑦, number of walls 𝑤 , and maximum number of

one-way corridors 𝑐 . First, we consider the Büchi objective that

robots 𝑅1 and 𝑅2 should visit the upper-right and upper-left corners,

respectively, of the maze infinitely often, while ensuring that they

never occupy the same location simultaneously and do not bump

into a wall. Second, we consider the parity objectives from Exam-

ple 1. Further details regarding the generation of these benchmark

instances can be found in the extended version [6]. An illustration

of one such benchmark is depicted in Fig. 4 (left).

Experimental Results. In a first set of experiments, we ran our

tool on all the factory benchmarks instances and plot all average

run-times per grid-size (but with varying parameters for 𝑐 and𝑤 )

in Fig. 4 (right). We see that CoSMo takes significantly more time

for parity objectives compared to Büchi objectives. That is because

computing templates for Büchi games takes linear time in the size

of the games whereas the same takes biquadratic time for parity

games (see [6]). Furthermore, the templates computed for Büchi

objectives do not contain co-liveness templates, and hence, they

do not raise conflicts in most cases. However, templates for parity



HSCC ’24, May 14–16, 2024, Hong Kong SAR, China Ashwani Anand r○ , Anne-Kathrin Schmuck r○ , and Satya Prakash Nayak r○

Figure 5: Left: Percentage of instances on which the respec-

tive tool reports unrealizability after termination. Right: Per-

centage in which the respective tool does not terminate. Both

numbers are mutually exclusive.

objectives contain all types of templates and hence, typically need

several rounds of negotiation.

In a second set of experiments, we compared the performance

of CoSMo, with the related tool
9 agnes implementing the contract-

based distributed synthesis method from [21]. Unfortunately, agnes
can only handle Büchi specifications and resulted in segmentation

faults for many benchmark instances. We have therefore only re-

port computation times for all instances that have not resulted in

segmentation faults.

The experimental results are summarized in Fig. 5-6. As CoSMo
implements a complete algorithm, it provably only concludes that

a given benchmark instance is unrealizable, if it truly is unrealiz-

able, i.e., for 1.67% of the considered 120 instances. agnes however,

concludes unrealizability in 36, 67% of its instances (see Fig. 5 (left)),

resulting an many false-negatives. Similarly, as CoSMo is ensured to
always terminate, we see that all considered instances have termi-

nated in the given time bound. While, agnes typically computes

a solution faster for a given instance (see Fig. 6 (left)), it enters a

non-terminating negotiation loop in 13, 34% of the instances (see

Fig. 5 (right)). This happens for almost all considered grid sizes,

as visible from Fig. 6 (right) where all non-terminating instances

are included in the average after being mapped to 300𝑠 , which was

used as a time-out for the experiments.

While our experiments show that agnes outperforms CoSMo in
terms of computation times when it terminates on realizable in-

stances (see Fig. 6 (left)), it is unable to synthesize strategies either

due to conservatism or non-termination in almost 50% of the consid-

ered instances (in addition to the ones which returned segmentation

faults and which are therefore not included in the results). In ad-

dition to the fact that agnes can only handle the small class of

Büchi specifications while CoSMo can handle parity objectives, we

conclude that CoSMo clearly solves the given synthesis task much

more satisfactory.

6.2 Incremental Synthesis and Negotiation

While the previous section evaluates our method for a single, static

synthesis task, we want to now emphasize the strength of our

technique for the online adaptation of strategies. To this end, we

assume that Algorithm 1 has terminated on the input (𝐺,Φ0,Φ1)
and compatible CSM’s (Ψ0,Π0) and (Ψ1,Π1) have been obtained.

Then a new parity objective Φ′
𝑖
over 𝐺 arrives for component 𝑖 ,

for which additional CSM (Ψ′
𝑖
,Π′

𝑖
) := ParityTemp(𝐺,Φ′

𝑖
) can be

computed. It is easy to observe that if (Ψ′
𝑖
,Π′

𝑖
) does not introduce

9
Unfortunately, a comparison with the only other related tool [18] which allows for

parity objectives was not possible, as we were told by the authors that their tool became

incompatible with the new version of BoSy and is therefore currently unusable.

Figure 6: Average computation times over all instances with

the same grid size for CoSMo (blue circles) and agnes (red

squares) without timed-out instances (left) and with timed-

out instances mapped to the time-out of 300𝑠 (right). The

y-axis is given in log-scale.

Figure 7: Experimental results over 2244 games when new

parity objectives are added incrementally one-by-one. Data
points give the average execution time (in ms) over all in-

stances with the same number of parity objectives for CoSMo
(blue circles) and genZiel [16] (red squares).

Figure 8: Variation of the experiment in Fig. 7 with either 5

(left) or 6 (right) long-term objectives.

new conflicts, no further negotiation needs to be done and the

CSM of component 𝑖 can simply be updated to (Ψ𝑖 ∧ Ψ′
𝑖
,Π𝑖 ∧ Π′

𝑖
).

Otherwise, we simply re-negotiate by running more iterations of

Algorithm 1.

We note that, algorithmically, this variation of the problem re-

quires solving a chain of generalized parity games, i.e., a parity

game with a conjunction of a finite number of parity objectives.

We therefore compare the performance of CoSMo on such synthesis

problems
10

to the best known solver for generalized parity games,

i.e, genZiel from [16] (implemented by [14]). Similar to our ap-

proach, genZiel is complete and based on Zielonka’s algorithm.

However, it solves one centralized cooperative game for the con-

junction of all players objectives.

Comparative evaluation. Fig. 7 shows the average computation

time of genZiel and CoSMo when objectives are incrementally one-
by-one, i.e., the game was solved with ℓ objectives, then one more

objective was added and the game was solved it again. We see

that for a low number of objectives, the negotiation of contracts

10
The details about the benchmarks can be found in the extended version [6].
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in a distributed fashion by CoSMo adds computational overhead,

which reduces when more objectives are added. However, as more

objectives are added the chance of the winning region to become

empty increases. This gives genZiel an advantage, as it can de-

tect an empty winning region very quickly (due to its centralized

computation). In order to separate the effect of (i) the increased

number of re-computations and (ii) the shrinking of the winning

region induced by an increased number of incrementally added ob-

jectives, we conducted a section experiment where added objectives

are allowed to disappear again after some time. Here, we consider

benchmarks with a fixed number of long-term objectives, and iter-

atively add just one temporary objective at a time. The results are

summarized in Fig. 8 when the number of long-term objectives are

5 (left) and 6 (right). We see that in this scenario CoSMo clearly out-

performs genZiel, while performing computations in a distributed

manner and returning strategy templates.
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