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The widespread adoption of machine learning and artificial intelligence in all branches of science and tech-
nology has created a need for energy-efficient, alternative hardware platforms. While such neuromorphic ap-
proaches have been proposed and realised for a wide range of platforms, physically extracting the gradients
required for training remains challenging as generic approaches only exist in certain cases. Equilibrium prop-
agation (EP) is such a procedure that has been introduced and applied to classical energy-based models which
relax to an equilibrium. Here, we show a direct connection between EP and Onsager reciprocity and exploit
this to derive a quantum version of EP. This can be used to optimize loss functions that depend on the expec-
tation values of observables of an arbitrary quantum system. Specifically, we illustrate this new concept with
supervised and unsupervised learning examples in which the input or the solvable task is of quantum mechani-
cal nature, e.g., the recognition of quantum many-body ground states, quantum phase exploration, sensing and
phase boundary exploration. We propose that in the future quantum EP may be used to solve tasks such as quan-
tum phase discovery with a quantum simulator even for Hamiltonians which are numerically hard to simulate
or even partially unknown. Our scheme is relevant for a variety of quantum simulation platforms such as ion
chains, superconducting qubit arrays, neutral atom Rydberg tweezer arrays and strongly interacting atoms in
optical lattices.

I. INTRODUCTION

As deep learning and artificial intelligence are adopted in all
braches of science and technology, the increasing complexity
of neural networks has led to an exponential increase in en-
ergy consumption and training costs. This has created a need
for more efficient alternatives, sparking the rapidly developing
field of neuromorphic computing [1], which explores a vari-
ety of different platforms [2, 3] to design physical, analogue
neural networks.

Existing backpropagation-based training strategies for neu-
romorphic platforms include in-silico training, requiring a
faithful digital model of the system, and physics-aware back-
propagation [4], combining physical inference with a simu-
lated backward pass which relaxes these constraints. How-
ever, it is a central question whether not only inference but
also training can exploit the physical dynamics [5], mak-
ing full use of the energy efficiency of neuromorphic sys-
tems. For example, feedback-based parameter shifting does
not require any simulation but scales unfavourably with the
network size [6]. Moving towards physical implementations
of efficient backpropagation, strategies for specific types of
non-linearities have been developed [7–9], as well as ap-
proaches performing backpropagation only on the linear com-
ponents [10, 11]. Another novel recent approach enables
“forward-forward” type gradient calculation in systems which
perform sequential information processing [12]. Furthermore,
efficient measurements of gradients via scattering experiments
can be performed in optical systems that employ a framework
recently developed to produce nonlinear computation with lin-
ear wave setups [13]— such nonlinear processing was also
recently demonstrated in Refs. [12, 14, 15].
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FIG. 1. The concept of quantum equilibrium propagation. The
goal is to efficiently and in a physical way obtain the gradient of
some loss function (depending on expectation values measured at the
“output” degrees of freedom of a quantum system) with respect to
tuneable parameters. a Rather than shifting N parameters separately
and measuring the output expectation value for each shift (parameter-
shift method), Onsager reciprocity dictates that the same information
can be extracted by b shifting, i.e. nudging, only the parameters cou-
pling to the output observables and (in a single go) measuring the
response of all N operators coupled to the training parameters (quan-
tum equilibrium propagation). The latter procedure is more efficient
as it requires only a single response experiment (or at most a small
number of order 1, when some non-commuting observables have to
be measured), whereas the parameter shift method requires a number
of experiments scaling linearly with the number of parameters.

General approaches for physical backpropagation so far
only exist in two classes of physical systems: Hamiltonian
Echo Backpropagation [16], which applies to essentially loss-
less systems in which a time-reversal operation can be im-
plemented, and equilibrium propagation (EP) [17, 18], which
applies to energy-based, equilibrating systems.

EP stands in the tradition of contrastive learning approaches
comparing measurements obtained from two different equi-
libria and using feedback to update parameters. Concretely,
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EP consists of two phases: the free and the nudged phase. In
the free phase, the input is fixed and the system relaxes into its
equilibrium state. In the nudged phase, the output is “nudged”
closer towards the target output and the system evolves to a
new equilibrium. Comparing the system state in the free and
the nudged phase, respectively, one obtains the necessary gra-
dients which are then used to update parameters.

Since its introduction in 2017, EP has been investigated
thoroughly [19–24] and a variant, coupled learning, has been
developed [25, 26]. In particular, EP was proposed for training
nonlinear resistor circuits [19], systems of coupled phase os-
cillators [24], was further adapted to spiking networks [20], to
implement continual parameter updates [21] and a dynamical
version was developed [22]. Experimentally, EP has been ap-
plied to train electronic systems [27, 28], elastic networks [29]
and even a memristor crossbar array [30]. Furthermore, a clas-
sical Ising model has been trained using a quantum annealer
to efficiently reach equilibrium [31].

Given the elegance of the EP approach, it is a natural ques-
tion to ask whether the procedure can be extended to quan-
tum systems to train a fully quantum Hamiltonian via a nudg-
ing procedure similar to classical EP. Indeed, we will show
that there is a direct connection between EP and Onsager
reciprocity and exploit it to derive a quantum version of EP
(QEP). This new approach can be used to train efficiently
arbitrary quantum systems, including specifically the highly
tuneable quantum many-body systems realized nowadays in
quantum simulators [32].

We illustrate this new concept with supervised and unsu-
pervised learning examples of a quantum-mechanical nature.
Specifically, we investigate the recognition of quantum many-
body phases and introduce as new concepts the exploration
of phase diagrams with quantum simulator platforms via effi-
cient gradient descent optimization enabled by QEP as well as
the optimisation of sensitivity (e.g. for sensing applications)
and phase boundary exploration. QEP is applicable to systems
which are hard or impossible to simulate classically and can
be employed even in settings in which the Hamiltonian is only
partially known or partially accessible.

In terms of the general question of using quantum devices
for learning tasks, the area of quantum machine learning [33,
34] by now has a long history. There have been some ideas of
how to learn to reproduce quantum states by adapting tuneable
parameters (“quantum Boltzmann machines”, see [34]). The
major research efforts in this domain are, however, spent on
variational quantum circuits, which require digital quantum
computing platforms for implementation (possibly even fault-
tolerant), going significantly beyond the resources that we are
going to assume here.

II. QUANTUM EQUILIBRIUM PROPAGATION

A. Onsager reciprocity

Consider a parameterized Hamiltonian

Ĥ(λ) =
∑
j

λjÂj (1)

and its ground state |Ψ(λ)⟩. A small static force coupling to
Âj (entering as a term δλjÂj inside Ĥ) will produce a linear

response in the expectation value
〈
Âℓ

〉
, given by

χℓj =
∂

∂λj
⟨Ψ(λ)| Âℓ |Ψ(λ)⟩ . (2)

Onsager reciprocity guarantees the symmetry of the suscep-
tibility χjℓ = χℓj , i.e. the same effect will be produced by

a force acting on Âℓ influencing the expectation value
〈
Âj

〉
,

see Fig. 1, i.e.,

∂

∂λj
⟨Âℓ⟩ =

∂

∂λℓ
⟨Âj⟩. (3)

Onsager reciprocity [35] can be derived in many ways, also
for the quantum case [36]. However, the most elementary ap-
proach for static situations such as the one considered here
and applied to the ground state in particular uses first-order
perturbation theory for the deformation of the ground state,
∂λj |Ψ(λ)⟩ = (E(λ) − H(λ))−1(Aj − ⟨Aj⟩) |Ψ(λ)⟩. Ex-
pression (3) also holds for thermal states for which the ex-
pectation values above are replaced by ⟨Âj⟩ = Tr

(
ρ̂Âj

)
, so

the following results apply for arbitrary-temperature quantum
equilibrium states. In the case of ground-state degeneracy,
expression (3) also holds with ρ̂ =

∑
j |Ψj(λ)⟩⟨Ψj(λ)| in

which j sums over all degenerate states; this is approximately
equivalent to a thermal state at small, but non-vanishing,
temperature. Classical Onsager reciprocity is equivalent to
what has been termed the “Fundamental Lemma” for classi-
cal EP [17, 18].

B. Onsager reciprocity as a basis for quantum equilibrium
propagation

We will now show that this well-known result (3) gives
us access to a general version of equilibrium propagation for
quantum systems. To understand that, we first consider su-
pervised learning. Let us assume that the set of operators Âj

is split into degrees of freedom relating to the input j ∈ Sin,
trainable variables j ∈ Strain, and the output j ∈ Sout. Ac-
cordingly, the set of parameters λ is split into the input x con-
taining the parameters corresponding to the input λj = xj ,
the set of training parameters θ with λj = θj and the set of
couplings to the output observables ν with λj = νj . Hence, a
general QEP Hamiltonian is of the form Ĥ(x, θ, ν) in which
ν = 0 during inference. For any given training sample, the



3

input x is fixed by applying a field to all input degrees of free-
dom (we may write λk = xk for k ∈ Sin, with x representing
the input vector). The output is then read off as the expectation
values yℓ =

〈
Âℓ

〉
in the operators ℓ ∈ Sout. Note that Âℓ can

be chosen as a projector, in which case yℓ becomes the proba-
bility of obtaining a particular outcome in a measurement; this
is useful for classification tasks.

In supervised learning, we are interested in adjusting the
trainable parameters θ in order to “nudge” the output closer
to the desired target output ytarget(x), for any given in-
put x. More generally, we aim to reduce the loss function
L(y, ytarget), or rather its average L̄ over many training sam-
ples (x, ytarget(x)), via gradient descent: δθ = −η∂L̄/∂θj .
To do this, we need to obtain the influence of a change in θj
on any of the outputs yℓ. For a given fixed training sample,
this is just the susceptibility χℓj(λ) = ∂

〈
Âℓ

〉
/∂θj . Evalu-

ating χℓj for all possible trainable parameters j, see Fig. 1 a,
scales unfavourably, requiring a number of different experi-
ments that scales linearly in the number N of these parame-
ters. Accessing the training gradient in this way amounts to
the parameter-shift method which is always applicable in any
neuromorphic platform but should generally be avoided when-
ever possible due to this unfavourable scaling. However, On-
sager reciprocity, Eq. (3), tells us that we can also access the
susceptibility χℓj by performing an alternative, much more
efficient experiment that instead reveals χjℓ: apply a small
force ν acting on the outputs and observe its influence on
the expectation values of the degrees of freedom

〈
Âk

〉
con-

nected to the trainable parameters: χjℓ(λ) = ∂
〈
Âj

〉
/∂νℓ,

see Fig. 1 b. This would seem to require a number of exper-
iments that scales with the number of outputs Nout, already
typically much smaller than the number of trainable parame-
ters. However, by evaluating explicitly the desired gradient of
the loss function, it becomes apparent that only a single ex-
periment is in fact needed: in this experiment, a force vector
ν = ∂L/∂y, the so-called error signal, is applied to the output
degrees of freedom.

In this way, Onsager reciprocity teaches us how to trans-
late the classical equilibrium propagation approach to quan-
tum devices. Quantum Hamiltonians of arbitrary structure can
be considered.

C. QEP procedure

We now explicitly summarize the QEP procedure. For clar-
ity, we will from now on denote the output observables by Ôℓ.
For a gradient-descent parameter update, we need to compute
the derivative of the loss function,

∂

∂θj
L(y, ytarget(x)) =

∑
ℓ

∂L
∂yℓ

∂yℓ
∂θj

= ε
∂y

∂θj
(4)

in which the error signal vector has components εℓ =
∂L/∂yℓ. For a mean-square-error loss function, we would
have ε = 2(y − ytarget(x)).

The QEP procedure for supervised learning can be summa-
rized as follows. (i) Free phase: The nudging forces are off
(νj = 0 for all j) and the output expectation values yℓ = ⟨Ôℓ⟩
as well as the expectation values of all operators associated
with trainable parameters Âj are measured in the ground state
of the Hamiltonian Ĥ(x, θ, 0). (ii) Nudged phase: We com-
pute the error signal ε and use it to nudge the Hamiltonian
Ĥ(x, θ, ν = βε) by switching on the couplings to the out-
put observables, adding a term

∑
ℓ νℓÂℓ to the Hamiltonian.

The couplings are given by the vector ν = βε, in which β
is a small parameter (keeping with the notation for classical
EP [17]; this is unrelated to the inverse temperature). We
again measure the expectation values of all observables Âj .
(iii) Parameter update: Using Onsager reciprocity, Eq. (3),
∂⟨Ôℓ⟩/∂θj = ∂⟨Âj⟩/∂νℓ, we can approximate the gradient
∂⟨Ôℓ⟩/∂θj and hence arrive at:

∂

∂θj
L(y, ytarget(x)) ≈

⟨Âj⟩
∣∣
ν=βε

− ⟨Âj⟩
∣∣
ν=0

β
. (5)

In a similar spirit as for classical Equilibrium Propaga-
tion, one may consider variants which combine positive and
negative nudging [37], i.e., approximate the gradient us-
ing (⟨Âj⟩

∣∣
ν=βε

− ⟨Âj⟩)
∣∣
ν=−βε

/(2β), which empirically per-
forms better for finite nudging.

D. Practical requirements

We now discuss the most important practical considerations
for implementing quantum equilibrium propagation (QEP) in
any experimental platform.

Above all, the platform needs to have tuneable couplings
θ, whose number preferably should be easy to scale up with
growing system size. Such tuneable couplings have been de-
veloped for many quantum simulators [32] and quantum com-
puting platforms by now. Examples include: (i) ion chains,
where spin-spin couplings can be mediated and engineered via
the vibrational modes of the chain, employing suitable Raman
transitions., e.g. [38]. (ii) superconducting-qubit arrays, as
employed for quantum computing, with current-tuneable cou-
plers between neighboring qubits [39]. (iii) neutral-atom Ry-
dberg tweezer arrays providing tuneable spin-spin couplings
[40]. (iv) strongly interacting atoms in optical lattices with
spatially engineered hopping and interactions, e.g. based on
holographic potential shaping [41]. Other platforms, e.g. in
optomechanical arrays, coupled microwave cavities, or cou-
pled laser arrays, also demonstrate interesting tuneable cou-
pling schemes, but they often operate out of equilibrium and
are therefore not directly suitable for QEP, unless one can map
them back to an equilibrium situation.

Beyond this primary requirement of a scalable number of
tuneable couplings, QEP platforms also need ways to apply
the output forces ν . This demands local fields, e.g. effective
magnetic fields or qubit detunings, easily available in most
platforms that are flexible enough to support tuneable cou-
plings. In addition, the expectation values of both the output
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operators and of the coupling operators connected to train-
able degrees of freedom should be measurable. Regarding the
couplings, we note that the expectation values of interaction
terms of the form X̂jX̂k or similar can easily be measured
even by observing the spin operators X̂j individually (and
multiplying outcomes). A Heisenberg-type coupling opera-
tor

∑
α=x,y,z α̂jα̂k would need three separate measurements,

for the x,y,z components, performed in independent shots of
the experiment, eventually obtaining the expectation value of
the complete operator. Alternatively, one could carry out a
collective (two-qubit) measurement. The latter is typically
performed via an ancilla, as demonstrated for syndrome ex-
traction in quantum error correction schemes, and therefore
requires more experimental effort. We note that the statisti-
cal nature of quantum physics in any case requires many runs
of the experiment to measure the expectation values of out-
put variables (needed for inference) and of coupling operators
(needed for training). Each of these runs involves an equili-
bration step.

Finally, QEP requires efficient means to approach the equi-
librium state, i.e., for the zero-temperature limit, the ground
state |Ψ(λ)⟩ of the Hamiltonian. Efficient ground-state prepa-
ration of complex quantum many-body Hamiltonians is one
of the most intensively researched questions in quantum
simulation and quantum computing. For the purposes of
QEP, we distinguish between two options: (i) hybrid ap-
proaches, where an external digital computer is employed
during equilibration, and (ii) purely autonomous schemes.
Hybrid approaches could rely on variational quantum eigen-
solvers [42], where an ansatz quantum circuit with continu-
ously parametrized unitary gates is performed, the expecta-
tion value of the Hamiltonian is measured, and a classical op-
timization is performed to adapt parameters of the circuit. At
first glance, the use of a classical optimizer to find the quan-
tum ground state in this way might seem to contradict the ba-
sic premise of QEP or neuromorphic computing in general,
i.e. using a physical system to do information processing.
However, if the problem setting makes efficient use of the re-
sulting quantum many-body ground state, even such a hybrid
approach may still yield an advantage over an entirely classi-
cal digital device, in the same way that variational quantum
eigensolvers are thought to be beneficial under the right cir-
cumstances as compared to numerical ground state search by
classical algorithms.

Purely autonomous equilibration schemes get rid of any
feedback loop. In principle, coupling to a cold environment
is sufficient, but recently there has been active research into
speeding up equilibration. The techniques put forward often
rely in one way or another on variations of quantum reservoir
engineering[43], where dissipation is introduced deliberately,
and which have, e.g., been used to stabilize quantum many-
body states in superconducting circuits [44]. This can happen
in the form of suitable continuous driving (inspired by laser
cooling), e.g. [45], or else in the form of quantum circuits that
introduce gates coupling the quantum many-body system to
ancilla qubits which then may be periodically reset (“digital
quantum cooling”, e.g. [46]) or other schemes to reduce en-
tropy, such as via suitable measurements [47].

III. APPLICATIONS

A. Supervised learning: phase detection in a quantum
many-body system

The input considered above is classical, where QEP could
be used to train a quantum device to perform an essentially
classical machine learning task. However, we now turn to an
important class of applications where a QEP-trained system
can effectively receive input that is quantum instead of classi-
cal.

In general, this setting can be realized by starting from a
Hamiltonian Ĥ0(x), whose quantum ground state we want to
analyze with the help of a QEP setup. By tuning the classical
parameters x (typically a few) we are able to realize different
phases with different ground states, e.g., sweeping through
some phase diagram in the case of a quantum many-body sys-
tem. One task could consist in predicting, for any given x,
the distinct quantum phase that the system assumes, possibly
after seeing a few labeled training examples at a few parame-
ter locations x. Another task could consist in approximating
the entanglement entropy between some subsystems of Ĥ0 or
predicting any other quantity of interest that can be derived
in principle by inspecting the ground state but may be hard to
extract directly by simple measurements.

Any of these tasks can be addressed via QEP in the fol-
lowing way. We couple the system of interest, described by
Ĥ0(x), to a trainable physical sensor, described by Ĥsens(θ),
Fig. 2 a. Overall, coming back to our previous definitions,
we thus have the full QEP Hamiltonian Ĥ(x, θ) = Ĥ0(x) +

V̂ (θ)+Ĥsens(θ), where we assume that the couplings between
the two systems reside inside V̂ (see Fig. 2).

Ideally, the couplings inside the system of interest, Ĥ0,
should be stronger than the couplings to the sensor and within
that sensor. This will ensure that the system of interest is only
weakly perturbed, while the recognition model can still react
strongly to the features of the ground state |ψ0⟩ of Ĥ0. How-
ever, in our numerical experiments (below) we have seen that
even outside this scenario successful learning is possible.

Distinguishing quantum phases can serve as an important
application, and it has been considered before in the context
of quantum machine learning based on gate-based quantum
computers, where a unitary circuit acts on a given ground state
encoded in a multi-qubit register [48–50]. In contrast to that,
QEP relies on equilibration and moreover is far more general
in the choice of systems – e.g. it does not require qubits as
degrees of freedom nor the ability to perform gates nor any
detailed knowledge of all aspects of the Hamiltonian.

Both for this task as well as others analyzed below, we
choose the cluster Ising Hamiltonian (see e.g. [50]) as an il-
lustrative quantum many body system,

Ĥ0 = gZXZ

∑
j

Ẑj−1X̂jẐj+1 − gZZ
∑
j

ẐjẐj+1 − gX
∑
j

X̂j ,

(6)

in which X̂, Ŷ , Ẑ are the Pauli matrices. This model has
three phases, including a topologically nontrivial one. We
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FIG. 2. Supervised learning: Learning recognition of quantum
phases using QEP. (a) Schematic of a trainable quantum sensor cou-
pled to a system. (b) Specific example of a two-qubit sensor coupled
to a 1D cluster transverse Ising Hamiltonian at two locations, where
readout of Ẑ1′ and Ẑ2′ is supposed to indicate the phase. The 51
tuneable couplings are learned using QEP. (c) Evolution of test ac-
curacy during supervised training on the whole phase diagram (for
a chain of length N = 8). Multiple training runs (yellow), con-
fidence intervals as areas (red; at 50% and 80%), and average ac-
curacy (blue). Accuracies for “many queries” (asking whether the
maximum-probability detector outcome matches correct phase) and
“single shot” (probability to indicate correct phase in single quantum
measurement) [batches of 10 training samples; projection noise for
M = 10 measurement shots per sample is accounted for; nudge pa-
rameter β = 0.4]. (d) Overlap of batch-averaged gradient estimate
with true gradient direction, vs. nudge parameter. Confidence in-
tervals (red, 95%, 80%, 50%) depict distribution over many batches
(batch size 10, no measurement shot noise). (e) Gradient overlap
histograms vs. measurement shots M , for two different nudge pa-
rameters (batch size 10). (f) Test of phase recognition: probabilities
of measuring the trained sensor in one of the three different combina-
tions of Z1′ , Z2′ shown in orange/green/blue; true phase boundaries
in black (gZ + gXX + gZXZ = 4). (g) Histogram of final test accu-
racies for repeated training runs (parameters as above), for a sensor
that only couples to Ẑ operators in the chain (or only to X̂ and Ẑ),
and for a sensor trained only on a small patch in the middle of each
phase but tested throughout (“restricted”).

will now regard x = (gZXZ, gZZ, gX) as the input parameters.
We add a sensor made of qubits that are coupled in all possi-
ble ways among each other (2-local, with terms like X̂αŶβ or
Zα etc) and to a limited region in the chain (couplings ẐαX̂j

etc, where j is a spin in the chain). The sensor qubits are
measured in the Z-basis, and the resulting configuration is
supposed to announce the detected phase. Here we used a
mean-square-error loss function, although a categorical cross-
entropy would have been suitable as well. We find that even
a small-scale sensor of only two qubits, coupled to two spins
in the chain, has sufficient expressivity to properly learn the
known phase diagram of the cluster Ising model (Fig. 2 b,c),
when trained in a supervised fashion using QEP. Inspecting
the solution also reveals a surprise: the sensor-system cou-
plings are not weak, and the spin configuration nearby the
sensor is visibly perturbed, without however deteriorating the
functionality. We also confirm that the quantum nature of the
coupling is important. This can be ascertained by comparing
to a sensor that is only allowed to couple to Ẑ operators in the
chain, which performs much more poorly (Fig. 2 g). By con-
trast, allowing coupling to non-commuting obervables yields
the observed good accuracy.

An important general aspect of QEP training is the unavoid-
able projection shot noise encountered in any quantum experi-
ment, where expectation values are obtained by repeated mea-
surements with individually discrete outcomes – in contrast to
the classical situation. This hampers training, since the es-
timate of the gradient is noisy, with fluctuations ∼ 1/

√
M ,

where each of the M shots requires a renewed equilibration.
Fortunately, we find that this effect can be counteracted by
employing an increased finite nudging strength µ , effectively
boosting the contrast in estimating the response of expectation
values. Finite nudging, however, leads to a deviation from the
linear response that would yield the ideal gradients. There-
fore ultimately there is a sweet spot, balancing shot noise vs.
nonlinearity of the response, to obtain optimized training con-
vergence (Fig. 2 d,e). In our numerical experiments, we find
that the goal of minimizing the total number of experimental
runs (i.e. number of training samples multiplied by number
of shots per sample) is best achieved by keeping M small and
simply taking more batches. Apparently, this leads to more
variety in the observed training data and better training per-
formance. In experiments, the number of shots M could also
be reduced by coupling multiple sensors at different locations
to the system, having them share their coupling values. Fi-
nally, in principle, there is an alternative to averaging over
projective measurements, namely performing weak continu-
ous measurements of the expectation values (a weakly cou-
pled sensor is able to realize this). This could be performed
without rethermalizing to the ground state.

B. Unsupervised learning

We now discuss two applications for unsupervised learning
for which the gradients are used for optimization tasks.

a. Phase exploration: In the first example, we would
like to explore the phase diagram of a quantum many-body
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FIG. 3. Unsupervised learning applications: phase exploration and sensitivity optimization for sensing. a Sketch of phase space explo-
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towards a phase boundary and then follow it, suggesting that the technique may be employed to trace out phase boundaries. The plots on the
right show cuts through the phase diagram at various steps during the training.

system. In practice, this could be an interesting task for char-
acterizing the capabilities of a quantum simulator when we
would like to explore the phase diagram of a system which
is partially unknown (e.g. some Hamiltonian terms are not
known or cannot be tuned) and computationally hard to simu-
late classically. We can nevertheless ask whether phases exist
that maximize (or minimize) certain expectation values and
use QEP to explore the phase diagram and find such regimes.
In this scenario, the relevant QEP-Hamiltonian of this unsu-
pervised learning task is Ĥ(θ, ν), not containing any inputs
x.

Fig. 3 a illustrates the procedure: starting from an initial set
of parameters θ (a point in the phase diagram), we optimize θ
by computing the gradients with QEP to find the (potentially
local) maximum of the expectation value of interest. The only
difference in the QEP procedure here is that the derivative of
the simple loss function L = −y w.r.t. the output variable
yields a trivial error signal of −1 which can then be inserted
in the gradient calculation above according to Eq. (5).

Here, we exemplify the procedure by examining a slice
through the phase diagram of the cluster Ising Hamiltonian (6)
when we fix gZXZ = −0.5 ≡ const. We optimize the Néel
order parameter y ≡ ⟨X̂0X̂4⟩, such that the loss function is
simply L(y) ≡ −⟨X̂0X̂4⟩. We show two example trajectories
in Fig. 3 b. In both cases, the trajectories quickly converge
to the gZZ = 0 line and then move along it, going into the
paramagnetic phase. Accordingly, the loss function, Fig. 3 c,
rapidly decreases, with the decrease becoming slower as the
trajectory moves along the gZZ = 0 line.

We suggest that, in general, this approach could be an ef-

ficient technique for exploring higher dimensional phase dia-
grams which cannot simply be mapped out without consider-
able effort by simply sweeping all of the parameters.

b. Sensitivity optimization: In the second unsupervised
learning application, the aim is to maximize the derivative
of some expectation value of interest w.r.t. a certain param-
eter θj . As Fig. 3 d illustrates, in contrast to the previous
examples, we now start with two points, θ(1) and θ(2), in
the phase diagram at which we compute expectation values
y1,2 ≡ ⟨Âℓ⟩|θ(1,2) and maximize the slope calculated from the
difference quotient of the output expectation values at these
two points. Concretely, the corresponding loss function has
the form

L(y1, y2) = −

∣∣∣∣∣ ⟨Âℓ⟩|θ(1) − ⟨Âℓ⟩|θ(2)

θ
(1)
j − θ

(2)
j

∣∣∣∣∣ . (7)

An appealing application of this procedure could be to find
the optimal working point of sensors, such as magnetic field
sensors.

To illustrate this scheme, we again consider the cluster Ising
Hamiltonian (6) and optimize the slope of ⟨X̂0X̂4⟩ w.r.t. the
parameter gX , which is proportional to the magnetic field.
Fig. 3 e shows two sets of example trajectories and the cor-
responding loss functions, Fig. 3 f. We observe that the tra-
jectories converge to the phase boundary, where the slope is
largest. For the first run, Fig. 3 g, we see that the trajectory
moves along the phase boundary, since the slope is larger for
smaller gZZ . We suggest that, in the future, this feature could
be exploited to more generally map out phase boundaries.
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IV. CONCLUSION AND OUTLOOK

We have exploited Onsager reciprocity to derive a quan-
tum version of equilibrium propagation, which in its classical
form is one of the major general training techniques for neu-
romorphic platforms. We have shown that this can be used
successfully even for situations where the input is effectively
a quantum state (as in classifying quantum phases via super-
vised learning), as well as for unsupervised learning tasks re-

lated to exploring the phase diagrams of quantum simulators.
In all of these cases, QEP can be applied even when classi-
cally, the Hamiltonian is hard or impossible to simulate. A
large variety of experimental platforms should be amenable to
implementations of quantum equilibrium propagation.
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and R. Fleury, Backpropagation-free training of deep
physical neural networks, Science 382, 1297 (2023),

https://www.science.org/doi/pdf/10.1126/science.adi8474.
[13] C. C. Wanjura and F. Marquardt, Fully non-linear neu-

romorphic computing with linear wave scattering (2023),
arXiv:2308.16181 [physics.optics].

[14] M. Yildirim, N. U. Dinc, I. Oguz, D. Psaltis, and
C. Moser, Nonlinear processing with linear optics (2023),
arXiv:2307.08533 [physics.optics].

[15] F. Xia, K. Kim, Y. Eliezer, L. Shaughnessy, S. Gigan, and
H. Cao, Deep learning with passive optical nonlinear mapping
(2023), arXiv:2307.08558 [physics.optics].

[16] V. López-Pastor and F. Marquardt, Self-learning machines
based on hamiltonian echo backpropagation, Phys. Rev. X 13,
031020 (2023).

[17] B. Scellier and Y. Bengio, Equilibrium propagation: Bridg-
ing the gap between energy-based models and backpropagation,
Frontiers in computational neuroscience 11, 24 (2017).

[18] B. Scellier, A deep learning theory for neural networks
grounded in physics, arXiv preprint arXiv:2103.09985 (2021).

[19] J. Kendall, R. Pantone, K. Manickavasagam, Y. Bengio,
and B. Scellier, Training end-to-end analog neural networks
with equilibrium propagation, arXiv preprint arXiv:2006.01981
(2020).

[20] E. Martin, M. Ernoult, J. Laydevant, S. Li, D. Querlioz,
T. Petrisor, and J. Grollier, Eqspike: spike-driven equilibrium
propagation for neuromorphic implementations, Iscience 24
(2021).

[21] M. Ernoult, J. Grollier, D. Querlioz, Y. Bengio, and B. Scellier,
Equilibrium propagation with continual weight updates, arXiv
preprint arXiv:2005.04168 (2020).

[22] B. Scellier, S. Mishra, Y. Bengio, and Y. Ollivier, Agnos-
tic physics-driven deep learning (2022), arXiv:2205.15021
[cs.LG].

[23] M. Falk, A. Strupp, B. Scellier, and A. Murugan, Con-
trastive learning through non-equilibrium memory (2023),
arXiv:2312.17723 [cond-mat.dis-nn].

[24] Q. Wang, C. C. Wanjura, and F. Marquardt, Training coupled
phase oscillators as a neuromorphic platform using equilibrium
propagation (2024), arXiv:2402.08579 [cs.ET].

[25] M. Stern, D. Hexner, J. W. Rocks, and A. J. Liu, Supervised
learning in physical networks: From machine learning to learn-
ing machines, Physical Review X 11, 021045 (2021).

[26] M. Stern, A. J. Liu, and V. Balasubramanian, The physical ef-
fects of learning (2023), arXiv:2306.12928 [cond-mat.dis-nn].

[27] S. Dillavou, M. Stern, A. J. Liu, and D. J. Durian, Demonstra-
tion of decentralized physics-driven learning, Physical Review
Applied 18, 014040 (2022).

[28] S. Dillavou, B. D. Beyer, M. Stern, M. Z. Miskin, A. J. Liu, and
D. J. Durian, Machine learning without a processor: Emergent

https://arxiv.org/abs/2406.03372
https://proceedings.neurips.cc/paper_files/paper/2018/file/63c3ddcc7b23daa1e42dc41f9a44a873-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/63c3ddcc7b23daa1e42dc41f9a44a873-Paper.pdf
https://arxiv.org/abs/2308.05226
https://doi.org/10.1364/OPTICA.5.000864
https://doi.org/10.1126/science.ade8450
https://doi.org/10.1126/science.ade8450
https://doi.org/10.1126/science.adi8474
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.adi8474
https://arxiv.org/abs/2308.16181
https://arxiv.org/abs/2307.08533
https://arxiv.org/abs/2307.08558
https://doi.org/10.1103/PhysRevX.13.031020
https://doi.org/10.1103/PhysRevX.13.031020
https://arxiv.org/abs/2205.15021
https://arxiv.org/abs/2205.15021
https://arxiv.org/abs/2312.17723
https://arxiv.org/abs/2402.08579
https://arxiv.org/abs/2306.12928


8

learning in a nonlinear electronic metamaterial, arXiv preprint
arXiv:2311.00537 (2023).

[29] L. E. Altman, M. Stern, A. J. Liu, and D. J. Durian, Experimen-
tal demonstration of coupled learning in elastic networks, arXiv
preprint arXiv:2311.00170 (2023).

[30] S. Oh, J. An, S. Cho, R. Yoon, and K.-S. Min, Memristor
crossbar circuits implementing equilibrium propagation for on-
device learning, Micromachines 14, 1367 (2023).

[31] J. Laydevant, D. Markovic, and J. Grollier, Training
an ising machine with equilibrium propagation (2023),
arXiv:2305.18321 [cs.NE].

[32] E. Altman, K. R. Brown, G. Carleo, L. D. Carr, E. Demler,
C. Chin, B. DeMarco, S. E. Economou, M. A. Eriksson, K.-
M. C. Fu, et al., Quantum simulators: Architectures and oppor-
tunities, PRX quantum 2, 017003 (2021).

[33] M. Schuld, I. Sinayskiy, and F. Petruccione, An introduction
to quantum machine learning, Contemporary Physics 56, 172
(2015).

[34] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe,
and S. Lloyd, Quantum machine learning, Nature 549, 195
(2017).

[35] L. Onsager, Reciprocal relations in irreversible processes. i.,
Phys. Rev. 37, 405 (1931).

[36] R. Kubo, The fluctuation-dissipation theorem, Reports on
Progress in Physics 29, 255 (1966).

[37] B. Scellier, M. Ernoult, J. Kendall, and S. Kumar, Energy-based
learning algorithms for analog computing: a comparative study
(2023), arXiv:2312.15103 [cs.LG].

[38] K. Kim, M. Chang, R. Islam, S. Korenblit, L. Duan, and
C. Monroe, Entanglement and tunable spin-spin couplings be-
tween trapped ions using multiple transverse modes., Physical
Review Letters 103, 120502 (2009).

[39] Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends,
J. Kelly, B. Campbell, Z. Chen, B. Chiaro, et al., Qubit archi-
tecture with high coherence and fast tunable coupling, Physical
review letters 113, 220502 (2014).

[40] L.-M. Steinert, P. Osterholz, R. Eberhard, L. Festa, N. Lorenz,
Z. Chen, A. Trautmann, and C. Gross, Spatially tunable spin in-
teractions in neutral atom arrays, Physical Review Letters 130,
243001 (2023).

[41] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,
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APPENDIX

Appendix: Some details for the supervised learning example

We considered a cluster Ising chain of N = 8 spins, and a
sensor of 2 qubits, such that the total Hilbert space is 1024-
dimensional. This allows efficient exact diagonalization us-
ing the Lanczos algorithm applied to sparse matrices, to find
the ground state of the coupled system. The three considered
output operators are projectors onto three states, each with a
definite combination of the sensor operators Ẑ1′ and Ẑ2′ , as
shown in the figure; e.g. P̂1,−1 = (1 + Ẑ1′)(1 − Ẑ2′)/4
projects onto the combination (+1,−1) and would be used
to indicate the ferromagnetic phase, which is reached when
gZZ dominates. The expectation value is correspondingly the
probability to observe this particular combination in a projec-
tive measurement of these two operators. The training sam-
ples are drawn uniformly from the triangular phase diagram
shown in the figure, where (following convention in the liter-
ature) we set the sum of all three coupling parameters to 4.
The phase boundaries are known for this benchmark quantum
many-body model [50], which allows us to provide the cor-
rect labels: in each phase, one of the projectors is 1, while
the other two are 0 (“one-hot-encoding”), and the assignment
of the three combinations of (Z1′ , Z2′) to the three phases is
defined in a fixed arbitrary way.

Gradients are obtained using the symmetric nudging pro-
cedure, by adding the nudged output operators

∑
j νℓÂℓ

to the Hamiltonian, where in our case Âℓ = P̂ℓ and
l ∈ (+1,+1), (+1,−1), (−1,−1). The ground state for
the nudged Hamiltonian (for both signs of nudging) is re-
calculated using sparse Lanczos diagonalization. Interest-
ingly, our experiments have shown that this is numerically
more efficient than attempting to obtain the exact linear re-
sponse using first-order perturbation theory, which involves
solving a linear system of equations when applying (E −
Ĥ)−1 to the perturbed ground state. After the approxi-
mate gradient has been obtained using QEP, we use it inside
an Adam adaptive gradient descent optimizer to update the
parameters—which would be possible also for the QEP gradi-
ents obtained in real experiments. The learning rate employed
in the numerical examples was set to 0.01.

https://arxiv.org/abs/2305.18321
https://doi.org/10.1103/PhysRev.37.405
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1088/0034-4885/29/1/306
https://arxiv.org/abs/2312.15103
https://arxiv.org/abs/2405.08467
https://arxiv.org/abs/2405.08467
https://arxiv.org/abs/2406.00879
https://arxiv.org/abs/2406.00879
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Test accuracies are measured on a test set of 200 points that
are also uniformly randomly distributed across the triangular
space and which are fixed before the training run. We distin-
guish two measures of accuracy: In the “many queries” ver-
sion, we imagine that one would obtain the expectation values
of the three projectors, which requires multiple shots, and as-
sign as official outcome the phase whose associated projector
has the largest expectation value (largest measurement prob-
ability). This is similar to how accuracy would be assessed
for classical machine-learning classification models. In the
“single shot” version, we imagine to run inference only once
(equilibrating to the ground state once) and performing a sin-
gle measurement of the two sensor operators. The outcome
will be declared correct if the combination matches the cor-
rect label of the true underlying phase for this parameter com-
bination. Single-shot performance is more difficult, but even
so the training results show that single-shot accuracy can also
reach relatively high values. Repetition, e.g. using three shots
and taking a majority vote when possible, will quickly boost
the accuracy (until it reaches the ’many queries’ result in the
limit of many shots).

For assessing the influence of shot noise, we replace the
exact expectation values by numerical values that are drawn
from a Gaussian distribution centered around that value, with
the correct variance VarÂℓ/M , where M is the number of
measurement shots (recall each of those will usually require
a new equilibration, unless one adopts some of the strategies
mentioned in the main text). Replacing the true distribution
by a Gaussian is a reasonable approximation unless M is very
small.

Appendix: Different approaches for nudging

In classical EP, the idea is to add the loss function
L(y, ytarget(x)) to the energy, multiplied by β, where β is a
small constant. Instead, in the main text we advocated simply
adding

∑
ℓ νℓÂℓ to the Hamiltonian, where Âℓ are the out-

put operators and νℓ = β∂L/∂yℓ is the nudge force, since
for small β this produces the force needed to elicit the lin-
ear response required for the gradient. If we were instead to
translate directly the classical EP prescription to the quantum
Hamiltonian, we could use βL(ŷ, ytarget(x)), with the opera-
tor version of the outputs, ŷℓ = Âℓ for ℓ ∈ Sout, replacing the
expectation values yℓ. Expanding this to linear order in Âℓ,
we would get the same result as our ansatz. The higher-order
terms in βL would lead to further corrections to the Hamilto-
nian, and depending on the quantum fluctuations in Âℓ these
might be as large as the linear-order term itself (e.g. for mean-
squared error loss functions, these could correspond to a stiff-
ening of the potential acting on Âℓ). Since these higher-order
terms might also be more difficult to implement experimen-
tally, depending on the shape of Âℓ, and since they are, at the
same time, not needed to evaluate the gradient, we opted for
the procedure explained in the main text, adding only linear
terms to the Hamiltonian. It would be interesting in the future
to compare the various approaches for finite nudging, where

β is not small (which is actually the case for the numerical
experiments).

Appendix: Further details for unsupervised learning examples

Phase exploration

We again consider a cluster Ising Hamiltonian, of 10 spins,
and search for the points in the phase diagram that maximize
⟨X̂0X̂4⟩, hence, X̂0X̂4 is the output operator. This is ex-
pected to be maximized in the paramagnetic phase. Initial
parameters will typically be chosen randomly. For illustrative
purposes, we manually select the initial parameters, i.e. the
starting points of the trajectories in Fig. 3 b. Concretely, the
two starting points are gX = −0.1, gZZ = 0.4 (run 1) and
gX = 0.9, gZZ = 0.9 (run 2). We obtain gradients according
to the QEP procedure by switching on the coupling to the out-
put operator νX̂0X̂4. As in the supervised learning example,
the ground state is computed using sparse Lanczos diagonal-
ization. For the results shown in Fig. 3 b, both the learning
rate and the nudge parameter ν were set to 0.1

Sensitivity optimization

In the second unsupervised learning example, we search for
the largest slope of ⟨X̂0X̂4⟩ w.r.t. gX in the phase diagram of
the cluster Ising Hamiltonian (6) with 10 spins by optimizing
the loss function (7). Concretely, we consider two different
values of g(1,2)X while the other parameters are the same (gZZ

is trained while gZXZ = −0.5 ≡ const.).
During one step of the training, we update g(1)X , g(2)X and

gZZ . To obtain the necessary gradients, we need to compute
the following derivatives (for brevity we denote ∂/∂θj by ∂θj )

∂
g
(1)
X

L =ε
∂
g
(1)
X

⟨X̂0X̂4⟩|g(1)
X

|g(1)x − g
(2)
x |

+ sgn (g
(1)
X − g

(2)
X )

L
|g(1)X − g

(2)
X |

(8)

∂
g
(2)
X

L =− ε
∂
g
(2)
X

⟨X̂0X̂4⟩|g(2)
X

|g(1)x − g
(2)
x |

− sgn (g
(1)
X − g

(2)
X )

L
|g(1)X − g

(2)
X |

(9)

∂gZZ
L =ε ∂gZZ

(
⟨X̂0X̂4⟩|g(1)

X

− ⟨X̂0X̂4⟩|g(2)
X

)
|g(1)x − g

(2)
x |

(10)

with ε ≡ sgn [⟨X̂0X̂4⟩|g(1)
X

− ⟨X̂0X̂4⟩|g(2)
X

]. In all of the

expressions, we use QEP to extract ∂θj ⟨X̂0X̂4⟩|g(1,2)
X

with

θj ∈ {g(1)X , g
(2)
X , gZZ}.

To that end, as outlined in the main text, we approximate the
derivative by comparing the nudged and the free expectation
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value

∂

∂θj
⟨X̂0X̂4⟩ ≈

⟨X̂0X̂4⟩
∣∣
ν=βε

− ⟨X̂0X̂4⟩
∣∣
ν=0

β
. (11)

As before, to evaluate the expectation value in the nudged
phase, we couple to the output operator by adding νX̂0X̂4

to the Hamiltonian. Ground states in the free and the nudged
phase are again computed using sparse Lanczos diagonaliza-

tion.

To illustrate the procedure, we consider two different start-
ing points in the phase diagram: g(1)X = −0.2, g(2)X = −1.5,
gZZ = −1.5 (run 1; each points starts in a different phase)
and g(1)X = −0.5, g(2)X = 0.3, gZZ = 1.0 (run 2; both points
are in the same phase). Both the learning rate and the nudging
parameter were set to 0.1.
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