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A B S T R A C T   

Consciousness science is marred by disparate constructs and methodologies, making it challenging to system-
atically compare theories. This foundational crisis casts doubts on the scientific character of the field itself. 
Addressing it, we propose a framework for systematically comparing consciousness theories by introducing a 
novel inter-theory classification interface, the Measure Centrality Index (MCI). Recognizing its gradient distri-
bution, the MCI assesses the degree of importance a specific empirical measure has for a given consciousness 
theory. We apply the MCI to probe how the empirical measures of the Global Neuronal Workspace Theory 
(GNW), Integrated Information Theory (IIT), and Temporospatial Theory of Consciousness (TTC) would fare 
within the context of the other two. We demonstrate that direct comparison of IIT, GNW, and TTC is meaningful 
and valid for some measures like Lempel-Ziv Complexity (LZC), Autocorrelation Window (ACW), and possibly 
Mutual Information (MI). In contrast, it is problematic for others like the anatomical and physiological neural 
correlates of consciousness (NCC) due to their MCI-based differential weightings within the structure of the 
theories. In sum, we introduce and provide proof-of-principle of a novel systematic method for direct inter-theory 
empirical comparisons, thereby addressing isolated evolution of theories and confirmatory bias issues in the 
state-of-the-art neuroscience of consciousness.   

1. Introduction 

Explaining how consciousness fits in the physical world remains the 
science’s holy grail (Melloni et al., 2021). After a long hiatus, the 
neuroscientific study of consciousness is experiencing a revival, most 
likely due to technological advancements that have made it possible to 
study the human brain non-invasively in real-time. The field is growing 
(Michel et al., 2019), and over the past 25 years, neuroscientific hy-
potheses, models, and theories have proliferated while also gaining 
empirical support (Northoff and Lamme, 2020; Sattin et al., 2021; Seth 
and Bayne, 2022; Signorelli et al., 2021; Yaron et al., 2022). 

However, as theories co-evolved, challenges have emerged. Among 
the most significant ones is the heterogeneity that hinders direct com-
parison and adjudication between theories in their explanatory target, 
theoretical notions, principles, methodology, and postulated mecha-
nisms. Further, a systematic review of the literature of four prominent 

theories of consciousness revealed parallel co-evolution of the theories, 
with a confirmation bias, further amplified by methodological prefer-
ences, which by itself can significantly predict the theory outcome 
(Yaron et al., 2022). 

Direct comparisons between theories, including an adversarial 
collaboration format (Kahneman, 2003; Latham et al., 1988; Mellers 
et al., 2001) testing contradictory prediction and open data sharing, 
have been suggested to remedy confirmation bias and other challenges 
in the field (Lepauvre and Melloni, 2021). An open science adversarial 
collaboration testing contradictory predictions of IIT and GNW has 
provided the first proof of principle of this approach (Consortium et al., 
2023; Melloni et al., 2023, 2021). Going beyond particular insights from 
adversarial collaborations testing the different theories of conscious-
ness, how can we directly and systematically compare all currently 
proposed theories of consciousness, including their various empirical 
measures? 
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We currently lack such a systematic methodology. To make head-
ways on this problem, here we present a systematic methodology 
inspired by conceptual insights from both the philosophy of science (Box 
1) and non-reductive neurophilosophy (Box 2). One of our guiding 
principles is that to be scientific, a theory must be experimentally 
refutable, at least in principle (Popper, 2002). Following these philo-
sophical lessons, we develop and apply our novel methodology to 
directly compare three theories in their empirical measures in a sys-
tematic and exemplary way: the Global Neuronal Workspace Theory 
(GNW) (Dehaene and Changeux, 2011; Mashour et al., 2020), the In-
tegrated Information Theory (IIT) (Albantakis et al., 2023; Tononi et al., 
2016), and the Temporospatial Theory of Consciousness (TTC) (North-
off, 2018, chaps. 7–8; Northoff and Huang, 2017; Northoff and Zilio, 
2022a). That establishes cross-theoretical empirical translations, in 
which measures proposed by one theory are considered in the context of 
the other theories. Hence, our systematic methodology creates an arena 
where theories can directly compete with each other in an adversarial 
style. 

Our approach makes a novel and distinct contribution to the theory 
of consciousness science, an emerging field focused on the empirical, 
philosophical, and mathematical presuppositions of state-of-the-art ap-
proaches to scientifically explaining experience (Bayne et al., 2024; 
Corcoran et al., 2023; Del Pin et al., 2021; Doerig et al., 2021; Fazekas 
et al., 2024; Melloni et al., 2021; Michel et al., 2019; Negro, 2024; Storm 
et al., 2024; Zheng et al., 2024). Here is the paper’s outline. Section 2 
briefly introduces the Measure Centrality Index (MCI) methodology, its 
categories, and challenges. Section 3 contains the search parameters, 
inclusion criteria, and the systematic literature review of each theory, 
with all available measures condensed in Tables 2, 3, and 4, corre-
sponding to GNW, IIT, and TTC, respectively. Section 4 puts forward 
cross-theoretic empirical translations for five experimentally tractable 
divergences using measures from each theory, exemplifying this novel 
method. Section 5 addresses the MCI’s main challenges and considers 
response strategies. Section 6 discusses limitations and prospects. 

2. Method for inter-theory comparison: the measure centrality 
index (MCI) 

How can we directly compare the different theories in their respec-
tive empirical measures? This section addresses this question by devel-
oping a methodological tool, the Measure Centrality Index (MCI), and 
lists its main intra-theoretical, inter-theoretical, and field-level chal-
lenges. We start by defining the concept of “empirical measure” in a 
general and field-specific scientific context. 

Broadly, a scientific measure is a methodologically defined proced-
ure for categorizing or quantifying features or properties of phenomena 
of interest, facilitating their empirical examination. An empirical mea-
sure comprises a symbolic and a physical component (Tal, 2020). The 
symbolic component involves using formal languages (e.g., mathemat-
ical, logical) to define the measurement process, ensuring systematic, 
reproducible, and rigorous procedures. While natural language is 
included in the symbolic component, in most cases is complemented or 
replaced by strictly formal languages because of rigor requirements. 
Formalism choice is contingent upon the nature of the investigated 
phenomenon and the research objectives, adhering to coherency, con-
sistency, and relevance principles. 

The physical component of a measure involves an experimentally 
tractable variable that bridges the abstract and the observational do-
mains. It presupposes the possibility of interacting with the world via an 
algorithm-like procedure, e.g., observation, perturbation, quantifica-
tion, recording—repetition—reproduction. A variable is called “phys-
ical” because it is possible, in principle, for different observers at 
different times and contexts to engage with it in a procedure-following 
manner; i.e., the variable is intersubjectively assessable (Tal, 2020). 

In consciousness science, empirical measures connect “covert,” 
intrasubjective features of experience to “overt,” intersubjective inves-
tigation procedures. As in other disciplines, they feature symbolic and 
physical components. However, unlike other scientific phenomena, 
consciousness is observable only from the first person but not the third 
person; it is subjective, private, and qualitative (Gallagher and Zahavi, 
2021; Goff, 2019). This implies that in the case of consciousness, we 

Box 1 
Lessons from Philosophy of Science: The Intra-theory Triangulation Requirement. 

Developed in the philosophy of science, the Duhem-Quine thesis addresses the complexity of testing scientific hypotheses, highlighting the 
problem of data underdetermination and the holistic aspect of theory evaluation (Duhem, 1954; Quine, 2011). Data underdetermination means 
that empirical evidence alone cannot establish a single scientific theory because multiple, potentially conflicting theories can explain an 
observed dataset. Moreover, since any scientific theory depends on auxiliary hypotheses, assumptions, or frameworks, no single, “crucial 
experiment” can directly confirm or refute it (Duhem, 1954, pp. 188–90)—holistic theory evaluation. Due to data underdetermination and the 
inability to test hypotheses alone, science requires subjective judgment, creativity, and theory-dependent interpretation. 

These ideas strike the core of theory-building and theory-reduction conundrums in consciousness science. As a start, there is a gap between a 
theory’s principles and experimentally deployable measures. Crucially, this gap must be closed through auxiliary operational assumptions. For 
example, applying empirical measures involves mathematical formalism and computational decisions, background theory about experimental 
methodology, and implementation presuppositions—yet currently, none figure explicitly in a consciousness theory’s principles. Explicitly 
defining them creates what we describe as the intra-theory triangulation requirement, ensuring the empirical access and testing of a theory’s claims 
about experience. 

In other words, theory proponents should expound the process whereby a principle targeting some consciousness aspect is rendered empirically 
tractable. This is often left unaddressed or, at best, implied without any formal justification. Abiding by the “scientificity” imperative, theo-
reticians grab any available measure that dovetails their proposal and throw it into the empirical arena. We conjecture that this could contribute 
to the high prevalence of theory-confirming studies (Yaron et al., 2022) that partially led to the field’s current crisis.
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need to link a first-person phenomenon to an empirical measure acces-
sible from a third-person perspective. Nevertheless, how can we know 
whether the first-person phenomenon is reliably and reproducibly 
picked up and measured by the third-person measure? 

We are, thus, confronted with a gap between first-person access to 
the phenomenon and the requirement of its third-person measurement 
(Levine, 1983; see also Chis-Ciure, 2022, 2024; Negro, 2020; Northoff, 
2014a, 2014b; Zilio, 2020). The consequence is that methodologically 
bridging this gap requires explicitly operationalizing experiential phe-
nomena so they can be observed, perturbed, quantified, and recorded, 
emphasizing reproducibility and intersubjective verification. Thus, 
when a theory proposes to measure some aspect of consciousness, it 
must provide an independent argument as to the necessity or, at least, 
reliable connection between the third-person measure and first-person 
experience. This marks the difference between a measure of conscious-
ness and a measure of consciousness-related phenomena. 

The MCI involves creating a relevance ranking for an empirical 
measure within a given theory. One quadripartite index could encom-
pass orthogonal, periphery, mantle, and core measures, reflecting a 
relevance spectrum (Fig. 1). 

Orthogonal measures, irrelevant to and outside the boundaries of the 
theory, do not impact its structure even if predictions based on them 
conflict with empirical evidence; e.g., they could be measures proposed 
by competing theories that are incompatible with its tenets. 

Peripheral measures contribute additional support without being 
critical, described as “the auxiliary belt” (Lakatos, 1978); contradictions 
necessitate adjustments without undermining the theory’s main 
principles. 

Mantle measures, significantly more central, are tied to fundamental 
principles. Contradictions here may require substantial revisions, but 
the basic theoretical framework can remain. 

Core measures, intrinsic to the theory’s fundamentals, pose a major 

threat if predictions based on them are experimentally disconfirmed, 
potentially mandating a new theoretical framework. 

The MCI may provide a valuable tool to evaluate the different 
measures’ intra-theory germaneness, that is, its inner empirical struc-
ture. Additionally, the MCI allows ranking the importance of the same 
empirical measure within and across different theories, thus allowing for 
empirical translation from one theory to another, which is useful when 
comparing them. However, MCI’s meta-theoretical approach raises 
different classes of challenges, summarized in Table 1. While a 
comprehensive account of how the MCI could face up to all of them is 
left for future work, we exemplify this methodology in Section 4 and 
sketch potential avenues to address those challenges in Section 5 . 

3. Measures-focused reviews of the three theories 

3.1. Literature selection criteria 

We comprehensively reviewed the theoretical and experimental 
literature on the Global Neuronal Workspace, Integrated Information 
Theory (IIT), and Temporospatial Theory of Consciousness (TTC). Sub-
sequently, we selected a variety of measures proposed by each theory in 
various neuroscientific paradigms and techniques. First, we used the 
ConTraSt database (Yaron et al., 2022) to navigate the empirical liter-
ature on IIT and GNW. We selected theory-driven or theory-mentioning 
articles from the full database. Second, we searched PubMed for ab-
stracts containing "integrated information theory," "global neuronal 
workspace," and "temporospatial theory of consciousness." Third, for 
systematicity, we carefully examined several theoretical papers, 
meta-analyses, and reviews, either by the theories’ proponents (Dehaene 
and Changeux, 2011; Koch et al., 2016; Mashour et al., 2020; Northoff 
and Huang, 2017; Northoff and Lamme, 2020; Northoff and Zilio, 
2022a; Tononi et al., 2016) or more general ones on consciousness 

Box 2 
Lessons from Non-reductive Neurophilosophy: The Inter-theory Coordination Requirement. 

Neurophilosophy is an interdisciplinary field that bridges the conceptual and methodological gaps between neuroscience and philosophy. One 
of its main traditions is non-reductive neurophilosophy (Northoff, 2004, 2014a, 2014b; Zilio, 2020). It resists reducing philosophical concepts, 
domains, and methodologies to their neuroscientific counterparts, instead emphasizing their reciprocal influence, co-evolution, and pluralism. 

Northoff (2014a), Chapter 4) exemplifies the stages of the non-reductive neurophilosophical approach. First, a “conceptual feedforward input” 
uses a philosophical concept to develop operational criteria for observational-experimental investigation. After, a “conceptual feedback output” 
redefines the concept empirically. Finally, the redefined concept can be returned to its metaphysical, epistemological, or ethical domain to 
examine its implications for the respective philosophical questions. More specifically, the concept is redefined within the empirical context of 
neuroscience, making it an empirical concept that can also be placed within the empirical domain. 

These genuine neurophilosophical concepts can be compared to their philosophical counterparts, and one can restart the process and use the 
concept in observational-experimental studies. “Concept–fact iterativity” captures how concepts and facts constantly modify and redefine each 
other. An example is the phenomenal-access consciousness distinction (Block, 1995), as heavily debated in current consciousness discussion 
with its fluctuations between empirical and phenomenal issues/concepts. 

In the Introduction, we noted the consciousness theories’ heterogeneity in definitions, methodologies, epistemological stances, and prioriti-
zations; hence, comparing them is a complex task called the inter-theory coordination requirement. It implies overcoming the challenges in 
meaningfully comparing architectonically different theoretical frameworks that claim to address similar or overlapping phenomena. Georg 
Northoff’s (2014) neurophilosophical developments provide an insightful lens to manage the inter-theory coordination problem, explored in 
more detail in Section 2 . 

The concept-fact iterativity can act as a bridge. The notion that concepts and facts are continuously recursive suggests that theories (laden with 
concepts) and empirical findings (facts) co-evolve. If we extend this principle to multiple theories, it implies that through iterative engagement 
with empirical data, theories can refine their concepts in ways that lead to greater alignment or coordination with other theories. Next, Northoff 
emphasizes the importance of starting from a phenomenological base. In the context of the inter-theory coordination problem, theories might 
find common ground by anchoring themselves in shared phenomenological descriptions of their target phenomenon or attempting to agree on 
one. 

The iterative nature of concept-fact engagement underscores the idea that theories are refined and evolve. Recognizing this dynamism can 
determine theorists to adjust, align, or even merge aspects of their theories in light of new evidence or insights. Finally, just as Northoff 
champions the intersection of neuroscience and philosophy, the inter-theory coordination problem can benefit from interdisciplinary dialogues, 
where insights from one domain or theoretical tradition can inform and enrich another.  
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science topics like NCC, complexity, information-theoretic, or EEG 
measures, etc. (Mediano et al., 2022; Nilsen et al., 2020; Sarasso et al., 
2021; Sattin et al., 2021; Seth and Bayne, 2022; Signorelli et al., 2021; 
Storm et al., 2017). We included all references that either (i) propose-
d/updated the theory, (ii) proposed/updated at least one theoretical or 
empirical measure associated with the theory, or (iii) experimentally 
supported/contradicted at least one theory prediction. IIT had 107 ci-
tations, GNW 94, and TTC 63. 

While numerous theories of consciousness exist, we have chosen to 
focus on three to illustrate how inter-theory comparisons can be con-
ducted. However, our methodology can be applied beyond these the-
ories, providing broad applicability across different contexts and 
frameworks. 

We have selected these three theories for several reasons. First, 
limiting ourselves to three enables a detailed analysis of their literature 
and theoretical structures, which is crucial for identifying empirical 
discrepancies. Second, we have chosen theories that aim to compre-
hensively explain various aspects of consciousness, such as the level or 
state of consciousness, its content, as well as other aspects like 
connectedness and structure, while also diverging in their explanations. 
It is precisely this divergence that necessitates inter-theoretic compari-
sons and requires a methodology to address this issue. Finally, we have 
selected theories based on our expertise, as some claims made below 
presuppose a nuanced understanding of their conceptual tenets. Addi-
tionally, we have included an emerging theory, TTC, to complement the 

focus on the major frameworks of GNW and IIT. 

3.1.1. A GNW empirical review 
GNW defines a conscious state experienced subjectively as “the 

global availability of information” (Dehaene and Naccache, 2001, p. 1), 
equates consciousness and conscious access, and denies 
non-self-reported experiences (Dehaene, 2014; Mashour et al., 2020). 
Importantly, accessibility requires preconscious processing, while access 
requires conscious processing (Dehaene et al., 2006; Sergent, 2018). 
Self-reports need neither be overt behaviors nor verbal. A report is “an 
active internal process that solicits many high-level cognitive functions 
[…], [i]n particular, interpretative, narrative, belief-construct, and 
belief criticism,” being the “core content of our subjective experience” 
(Naccache, 2018, p. 4). Self-report is a “conscious comment on an inner 
mental representation,” and any conscious item “is accessible for report” 

Table 1 
MCI Challenges.  

MEASURE CENTRALITY INDEX (MCI) 
CLASSES OF CHALLENGES 

INTRA-THEORY 
TRIANGULATION 

INTER-THEORY 
COORDINATION 

SOCIOLOGICAL 
CONSTRAINTS 

Criteria Specification 
What epistemological 
and empirical bases 
should be used to 
determine the criteria for 
classifying a measure as 
orthogonal, peripheral, 
mantle, or core? Who will 
be the key stakeholders 
in this decision-making 
process? 

Inter-theory 
Definitional 
Differences 
What mechanisms can 
the MCI implement to 
navigate scenarios in 
which theories offer 
contradictory or non- 
overlapping definitions 
for the same pre- 
theoretical construct or 
phenomenon? 

Proponents’ 
Agreement and 
Coherence 
Is a consensus among 
theory proponents 
essential for the 
legitimacy of measure 
classification within 
their theory? If not, 
what are the minimal 
levels of agreement 
required to establish a 
compelling 
classification? 

Operationalization 
Once the measures are 
classified, what 
challenges arise in 
establishing theory- 
specific operational 
protocols and 
assumptions that allow 
for empirical testing? 
How can 
interdisciplinary 
expertise be integrated 
effectively? 

Inter-theory Empirical 
Non-overlap 
How can the MCI 
possibly facilitate 
meaningful comparisons 
between theories that 
propose entirely distinct 
empirical methodologies 
or measures with no 
obvious overlap while 
professing to address the 
same phenomenon? 

Conflict Resolution 
Mechanisms 
What formal or informal 
methodologies are 
available to resolve 
disagreements on the 
classification of 
measures? 

Validation, Reliability, 
and Adaptability 
How can the 
classifications within the 
MCI be periodically and 
rigorously reassessed to 
remain current with 
ongoing research and 
data? What mechanisms 
must be in place to ensure 
the MCI remains adaptive 
to the evolving 
theoretical landscape? 

Cross-Theoretical 
Empirical Translations 
How can the MCI 
manage the complexities 
of accurately translating 
empirical measures 
across theories, 
especially when those 
measures receive 
different classifications 
in different theoretical 
contexts? 

Subjectivity, Bias, and 
Neutrality 
While the aim is for an 
unbiased and objective 
MCI classification, what 
checks and balances can 
be implemented to 
mitigate the influence of 
individual convictions 
or preferences on the 
classification process?  

Table 2 
Empirical and Theoretical Measures and NCC Candidates in GNW.  

GNW PARADIGM/TECHNIQUE-INDEXED 
MEASURES AND CANDIDATE NCC 

EEG/MEG/ECoG TMS-EEG fMRI Formal 
Modeling 

NCC 

P3b (sudden late 
ignition) ( 
Dehaene et al., 
2003b;  
Dehaene and 
Changeux, 
2011, 2005;  
Mashour et al., 
2020) 
PFC Activation 
(Dehaene 
et al., 1998;  
Dehaene and 
Changeux, 
2011; Dehaene 
and Naccache, 
2001; Mashour 
et al., 2020) 
PFC Decoding ( 
Bellet et al., 
2022; Kapoor 
et al., 2022;  
King et al., 
2013; King 
et al., 2016;  
Marti and 
Dehaene, 
2017; Salti 
et al., 2015) 
Error-Related 
Negativity 
(ERN) (Charles 
et al., 2013;  
Wessel, 2012) 
Weighted 
Symbolic 
Mutual 
Information 
(wSMI) (King 
et al., 2013) 
Post-250msec 
Bifurcation 
Dynamics in 
the Global 
Playground ( 
Sergent et al., 
2021) 
EEG-based 
Consciousness 
Index (EEG-CI) 
(Sitt et al., 
2014) 

PFC 
Activation/ 
Inhibition ( 
Dehaene 
et al., 1998; 
Dehaene 
and 
Changeux, 
2011; 
Dehaene 
and 
Naccache, 
2001; 
Mashour 
et al., 
2020) 

Dynamic 
Coordinated 
Pattern ( 
Demertzi 
et al., 2019; 
Tasserie 
et al., 2022) 
Functional 
Hub Global 
Workspace 
(Baars et al., 
2013; Deco 
et al., 2021) 
Intrinsic 
Ignition ( 
Deco et al., 
2017) 

Computer 
Simulations 
(Connor and 
Shanahan, 
2010; 
Dehaene 
et al., 2003b; 
Dehaene and 
Changeux, 
2005, 2000; 
Shanahan, 
2008) 
Kolmogorov 
Symbolic 
Complexity 
(KSC) 
(Sitt et al., 
2014) 

Dorsolateral 
prefrontal 
and inferior 
parietal 
cortex; also 
temporal 
cortex, 
anterior and 
posterior 
cingulate 
cortex, and 
precuneus ( 
Dehaene and 
Changeux, 
2011; 
Mashour 
et al., 2020)  
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(Naccache and Dehaene, 2007, p. 519). “Our conscious perception in-
corporates a process of fictionalization,” as Capgras syndrome and other 
neuropsychological conditions show (Naccache, 2016, p. 289). 

GNW is a mechanism-first approach. First, a global computational 

workspace selects and broadcasts for flexible cognitive manipulation 
information received from specialized networks of local processors 
(Baars, 1988). While distinct cortical domains subsume the dedicated 
processors with local connections encoding specialized information, the 

Table 3 
Empirical and Theoretical Measures and NCC Candidates in IIT.  

IIT PARADIGM/TECHNIQUE-INDEXED 
MEASURES AND CANDIDATE NCC  

EEG/MEG/ECoG TMS-EEG fMRI Formal Modeling NCC 

Phi-Autoregressive (ΦAR) ( 
Barrett and Seth, 2011; Isler 
et al., 2018; Kim, 2019; 
Nazhestkin and Svarnik, 
2022) 
Mean Regional Integrated 
Information (ΦR) (Kim 
et al., 2018) 
Phi-Star (Φ*) 
(Afrasiabi et al., 2021;  
Haun et al., 2017; Oizumi 
et al., 2016a) 
Integrated Information 
Structures (IIS) (Leung 
et al., 2021) 

Lempel-Ziv 
Perturbational 
Complexity Index (LZ- 
PCI) (Casali et al., 2013) 
State Transitions 
Perturbational 
Complexity Index 
(ST-PCI) (Comolatti 
et al., 2019) 
Explainable 
Consciousness Indicator 
(ECI) (Lee et al., 2022) 

Multivariate Integrated 
Information (Sasai et al., 
2016) 
Phi-Information 
Decomposition (ΦID) (Luppi 
et al., 2021; Mediano et al., 
2022; Rosas et al., 2020) 

Φ-family 
(Albantakis et al., 2023; Barbosa et al., 2021, 2020; 
Haun and Tononi, 2019; Oizumi et al., 2014; Tononi 
et al., 2016) 
Phi-atomic (Φatomic) (Edlund et al., 2011; Joshi et al., 
2013; Sheneman et al., 2019) 
Phi-Stochastic Interaction (ΦSI) (Ay, 2015) 
State Differentiation (D) (Marshall et al., 2016) 
Geometric Integrated Information (ΦG) (Cohen et al., 
2020; Leung and Tsuchiya, 2022; Oizumi et al., 
2016b) 
Informational Structures (IS) and Fields (IF) (Esteban 
et al., 2018; Kalita et al., 2019) 
Compression-Complexity (ΦC) (Virmani and Nagaraj, 
2019) 
Causal Information Integration (ΦCII) (Langer and Ay, 
2020) 
Phi-Information Decomposition (ΦID) (Luppi et al., 
2021; Mediano et al., 2022; Rosas et al., 2020) 
Simplification/generalization procedures: 
approximate factorizations (Tegmark, 2016), 
Queraynne’s algorithm (Hidaka and Oizumi, 2018; 
Kitazono et al., 2018), graph clustering (Toker and 
Sommer, 2019), shared transitions in Process 
Algebras (Bolognesi, 2019), and self-organized 
criticality (Aguilera, 2019; Aguilera and A. di Paolo, 
2019; Aguilera and di Paolo, 2021; Kim and Lee, 
2019; Popiel et al., 2020; Walter and Hinterberger, 
2022) 

Posterior temporo- 
parietal-occipital “hot 
zone” (Boly et al., 2017; 
Koch et al., 2016; Siclari 
et al., 2017; Tononi et al., 
2015)  

Table 4 
Empirical and Theoretical Measures, Mechanisms, and NCC Candidates in TTC.  

TTC PARADIGM/TECHNIQUE-INDEXED MEASURES, 
MECHANISMS AND CANDIDATE NCC  

EEG/MEG/ECoG TMS-EEG fMRI Formal Modeling NCC 

Expansion: Trial-to-Trial Variability (TTV) (Braun 
et al., 2022; Huang et al., 2015;  
Wainio-Theberge et al., 2021; Wolff et al., 
2021) 
Alignment: Intrinsic Neural Timescales (INT) ( 
Chaudhuri et al., 2015; Chen et al., 2015;  
Golesorkhi et al., 2021a, 2021b; Honey et al., 
2012; Murray et al., 2014; Raut et al., 2020;  
Wolff et al., 2022) 
Alignment: Temporal Receptive Windows 
(TRW) (Hasson et al., 2015; Yeshurun et al., 
2021) 
Alignment: Autocorrelation Window (ACW) 
(Golesorkhi et al., 2021a, 2021b; Honey et al., 
2012; Meisel et al., 2017; Northoff et al., 2021;  
Zilio et al., 2021) 
Nestedness: Power-Law Exponent (PLE) 
(Lendner et al., 2020; Meisel et al., 2017;  
Northoff et al., 2021; Zilio et al., 2021) 
Alignment: Power Spectral Density (PSD) (Zilio 
et al., 2021) 
Nestedness: Detrended Fluctuation Analysis 
(DFA) (Hardstone et al., 2012;  
Linkenkaer-Hansen et al., 2001; Meisel et al., 
2017) 
Globalization: Post-250msec Bifurcation 
Dynamics in the Global Playground (Sergent 
et al., 2021) 

Expansion: Trial-to- 
Trial Variability (TTV) 
(Huang et al., 2015) 
Nestedness: Dynamic 
Repertoire (Casali 
et al., 2013; Hudetz 
et al., 2015) 

Expansion: Trial-to-Trial 
Variability (TTV) (He, 2013; 
Huang et al., 2015) 
Alignment: Intrinsic Neural 
Timescales (INT) (Huang 
et al., 2021, 2018a) 
Alignment: Autocorrelation 
Window (ACW) 
(Chaudhuri et al., 2015; 
Huang et al., 2021, 2018a; Ito 
et al., 2020; Raut et al., 2020) 
Alignment: Temporal 
Receptive Windows (TRW) ( 
Hasson et al., 2015; Yeshurun 
et al., 2021) 
Nestedness: Global Signal 
(GS) + GS-topography 
(Huang et al., 2016; 
Tagliazucchi et al., 2016a, 
2016b; Tanabe et al., 2020; 
Zhang et al., 2020) 
Nestedness: Power-Law 
Exponent (PLE) 
(Huang et al., 2018b, 2016, 
2015; Klar et al., 2023a; 
Meisel et al., 2017; Zhang 
et al., 2020) 

Expansion: 
Category Theory ( 
Northoff et al., 
2019) 
Nestedness: 
Scale-free 
Topology 
(Chialvo, 2010; 
He, 2014; He et al., 
2010) 

Region-specific representation of global 
activity and non-additive pre-post-stimulus 
interaction occurrence in every region, to 
different degrees, and involving both longer 
and shorter timescales 
(Northoff and Huang, 2017; Northoff and 
Zilio, 2022a)  
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global workspace consists of long-range excitatory neurons that receive 
bottom-up input and top-down output to specific processor neurons. 
Pyramidal cells of layers II/III and deeper layer V are distributed GNW 
neurons, along with other cortical and subcortical cells (Changeux and 
Dehaene, 2008; Dehaene et al., 2003a; Mashour et al., 2020). Second, 
computer simulations of global workspace architecture (Dehaene et al., 
2003b, 1998; Dehaene and Changeux, 2005, 2000) revealed global 
ignition, a stochastic phase transition of neuronal dynamics depending 
on stimulus-related and spontaneous activity, as the neurophysiological 
signature of conscious access (Dehaene et al., 2014; Dehaene and 
Changeux, 2011; del Cul et al., 2007; Polich, 2007). This self-sustained 
reverberation broadcasts the stimulus-relevant signal to all workspace 
processors, marking the current consciousness content (Dehaene et al., 
2017, 2011). GNW equates consciousness as self-reported experience 
with the global availability of information—“the contents of the work-
space is what we subjectively experience as a conscious feeling or 
experience” (Panagiotaropoulos et al., 2020, p. 1)—and searches for its 
neural underpinnings (Dehaene, 2014). 

Theoretical measures. GNW’s repertoire of theoretical measures 
comprises, first, computer simulations of a hierarchical cognitive 
workspace architecture, whether by its proponents (Dehaene et al., 
2003b, 1998; Dehaene and Changeux, 2005, 2000) or other groups 
(Connor and Shanahan, 2010; Shanahan, 2008). Second, it includes 
different information-theoretic measures, e.g., weighted symbolic 
mutual information (wSMI), which evaluates the extent to which two 
EEG signals present non-random joint fluctuations, suggesting that they 
share information (King et al., 2013) or Kolmogorov signal complexity 
(KSC), which involves lossless compression of the time series and 
quantification of compression size—both measures have been used to 
determine an EEG-based consciousness index (CI) (Sitt et al., 2014). 
Third, based on PFC’s workspace neurons, conscious content can be 
decoded (King et al., 2013, 2016; Marti and Dehaene, 2017; Salti et al., 
2015) in different paradigms, e.g., no-report (Bellet et al., 2022; Kapoor 
et al., 2022). 

Empirical measures. PFC activation and the “late-positive” (P3b) 
component of the P300 scalp-ERP indexing ignition are two empirical 
markers (Dehaene et al., 2011; Dehaene and Changeux, 2011; Dehaene 
and Naccache, 2001; Mashour et al., 2020; Sergent and Dehaene, 2004). 
Conscious access relies on long-distance cerebral connectivity to allow a 

global all-or-none neuronal ignition coding for conscious contents, 
especially in temporal and prefrontal cortices. The PFC integrates and 
diversifies cognitive operations through its workspace neurons, under-
scoring conscious access as a sudden, non-linear neural activity phase 
transition (Mashour et al., 2020; van Vugt et al., 2018). Thus, unlike IIT, 
GNW considers frontoparietal areas, cortical hubs, and the late 
all-or-none ignition (P3b) as proper anatomical and physiological NCC 
(see Table 2 in the main text). 

Noel et al. (2018) found ~>300 msec evoked potentials, or sudden 
late ignition, to be the only common EEG signature across visual, 
auditory, and audiovisual consciously accessed trials, while other 
markers like between-trial variability and EEG complexity differed for 
unisensory and multisensory conditions. Sanchez et al. (2020) reported 
similar results across multimodal modalities, further establishing the 
P3b component as GNW’s most robust neural marker of conscious access 
across different methodologies (Dehaene and Changeux, 2011; Kouider 
et al., 2013; Mashour et al., 2020; Moutard et al., 2015); see Deco et al. 
(2017) for a complementary concept of ignition. This only adds to the 
significant theoretical research and experimental evidence supporting 
the global workspace framework (Arthuis et al., 2009; Asplund et al., 
2014; Baars et al., 2021; Bartolomei and Naccache, 2011; Barttfeld et al., 
2015; Berkovitch et al., 2021; Deco et al., 2021; Demertzi et al., 2019; 
Faugeras et al., 2012; Fisch et al., 2009; Gaillard et al., 2009, 2007; 
Hesselmann et al., 2013, 2011; Joglekar et al., 2018; King et al., 2014; 
Kouider et al., 2007; Kreiman et al., 2002; Logothetis, 1998; Mashour 
et al., 2021; Mei et al., 2022; Michel, 2017; Munoz Musat et al., 2022; 
Nieuwenstein et al., 2009; Noy et al., 2015; Panagiotaropoulos et al., 
2012; Quiroga et al., 2008; Reuter et al., 2009; Rohaut et al., 2015; 
Schurger et al., 2015; Sergent et al., 2005; Tasserie et al., 2022; Uhrig 
et al., 2016a; Vul et al., 2008; Wessel, 2012). 

Nevertheless, GNW’s candidate physiological NCC, the P3b compo-
nent, has been debated, with some claiming that it reflects post- 
perceptual processes (Almeida, 2022; Andersen et al., 2016; M. Cohen 
et al., 2020; Förster et al., 2020; Koivisto et al., 2016; Koivisto and 
Revonsuo, 2010; Lamme, 2018, 2010; Northoff and Lamme, 2020; Pitts 
et al., 2014a, 2014b; Rutiku et al., 2016, 2015), being thus a post-NCC 
rather than NCC proper (Aru et al., 2012; de Graaf et al., 2012; North-
off, 2013; Northoff and Heiss, 2015). In light of these debates, Sergent 
et al. (2021) reassessed the P3b’s role without report relying on 

Fig. 1. Measures Centrality Index (MCI). MCI is a categorical index expressing an impact gradient a theory would have when facing disconfirmatory evidence. The 
gradient extends from no changes to the theory to substantive changes leading up to a theory replacement. Orthogonal measures are those non-central to the theory, 
as such empirical data conflicting with predictions based on the measurement do not affect the theoretical structure. Peripheral measures are marginally more central 
and provide extra support without being essential; contradictions call for adjustments without undermining the theory’s main tenets. Mantle measures, are 
significantly more central to the theory. If experimentally disconfirmed, they may call for substantial revisions without necessarily affecting the fundamental 
theoretical foundation of the theory. Core measures, as the name implies, reflect central aspects of a theory. Disconfirming predictions resting on core measure, lead 
to a significant challenge to the theory, requiring the development of a new theoretical framework. The MCI also allows evaluating the relevance of another’s theory 
measure when formulating experimentally deployable predictions within a “home” theory. 
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inter-trial variability. Thus, the P300 ERP reflects conscious 
access-related decision processes rather than conscious access itself. 
They claim that the global playground, a subset network of the global 
workspace, mediates task-free “covert” conscious access. “Overt” 
conscious tasks require the full global workspace. NCC-wise, bilaterally 
positive late 250–300 ms and 600–700 ms bifurcation dynamics in the 
global playground are a general neurophysiological signature of 
conscious access, supplemented by a central positivity component cor-
responding to GNW’s canonical P300 during decisional processes (Ser-
gent et al., 2021). 

3.1.2. An IIT empirical review 
IIT defines consciousness as subjective experience (Albantakis et al., 

2023; Oizumi et al., 2014; Tononi et al., 2016), and uses 
phenomenology-first introspection and reasoning to isolate the essential 
phenomenal properties of experience (Ellia et al., 2021; Tononi et al., 
2022). These are subjectivity, specificity, unity, definiteness, and 
structuredness, and the axioms express them. It then posits one-to-one 
explanatory correspondences between phenomenal properties and 
physical substrate cause-effect properties captured by the postulates. 
They explain our experience by operationally equating it with an 
intrinsic, specific, unitary, and definite cause-effect structure (Albanta-
kis, 2020; Albantakis et al., 2023; Barbosa et al., 2021; Haun and 
Tononi, 2019; Tononi, 2017; Tononi and Koch, 2015). “Unfolding” is the 
algorithm for revealing cause-effect power, and a candidate substrate 
must satisfy all postulates to be a “complex,” i.e., to be conscious-
—axioms, operationalization, main complex identification, and 
unfolding lead to measures. 

Theoretical Measures. IIT’s theoretical model is the Φ-structure and 
the mathematical measures of Φ (big Phi) and φ (small Phi), which 
involve partitioning the candidate system, its mechanisms, and their 
overlap. The Φ-family quantifies integrated existence: an entity or part 
thereof is one if and only if it cannot be reduced to causally separate 
parts by partitioning its substrate. IIT formalism improved from 1.0 
(Tononi, 2004) to 2.0 (Balduzzi and Tononi, 2009, 2008) to 3.0 (Mayner 
et al., 2018; Oizumi et al., 2014) to 4.0 (Albantakis et al., 2023) versions. 
IIT attempts to find a universal mathematical formula for consciousness 
by identifying an experience with a global maximum of irreducible, 
specific, intrinsic, and structured cause-effect power. However, the full 
formula for computing Φ-structures is non-deployable except in “toy” 
systems with 4–30 binary elements (Albantakis et al., 2014; Albantakis 
and Tononi, 2015; Farnsworth, 2021; Fischer et al., 2020; Grasso et al., 
2021; Hoel et al., 2016, 2013; Marshall et al., 2017; Mayner et al., 
2018), recently extended up to 8 states (Gomez et al., 2020), with a 
practical limit of ~10–12 elements (Nilsen et al., 2019). Moreover, some 
argue that the Φ formula is not well-defined (Barrett and Mediano, 
2019) or needs clarification and expansion (Kleiner and Tull, 2021). 
Thus, such theoretical measures are not immediately experimental. 

Empirical Measures. Φ-proxies constitute IIT’s empirical repertoire of 
measures. For instance, the Lempel-Ziv Perturbational Complexity Index 
(LZ-PCI) (Casali et al., 2013) provides an empirically tractable method 
of objectively assessing consciousness in clinical contexts (Ferrarelli 
et al., 2010; Massimini et al., 2009, 2005; Nilsen et al., 2020; Sarasso 
et al., 2021, 2015, 2014); for reviews on consciousness and complexity 
measures, see Nilsen et al. (2020) and Sarasso et al. (2021). LZ-PCI was 
designed with IIT’s first principle in mind: Consciousness requires an 
optimal balance between functional differentiation, which follows from 
the second axiom and postulate, and integration, which follows from the 
third. Giulio Tononi’s early work with Gerald Edelman on neural 
complexity measures (Tononi, 2001; Tononi et al., 1996, 1994; G. 
Tononi and Edelman, 1998) explored this principle, which IIT later 
incorporated and developed (Balduzzi and Tononi, 2008; Oizumi et al., 
2014; Tononi, 2004). However, it is only an indirect proxy derived from 
two of the five postulates (Mediano et al., 2022). This index is the 
normalized Lempel-Ziv complexity of a direct TMS perturbation’s 
spatiotemporal cortical activation pattern (Casali et al., 2013). LZ-PCI 

can distinguish between consciousness and unconsciousness in healthy 
people and brain-injured patients, as well as graded consciousness 
changes. Comolatti et al. (2019) introduced the State Transition 
Perturbational Complexity Index (ST-PCI) to speed up brain signal 
complexity estimation. 

The neural correlates of consciousness (NCC) research paradigm 
exhibits a well-known debate between phenomenology-driven theories 
like IIT and cognition-driven ones like GNW. IIT posits the posterior 
cerebral cortex, more precisely, the temporo-parietal-occipital “hot 
zone,” for full and content-specific NCC (Boly et al., 2017; Koch et al., 
2016; Siclari et al., 2017), while the anterior brain, particularly the 
prefrontal regions, contributes “possibly sensations of thought, reflec-
tion, effort, volition, and motion” (Tononi et al., 2015, p. 435) (see 
Table 3). 

Two decades of theoretical and experimental research across para-
digms and techniques support the hypothesis that consciousness and the 
integration/differentiation balance motif of neural dynamical 
complexity, especially in cortico-cortical and cortico-subcortical 
(thalamic and striatal) circuits, are necessarily connected (Afrasiabi 
et al., 2021; Chang et al., 2012; Deco et al., 2015; Demertzi et al., 2019; 
Fujii et al., 2019; Hashmi et al., 2017; Hudetz et al., 2016, 2015; 
Hutchison et al., 2014; Kung et al., 2019; Lee et al., 2022, 2009; Marshall 
et al., 2016; Mikulan et al., 2018; Monti et al., 2013; Nir and Tononi, 
2010; Noirhomme et al., 2010; Rosanova et al., 2018, 2012; Sanders 
et al., 2018, 2012; Schartner et al., 2017, 2015; Shin et al., 2013). 
Furthermore, regarding the structure of phenomenological space (Haun 
and Tononi, 2019), there is some empirical support for IIT’s predictions 
about the role of lateral connectivity (Song et al., 2017) and the need for 
differentiation and integration of neural responses across individual 
locations in the visual field (Song and Rees, 2018). In addition, 
Φ-measures have successfully been applied to characterize group dy-
namics (Engel and Malone, 2018; Niizato et al., 2020a, 2020b), and the 
recent discovery of electron transport in catecholaminergic neurons has 
been hypothesized as a physical substrate and action selection mecha-
nism consistent with IIT’s emphasis on the integration of neural signals 
(Rourk, 2022). On top of that, “weak” IIT has been proposed as a com-
plementary research program to “strong” IIT, focusing on pragmatic 
hypotheses linking consciousness to a wider range of information mea-
sures (Mediano et al., 2022). Finally, to make Φ-based measures 
empirically tractable, IIT researchers use different operationalizations 
and heuristics (see Table 3 for overview and references). 

3.1.3. A TTC empirical review 
TTC emphasizes temporal continuity, intentionality, qualia, ipseity, 

transparency, unity, and other phenomenological aspects of experience 
(Northoff, 2014b; Northoff and Huang, 2017; Northoff and Zilio, 
2022a). It aims to determine how these relate to brain features. 
Dynamics—change patterns over time and space—guide its approach. 
Consciousness and its phenomenological features depend on how the 
brain creates its own inner time and space as distinct from the world’s. 
The brain’s inner time-space construction relates to phenomenology 
(Northoff, 2014b; Northoff et al., 2020a; Northoff and Zilio, 2022a, 
2022b). Time-space manifests in the world, the brain, and consciousness 
(Northoff, 2018; Northoff and Zilio, 2022a); therefore, mental phe-
nomena are nothing special or mysterious. Time-space features are the 
necessary (Northoff, 2018, chap. 10) “common currency” of neural and 
mental levels (Northoff, 2021; Northoff et al., 2020a, 2020b). Topog-
raphy describes the brain’s neural activity across regions and networks. 
TTC is a global approach since it examines the brain’s neural activity as a 
whole and how it forms temporospatial relationships and organizes re-
gions and networks. It investigates the structure and organization of 
frequencies and timescales, such as in scale-free activity. 

Theoretical Mechanisms and their Empirical Measures. Taking a global 
view of time and space, TTC distinguishes four main temporospatial 
mechanisms or ways the brain constructs its inner time-space: tempor-
ospatial nestedness, alignment, expansion, and globalization (Northoff 
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and Huang, 2017; Northoff and Zilio, 2022a). They refer to different 
purely neuronal mechanisms and relate to distinct phenomenal features 
of consciousness. The four temporospatial mechanisms can dissociate 
and are complementary neuronally and phenomenally, being the origin 
of TTC’s empirical measures summarized in Table 4. 

Temporospatial Nestedness. This mechanism refers to the structure’s 
self-similarity across spatial and temporal organizations, including 
larger/longer and smaller/shorter ones (Northoff and Tumati, 2019). On 
the temporal side, the power law exponent (PLE) and detrended fluc-
tuation analysis (DFA) have been used in EEG and fMRI to discriminate 
among altered states of consciousness like anesthesia (Tagliazucchi 
et al., 2016b; Zhang et al., 2018; Zilio et al., 2021), sleep (Meisel et al., 
2017; Tagliazucchi et al., 2016a; Zilio et al., 2021), and unresponsive 
wakefulness (Zilio et al., 2021). The global signal (GS) and its repre-
sentation in local-regional activity measure spatial nestedness. A 
large-scale fMRI study with all the groups above found a direct rela-
tionship between GS-indexed brain activity and consciousness, with 
lower GS levels corresponding to lower consciousness levels (Tanabe 
et al., 2020). 

Temporospatial Alignment. This mechanism measures how well the 
brain’s activity matches the body’s and the environment’s. Entrain-
ment—the brain’s neural phase shifting to the external 
rhythm—measures temporal alignment (Lakatos et al., 2019). 
Brain-environment synchrony may be necessary for consciousness 
(Northoff and Huang, 2017; Northoff and Zilio, 2022a). The signal’s 
autocorrelation window (ACW) is another temporal measure that re-
flects the brain’s intrinsic neural timescales (Chaudhuri et al., 2015; 
Chen et al., 2015; Golesorkhi et al., 2021a, 2021b; Honey et al., 2012; Ito 
et al., 2020; Murray et al., 2014; Northoff et al., 2021; Raut et al., 2020; 
Wolff et al., 2022). ACW is abnormally long in consciousness loss 
(Huang et al., 2018a; Zilio et al., 2021). The gradients or transitions of 
the transmodal core and unimodal periphery (Golesorkhi et al., 2022, 
2021a) or the sensory input streams’ regions (Çatal et al., 2022) can be 
used to measure spatial alignment. Notably, the dynamics and topog-
raphy converge, providing the brain with an integrated time-space co-
ordinate system in its neural activity (Golesorkhi et al., 2022, 2021a, 
2021b) that, following TTC and its assumption of “common currency,” 
should be manifest on the phenomenal level. 

Temporospatial Expansion. Temporospatial nestedness and alignment 
focus on the brain’s spontaneous or ongoing activity, including resting 
state and pre-stimulus activity, while expansion focuses on their inter-
action. How do they interact to make an input conscious? TTC asks how 
pre-stimulus activity’s spatial and temporal dynamics provide a 
neuronal context or envelope for incoming input, which may “decide” 
whether it becomes conscious. Prestimulus-stimulus interaction is 
measured by prestimulus variability, poststimulus trial-to-trial vari-
ability, poststimulus intertrial phase coherence, and pre-poststimulus 
differences in all these measures (Arazi et al., 2017a, 2017b; Baria 
et al., 2017; Braun et al., 2022; Churchland et al., 2011, 2010; Deha-
ghani et al., 2022; He, 2013; Huang et al., 2015; Northoff and Zilio, 
2022b; Schurger et al., 2015; Wainio-Theberge et al., 2021; Waschke 
et al., 2021; Wolff et al., 2021, 2019). Changes in consciousness alter 
these measures (Bai et al., 2016; Dinstein et al., 2015; Huang, Zhang, 
et al., 2018; Northoff and Lamme, 2020; Northoff and Zilio, 2022a, 
2022b). 

Temporospatial Globalization. This mechanism is both neural and 
phenomenal: a particular temporospatial feature dominates neural and 
phenomenal activity, which can be thought of as a continuation of 
expansion by linking cognitive functions to the latter. In TTC, global-
ization is spatially and temporally determined by the brain’s topography 
and dynamics, encompassing all timescales. GNW’s globalization is 
similar (see differences below). Thus, the GNW’s updated bilaterally 
positive late 250–300 ms and 600–700 ms bifurcation dynamics in 
certain global workspace subsets may be a candidate measure (Sergent 
et al., 2021). 

4. Applying the MCI: intra-theory measures ranking and cross- 
theoretical empirical translations 

This section examines five divergence points between GNW, IIT, and 
TTC, highlighting empirically tractable conflicting predictions or 
promising future research. Cross-theoretical translations are proposed to 
compare empirical measures from the three theories, summarized 
below:  

• Autocorrelation Window (ACW) is a core measure in TTC but, at best, 
peripheral in GNW and IIT;  

• Mutual Information (MI) variants are, at best, peripheral in all;  
• Lempel-Ziv Complexity is roughly a mantle measure in all, closer to 

IIT’s core (but not included in it) and to GNW’s and TTC’s periphery 
(possibly included in it);  

• region-specific activity as NCC is roughly mantle in GNW via the 
PFC, closer to the core (possibly included in it), and mantle in IIT via 
the posterior “hot zone,” but at best peripheral, if not orthogonal, in 
TTC, which has global activity as a mantle NCC instead;  

• late event-related potentials (e.g., P3b) are mantle in GNW, closer to 
the core (possibly included), while early event-related potentials (e. 
g., VAN) are peripheral in IIT, with both orthogonal in TTC, which 
has non-additive pre-poststimulus interaction as mantle measure. 

4.1. Intrinsic neural timescales and autocorrelation window (ACW) 

The brain’s intrinsic neural timescales—short, intermediate, and 
long—are measured by the autocorrelation window (ACW) mainly in 
the brain’s spontaneous activity, e.g., during the resting state (Gole-
sorkhi et al., 2021a, 2021b; Ito et al., 2020; Raut et al., 2020; Wolff et al., 
2022; Yeshurun et al., 2021). Related to these intrinsic timescales, the 
more task-based temporal receptive windows (Hasson et al., 2015) in 
the ACW can promote temporal integration and segregation of input 
sequences depending on their size (Golesorkhi et al., 2021a, 2021b; 
Wolff et al., 2022; Wolman et al., 2023). 

Intrinsic neural timescales are a core TTC measure because they 
provide temporal windows for the temporospatial alignment mecha-
nism, allowing the brain to relate to its environmental context (Northoff 
et al., 2023; Northoff and Huang, 2017; Northoff and Zilio, 2022a). 
Evidence shows intrinsic timescales are necessary for becoming or being 
conscious in both fMRI (Huang et al., 2018a) and EEG (Buccellato et al., 
2023; Zilio et al., 2021); see Northoff et al. (2023) for a summary. ACWs 
are important for consciousness because they allow temporal integration 
and segregation of inputs across different timescales (Fig. 2). If these 
timescales shift abnormally toward longer periods, as when conscious-
ness is lost (Buccellato et al., 2023; Huang et al., 2018a; Zilio et al., 
2021), the various inputs cannot be segregated and specified anymore, 
making consciousness of specific contents blurry and ultimately 
non-existent (Northoff and Zilio, 2022a). 

Intrinsic timescales do not play a prominent role in IIT, which pre-
dicts shorter 50–300 ms consciousness timescales and does not consider 
a variety of temporal windows relevant to experience (Northoff and 
Zilio, 2022a). However, IIT may attribute information integration to the 
ACW: longer ACW mediates more temporal integration (Wolff et al., 
2022) and presumably higher Φ values. Hence, IIT might expect infor-
mation integration and consciousness to increase with longer ACW. A 
necessary caveat here is that, according to IIT’s exclusion axiom and 
postulate, the spatial and temporal grain of experience and its empirical 
substrate’s size and update grain should be definite. Given the current 
state-of-the-art, the computational unfeasibility of finding the maxi-
mally irreducible substrate, i.e., the complex, and unfolding its 
cause-effect structure should mitigate but not dissipate the epistemic 
weight put on the “early” (50–300 ms) empirical extrapolation above. 

According to TTC, consciousness requires a balance of temporal 
integration and segregation with a medium ACW duration rather than a 

R. Chis-Ciure et al.                                                                                                                                                                                                                             



Neuroscience and Biobehavioral Reviews 161 (2024) 105670

9

maximally long one. By medium ACW, TTC means a balance across 
different regions, with sensory ones having shorter ACW and transmodal 
regions having longer ACW (Golesorkhi et al., 2021b; Wolff et al., 2021). 
Moreover, TTC also intends a balance within each region, targeting the 
relation of shorter and longer timescales within a power spectrum to 
slower and faster frequencies (Northoff and Tumati, 2019). This balance 
must be preserved in an equilibrium neighborhood, which, once trans-
gressed, leads to psychopathologies (Lechner and Northoff, 2023; 
Northoff and Gomez-Pilar, 2021; Northoff and Tumati, 2019) and 
neurological deficits (Buccellato et al., 2023; Tanabe et al., 2020; Zilio 
et al., 2021). Northoff and Tumati (2019) express this as the “average is 
good, extremes are bad” principle for relating neural mechanisms and 
mental features. Thus, since IIT and TTC arguably predict intrinsic 
timescale duration and consciousness differently, they can be directly 
compared. 

GNW and TTC are also comparable. GNW may connect consciousness 
to longer ACW because the longer intrinsic timescale-PFC mediates 
complex cognitive operations in resting and task states (Barrett and Seth, 
2011; Isler et al., 2018; Kim and Lee, 2019; Nazhestkin and Svarnik, 
2022). Like IIT, GNW would likely hypothesize that longer ACW is 
associated with conscious access given the theory-driven research on 
local and global auditory novelty processing (El Karoui et al., 2015; 
Marti et al., 2014; Uhrig et al., 2016). Hence, this indicates another 
empirically tractable divergence from TTC. 

TTC’s temporospatial alignment mechanism, as one of the four 
mechanisms driving consciousness, relies on intrinsic timescales, which 
ACW measures. ACW is thus a core or at least a mantle measure for TTC. 
Showing that ACW is unrelated to consciousness and its contents would 
be a major challenge to, if not a partial falsification of the TTC. ACW is, 
at best, a mantle but likely a peripheral measure in both IIT and GNW 
because it only indirectly expresses their mechanisms. Accordingly, 

ACW-indexed intrinsic timescales allow for a reasonably direct and valid 
comparison of TTC with GNW and IIT, with TTC having much higher 
stakes (Fig. 2). There is also room for convergence: the ACW may be 
related to the measures focused on in IIT, like LZC (Çatal et al., 2022; 
Zilio et al., 2021), and in GNW, like the post-stimulus measures (Buc-
cellato et al., 2023; Lechner and Northoff, 2023). 

4.2. Mutual information (MI) 

All three theories use mutual information (MI) and its extensions as 
information-theoretic measures but attribute differential importance to 
it. Imaging studies in GNW used MI to measure the degree of shared 
information in time series among regions (Kim et al., 2021; Kim and Lee, 
2020; King et al., 2013; Sitt et al., 2014). The more globalized the 
workspace, the more regions/networks with high MI, and the higher the 
consciousness—a three-fold relationship indexing global workspace 
capacity (Kim et al., 2021; King et al., 2013; Sitt et al., 2014). 

Tononi and colleagues used MI in their neural complexity measures 
(Tononi, 2001; Tononi et al., 1996, 1994; Tononi and Edelman, 1998) 
and the effective information-based IIT 1.0. (Tononi, 2004; Tononi and 
Sporns, 2003), but they replaced it after 2.0 (Balduzzi and Tononi, 
2008). One could surmise that information integration across large 
regions/networks boosts MI, but its relationship to 4.0 Φ-based mea-
sures (Albantakis et al., 2023) requires investigation. 

TTC extends MI to the environment, that is, to the degree of infor-
mation shared between the environment and the brain. Better temporo- 
spatial alignment with the environment increases consciousness 
(Northoff et al., 2023). Such alignment implies higher MI degrees be-
tween environmental and neuronal stochastics, as indexed by higher 
inter-trial phase coherence, inter-subjectively shared topography, and 
lower inter-individual variability in ACW during task states (compared 

Fig. 2. Direct empirical comparison of the three theories based on the Autocorrelation Window (ACW). TTC predicts that a balance between longer and shorter ACW 
is necessary for consciousness, consistent with its emphasis on the foreground-background structure of phenomenology, which in the figure is represented as the 
different frequencies of the waves. Extrapolating ACW to GNW and IIT, a plausible inference is that they would associate longer ACW with the presence of con-
sciousness due to the specifics of their proposed mechanism (i.e., workspace ignition and information integration), possibly differing in the latency of the increase (i. 
e., later in GNW and earlier in IIT). 
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to rest) (Klar et al., 2023a, 2023b; Northoff et al., 2023). However, 
measuring MI between neuronal and environmental stochastics/stimuli 
still needs to be done in the context of alignment and consciousness TTC 
studies. Higher temporospatial alignment should lead to higher MI of 
environmental and neuronal stochastics and, thus, higher consciousness. 

In conclusion, MI is a somewhat peripheral measure in all three 
theories, but for different reasons. GNW and IIT consider MI in brain 
regions as an index of workspace capacity and integrated information, 
respectively, while TTC emphasizes its key role in measuring brain- 
environment alignment. Hence, MI is measured within the brain itself, 
e.g., among its different regions within the context of GNW and IIT, 
while it is conceived to measure the shared information of the brain and 
environment in TTC. That currently hinders direct MI-driven empirical 
comparisons, although there is a future promise. 

In earlier work with Gerald Edelman, Giulio Tononi emphasizes the 
importance of neuronal-environmental complexity matching for con-
sciousness (Tononi et al., 1996; Tononi and Edelman, 1998), indirectly 
implying the importance of alignment and MI. Besides being pursued in 
some studies in humans (Boly et al., 2015; Mensen et al., 2018, 2017) 
and mice (Gandhi et al., 2023; Mayner et al., 2022), a new 4.0 Φ-based 
(Albantakis et al., 2023) matching measure is currently being developed 
(Tononi, personal communication). Therefore, there could be a fertile 
comparison with TTC’s MI-based brain-environment alignment. More-
over, it is worth noting that the degree of brain-environment MI, as 
focused on in TTC, may relate to and shape the degree of shared mutual 
information among the regions/networks within the brain itself, as 
postulated in GNW and IIT. 

4.3. Lempel-Ziv complexity (LZC) 

Empirical studies interpreted under IIT show that Lempel-Ziv 
Complexity (LZC)—a component of the Perturbational Complexity 
Index (PCI)—increases with consciousness level, requiring maximal 
integration in the early (0–300 ms) poststimulus period (Casali et al., 
2013; Comolatti et al., 2019; Sarasso et al., 2021, 2015). Studies have 

shown that higher LZC is associated with higher levels of consciousness 
(Casali et al., 2013; Sarasso et al., 2021, 2015). Thus, it is a mantle 
measure but not a core IIT measure because it is only derived from two 
of its postulates (see the IIT review above). Empirical studies interpreted 
under GNW also indicate LZC increase, but later (300–600 ms) as related 
to the P3b and cognitive processes supporting conscious access, making 
it a mantle measure, too (Dehaene et al., 2011; Dehaene and Changeux, 
2011; del Cul et al., 2007; Gaillard et al., 2009; Mashour et al., 2020; 
Sergent et al., 2005). 

Unlike IIT and GNW, TTC considers how the prestimulus activity 
relates to both the early and late poststimulus activity (see Fig. 3). One 
EEG study found that the poststimulus LZC is lower than the prestimulus 
(Wolff et al., 2021, 2019). As the TTV, LZC decreases during the post-
stimulus period relative to the prestimulus period (He, 2013; Huang 
et al., 2015; Wainio-Theberge et al., 2021; Wolff et al., 2021). However, 
whether such poststimulus LZC decrease (relative to prestimulus) is 
related to the contents of consciousness remains yet unknown. If so, it 
would contradict IIT’s and GNW’s claim of increased LZC serving as 
NCC. 

Thus, LZC comparisons of IIT, GNW, and TTC are valid. LZC is, 
arguably, a mantle measure in all theories—more central in IIT but not a 
core measure. If, as a function of conscious content, LZC is found to 
increase (while not decreasing in the early and/or late poststimulus 
period), it would significantly support IIT and GNW over TTC. However, 
if LZC decreases (relative to prestimulus) as a function of conscious 
content, that would be supporting evidence for TTC. 

There are, though, some obstacles in comparing the theories via this 
measure. For example, LZC calculations in IIT and GNW only consider 
the poststimulus period, making it impossible to determine whether the 
observed LZC increases in the TMS-EEG studies (Casali et al., 2013; 
Sarasso et al., 2021, 2015) are increases or decreases relative to the 
prestimulus period (see Fig. 3). Nevertheless, it bears stressing that 
there is a distinction between the methodological focus on the latency of 
poststimulus activity and the one on pre-poststimulus interaction that 
could be valuable for consciousness theory design. Moreover, one would 

Fig. 3. Direct empirical comparison of the three theories based on Lempel-Ziv Complexity (LZC). Arguably a mantle measure in all theories (but more important for 
IIT), a later (> 300 ms) increase in LZC might correlate with consciously accessing an experienced content in GNW, while this increase might happen earlier (<
300 ms) in IIT as a correlated of phenomenal consciousness. TTC differs in its approach and predicts that the non-additive interaction between the prestimulus and 
the stimulus-induced activities should lead to an early (< 300 ms) LZC decrease rather than an increase for experienced contents. 
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need to apply task-based paradigms probing conscious vs. unconscious 
content with an intertrial interval design that would allow measuring 
the prestimulus duration for at least 500–1000 ms. Finally, IIT uses LZC 
as a proxy of information integration (because it measures complexity); 
in contrast, TTC regards it more as a measure of time-series compression 
(which is not the same as information integration) (Golesorkhi et al., 
2022; Wolff et al., 2021). 

4.4. NCC: anterior vs. Posterior cortex and local vs. Global approaches 

The prefrontal cortex (PFC) is thought to participate in the global 
workspace through neurons with specific cytoarchitecture. PFC activa-
tion as NCC is a core GNW hypothesis and prediction supported by 
various lines of evidence (Baars et al., 2021; Bellet et al., 2022; Dehaene 
and Changeux, 2011; Kapoor et al., 2022; Mashour et al., 2020; Noel 
et al., 2018; Odegaard et al., 2017). Based on other findings, IIT claims 
that a posterior temporal-parietal-occipital “hot zone” is necessary and 
sufficient for the state and content of consciousness and its phenomenal 
features, e.g., NCC as distinct from access mediated by the PFC, which 
could be an NCC for specific consciousness contents like volition, 
thought, or affect (Boly et al., 2017; Koch et al., 2016; Siclari et al., 2017; 
Storm et al., 2017; Tononi et al., 2016, 2015). Thus, GNW hypothesizes 
PFC activation as NCC but not IIT (Consortium et al., 2023). Moreover, 
GNW associates the PFC with access consciousness, which “may be all 

there is to consciousness” (Naccache, 2018, p. 3). 
More abstractly, both IIT and GNW presuppose explanatory local-

izationism: they share the assumption of a particular region or network 
as the guiding thread to the NCC, whereas they differ in pinpointing it. In 
contrast to this localizationist focus in IIT and GNW, TTC assumes the 
whole brain with all its regions and networks is key for NCC—a global 
approach (see Fig. 4). While regions/networks are also considered in 
TTC, they derive their importance only from and relative to the global 
brain’s topography (and its dynamics), which shapes the organization or 
structure of consciousness as in meditation (Cooper et al., 2022) and 
dreams (Northoff et al., 2023). Indeed, as predicted, topography (as 
measured by the global signal in fMRI) is highly differentiated with 
different weightings among different regions/networks in awake, 
conscious states, whereas it remains undifferentiated in unconscious 
states (Huang et al., 2021, 2018a, 2018b, 2015; Tanabe et al., 2020; 
Zhang et al., 2019, 2018). 

Despite also assuming a global component, GNW postulates a local- 
to-global integration because the PFC and connected regions locally 
constitute the global neuronal workspace. This, however, does not mean 
that PFC activity is sufficient by itself; the workspace needs inputs from 
specialized processors, e.g., V1, for broadcasting to happen. Instead, the 
point of the “local-to-global integration” is that the former holds 
explanatory priority over the latter: the frontal “local” does more to 
account for consciousness than the whole “global.” In TTC, global 

Fig. 4. Direct empirical comparison of the three theories relative to the anatomical NCC.  
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activity throughout the brain is differentiated topographically with 
different weightings of the regions within that global topography—a 
global-to-local differentiation (Northoff and Zilio, 2022b). Here, the 
explanatory priority is reversed. 

Spatial NCC differences affect the weighting of empirical measures. 
Falsifying NCC predictions like the posterior cortical “hot zones” and/or 
the prefrontal cortex would have a larger bearing on IIT and GNW. 
Hence, activity in these regions is likely a mantle measure within IIT and 
GNW, probably closer to core for the latter. In contrast, neither region/ 
network alone is important by itself and isolated from the brain’s global 
activity for the TTC—they are only, at best, peripherally relevant for the 
TTC relative to the global or whole brain topography. Thus, unlike GNW 
and IIT, their falsification would not affect TTC significantly; at best, 
neural activity in these regions is a peripheral, if not orthogonal, 
measure. 

The consequence is that comparing and falsifying GNW, IIT, and TTC 
by investigating their spatial NCCs would be uninformative because TTC 
is based on different assumptions about the brain: a global approach 
with global-to-local differentiation as distinguished from IIT’s and 
GNW’s localizationist approach with local-to-global integration. By 
these characterizations, we do not mean that either GNW or IIT are old- 
fashioned “localizationist,” i.e., attempting an explanation at a modular 
(local) rather than network (global) scale—both would be “globalist” in 
this interpretation. 

More specifically, the inference from theoretical principle to plau-
sible neurobiological substrate (NCC) is carried out at a higher 
abstraction level. In GNW, the inference goes from the postulation of a 
cognitive workspace coupled with biophysical properties of pyramidal 
neurons to the frontoparietal networks as loci of experience. In IIT, the 
inference goes from the explanatory identification of experience with 
maximally irreducible cause-effect structures coupled with formal 
knowledge about which network architectures maximize integrated in-
formation to the posterior “hot zone” of pyramids of grids. 

In other words, the difference concerns the spatial or topographic 
extension of the neural truth-maker (i.e., what makes true) for each 
inferential schema, which dictates the explanatory direction. The 
theory-driven locality in GNW and IIT means explaining why con-
sciousness is associated with a specific region/network and extrapo-
lating to why it is not associated with others or the entire brain—an 
explanatory integration of the global into the local. In contrast, the 
theory-driven globality in TTC means explaining why consciousness 
depends on the entire brain and extrapolating how this is differentially 
expressed on a regional level—an explanatory differentiation of the 
local within the global. TTC’s inferential schema goes from tempor-
ospatial dynamics as a “common currency” between the neural and 
phenomenal domain coupled with the emphasis on ongoing sponta-
neous neural activity to the regional differentiations of global brain 
activity as the full NCC. 

This is how we use the local-global distinction here instead of the 
more common one of modules vs. networks. Naturally, the “local” and 
“global” qualifiers are defined relatively, and there is no sharp separa-
tion independent of an analytic perspective. Nevertheless, the difference 
is significant for experiment construction, as this meta-theoretical 
disparity in explanatory trajectories and truth-makers engenders 
potentially non-overlapping empirical outcomes, such that, for example, 
in an adversarial experiment, both GNW and TTC are confirmed, 
meaning it is not a productive one on this specific topic. 

Therefore, one substantive takeaway of this sub-section is that the 
global vs. local distinction in the NCC search has consequences for the 
empirical comparison and discrimination of consciousness theories, 
including their potential falsification. However, there is room for 
convergence: the global brain activity may be represented to different 
degrees in more local regions like the posterior cortex or PFC. If such 
global-to-local representation could be linked to the contents of con-
sciousness, TTC could be connected to either GNW or IIT (see Fig. 4). 

4.5. Event-related potentials (ERPs) (P3b/VAN), trial-to-trial variability 
(TTV), and latency of poststimulus activity vs. Pre-poststimulus interaction 
approaches 

GNW associated the P3b component, a late positivity ERP in the 
~300–600 ms post-stimulus interval, as a marker of conscious access, 
which caused much controversy (Almeida, 2022; Andersen et al., 2016; 
Cohen et al., 2020; Förster et al., 2020; Koivisto et al., 2016; Koivisto 
and Revonsuo, 2010; Lamme, 2010, 2018; Northoff and Lamme, 2020; 
Pitts, Metzler, et al., 2014; Pitts, Padwal, et al., 2014; Rutiku et al., 2015, 
2016). Despite its NCC status, empirical evidence and theoretical 
modeling suggest that the P3b component might be associated with 
cognitive processes like attention (Kropotov, 2009a; Polich, 2007), 
engagement operations, salience monitoring (Foss-Feig et al., 2012; 
Kropotov, 2009b), and decision-making (Rac-Lubashevsky and Kessler, 
2019). Thus, the P3b component appears associated with multiple 
cognitive processes, suggesting it may not be specific to conscious ac-
cess. Another unproven possibility is that all cognitive processes involve 
conscious access. Thus, P3b’s presence in many cognitive tasks argues 
against it being an NCC for conscious access; rather, it could index a 
neural consequence (Aru et al., 2012; de Graaf et al., 2012; Northoff, 
2013; Northoff and Heiss, 2015) 

Unlike GNW, IIT associates earlier event-related potentials (Boly 
et al., 2017; Koch et al., 2016; Siclari et al., 2017; Tononi et al., 2015) 
like the early negativity N200 component, known as visual awareness 
negativity (VAN) in the visual perception paradigm (Förster et al., 2020; 
Koivisto and Revonsuo, 2010; Storm et al., 2017), with visual con-
sciousness. Moreover, the earlier ERPs like N200 (and N100; see Railo 
et al. 2011) appear to be associated with phenomenal consciousness 
rather than access consciousness as the P3b (Koch et al., 2016; Storm 
et al., 2017). 

Despite their differences in early vs. late event-related potentials, IIT 
and GNW prioritize poststimulus activity as NCC candidates despite not 
completely ignoring prestimulus activity. TTC differs here as it postu-
lates that the prestimulus period and its non-additive interaction with 
the external stimulus is a necessary aspect of an NCC (Braun et al., 2022; 
Huang et al., 2015; Northoff and Huang, 2017; Northoff and Zilio, 
2022b, 2022a; Wainio-Theberge et al., 2021) (see Fig. 5). One measure 
of such non-additive pre-poststimulus interaction is trial-to-trial vari-
ability (TTV) (i.e., the variance in the amplitude in response to the same 
stimulus over several trials), whose degree of poststimulus quenching (i) 
depends on prestimulus variance (Wainio-Theberge et al., 2021; Wolff 
et al., 2021) and (ii) is associated with conscious contents (Arazi et al., 
2017a, 2017b; Huang et al., 2018b, 2015; Schurger et al., 2015; 
Wainio-Theberge et al., 2021; Waschke et al., 2021). 

In sum, as physiological NCCs, the late ERP (P3b) is a mantle to GNW 
measure, but the early ERP (N200; VAN) is likely peripheral for IIT; both 
are orthogonal to TTC. TTV, which measures the degree of non-additive 
pre-poststimulus interaction, is a mantle measure of TTC but only pe-
ripheral or, likely, orthogonal in IIT and GNW since neither considers 
the prestimulus period, including its non-additive interaction with the 
external stimulus, as an indispensable piece of the NCC. Thus, one could 
compare IIT and GNW regarding early- and late poststimulus activity. 
Moreover, in an empirically meaningful sense, GNW and IIT cannot be 
directly compared with TTC since neither GNW nor IIT considers the 
TTV-indexed non-additive pre-poststimulus interaction (see Fig. 5). That 
does not exclude their future convergence, though: the TTV-indexed pre- 
poststimulus non-additive interaction highlighted in TTC may predict 
the early and/or late post-stimulus ERP changes that GNW and IIT focus 
on. 

5. Addressing MCI’s challenges: intra-theory triangulation and 
inter-theory coordination 

The complex landscape of consciousness research, with its method-
ological, epistemological, and ontological intricacies, challenges multi- 
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theory classification interfaces like the MCI. Addressing intra-theory 
issues outlined in Section 2 ’s Table 1 is essential to avert reductive 
or fragmentary approaches. Here, the concept of “relevance” stands for 
the impact measures-driven predictions have on theoretical constructs if 
disconfirmed. How can relevance be rigorously categorized? Who de-
cides a measure’s relevance, and based on what evidence? How can 
those measures be empirically deployed? How can the ranking be 
adjusted to theory change? 

Conceptual and computational strategies 
Firstly, we consider the general relevance classification—the ‘criteria 

specification’ challenge. The core–mantle–peripheral–orthogonal 
nomenclature is a non-formal, conceptual attempt at expressing the idea 
of an impact gradient ranging from no change to theory rejection. One 
approach to explore could be to use computational models, e.g., ma-
chine learning, applied over extensive datasets, e.g., Yaron et al. (2022), 
to determine optimal classification boundaries or best criteria for clas-
sifying measures within the MCI. 

This approach raises some technical considerations we briefly 
address. Applying machine learning models to classify the relevance of 
measures in consciousness research necessitates rigorous validation 
protocols beyond traditional k-fold cross-validation (Hastie et al., 2009). 
Given the field’s interdisciplinary complexity, as illustrated by Yaron 
et al.’s (2022) dataset, k should be adaptively set to suit data size and 
diversity (Kohavi, 1995). Interpretability issues also loom large (Dos-
hi-Velez and Kim, 2017); ensemble methods like Random Forest could 
offer a more transparent approach (Breiman, 2001; Chen and Guestrin, 
2016). 

Consensus-building and open-science strategies 
Intra-theoretical triangulation (Box 1) commences with theory 

proponents offering an initial measure ranking, thus constructing a 
foundation in line with the original theoretical intent. Subsequent 
external expert review, ideally solicited via a call for contributions, 
fortifies the system’s validity and academic rigor, further answering the 
‘criteria specification’ and ‘operationalization’ challenges (Fig. 6A). This 
step can be done in a collaborative forum to bootstrap inter-theory co-
ordination (Box 2), also addressing the ‘definitional’ and ‘empirical no- 
overlap’ challenges (Fig.6B). Complementary mechanisms such as 
symposia, virtual meetings, or online platforms facilitate this mutual 
understanding without enforcing uniformity but aiming for clarification 
on theoretical overlaps and divergences 

However, potential disagreements among stakeholders or between 
them and experts can create implementation bottlenecks or syncopate 
the entire process—the ‘proponents’ agreement and coherence’ and 
‘conflict resolution mechanisms’ challenges. To mitigate such possible 
conflicts, a structured approach like the Delphi method can be employed 
(Dalkey and Helmer, 1963; Hasson et al., 2000). Utilizing anonymized 
surveys, theory proponents and experts categorize measures using a 
core–mantle–peripheral–orthogonal framework. Iterative rounds could 
promote consensus and counteract bias, ensuring that the classification 
accurately represents a shared, field-wide comprehension of the theory’s 
fundamental principles. 

Theory proponents could pre-register their conflicting predictions, 
methodologies, and empirical measures like Melloni et al. (2023) did. 
This should promote transparency and robustness in comparing theories 
while reducing the primarily confirmatory and method-specific accu-
mulation of evidence that the field exhibits (Yaron et al., 2022). 

Fig. 5. Direct empirical comparison of the three theories relative to the physiological NCC.  
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5.1. Philosophical strategies 

In addition to theory proponents and experts, interdisciplinary 
philosophical analysis elucidates a theory’s deeper structure, including 
its phenomenological, epistemological, operational, and ontological 
facets (Fig. 6 A). To illustrate, it can shed light on a theory’s episte-
mological foundations: What kind of knowledge it aims to provide, how 
it views the relationship between theoretical constructs and empirical 
reality, and what it posits as the limits of its own explanatory power. 

Addressing the ‘operationalization’ challenge, this angle aims at 
revealing the assumptions through which a consciousness theory faces 
the intrinsic challenge of translating subjective experiences—private, 

unique, and qualitative by nature—into objective, quantitative mea-
sures that can be systematically studied and compared. Revealingly, the 
falsifiability and empirical character of some (Doerig et al., 2019) or 
most (Kleiner and Hoel, 2021) consciousness theories recently came 
under fire because objectively explaining a subjective phenomenon re-
mains an unresolved methodological problem in consciousness science. 

This phase is mandatory, as a theory’s epistemological foundation 
significantly shapes the types of empirical measures considered central 
or relevant (see also theory meta-classifications below). This determines 
what set of ‘data’ is deemed necessary or relevant. 

In some frameworks, subjective reporting or phenomenological 
analysis could be considered central, while others could emphasize 

Fig. 6. A. Intra-theory triangulation. Intra-theoretical triangulation involves collaboration between theory proponents and external experts to establish a founda-
tional ranking of measures. This process involves inviting experts to review and provide feedback on the proponent’s initial classifications. Interdisciplinary analysis 
can reveal the deep structure of a theory, clarifying its phenomenological starting point, foundational principles, epistemological commitments, operational as-
sumptions, and explanatory goals. This collaborative understanding helps determine which measures are central to achieving the theory’s epistemological goals, 
generating consensus beyond the theory proponent group. B. Inter-theory coordination. The coordination begins by addressing definitional and empirical differences 
between candidate theories in an extended and transparent process. Cross-theoretical empirical translations involve systematically transposing a theory’s empirical 
measures into the conceptual framework of another, adaptively reclassifying their centrality. These not only make empirical contrasts starker but might expose latent 
weaknesses and contribute to potential theory unification and pruning. Theory proponents agree upon and sign off divergent predictions, and the adversarial 
experiment is pre-registered. Then, a theory’s measures-driven predictions are pitted against another’s in an adversarial collaborative experiment. C. Process 
recursive iteration. The experiment’s theory-related results are assessed, and the credence given to the theory is reweighted. In light of such changes, periodic expert 
review panels recalibrate the MCI’s measures ranking, ensuring its accuracy and responsiveness. The entire process can be reinitialized for different, potentially 
overlapping, sets of theories. 

Box 3 
Galilean vs. Nagelian Objectivity: Does Phenomenological Data Exist?. 

In consciousness studies, discerning reliable data sources is pivotal. Central to this are the divergent epistemological foundations of theories 
directing the choice and use of empirical measures. 

Galilean objectivity prioritizes data triangulation among observers, generally sidelining subjective experiences. This approach heralds a 
“purely” objective pathway, a third-person perspective grounded in physical manifestations observable externally, emphasizing neurobiolog-
ical, computational, or behavioral metrics and marginalizing subjective narratives in data landscapes. 

In contrast, Nagelian objectivity, inspired by Nagel’s (1974, 1986) work, upholds the centrality of the “what it is like to be” narrative from 
within, emphasizing the primary role of subjective experiences in consciousness studies (Frank et al., 2024; Gallagher and Zahavi, 2021; Goff, 
2019). Despite acknowledging the scope and signal limitations of subjective data, it affirms their indispensable value in capturing the 
complexity and depth of phenomenal experience. 

A unified objectivity paradigm to study subjective experience appears necessary for progress. Consciousness researchers should find common 
ground and navigate these dichotomous objectivities. Non-reductive neurophilosophy (Northoff, 2014a; Zilio, 2020); see Box 2) provides a 
nuanced pathway for reconciling these two objectivity paradigms without reducing the experiential-subjective to the neuro-objective but 
instead finding a “common currency” between them and keeping a method and domain pluralism (rather than eliminativism) and brain-based 
(rather than -reductive) stance.  
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neurobiological, computational, or behavioral measures that can be 
subjected to rigorous empirical testing without the “interference” of 
subjective experience (see Box 3). 

Beyond elucidating foundational elements within a single theory, it 
serves as a toolkit for disentangling inter-theory semantic intricacies 
that may appear trivial but are often grounded in deep-seated theoret-
ical disagreements. The rigorous employment of this toolkit within a 
collaborative forum thus leads to conceptual and empirical interopera-
bility, enabling the identification of incommensurable assumptions 
causing definitional and empirical divergences. 

Establishing common ground could imply, for instance, unraveling 
that the different theories, e.g., illusionist and phenomenology-driven, 
share a commitment to the notion that consciousness necessarily in-
volves or is a product of information processing, albeit interpreted 
differently within their respective epistemological frameworks. In this 
way, the philosophical toolkit enables us to disentangle what seems like 
mere semantic discordances to uncover areas where the theories can be 
made commensurable or at least comparable. It allows for a higher de-
gree of conceptual and empirical interoperability, identifying the spe-
cific aspects in which, e.g., the illusionist and phenomenological 
frameworks can engage in meaningful dialogue without diluting their 
respective theoretical essences. Such an endeavor does not merely aim at 
compromise but seeks to enlarge the explanatory scope of each theory by 
integrating insights from the other. 

If repeated recursively (Fig. 6 C), one significant outcome of this 
process is the generation of theory meta-classifications, which serve as 
interpretive layers facilitating discourse between different theoretical 
frameworks. Such meta-classifications act as a Rosetta Stone, translating 
the terms of one theory into the context of another. They sharpen the 
idea that a theory’s semantic and epistemological commitments deci-
sively constrain the types of empirical measures deemed pertinent. Thus, 
we treat the ‘inter-theory definitional differences and empirical no- 
overlap’ (Table 1) as a two-faced challenge. 

5.2. Experimental strategies 

The proposed approach increases informativeness when comparing a 
given theory’s measures-driven predictions against another’s in an 
adversarial collaborative experiment (Fig. 6B). In particular, the 
concept of cross-theoretical empirical translations stands as a useful 
methodological dimension of the current proposal. To elucidate, 
consider two distinct theories, A and B, each with unique conceptual 
tenets—A–C and B–C—and empirical measures, denoted as A–E and 
B–E. The goal is not merely to deploy A–E into B–C but to undertake a 
nuanced mapping that accounts for each theory’s methodological, 
epistemological, and ontological intricacies. When theory A’s empirical 
measures (i.e., A–E) are interpreted within the conceptual framework of 
theory B (i.e., B–C), a systematic empirical translation emerges. This 
facilitates meaningful comparisons and contrasts between theories 
without destroying the particularities that make each theoretical 
approach unique. 

We showed this in Section 3 by taking an IIT-popularized measure, 
the LZC, and cross-theoretically translating it to GNW and TTC in a way 
that dovetails with their theoretical and empirical apparatus. We argued 
that if an LZC increase is observed in the early or late poststimulus pe-
riods in connection with a conscious percept, this finding would support 
IIT and GNW, depending on the timing, as opposed to TTC. On the other 
hand, if a decrease in poststimulus LZC, relative to prestimulus levels, is 
associated with conscious content, this would tip the scales in favor of 
TTC. Notwithstanding the results, the nuanced difference between 
zeroing in on poststimulus latency and investigating pre-poststimulus 
interactions is already a fruitful result of the MCI-driven methodology 
that could inform future theory-building and adversarial collaboration 
design. 

An unavoidable stumbling block when translating empirical mea-
sures across theories is the difference in within-theory relevance. For 

instance, what is deemed “core” in theory A might only occupy a “pe-
ripheral” status in theory B. The MCI approach tackles this by adaptively 
reclassifying the translated measure based on the cumulative knowledge 
garnered. As shown, upon importing a measure from one theoretical 
context to another, this process critically evaluates the measure against 
the definitional and empirical criteria inherent to the receiving theory. 
This adaptive reclassification is a dynamic mapping: It reconciles the 
imported measure with the receiving theory’s existing categorizations, 
ensuring conceptual fidelity while accommodating differences in mea-
sure centrality. 

The benefits of cross-theoretical empirical translations extend 
beyond methodological innovation. First, such translations enable the 
examination of a theory’s robustness by placing its empirical measures 
within the purview of an alternative theoretical construct. This facili-
tates more rigorous and nuanced evaluations and exposes latent weak-
nesses or gaps in each theory. The adversarial nature of these 
translations sharpens the experimental contrasts, rendering them starker 
and more insightful. 

Moreover, these translations present an avenue for weighing the 
falsification of various theories, thus helping decide which adversarial 
collaborations are informative. For instance, if a core measure-based 
prediction of theory A is falsified, it provides robust evidence against 
the theory rather than if a peripheral measure is falsified. MCI then 
provides a tool to more rigorously evaluate the evidence against a theory 
but also contribute to potential theory unification and pruning, a highly 
sought-after yet elusive goal in consciousness studies. When empirical 
measures from theory A are coherently integrated and tested within the 
conceptual architecture of theory B, this creates the potential for cross- 
fertilization of ideas that might benefit both theories. 

5.3. Dynamic adaptive strategies 

To address the ‘validation, reliability, and adaptability’ challenge, 
we propose a dynamic adaptive framework for MCI’s relevance schema. 
The intra-theory schema would be continually updated through periodic 
reviews conducted by panels of experts, both theorists and experimen-
talists. This step also encourages additional feedback from the broader 
research community. To formalize this process, Bayesian reasoning can 
be employed to update the classification of empirical measures in the 
MCI based on emerging evidence. Transparent documentation of these 
periodic reviews and adjustments will be maintained, in line with open 
science policies, to show that classifications are non-dogmatic and 
adjustable. 

To make this process formally rigorous, we can use Bayesian 
reasoning to adjust beliefs (or probability estimates) based on new ev-
idence (Hanti, 2022; Howson and Urbach, 1989). As a simple example, 
the classification of empirical measures within the MCI (whether core, 
mantle, peripheral, or orthogonal) at the second step can be seen as our 
prior belief about the relevance of those measures to a theory. As new 
empirical evidence emerges that might elicit theory change at the fourth 
step, it provides an opportunity to update the measure ranking, even the 
relevance classification at step 1, by acting as the likelihood in Bayesian 
terms. By combining prior beliefs with new evidence, a posterior belief 
about the classification of an empirical measure can be derived, 
reflecting an update. To illustrate, if a previously mantle measure met 
disconfirmatory experiments and the theory changed, the confidence in 
its relative centrality decreases and is downgraded to peripheral if not 
replaced as not relevant anymore. 

Corcoran et al. (2023) provide a nuanced Bayesian account of 
adversarial experiments designed to compare theories in a Bayesian 
belief updating framework. Arguably, our approach is methodologically 
antecedent and complementary to theirs, as the MCI delineates explicit 
steps and strategies for designing informative experiments based on 
conceptually deep assessments of the competing frameworks’ theoret-
ical structures. With this initial theoretical step in place, the results of 
Bayesian comparisons become more easily interpretable and 
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informative as the measure’s status with respect to the theory is known 
(e.g., orthogonal, periphery, mantle, and core). Therefore, we regard the 
MCI as an initial tool for bringing methodological clarity. 

6. Conclusion—looking back and looking forward 

The process described in the previous section is designed to be 
applied recursively (Fig. 6 C), much like Northoff’s (2014) concept-fact 
dynamic (Box 2). Altogether, the comparison process with intra- 
theoretical triangulation leads to inter-theory coordination, where 
each theory’s core, mantle, peripheral, and orthogonal measures are 
designated, resulting in a theory-specific MCI. Definitional and empir-
ical disparities between theories are identified and systematically 
reconciled through consensus-building and pre-registration, supported 
by philosophical scrutiny that reveals their deeper structural commit-
ments. This culminates in an adversarial collaborative experimental 
paradigm involving sophisticated translation of empirical measures 
across theoretical frameworks. Ultimately, this framework anticipates 
subsequent cycles of theory revision and MCI updating, enriched by 
adaptive reclassification and Bayesian reasoning, in a dynamic and 
responsive feedback mechanism. 

We gave a proof-of-concept of this process by comparing the 
empirical measures of three theories: IIT, GNW, and TTC. Applying our 
methodology, we observed that direct comparison among all three 
theories may be possible only for a handful of measures like ACW, LZC, 
and maybe MI. For most others, their direct comparison remains unin-
formative, e.g., anatomical and physiological NCCs, due to their 
different weightings within and relative to the theoretical and empirical 
frameworks of the theories. The proposed methodology brings to light 
both the opportunities and limitations of such comparisons. 

Rather than being static or monolithic, the MCI strategy is predicated 
upon an evolving dialogue that intertwines theoretical postulations with 
empirical validations. Such a cyclical process—comprising classification 
refinement, empirical scrutiny, feedback assimilation, and belief reca-
libration—guarantees an ever-enhancing alignment of MCI categoriza-
tions with the field’s foundational theoretical constructs and empirical 
revelations. As the field progresses, our methodology aspires to ensure 
that the MCI remains a rigorously grounded and adaptable instrument 
for the working consciousness researcher. 

In grappling with the complexity of consciousness and the various 
theories aiming to elucidate it, a concerted, collaborative approach has 
become paramount—one that takes interdisciplinarity seriously at both 
scientific and institutional levels. Consciousness research needs a uni-
fying framework capable of facilitating empirical inter-theoretic com-
parison. This paper proposes such a framework, distilling direct, testable 
predictions and pitting them against each other. By engaging in this 
method of cross-theoretical empirical translation, the field can leverage 
the strengths of individual theories, encourage direct comparison, 
reduce idiosyncrasies, and specify possible convergence and divergence 
pathways among different theories. This initiative emphasizes accuracy 
over inclusivity, suggesting that the future growth of consciousness 
science lies in the deliberate, detailed exploration of theoretical and 
empirical measures. It invites consciousness researchers worldwide to 
engage in this empirical dialogue, challenge and refine their theoretical 
constructs, and participate in the collective pursuit of understanding 
consciousness. 

Declaration of Generative (AI) and AI-assisted technologies in 
the Writing Process 

During the preparation of this work the author(s) used Grammarly 
and Chat-GPT in order to improve the text’s readability and grammar. 
After using this tool/service, the author(s) reviewed and edited the 
content as needed and take(s) full responsibility for the content of the 
publication. 

Data availability 

No data was used for the research described in the article. 

References 

Afrasiabi, M., Redinbaugh, M.J., Phillips, J.M., Kambi, N.A., Mohanta, S., Raz, A., 
Haun, A., Saalmann, Y.B., 2021. Consciousness depends on integration between 
parietal cortex, striatum, and thalamus. Cell Syst. 12, 363–373.e11. https://doi.org/ 
10.1016/j.cels.2021.02.003. 

Aguilera, M., 2019. Scaling behaviour and critical phase transitions in integrated 
information theory. Entropy 21, 1198. https://doi.org/10.3390/e21121198. 

Aguilera, M., A. Di Paolo, E., 2019. Integrated information in the thermodynamic limit. 
Neural Netw. 114, 136–146. https://doi.org/10.1016/j.neunet.2019.03.001. 

Aguilera, M., di Paolo, E.A., 2021. Critical integration in neural and cognitive systems: 
Beyond power-law scaling as the hallmark of soft assembly. Neurosci. Biobehav Rev. 
123, 230–237. https://doi.org/10.1016/j.neubiorev.2021.01.009. 

Albantakis, L., 2020. Integrated Information Theory. In: Overgaard, M., Mogensen, J., 
Kirkeby-Hinrup, A. (Eds.), Beyond Neural Correlates of Consciousness. Routledge, 
pp. 87–103. 〈https://doi.org/10.4324/9781315205267〉. 

Albantakis, L., Barbosa, L., Findlay, G., Grasso, M., Haun, A.M., Marshall, W., Mayner, W. 
G.P., Zaeemzadeh, A., Boly, M., Juel, B.E., Sasai, S., Fujii, K., David, I., Hendren, J., 
Lang, J.P., Tononi, G., 2023. Integrated information theory (IIT) 4.0: formulating the 
properties of phenomenal existence in physical terms. PLoS Comput. Biol. 19, 
e1011465 https://doi.org/10.1371/journal.pcbi.1011465. 

Albantakis, L., Hintze, A., Koch, C., Adami, C., Tononi, G., 2014. Evolution of integrated 
causal structures in animats exposed to environments of increasing complexity. PLoS 
Comput. Biol. 10, e1003966 https://doi.org/10.1371/journal.pcbi.1003966. 

Albantakis, L., Tononi, G., 2015. The intrinsic cause-effect power of discrete dynamical 
systems—from elementary cellular automata to adapting animats. Entropy 17, 
5472–5502. https://doi.org/10.3390/e17085472. 

Almeida, V.N., 2022. The neural hierarchy of consciousness: a theoretical model and 
review on neurophysiology and NCCs. Neuropsychologia 169, 108202. https://doi. 
org/10.1016/j.neuropsychologia.2022.108202. 

Andersen, L.M., Pedersen, M.N., Sandberg, K., Overgaard, M., 2016. Occipital MEG 
activity in the early time range (<300 ms) predicts graded changes in perceptual 
consciousness. Cereb. Cortex 26, 2677–2688. https://doi.org/10.1093/cercor/ 
bhv108. 

Arazi, A., Censor, N., Dinstein, I., 2017a. Neural variability quenching predicts individual 
perceptual abilities. J. Neurosci. 37, 97–109. https://doi.org/10.1523/ 
JNEUROSCI.1671-16.2016. 

Arazi, A., Gonen-Yaacovi, G., Dinstein, I., 2017b. The magnitude of trial-by-trial neural 
variability is reproducible over time and across tasks in humans. ENEURO.0292- 
17.2017 eNeuro 4. https://doi.org/10.1523/ENEURO.0292-17.2017. 

Arthuis, M., Valton, L., Régis, J., Chauvel, P., Wendling, F., Naccache, L., Bernard, C., 
Bartolomei, F., 2009. Impaired consciousness during temporal lobe seizures is 
related to increased long-distance cortical–subcortical synchronization. Brain 132, 
2091–2101. https://doi.org/10.1093/brain/awp086. 

Aru, J., Bachmann, T., Singer, W., Melloni, L., 2012. Distilling the neural correlates of 
consciousness. Neurosci. Biobehav Rev. 36, 737–746. https://doi.org/10.1016/j. 
neubiorev.2011.12.003. 

Asplund, C.L., Fougnie, D., Zughni, S., Martin, J.W., Marois, R., 2014. The attentional 
blink reveals the probabilistic nature of discrete conscious perception. Psychol. Sci. 
25, 824–831. https://doi.org/10.1177/0956797613513810. 

Ay, N., 2015. Information geometry on complexity and stochastic interaction. Entropy 
17, 2432–2458. https://doi.org/10.3390/e17042432. 

Baars, B.J., 1988. A Cognitive Theory of Consciousness. Cambridge University Press. 
Baars, B.J., Franklin, S., Ramsoy, T.Z., 2013. Global workspace dynamics: cortical 

“Binding and propagation” enables conscious contents. Front Psychol. 4 https://doi. 
org/10.3389/fpsyg.2013.00200. 

Baars, B.J., Geld, N., Kozma, R., 2021. Global workspace theory (GWT) and prefrontal 
cortex: recent developments. Front Psychol. 12 https://doi.org/10.3389/ 
fpsyg.2021.749868. 

Bai, Y., Nakao, T., Xu, J., Qin, P., Chaves, P., Heinzel, A., Duncan, N., Lane, T., Yen, N.-S., 
Tsai, S.-Y., Northoff, G., 2016. Resting state glutamate predicts elevated pre-stimulus 
alpha during self-relatedness: a combined EEG-MRS study on “rest-self overlap. Soc. 
Neurosci. 11, 249–263. https://doi.org/10.1080/17470919.2015.1072582. 

Balduzzi, D., Tononi, G., 2008. Integrated information in discrete dynamical systems: 
motivation and theoretical framework. PLoS Comput. Biol. 4 https://doi.org/ 
10.1371/journal.pcbi.1000091. 

Balduzzi, D., Tononi, G., 2009. Qualia: the geometry of integrated information. PLoS 
Comput. Biol. 5, e1000462 https://doi.org/10.1371/journal.pcbi.1000462. 

Barbosa, L.S., Marshall, W., Albantakis, L., Tononi, G., 2021. Mechanism integrated 
information. Entropy 23, 362. https://doi.org/10.3390/e23030362. 

Barbosa, L.S., Marshall, W., Streipert, S., Albantakis, L., Tononi, G., 2020. A measure for 
intrinsic information. Sci. Rep. 10 https://doi.org/10.1038/s41598-020-75943-4. 

Baria, A.T., Maniscalco, B., He, B.J., 2017. Initial-state-dependent, robust, transient 
neural dynamics encode conscious visual perception. PLoS Comput. Biol. 13, 
e1005806 https://doi.org/10.1371/journal.pcbi.1005806. 

Barrett, A.B., Mediano, P.A.M., 2019. The Phi measure of Integrated Information is not 
Well-defined for general physical systems. J. Conscious. Stud. 26, 11–20. 

Barrett, A.B., Seth, A.K., 2011. Practical measures of integrated information for time- 
series data. PLoS Comput. Biol. 7, e1001052 https://doi.org/10.1371/journal. 
pcbi.1001052. 

R. Chis-Ciure et al.                                                                                                                                                                                                                             



Neuroscience and Biobehavioral Reviews 161 (2024) 105670

17

Bartolomei, F., Naccache, L., 2011. The global workspace (GW) theory of consciousness 
and epilepsy. Behav. Neurol. 24, 8. https://doi.org/10.3233/BEN-2011-0313. 

Barttfeld, P., Uhrig, L., Sitt, J.D., Sigman, M., Jarraya, B., Dehaene, S., 2015. Signature of 
consciousness in the dynamics of resting-state brain activity. Proc. Natl. Acad. Sci. 
112, 887–892. https://doi.org/10.1073/pnas.1418031112. 

Bayne, T., Seth, A.K., Massimini, M., Shepherd, J., Cleeremans, A., Fleming, S.M., 
Malach, R., Mattingley, J.B., Menon, D.K., Owen, A.M., Peters, M.A.K., Razi, A., 
Mudrik, L., 2024. Tests for consciousness in humans and beyond. Trends Cogn. Sci. 
https://doi.org/10.1016/j.tics.2024.01.010. 

Bellet, J., Gay, M., Dwarakanath, A., Jarraya, B., van Kerkoerle, T., Dehaene, S., 
Panagiotaropoulos, T.I., 2022. Decoding rapidly presented visual stimuli from 
prefrontal ensembles without report nor post-perceptual processing. Neurosci. 
Conscious 2022. https://doi.org/10.1093/nc/niac005. 

Berkovitch, L., Charles, L., Del Cul, A., Hamdani, N., Delavest, M., Sarrazin, S., 
Mangin, J.-F., Guevara, P., Ji, E., D’Albis, M.-A., Gaillard, R., Bellivier, F., 
Poupon, C., Leboyer, M., Tamouza, R., Dehaene, S., Houenou, J., 2021. Disruption of 
conscious access in psychosis is associated with altered structural brain connectivity. 
J. Neurosci. 41, 513–523. https://doi.org/10.1523/JNEUROSCI.0945-20.2020. 

Block, N., 1995. On a confusion about a function of consciousness. Behav. BRAIN Sci. 
Bolognesi, T., 2019. Integrated information in process-algebraic compositions. Entropy 

21, 805. https://doi.org/10.3390/e21080805. 
Boly, M., Massimini, M., Tsuchiya, N., Postle, B.R., Koch, C., Tononi, G., 2017. Are the 

neural correlates of consciousness in the front or in the back of the cerebral cortex? 
Clinical and neuroimaging evidence. J. Neurosci. 37, 9603–9613. https://doi.org/ 
10.1523/JNEUROSCI.3218-16.2017. 

Boly, M., Sasai, S., Gosseries, O., Oizumi, M., Casali, A., Massimini, M., Tononi, G., 2015. 
Stimulus set meaningfulness and neurophysiological differentiation: a functional 
magnetic resonance imaging study. PLoS One 10, e0125337. https://doi.org/ 
10.1371/journal.pone.0125337. 

Braun, W., Matsuzaka, Y., Mushiake, H., Northoff, G., Longtin, A., 2022. Non-additive 
activity modulation during a decision making task involving tactic selection. Cogn. 
Neurodyn 16, 117–133. https://doi.org/10.1007/s11571-021-09702-0. 

Breiman, L., 2001. Random forests. Mach. Learn 45, 5–32. https://doi.org/10.1023/A: 
1010933404324. 

Buccellato, A., Zang, D., Zilio, F., Gomez-Pilar, J., Wang, Z., Qi, Z., Zheng, R., Xu, Z., 
Wu, X., Bisiacchi, P., Del Felice, A., Mao, Y., Northoff, G., 2023. Disrupted 
relationship between intrinsic neural timescales and alpha peak frequency during 
unconscious states – a high-density EEG study. Neuroimage 265, 119802. https:// 
doi.org/10.1016/j.neuroimage.2022.119802. 

Casali, A.G., Gosseries, O., Rosanova, M., Boly, M., Sarasso, S., Casali, K.R., Casarotto, S., 
Bruno, M.-A., Laureys, S., Tononi, G., Massimini, M., 2013. A theoretically based 
index of consciousness independent of sensory processing and behavior. Sci. Transl. 
Med 5. https://doi.org/10.1126/scitranslmed.3006294. 

Çatal, Y., Gomez-Pilar, J., Northoff, G., 2022. Intrinsic dynamics and topography of 
sensory input systems. Cereb. Cortex 32, 4592–4604. https://doi.org/10.1093/ 
cercor/bhab504. 

Chang, J.-Y., Pigorini, A., Massimini, M., Tononi, G., Nobili, L., van Veen, B.D., 2012. 
Multivariate autoregressive models with exogenous inputs for intracerebral 
responses to direct electrical stimulation of the human brain. Front Hum. Neurosci. 6 
https://doi.org/10.3389/fnhum.2012.00317. 

Changeux, J.-P., Dehaene, S., 2008. The neuronal workspace model: Conscious 
processing and learning. In: Menzel, Randolf, Byrne, J. (Eds.), Learning and Memory: 
A Comprehensive Reference. Elsevier Academic Press, pp. 729–758. 

Charles, L., Van Opstal, F., Marti, S., Dehaene, S., 2013. Distinct brain mechanisms for 
conscious versus subliminal error detection. Neuroimage 73, 80–94. https://doi.org/ 
10.1016/j.neuroimage.2013.01.054. 

Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H., Wang, X.-J., 2015. A large- 
scale circuit mechanism for hierarchical dynamical processing in the primate cortex. 
Neuron 88, 419–431. https://doi.org/10.1016/j.neuron.2015.09.008. 

Chen, T., Guestrin, C., 2016. XGBoost, in. Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining. ACM, New 
York, NY, USA, pp. 785–794. https://doi.org/10.1145/2939672.2939785. 

Chen, J., Hasson, U., Honey, C.J., 2015. Processing timescales as an organizing principle 
for primate cortex. Neuron 88, 244–246. https://doi.org/10.1016/j. 
neuron.2015.10.010. 

Chialvo, D.R., 2010. Emergent complex neural dynamics. Nat. Phys. 6, 744–750. https:// 
doi.org/10.1038/nphys1803. 

Chis-Ciure, R., 2022. The transcendental deduction of Integrated Information Theory: 
connecting the axioms, postulates, and identity through categories. Synthese 200, 
236. https://doi.org/10.1007/s11229-022-03704-z. 

Chis-Ciure, R., 2024. Categorial Systems and Transcendental Reasoning: Why and How 
Theories of Consciousness Must Redefine the Meaning of Objectivity. Philosophia, 
under revision. 

Churchland, A., Kiani, R., Chaudhuri, R., Wang, X.-J., Pouget, A., Shadlen, M.N., 2011. 
Variance as a signature of neural computations during decision making. Neuron 69, 
818–831. https://doi.org/10.1016/j.neuron.2010.12.037. 

Churchland, M., Yu, B.M., Cunningham, J.P., Sugrue, L.P., Cohen, M.R., Corrado, G.S., 
Newsome, W.T., Clark, A.M., Hosseini, P., Scott, B.B., Bradley, D.C., Smith, M.A., 
Kohn, A., Movshon, J.A., Armstrong, K.M., Moore, T., Chang, S.W., Snyder, L.H., 
Lisberger, S.G., Priebe, N.J., Finn, I.M., Ferster, D., Ryu, S.I., Santhanam, G., 
Sahani, M., Shenoy, K. v, 2010. Stimulus onset quenches neural variability: a 
widespread cortical phenomenon. Nat. Neurosci. 13, 369–378. https://doi.org/ 
10.1038/nn.2501. 

Cohen, M., Ortego, K., Kyroudis, A., Pitts, M., 2020. Distinguishing the neural correlates 
of perceptual awareness and postperceptual processing. J. Neurosci. 40, 4925–4935. 
https://doi.org/10.1523/JNEUROSCI.0120-20.2020. 

Comolatti, R., Pigorini, A., Casarotto, S., Fecchio, M., Faria, G., Sarasso, S., Rosanova, M., 
Gosseries, O., Boly, M., Bodart, O., Ledoux, D., Brichant, J.-F., Nobili, L., Laureys, S., 
Tononi, G., Massimini, M., Casali, A.G., 2019. A fast and general method to 
empirically estimate the complexity of brain responses to transcranial and 
intracranial stimulations. Brain Stimul. 12, 1280–1289. https://doi.org/10.1016/j. 
brs.2019.05.013. 

Connor, D., Shanahan, M., 2010. A computational model of a global neuronal workspace 
with stochastic connections. Neural Netw. 23, 1139–1154. https://doi.org/10.1016/ 
j.neunet.2010.07.005. 

Consortium, C. , Ferrante, O. , Gorska-Klimowska, U. , Henin, S. , Hirschhorn, R. , Khalaf, 
A. , Lepauvre, A. , Liu, L. , Richter, D. , Vidal, Y. , Bonacchi, N. , Brown, T. , Sripad, P. 
, Armendariz, M. , Bendtz, K. , Ghafari, T. , Hetenyi, D. , Jeschke, J. , Kozma, C. , 
Mazumder, D.R. , Montenegro, S. , Seedat, A. , Sharafeldin, A. , Yang, S. , Baillet, S. , 
Chalmers, D.J. , Cichy, R.M. , Fallon, F. , Panagiotaropoulos, T. I. , Blumenfeld, H. , 
Lange, F.P. de, Devore, S. , Jensen, O. , Kreiman, G. , Luo, H. , Boly, M. , Dehaene, S. , 
Koch, C. , Tononi, G. , Pitts, M. , Mudrik, L. , Melloni, L. , 2023. An adversarial 
collaboration to critically evaluate theories of consciousness. bioRxiv 
2023.06.23.546249. 〈https://doi.org/10.1101/2023.06.23.546249〉. 

Cooper, A.C., Ventura, B., Northoff, G., 2022. Beyond the veil of duality—topographic 
reorganization model of meditation. Neurosci. Conscious 2022. https://doi.org/ 
10.1093/nc/niac013. 

Corcoran, A.W., Hohwy, J., Friston, K.J., 2023. Accelerating scientific progress through 
Bayesian adversarial collaboration. Neuron 111, 3505–3516. https://doi.org/ 
10.1016/j.neuron.2023.08.027. 

del Cul, A., Baillet, S., Dehaene, S., 2007. Brain dynamics underlying the nonlinear 
threshold for access to consciousness. PLoS Biol. 5, e260 https://doi.org/10.1371/ 
journal.pbio.0050260. 

Dalkey, N., Helmer, O., 1963. An Experimental application of the DELPHI method to the 
use of experts. Manag. Sci. 9, 458–467. https://doi.org/10.1287/mnsc.9.3.458. 

Deco, G., Tagliazucchi, E., Laufs, H., Sanjuán, A., Kringelbach, M.L., 2017. Novel 
intrinsic ignition method measuring local-global integration characterizes 
wakefulness and deep sleep. eNeuro 4, ENEURO.0106-17.2017. https://doi.org/ 
10.1523/ENEURO.0106-17.2017. 

Deco, G., Tononi, G., Boly, M., Kringelbach, M.L., 2015. Rethinking segregation and 
integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 
430–439. https://doi.org/10.1038/nrn3963. 

Deco, G., Vidaurre, D., Kringelbach, M.L., 2021. Revisiting the global workspace 
orchestrating the hierarchical organization of the human brain. Nat. Hum. Behav. 5, 
497–511. https://doi.org/10.1038/s41562-020-01003-6. 

Dehaene, S., 2014. Consciousness And The Brain: Deciphering How the Brain Codes Our 
Thoughts. Viking. 

Dehaene, S., Artiges, E., Naccache, L., Martelli, C., Viard, A., Schürhoff, F., Recasens, C., 
Martinot, M.L.P., Leboyer, M., Martinot, J.-L., 2003a. Conscious and subliminal 
conflicts in normal subjects and patients with schizophrenia: the role of the anterior 
cingulate. Proc. Natl. Acad. Sci. 100, 13722–13727. https://doi.org/10.1073/ 
pnas.2235214100. 

Dehaene, S., Changeux, J.-P., 2000. Reward-dependent learning in neuronal networks for 
planning and decision making. pp. 217–229. https://doi.org/10.1016/S0079-6123 
(00)26016-0. 

Dehaene, S., Changeux, J.-P., Naccache, L., 2011. The Global Neuronal Workspace Model 
of Conscious Access: From Neuronal Architectures to Clinical Applications. pp. 
55–84. https://doi.org/10.1007/978-3-642-18015-6_4. 

Dehaene, S., Changeux, J.-P., 2005. Ongoing spontaneous activity controls access to 
consciousness: a neuronal model for inattentional blindness. PLoS Biol. 3, e141 
https://doi.org/10.1371/journal.pbio.0030141. 

Dehaene, S., Changeux, J.-P., Naccache, L., Sackur, J., Sergent, C., 2006. Conscious, 
preconscious, and subliminal processing: a testable taxonomy. Trends Cogn. Sci. 10, 
204–211. https://doi.org/10.1016/j.tics.2006.03.007. 

Dehaene, S., Changeux, J.-P., 2011. Experimental and theoretical approaches to 
conscious processing. Neuron 70, 200–227. https://doi.org/10.1016/j. 
neuron.2011.03.018. 

Dehaene, S., Charles, L., King, J., Marti, S., 2014. Toward a computational theory of 
conscious processing. Curr. Opin. Neurobiol. 25, 76–84. https://doi.org/10.1016/j. 
conb.2013.12.005. 

Dehaene, S., Kerszberg, M., Changeux, J.-P., 1998. A neuronal model of a global 
workspace in effortful cognitive tasks. Proc. Natl. Acad. Sci. 95, 14529–14534. 
https://doi.org/10.1073/pnas.95.24.14529. 

Dehaene, S., Lau, H., Kouider, S., 2017. What is consciousness, and could machines have 
it? Science (1979) 358, 486–492. https://doi.org/10.1126/science.aan8871. 

Dehaene, S., Naccache, L., 2001. Towards a cognitive neuroscience of consciousness: 
basic evidence and a workspace framework. Cognition 79, 1–37. https://doi.org/ 
10.1016/S0010-0277(00)00123-2. 

Dehaene, S., Sergent, C., Changeux, J.-P., 2003b. A neuronal network model linking 
subjective reports and objective physiological data during conscious perception. 
Proc. Natl. Acad. Sci. 100, 8520–8525. https://doi.org/10.1073/pnas.1332574100. 

Dehaghani, N.S., Maess, B., Khosrowabadi, R., Lashgari, R., Braeutigam, S., Zarei, M., 
2022. Pre-stimulus alpha activity modulates face and object processing in the intra- 
parietal sulcus, a MEG study. Front Hum. Neurosci. 16 https://doi.org/10.3389/ 
fnhum.2022.831781. 
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